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Properties of random regression models using linear splines
I. Misztal

Animal and Dairy Science, University of Georgia, Athens, GA, USA

Introduction

Many analyses by random regression models (RRM)

use Legendre polynomials (Kirkpatrick et al. 1990;

Van der Werf 1997) as basis functions. These polyno-

mials are able to model a variety of curves for vari-

ances and covariances but they also have undesirable

properties. Fit at the extremes of the trajectory may be

poor. Curves at points of the trajectory with few

records are likely to contain artefacts (Misztal et al.

2000; Nobre et al. 2003a; Meyer 2005a). Parameters

on a scale of polynomials require conversions to the

original scale to determine whether these are realistic

or not. If they contain many artefacts, they can be

converted to the original scale, corrected, and then

converted back. However, this process can be compli-

cated, can introduce additional artefacts, and the

resulting matrices of parameters may be singular (Leg-

arra et al. 2004). Finally, there is a problem with

numerical stability in genetic evaluation, as conver-

gence may be problematic with large data sets (Rob-

bins et al. 2005). Stability may be improved by

reparameterization to diagonal variances but at the

expense of some additional complexity (Lidauer et al.

2003; Nobre et al. 2003b). In maternal models where

the genetic correlation between direct and maternal

effects is assumed present, only a partial diagonaliza-

tion is possible (Bohmanova et al. 2005). Rank reduc-

tion (i.e. elimination of dimensions with very small

eigenvalues), which is usually performed with the di-

agonalization may result in large changes for some

points on the trajectory, especially if there are large

changes in variances along the trajectory (Bohmano-

va et al. 2005). Successful estimation of variances with

Legendre polynomials is possible but requires large

data sets, even distribution of data points on the tra-

jectory, and careful modelling of other effects (Druet

et al. 2003).
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Summary

Properties of random regression models using linear splines (RRMS)

were evaluated with respect to scale of parameters, numerical proper-

ties, changes in variances and strategies to select the number and posi-

tions of knots. Parameters in RRMS are similar to those in multiple trait

models with traits corresponding to points at knots. RRMS have good

numerical properties because of generally superior numerical properties

of splines compared with polynomials and sparser system of equations.

These models also contain artefacts in terms of depression of variances

and predictions in the middle of intervals between the knots, and infla-

tion of predictions close to knots; the artefacts become smaller as corre-

lations corresponding to adjacent knots increase. The artefacts can be

greatly reduced by a simple modification to covariables. With the modi-

fication, the accuracy of RRMS increases only marginally if the correla-

tions between the adjacent knots are ‡0.6. In practical analyses the

knots for each effect in RRMS can be selected so that: (i) they cover the

entire trajectory; (ii) changes in variances in intervals between the knots

are approximately linear; and (iii) the correlations between the adjacent

knots are at least 0.6. RRMS allow for simple and numerically stable

implementations of genetic evaluations with artefacts present but trans-

parent and easily controlled.
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Problems with the Legendre polynomials are due

to many factors: rapid changes of high-order terms

at the extremes, poor modelling capability of asym-

metrical functions, lack of information to estimate a

very large number of parameters, and sensitivity of

(co)variance curves to each of the many parameters.

Therefore, several alternatives were proposed.

Robert-Granié et al. (2002) advocated the use of frac-

tional polynomials where basis functions also

include roots and logs. Subsequently, changes at the

extremes can be more moderate. White et al. (1999)

used smoothing polynomials and Torres & Quaas

(2001) used B-splines with 10 knots. Each coefficient

of a spline function affects only a fraction of the tra-

jectory, resulting in possibly better numerical proper-

ties and fewer estimation artefacts. Also, knots in

splines can be chosen corresponding to the pattern

of changes along the trajectory resulting in smaller

dimensionality; knots can be denser in regions of fast

changes, and sparser in regions of slow changes.

Meyer (2005b) looked at the theory of B-splines.

Meyer also estimated parameters for a range of models

using linear to cubic splines as well as Legendre poly-

nomials. Meyer found the models fitting splines to be

superior to those with polynomials, with quadratic

splines being the best compromise. Models using cubic

splines resulted in the lowest mean squared error but

the largest artefacts. The numerical advantages of

splines are smaller with increasing order of splines.

For example, numerical properties with cubic splines

and cubic polynomials are likely to be similar.

Recently, several studies at the University of Geor-

gia looked at the use of linear splines (Bohmanova

et al. 2005; Iwaisaki et al. 2005; Robbins et al. 2005)

for growth in beef. Compared with a model using

cubic Legendre polynomials, the model using linear

splines (RRMS) with three knots was much easier to

set up and had superior numerical properties. Part of

the simplicity was due to parameters being on the

same scale as in multiple traits.

In growth of beef, the knots were placed at points

of maximum concentration of records, i.e. birth,

weaning and yearling weights. If RRMS is to be

applied for traits with more balanced distribution of

records, an important question is how to select the

number and location of knots. Too many knots will

increase complexity, while too few would reduce

accuracy. More knots can be placed in regions of fast

(co)variance changes and fewer in regions with

slower changes, e.g. based on changes on the pheno-

typic level. However, changes at the mean and vari-

ance scales are not necessarily the same. The aim of

this paper was to investigate properties of RRMS

with focus on methods to determine the number

and placement of knots.

Materials and methods

Model

Assume n knots at points Ti, i ¼ 1, …, n. Let y..jk.t be

the kth observation for subject j at time t. RRMS,

showing two random effects only, can be presented

as:

y::jk:t ¼ � � � þ
Xn
i¼1

uiðtÞaij þ
Xn
i¼1

uiðtÞpij þ ejk;

varðajÞ ¼ Ga; varðpjÞ ¼ Gp; varðejkÞ ¼ r2e;k;

where ui(t) is the ith covariate at time t, aij (pij) is

the ith coefficient for the first (second) effect of sub-

ject j, aj (pj) is the vector of all coefficients for the

first (second) effect of subject j, and ejk is the residual

for the kth record of subject j. The first effect could

be additive genetic and the second permanent

environmental. The covariates are:

if t ¼ Ti : uiðtÞ ¼ 1; uj ¼ 0; j 6¼ i;

if Ti � t < Tiþ1 : uiðtÞ ¼ a; uiþ1ðtÞ ¼ 1� a;

a ¼ Tiþ1 � t

Tiþ1 � ti
; uj ¼ 0; j < i and j > iþ 1

The formulas above assume that T1 £ t < Tn. If

t < T1 or t > Tn, one can use truncation or linear

extrapolation.

Equivalence of variances with multiple trait model

The model above can be written in a matrix notation

as:

y::jk:t ¼ � � � þ UðtÞaj þ UðtÞpj þ ejk;

where U(t) is a vector of covariables at point t.

Assume that data points occur only at knots and that

observation k occurs at knot k. Because

uiðTkÞ ¼
1 if i ¼ k
0 if i 6¼ k

�

the equation for an observation at knot k (t ¼ Tk),

dropping now redundant index t is:

y::jk ¼ � � � þ ajk þ pjk þ ejk:
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Assume that animal j has one observation at each

knot. The model for all observations of that animal

is:

y::j1
y::j2

..

.

y::jn

2
6664

3
7775¼ � � �þ

aj1
aj2

..

.

ajn

2
6664

3
7775þ

pj1
pj2

..

.

pjn

2
6664

3
7775þ

ej1
ej2

..

.

ejn

2
6664

3
7775¼ � � �þ aj þ pj þ ej:

Because of no repeated records, the residual and

permanent environment effects are confounded

and can be merged. In a vector notation, this

results in:

y::j1

y::j2

..

.

y::jn

2
66664

3
77775 ¼� � � þ aj þ eMj ;

varðeMj Þ ¼ R0 ¼ Gp þ diagð½r2e;1; r2e;2; . . .; r2e;n�Þ;

where eMj is a new vector of residual effects.

The above equations are those of a multiple trait

model (MTM). Thus, under some conditions, the

MTM and RRMS models are similar. When data

points occur only at the knots traits, and traits in a

MTM are defined at knot points, the animal effects

in both models are identical. Furthermore, the resid-

ual effect in the MTM is equal to the sum of the per-

manent environment and residual effects in the

RRMS. Following, parameters of both models are the

same for the animal effect, with residual covariance

matrix in the MTM being a sum of permanent envi-

ronment and residual covariance matrices in the

RRMS. These derivations can be generalized to more

random effects and missing observations at some

knots. Based on the study by Iwaisaki et al. (2005),

variances from the RRMS are similar to those in the

MTM even if data points occur outside but close to

knot points.

With good literature estimates for MTM, it is

possible to create satisfactory parameters for RRMS

without re-estimation or conversion. In such a

case, one needs to split the residual variance in

MTM into the permanent and residual variances in

RRM. Any split that results in a positive-definite

covariance matrix for the permanent environment

effect will result in the same solutions to animal

effects if data points occur at knots only. If data

points are scattered, both variances need to be

estimated or derived from estimates for data points

other than at knots.

Computing properties

With linear splines, convergence when solving mix-

ing model equations was superior than in models

with Legendre polynomials, and the cost of one

round of iteration was lower (Bohmanova et al.

2005; Robbins et al. 2005). This was due to several

factors. First, models with splines generally have bet-

ter numerical properties, because each coefficient in

splines affects only a fraction of the trajectory. Sec-

ondly, while in polynomials of order n all covariables

are generally non-zero, in linear splines only covari-

ables associated with two adjacent knots are non-

zero. This increases the sparsity of the left-hand side

of the mixed model equations (LHS). For example,

assume a model involving m sets of covariables of

size n, plus q additional effects. The number of con-

tributions to the LHS from one observation will be

(mn + q)2 when polynomials are used and no more

than (2m + q)2 when linear splines are used. Assu-

ming m ¼ 3, n ¼ 4 and q ¼ 5, the number of contri-

butions to LHS is 289 and 121 respectively.

Covariance functions with linear splines

Let us examine changes in (co)variances and correla-

tions along the trajectory. Because, at most, only

two adjacent knots have non-zero coefficients for

any observation, it is sufficient to consider changes

only within two knots. Let t be a point on a traject-

ory, T1 ¼ 0 £ t £ 1 ¼ T2. The value of one level of

one effect (e.g. one animal), omitting indices, is

aðtÞ ¼ UðtÞa ¼ 1� t t½ � a1
a2

� �
¼ ð1� tÞa1 þ ta2:

Let

varðaÞ ¼ G ¼ ðgijÞ:

Then

var½aðtÞ� ¼ ð1� tÞ2g11 þ 2tð1� tÞg12 þ t2 � g22

cov½að0Þ; aðtÞ� ¼ ð1� tÞg11 þ tg12:

To further simplify the formulas, assume that

observations on the trajectory have been standard-

ized so that g11 ¼ g22 ¼ 1, g12 ¼ q, where q ¼ corr

(a1,a2). Then

var½aðtÞ� ¼ ð1� tÞ2 þ 2tð1� tÞqþ t2

var½að0Þ� ¼ 1; var½að1Þ� ¼ 1; var½að0:5Þ� ¼ 0:5þ 0:5q
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cov½að0Þ; að1Þ� ¼ q

cov½að0Þ; aðtÞ� ¼ 1� t þ qt:

Figure 1 shows changes of variances across the

trajectory for different values of q. As the correlation

decreases, the shape is more concave. For a given q,
the depression in the middle (t ¼ 0.5) is

var½að0:5Þ�
var½að0Þ� ¼ ð1þ qÞ

2
:

The changes in the covariance between the begin-

ning of the trajectory and a given point are linear.

However, the corresponding changes in the correla-

tion are convex (see Figure 2). This convexity

increases as q decreases.

Shapes of variance and covariance functions are

desired to be smooth. With linear splines, these

shapes will be smoother if correlations among the

adjacent knots are high, potentially implying a

large number of knots. However, having too many

knots would lead to more computations and

potential numerical problems. In a MTM, Schaeffer

(1984) found that large inaccuracies in genetic

variance and correlations caused negligible differ-

ences in predicted breeding values. In a simulation

study, Strabel & Jamrozik (2002) simulated the

data using one set of parameters and predicted

breeding values using many sets of incorrect para-

meters. The loss of accuracy of breeding values

was <0.02. Assuming that dips in the genetic var-

iances up to 20% can be tolerated, the correlations

between points should not be <0.6. Subsequently,

knots can be chosen in such a manner so that: (i)

extremes are covered; and (ii) the correlations

between the adjacent knots are high but not too

high, e.g. between 0.6 and 0.8. The above rules

are derived indirectly assuming that the ‘true’ var-

iance functions are approximately linear between

adjacent knots. If changes in ‘true’ variances along

the trajectory are fast and nonlinear, additional

knots may be required.

Changes in variances between the knots can be

made nearly linear if covariables are modified. One

possible modification is changing the vector of covar-

iables from ð1 � tÞ t½ � to ð1 � tÞq tq½ �, where q is

a constant that makes the variance more linear. Sub-

sequently,

aðtÞ ¼ ð1� tÞqa1 þ tqa2; 0 � q � 1:

Then

var½ðaðtÞ� ¼ ð1� tÞ2q þ 2qtqð1� tÞq þ t2q

cov½að0Þ; aðtÞ� ¼ ð1� tÞq þ qtq:

In particular, q can be chosen so that var[a(0.5)] ¼ 1.

Then:

q ¼ log½2ð1þ qÞ�
½2 logð2Þ� :

Figures 3 and 4 presents changes of variances (cor-

relations) for a few values of q for q ¼ 0.5. For q ¼
0.79, the variance is almost flat.

In case of many knots, the q parameter will be dif-

ferent for each pair of knots. Assume n knots and let

qi ¼ corrðai; aiþ1Þ and qi ¼
log½2ð1þ qiÞ�
½2� logð2Þ� :

For observation at point t:ti £ t £ 1 ¼ ti+1, the

unmodified vector if covariables will be:

0. . . 0 a 1� a 0. . . 0½ �;
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Figure 1 Changes in variances across the trajectory of a two-knot

random regression model using linear splines for different correlations

between the extreme knots.
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Figure 2 Corr [a(0),a(t)] of a two-knot random regression model using

linear splines for different correlations between the extreme knots.
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where a ¼ (ti+1 ) t)/ti+1 ) ti), while the modified

vector will be:

0. . . 0 aqi ð1� aÞqi 0. . . 0
� �

:

In a study by Bohmanova et al. (2005), knots were

at 1, 205 and 365 days, corr(a1,a2) ¼ 0.55,

corr(a2,a3) ¼ 0.79. Then, q1 ¼ 0.82, q2 ¼ 0.92, and

the vectors of modified covariables at days 100 and

300 are:

Uð100Þ ¼ ½0:5120:82 0:4880:82 0�;
Uð300Þ ¼ ½0 0:4060:92 0:5940:92�:

Numerical comparisons

The purpose of numerical comparisons was to evalu-

ate the effect of correlations among adjacent knots

on variances and accuracy of predictions by RRMS.

This was performed by simulating the data with a

near-continuous covariance function (approximated

by five knots) and analysing with the model used in

the simulation and with two-knot models. Data were

simulated for a model with one random effect and

five equally spaced knots ti ¼ i, i¼1,5. Variances

were computed according to the formula:

gij ¼
1� ð1� qÞji� jj

4
with

q ¼ f0:99; 0:9; 0:8; 0:6; 0:4; 0:2; 0:0g;

where the correlation between the extreme points

was q and the residual variance was set to 10.

Observations were generated for 1000 unrelated sires

with 10 observations per sire. Each observation

included records at each of five knots. Solutions to

sire values were calculated for models with: (i) five

knots as used to generate the data (K5); and (ii) two

knots (t1 ¼ 1, t2 ¼ 5). For the model with two knots,

either regular (K2) or modified covariables (K2M)

were used; the modification included the values of q

so that var[a(3)] ¼ 1. The five-knot model is the

model for comparisons as it was the model used to

generate the data. The two-knot models allow for

analyses of loss of accuracy as a function of the cor-

relation between the extreme knots. Statistics com-

puted were accuracies of sire predictions for t ¼ 1

and t ¼ 3 and the variance of predictions at the

same points. The first point (t ¼ 1) is estimated

directly by the two-knot model while the second

point is only approximated. Results are averages

over 25 replicates.

Results and discussion

Figure 5 presents the variance of the prediction at

one knot (var½âð1Þ�Þ.The variance is rising with

increasing q as adjacent points contribute more

information. Compared with K5, the variance with

K2 is inflated although this inflation is decreasing

with increasing q. The use of K2M reduces the

inflation drastically. Figure 6 presents the variance

of the prediction in the middle of the trajectory

(var½âð3Þ�).This variance is rising with q as before;

however, the variance with K2 is deflated although

this deflation is decreasing with increasing q. Again,
the use of K2M reduces the deflation drastically. The

inflation or deflation with K2 can result in inflated/

deflated proofs in between the knots. This may be a

problem if differences between specific points are

used in selection. The effect of inflation and defla-

tion on breeding values will partially cancel out if

selection is on an average of many points.

Figures 7 and 8 present accuracies computed as

corr½ðûð1Þ; uð1Þ�2and corr½ðûð3Þ; uð3Þ�2respectively. As

expected, the accuracies of K2 and K2M are lower
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Figure 3 Variance of a two-knot random regression model using lin-

ear splines for different values of the modification parameter q with

q ¼ 0.5.
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than those of K5; however, differences are small. K2

is marginally more accurate than K2M for t ¼ 1 and

the reverse is true for t ¼ 3; differences between K5

and K2M are <0.005 for q ‡ 0.6.

The results from the simulation suggest a way to

select knots in RRMS. Assume that accurate covari-

ance functions are known. The extreme knots would

bracket all points on the trajectory occurring in the

data. Additional knots would be added so that corre-

lations between adjacent knots would be in the

range of 0.6–0.8. If parameters are to be estimated,

two strategies are available. The first one is to ini-

tially use a large number of knots spaced equally,

and then eliminate highly correlated knots. Such an

approach may be expensive. Another possibility is to

start with a small number of knots, estimate vari-

ances, and then add/deduct/shift knots while apply-

ing appropriate q values so that in the end the

correlations between the adjacent points are in the

range of 0.6–0.8. An extra heuristics could be adding

extra points if the curves for variances/covariances

appear too constrained or removing some points if

curves appear erratic.

The above procedures assume that data points on

the trajectory are equally distributed. If the distribu-

tion has distinct peaks, e.g. as in weights of beef cat-

tle, the only knots to use may be those that

correspond to those peaks. In this case, the use of

the q parameter will not be important.

The procedures are derived assuming a certain

structures of covariance functions, and especially

equal variances at the knots. Indirectly, this assumes

nearly linear changes in variances between any two

adjacent knots. With rapid changes in variances,

additional knots may be needed.

Parameter estimation using linear splines may be

time consuming as many steps could be required to

determine the optimal placement of knots and their

parameters. In particular, the optimal knots for each

effect may be different although practical differences

from using same knots for every effect may be negli-

gible.

Random regression models using linear splines

may be especially useful for a national genetic
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(K5), two knots and regular (K2) or modified covariables (K2M).

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

V
ar

ia
n

ce K5

K2

K2M

0 0.2 0.4 0.6 0.8 0.9

Figure 6 Variance of the prediction of a(3) for models with five knots

(K5), two knots and regular (K2) or modified covariables (K2M).

0.55

0.6

0.65

0.7

0.75

0.8

A
cc

u
ra

cy K5

K2

K2M

0 0.2 0.4 0.6 0.8 0.9

Figure 7 Accuracy of the prediction of the extreme point for models

with five knots (K5), two knots and regular (K2) or modified covariables

(K2M).

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

A
cc

u
ra

cy K5

K2

K2M

0 0.2 0.4 0.6 0.8 0.9

Figure 8 Accuracy of the prediction of the middle point for models

with five knots (K5), two knots and regular (K2) or modified covariables

(K2M).

I. Misztal Properties of RRM using linear splines

ª 2006 The Authors

Journal compilation ª 2006 Blackwell Verlag, Berlin • J. Anim. Breed. Genet. 123 (2006) 74–80 79



evaluation if covariance functions are already

known. Then, parameters for RRMS can be easily

constructed, and the evaluation can be run using

the original model. A disadvantage of RRMS would

be artefacts as described; however, these artefacts are

more obvious than with polynomials and then easily

controlled by changing the number and positions of

knots.

Conclusions

Random regression models with linear splines have

advantages and disadvantages. Advantages include

easy creation of parameters and relatively robust

computing. Disadvantages are lack of smoothness of

breeding values and the need to adjust the number

and positions of knots carefully while controlling the

artefacts. RRMS may be useful as the first model in

an implementation of a new genetic evaluation

using the RRM. It is likely to be more accurate than

repeatability or MTMs while being only marginally

more complicated. If its limitations are found to be

too restrictive, incrementally more complex models

can be tried, e.g. using quadratic splines as in Meyer

(2005b).
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