BLUPF90 - a flexible mixed model program in Fortran 90

Ignacy Misztal, Animal and Dairy Science, University of Georgia

e-mail: ignacy@uga.edu tel. (706) 542-0951, fax (706) 583-0274
November 17, 1997 - October 17, 2012

INTRODUCTION

BLUPF90 is a mixed model program written in Fortran 90 (Misztal, 1999) . This program was developed step by step in my graduate level course and focuses on simplicity and model flexibility. It supports general multiple trait models with missing values and different models/trait, and random regressions. Memory allocation is automatic. Sparse matrix operations are supported through an easy-to-use sparse matrix module SPARSEM. Currently, all variables are stored in memory and only solutions are provided; solutions to models with up to a few millions of equations can be obtained. Extra functionality such as prediction error variance for problems of moderate size can be added quickly and without much programming.

The BLUPF90 program was modified for variance component estimation (as REMLF90, AIREMLF90, GIBBSF90, etc.), iteration-on-data solvers (BLUP90IOD, etc.) by myself and several collaborators. Genomic computations are supported as well. All modified programs use the same parameter file as BLUPF90, with additional options. For more information, visit nce.ads.uga.edu.

Computing details

The program is modular. All details of the model are localized in a structure called model. Storage of the left hand side (LHS) of the system of equations is in matrix structures in memory. Solutions are obtained either iteratively by SOR or PCG, or exactly by FSPAK. All equations are ordered within traits. Using the sparse matrix storage and solution by iteration, the program needs about 15 bytes for each nonzero of the LHS, which is upper stored, and an extra 12 bytes per equation. With an average of 10 nonzero elements per row, which would correspond to 5 in upper-storage only, the memory requirements would be approximately 87 bytes/equations. Thus in the current version, BLUPF90 can potentially solve millions of equations; the memory requirements will increase with multiple traits, larger number of effects, and genomics if present.

Files

Parameter file

BLUPF90 is driven by a parameter file, with a general format as shown below. Keywords in capital need to be included exactly as they appear. Fields in italic are those replaced by the user.

```
# Each keyword can be preceded by comments, each starting with
#
DATAFILE
name of data file
NUMBER OF TRAITS
number-Of
```

```
NUMBER_OF_EFFECTS
```

number-of effects
OBSERVATION (S)

```
position of observations in data file (one per trait)
WEIGHT(S)
position of weight(s) in data file (one per trait); blank if
all weights equal
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT
[EFFECT NESTED]
one line per effect:
    position of effect (one per trait)
    number of levels
    type of effect (one of cross for crossclassified or cov
for covariable)
    position of effect where nested (one per trait, optional)
```


RANDOM RESIDUAL VALUES

```
residual variance covariance matrix (full stored)
RANDOM_GROUP
number of one random effect or list of correlated effects
(order as in EFFECTS above); correlated effects must be
consecutive
```

RANDOM TYPE

```
type o\overline{f}}\mathrm{ random effect: one of diagonal, add_animal,add_sire,
    add_an_upg, add_an_upginb, user_file,
    user
```


FILE

relationship file; blank line if file unnecessary
(CO) VARIANCES
variance covariance matrix for given correlated effects and traits (full stored)

The section starting with "RANDOM-GROUP"is repeated for each random effect or each group of random effects. Each keyword can be preceded by a comment starting with \#, however, comments cannot separate (co)variance matrices. See APPENDIX for examples of parameter files.

Different models per trait and missing values

The value 0 is used as a code for missing values for both data and parameter files. If an effect is missing for one trait, assign 0 to its position. For example, assume that trait 1 has a contemporary group on position 1 with 1000 levels and trait 2 has a contemporary group on position 7 with 2000 levels. This can be coded in the parameter file as:
101000 cross
072000 cross
and, when effects are specific to one trait, can be merged into one line
172000 cross
where the number of levels is greater of the two. A similar merge of two effects is in the example of Appendix B.

Data file

The data file is in free format containing real and integer values only. BLUPF90 expects all effects to be numbered from 1 consecutively. For renumbering, use another program. Program RENUMF90 can reorder alphanumerical and numerical fields while doing some form of quality control; see documentation on nce.ads.uga.edu.

Random effects and Pedigree files

There are a few types additive effects, each with a different pedigree format.
a) additive sire (add_sire)

The pedigree file has the following format:
animal number, sire number, maternal grandsire number where unknown sire and/or maternal grandsire numbers are replaced by 0 .
b) additive animal (add_animal)

The pedigree file (add_animal) has the following format:
animal number, sire number, dam number where unknown sire and/or dam numbers are replaced by 0 .
c) additive animal with unknown parent groups (add_an_upg)

The pedigree file has the following format:
animal number, sire number, dam number, parent code where sire and/or dam numbers can be replaced by unknown parent numbers, and parent code $=3$ - number of known parents, i.e., 1 (both parents known), 2 (one parent known), and 3 (both parents unknown).
d) additive animal with unknown parent groups and inbreeding (add_an_upginb)

The pedigree file has the following format:
animal number, sire number, dam number, inb/upg code where sire and/or dam numbers can be replaced by unknown parent numbers, and
inb/upg code $=4000 /\left[\left(1+\mathrm{m}_{\mathrm{s}}\right)\left(1-\mathrm{F}_{\mathrm{s}}\right)+\left(1+\mathrm{m}_{\mathrm{d}}\right)\left(1-\mathrm{F}_{\mathrm{d}}\right)\right]$
where $m_{s}\left(m_{d}\right)$ is 0 whenever sire (dam) is known, and 1 otherwise, and $F_{s}\left(F_{d}\right)$ is the coefficient of inbreeding of the sire (dam). For example, the inb/upg code for the animal with both parents known is 2000.
e) parental dominance

The pedigree class file has the following format:
s-d s-sd s-dd ss-d ds-d ss-sd ss-dd ds-sd ds-dd code where $x-y$ is a combination number of animals x and y, s is sire, d is dam, $s d$ is sire of dam, etc. Code is a number of 0 to 255 and refers to the combination of missing subclasses. If one line is:

$$
\mathrm{ps}_{8} \mathrm{~s}_{7} \mathrm{~s}_{6} \mathrm{~s}_{5} \mathrm{~s}_{4} \mathrm{~s}_{3} \mathrm{~s}_{2} \mathrm{~s}_{1} \text { code }
$$

then $\operatorname{code}=\operatorname{sum}\left(a_{i} 2 * * i\right)$, where $a_{i}=0$ if $s_{i}=1$ and 1 otherwise. For example, the code for a line with all nonzero parental subclasses is 255 . For a line with only zero parental subclasses, If classes are ordered so that lines with zero parental subclasses, code $=0$. If lines are ordered so that p for parental classes with code $=0$ are ordered last, they may be omitted and will added automatically. The parental dominance file can be obtained from program RENDOMN.
f) user file

A matrix for this effect is read from file with format:
row col value
The matrix needs to be only upper- or lower-triangular. Option user_file_i causes this matrix to be inverted before use.

Options

The program's behavior can be modified by adding lines with the OPTION keyword at the
end of the parameter file. Important options include:
OPTION solv_method method
which specifies how the equations are solved. The method is one of FSPAK (sparse Cholesky factorization using FSPAK) , SOR (iteration by successive overrelaxation) or PCG (preconditioned conjugate gradient). For details see online notes on BLUPF90.

OPTION SNP_file file
which specifies that the animal effect includes a genomic relationship matrix and the SNP information is in file. For details, see an online section on genomic modifications.

Output file

The solutions are printed in file called "solutions'

Comments and bugs

Many crashes and errors involving the word "hash" result from too few levels defined in the parameter file.

BLUPF90 computes generalized solution by several methods and with a different precision. With different methods of solving, the values of solutions change, but estimable functions should be the same. With a different precision, solutions may be slightly different.

References

Misztal, I. 1997. SPARSEM - sparse matrix module in Fortran 90. Available at nce.ads.uga.edu.

Misztal, I. 1994. Comparison of software packages in animal breeding. Proc. 5th World Congress Gen. Appl. Livest. Prod. Vol. 22:3-10. Available on my home page.
I. Misztal. 1990. JAA20 - a mixed model using with iteration on data. ibid.

Misztal, I. 1999. Complex models, more data: simpler programming. Proc. Inter. Workshop Comput. Cattle Breed. '99, March 18-20, Tuusala, Finland. Interbull Bul. 20:33-42.
L.R. Schaeffer. 1985. Course - Advances in estimating breeding values and population parmeters. Technical University Berlin, Germany.
L. R. Schaeffer and J.C.M. Dekkers. 1994. Random regressions in animal models for test-day production in dairy cattle. Proc. World Cong. Genet. Appl. Livest. Prod., University of Guelph, Canada, 19:443-446.

Appendix A

Single trait "USDA-type" animal model. This example is from the documentation of program JAA20.

$$
y_{i j k l}=\text { hys }_{i}+\mathrm{hs}_{\mathrm{ij}}+\mathrm{p}_{\mathrm{k}}+\mathrm{a}_{\mathrm{k}}+\mathrm{e}_{\mathrm{ijkl}}
$$

where

$$
\mathrm{y}_{\mathrm{ij} \mathrm{j} 1} \text { - production yield }
$$

hys $_{i}$ - fixed herd year season
$\mathrm{hs}_{\mathrm{ij}}$ - random herd x sire interaction
p_{k} - random permanent environment
a_{k} - random animal
and

$$
\operatorname{var}\left(\mathrm{hs}_{\mathrm{ij}}\right)=.05, \operatorname{var}\left(\mathrm{p}_{\mathrm{k}}\right)=.1, \operatorname{var}\left(\mathrm{a}_{\mathrm{k}}\right)=.5, \operatorname{var}\left(\mathrm{e}_{\mathrm{ijk}}\right)=1
$$

Data file (ic)

Format: animal/hys/p/hs/y

1	1	1	1	10
2	1	2	1	11
3	2	3	2	15
4	2	4	3	13
5	3	5	4	14
6	3	6	3	12

Relationship file (is)

Format: animal/dam/sire/code

1	12	8	2
2	1	8	1
3	2	9	1
4	7	10	1
5	12	11	2
6	1	10	1
7	13	14	3
8	5	11	1
9	13	8	2
10	7	14	2
11	13	14	3

Parameter file

```
# Example of single-trait animal model with one fixed effect
DATAFILE
ic
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
4
OBSERVATION(S)
5
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT
[EFFECT NESTED]
2 3 cross
3 cross
4 cross
1 14 cross
```

```
RANDOM_RESIDUAL VALUES
1
RANDOM_GROUP
2
RANDOM TYPE
diagonāl
FILE
(CO) VARIANCES
. }
RANDOM_GROUP
3
RANDOM_TYPE
diagon\overline{l}
FILE
(CO) VARIANCES
.05
RANDOM_GROUP
4
RANDOM_TYPE
add_an_upg
FILE
is
(CO) VARIANCES
. }
```


Execution

```
/home/ignacy/f90/examples blupf90
    name of parameter file?exiap
        BLUPF90 1.00
    Parameter file: exiap
    Data file: ic
    Number of Traits 1
    Number of Effects 4
    Position of Observations 5
    Position of Weight (1) 0
    Value of Missing Trait/Observation
levels
    # type
        position
```

```
0
```

```
0
```

els

```
[positions for nested]
    1 cross-classified 2 3
    2 cross-classified 3 6
    3 cross-classified 4 4
    4 cross-classified 1 14
```

 Residual (co)variance Matrix
 1.000
 Random Effect 2
Type of Random Effect: diagonal
trait effect (CO)VARIANCES
10200

```
Random Effect 3
Type of Random Effect: diagonal
trait effect (CO)VARIANCES
    1 3 0.050
Random Effect 4
Type of Random Effect: additive animal
Pedigree File:
is
```

```
trait effect (CO)VARIANCES
```

trait effect (CO)VARIANCES
1 4 0.500

```
    1 4 0.500
```

REMARKS
(1) Weight position 0 means no weights utilized
(2) Effect positions of 0 for some effects and traits means that such effects are missing for specified traits

Data record length $=5$
original G
0.10
inverted G
10.00
original G 0.05
inverted G
20.00
original G
0.50
inverted G 2.00
solutions stored in file: "solutions"
/home/ignacy/f90/examples cat solutions trait/effect level solution

1	1	1	11.8589
1	1	2	13.7539
1	1	3	14.7086
1	2	1	-0.0088
1	2	2	0.0088
1	2	3	-0.0159
1	2	4	0.0159
1	2	5	0.0321
1	2	6	-0.0321
1	3	1	0.0000
1	3	2	-0.0079
1	3	3	-0.0081
1	3	4	0.0161
1	4	1	-1.7627
1	4	2	-0.9553
1	4	3	1.4288
1	4	4	-0.9206
1	4	5	-1.0781
1	4	6	-2.3474
1	4	7	0.8511
1	4	8	-0.1521
1	4	9	3.8926
1	4	10	-2.7717
1	4	11	0.8528
1	4	12	-3.1911
1	4	13	7.9976
1	4	14	-6.3340

Appendix B

Example of multiple trait sire model (from L.R. Schaeffer notes of 1985).

Models

$$
\begin{array}{ll}
\text { Trait 1: } & y_{1 \mathrm{i}}=\mathrm{h}_{\mathrm{i}}+\mathrm{s}_{1 j}+e_{1 \mathrm{ijk}} \\
\text { Trait 2: } & \mathrm{y}_{2 \mathrm{i}}=\mu+\mathrm{s}_{2 j}+\mathrm{e}_{2 j \mathrm{k}}
\end{array}
$$

where

```
    h - fixed herd
    s - random sire
    var(s)=A[8 6; 6 17], var(e)=I[10 10; 10 20]
```

and
Data file (lrsdat)
Format: h/ $\mu / \mathrm{s} / \mathrm{y}_{1} / \mathrm{y}_{2}$
$\begin{array}{lllll}1 & 0 & 1 & 3.4 & 0\end{array}$
2021.30
$\begin{array}{lllll}1 & 1 & 3 & .8 & 50.3\end{array}$
2144.552 .6
015055.0

Pedigree file (lrsrel)

Format: bull/sire/MGS

$\begin{array}{lll}1 & 3 & 0 \\ 2 & 0 & 5 \\ 3 & 0 & 0 \\ 4 & 0 & 0 \\ 5 & 0 & 0\end{array}$

Parameter file (lrsex)

```
# Example of two trait sire model with unequal models
DATAFILE
lrsdat
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
4 5
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT
[EFFECT NESTED]
12 2 cross
3 3 5 cross
RANDOM_RESIDUAL VALUES
10 10
10 20
RANDOM_GROUP
2
RANDOM_TYPE
add_sire
FIL\overline{E}
lrsrel
(CO)VARIANCES
8
617
```

```
Execution
/home/ignacy/f90/examples blupf90
    name of parameter file?lrsex
    BLUPF90 1.00
    Parameter file: lrsex
    Data file: lrsdat
    Number of Traits 2
    Number of Effects 2
    Position of Observations 4 5
    Position of Weight (1) 0
Value of Missing Trait/Observation 0
EFFECTS
    # type position (2) levels
[positions for nested]
    1 cross-classified 1 2
    2 cross-classified 3 3 5
    Residual (co)variance Matrix
        10.000 10.000
        10.000 20.000
    Random Effect 1
Type of Random Effect: additive sire
Pedigree File: lrsrel
\begin{tabular}{ccrr} 
trait & effect & \((C O)\) VARIANCES \\
1 & 2 & 8.000 & 6.000 \\
2 & 2 & 6.000 & 17.000
\end{tabular}
REMARKS
(1) Weight position 0 means no weights utilized
(2) Effect positions of 0 for some effects and traits means
that such effects are missing for specified traits
Data record length \(=5\)
original G
\(8.00 \quad 6.00\)
\(6.00 \quad 17.00\)
inverted G
\(0.17-0.06\)
\(-0.06 \quad 0.08\)
solutions stored in file: "solutions"
/home/ignacy/f90/examples cat solutions
trait/effect level solution
\begin{tabular}{lllr}
1 & 1 & 1 & 2.3877 \\
2 & 1 & 1 & 52.4449 \\
1 & 1 & 2 & 3.2180 \\
2 & 1 & 2 & 0.0000 \\
1 & 2 & 1 & 0.2243 \\
2 & 2 & 1 & -0.0210 \\
1 & 2 & 2 & -0.8217 \\
2 & 2 & 2 & -0.3866
\end{tabular}
```

1	2	3	-0.4969
2	2	3	-0.7512
1	2	4	0.6178
2	2	4	-0.0769
1	2	5	0.2217
2	2	5	1.0851

Appendix C

This test-day model example comes from the paper of Schaeffer and Dekkers (WCGALP94 18:443)

Model

$$
y_{i j \mathrm{j} k}=h_{i}+\beta_{1} X_{1 j}+\beta_{2} X_{2 \mathrm{j}}+\mathrm{a}_{\mathrm{k}}+\gamma_{1 \mathrm{k}} X_{1 \mathrm{j}}+\gamma_{2 \mathrm{k}} X_{2 \mathrm{j}}+\mathrm{e}_{\mathrm{ijk} \mathrm{k} 1}
$$

where
$\mathrm{y}_{\mathrm{ijkl}}-$ yield of test day
h_{i} - test day effect
$\mathrm{X}_{1 \mathrm{j}}$ - days in milk
$\mathrm{X}_{2 \mathrm{j}}-\log$ (days in milk)
β_{1}, β_{2} - fixed regressions
a_{k} - random animal
$\gamma_{1 \mathrm{k}}, \gamma_{2 \mathrm{k}}$ - random regressions for each animal
and

$$
\operatorname{var}\left(\mathrm{e}_{\mathrm{ijk}}\right)=1 ; \operatorname{var}\left(\mathrm{a}_{\mathrm{k}}, \gamma_{1 \mathrm{k}}, \gamma_{2 \mathrm{k}}\right)=\left[\begin{array}{l}
2.254-.7 ; 41375 \\
12 ;-.71294
\end{array}\right]^{-1}
$$

Data file (lrsrrdat)

```
Format: h/a/X (X/X / /y
1 1 73 1.42985 26
1 2 34 2.19395 29
1 3 8 3.64087 37
2 1 123 0.908127 23
2 2 84 1.28949 18
2 3 58 1.65987 25
2 4 5 4.1108744
3 1 178 0.538528 21
3 2 139 0.785838 8
3 3 113 0.992924 19
34601.62597 29
4 2 184 0.505376 1
4 3 158 0.657717 15
4 4 105 1.06635 22
4 5 14 3.08125 35
5 3 218 0.335817 11
```



```
5 5 74 1.41625 23
5 6 31 2.28632 28
6 3 268 0.1293257
6 4 215 0.349674 8
6 5 124 0.90003 17
6 6 81 1.32586 22
```


Relationship file (lrsrrrel)

Format: animal/sire/dam

| 1 | 9 | 7 | |
| :--- | :--- | :--- | :--- | :--- |
| 2 | 10 | 8 | |
| 3 | 9 | 2 | |
| 4 | 10 | 8 | |
| 5 | 1 | 7 | 7 |
| 6 | 11 | 1 | |
| 7 | 0 | 0 | |
| 8 | 0 | 0 | |
| 9 | 0 | 0 | |
| 10 | 0 | 0 | |
| 11 | 0 | 0 | |

Parameter file (exlrsrr)

```
# Example of single-trait random-regression model
DATAFILE
lrsrrdat
NUMBER_OF TRAITS
1
NUMBER_OF_EFFECTS
6
OBSERVATION (S)
5
WEIGHT (S)
```

```
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT
```

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT
[EFFECT NESTED]
[EFFECT NESTED]
1 6 cross
1 6 cross
3 1 cov
3 1 cov
4 cov
4 cov
2 11 cross
2 11 cross
3 11 cov 2
3 11 cov 2
4 11 cov 2
4 11 cov 2
RANDOM_RESIDUAL VALUES
RANDOM_RESIDUAL VALUES
1
1
RANDOM GROUP
RANDOM GROUP
456
456
RANDOM TYPE
RANDOM TYPE
add anīmal
add anīmal
FIL\overline{E}
FIL\overline{E}
lrsrrrel
lrsrrrel
(CO) VARIANCES
(CO) VARIANCES
.447906 -0.001334 0.003506
.447906 -0.001334 0.003506
-0.001334 0.000732 -0.000103
-0.001334 0.000732 -0.000103
0.003506 -0.000103 .010678

```
0.003506 -0.000103 .010678
```


Execution

/home/ignacy/f90/examples blupf90 name of parameter file?exlrsrr

BLUPF90 1.00

Parameter file:	exlrsrr	
Data file:	lrsrrdat	
Number of Traits	1	
Number of Effects	6	
Position of Observations	5	
Position of Weight (1)	0	
Value of Missing Trait/Observation		
EFFECTS		
\# type	position (2)	levels
[positions for nested]		
1 crossclassified	1	6
2 covariable	3	1
3 covariable	4	1
4 cross-classified	2	11
5 covariable	3	11

Residual (co)variance Matrix 1.000
correlated random effects
Type of Random Effect:
Pedigree File:
456
additive animal
lrsrrrel
trait effect (CO)VARIANCES

1	4	0.448	-0.001	0.004
1	5	-0.001	0.001	0.000
1	6	0.004	0.000	0.011

REMARKS
(1) Weight position 0 means no weights utilized
(2) Effect positions of 0 for some effects and traits means that such effects are missing for specified traits

```
Data record length = 5
original G
    0.45 0.00 0.00
    0.00 0.00 0.00
    0.00 0.00 0.01
inverted G
            2.25 4.00 -0.70
            4.001375.09 11.95
    -0.70 11.95 94.00
solutions stored in file: "solutions"
```

/home/ignacy/f90/examples cat solutions
trait/effect level solution

| 1 | 1 | 19.9496 |
| :--- | :--- | :--- | :--- |

 \(\begin{array}{llll}1 & 1 & 2 & 20.3729\end{array}\)
 \(\begin{array}{llll}1 & 1 & 3 & 20.6095\end{array}\)
 \(\begin{array}{llll}1 & 1 & 4 & 19.7278\end{array}\)
 \(\begin{array}{llll}1 & 1 & 5 & 18.6035\end{array}\)
 \(\begin{array}{llll}1 & 1 & 6 & 17.8500\end{array}\)
 \(\begin{array}{llll}1 & 2 & 1 & -0.0498\end{array}\)
 \(\begin{array}{llll}1 & 3 & 1 & 5.2912\end{array}\)
 \(\begin{array}{llll}1 & 4 & 1 & -0.4430\end{array}\)
 \(\begin{array}{llll}1 & 4 & 2 & 0.2704\end{array}\)
 \(\begin{array}{llll}1 & 4 & 3 & -0.7288\end{array}\)
 1.1019
 \(-0.1626\)
 \(-0.4828\)
 \(-0.0988\)
 0.4574
 \(-0.6288\)
 0.4574
 \(-0.1872\)
 0.0369
 \(-0.0661\)
 0.0068
 \(-0.0054\)
 0.0069
 0.0167
 0.0133
 \(-0.0238\)
 0.0350
 \(-0.0238\)
 \(-0.0008\)
 \(-0.0370\)
 0.0325
 -0.0479
 \(\begin{array}{rrrr}1 & 6 & 4 & -0.0479\end{array}\)
 | 1 | 6 | 5 | -0.0149 |
| ---: | ---: | ---: | ---: |
| 1 | 6 | 6 | -0.0377 |
| 1 | 6 | 7 | -0.0103 |
| 1 | 6 | 8 | 0.0364 |
| 1 | 6 | 9 | -0.0480 |
| 1 | 6 | 10 | 0.0364 |
| 1 | 6 | 11 | -0.0145 |

Appendix D

This model was used for studies on multibreed evaluation in beef cattle. It is provided as an example of a model with maternal effect and different models per trait.

Model (in concise form, with most indices omitted)

$$
\begin{aligned}
& y_{1}=\mathrm{cg}_{1}+\mathrm{bt}+\mathrm{mbt}+\mathrm{a}+\mathrm{M}+\mathrm{e} \\
& \mathrm{y}_{2}=\mathrm{cg}_{2}+\mathrm{bt}+\mathrm{mbt}+\mathrm{a}+\mathrm{M}+\mathrm{pe}+\mathrm{e} \\
& \mathrm{y}_{3}=\mathrm{cg}_{3}+\mathrm{bt}+\mathrm{mbt}+\mathrm{a}+
\end{aligned}
$$

where
y_{1-3} - birth weight, weaning weight, and gain
cg_{1-3} - contemporary groups separate for each trait
br - breed type
mbt - maternal breed type
a - additive effect
m - maternal effect
pe - permanent environmental effect of the dam

Data file (data.out)
Format:

1. contemporary group for trait 1
2. contemporary group for trait 2
3. contemporary group for trait 3
4. animal breed type
5. maternal breed type
6. animal id
7. dam id
8. birth weight
9. weaning weight
10. gain

Relationship file (pedi.outok)

Format:
animal
sire or unknown parent group
dam or unknown parent group
"1 + number of missing parents"

Parameter file (exlrsrr)

DATAFILE
data.out
NUMBER_OF_TRAITS 3

NUMBER_OF_EFFECTS
6
OBSERVATION(S)
8910
WEIGHT(S)

```
[EFFECT
NESTED]
    123 133085 cross
    44 181 cross
    50 165 cross
    666 1724112 cross
    770 1724112 cross
    070 1724112 cross
RANDOM_RESIDUAL VALUES
26.3 0.0
0.0 1312.9 0.0
0.0
RANDOM_GROUP
4
RANDOM_TYPE
add_an_upg
FILE
pedi.outok
(CO)VARIANCES
22.9
36.6
18.6
-4.6
0.0
0.0
RANDOM_GROUP
2
RANDOM_TYPE
diagonal
FILE
(CO)VARIANCES
0.263 0.0}00.
0.0 13.129 0.0
0.0
RANDOM_GROUP
3
RANDOM_TYPE
diagonal
FILE
(CO)VARIANCES
0.263 0.0
0.0 13.129 0.0
0.0}00.
RANDOM_GROUP
6
RANDOM_TYPE
diagonal
FILE
(CO)VARIANCES
0.0 0.0}00.
```

[^0]
Appendix E

A single-trait random regression model for test-day milk is using cubic Legendre polynomials.

Model

$$
i_{i j k l}=h y m_{i j}+\sum_{m=1}^{4} \alpha_{m}(1) h_{i m}+\sum_{m=1}^{4} \alpha_{m}(l) u_{k m}+\sum_{m=1}^{4} \alpha_{m}(1) p_{i m}+e_{i j k l}
$$

where

```
\(\mathrm{y}_{\mathrm{ijkl}}\) - test day milk
hym \(_{\mathrm{ij}}\) - hear-year-test for herd i and year-test j
\(\mathrm{h}_{\mathrm{i}}\) - effects of herd i
\(\alpha_{\mathrm{m}}(1)\) - value of m -th Legendre polynomial at point corresponding to \(\mathrm{DIM}=1\)
\(u\) - additive effects
pe - permanent environmental effects
```

```
Data file (datarr)
Format:
1.herd
2. hear-year-test
3-6. values of Legendre polynomials
7. weight for residuals: 100/var(e (ijkl )
8. test day
9. animal
Relationship file (pedirr)
Format:
    animal
    sire
    dam
Parameter file (exrr3)
DATAFILE
datarr
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
13
OBSERVATION(S)
8
WEIGHT(S)
7
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT
```

23726 cross
$384 \operatorname{cov} 1$
484 cov 1
$584 \operatorname{cov} 1$
684 cov 1
321874 cov 9 \#additive
$421874 \operatorname{cov} 9$
$521874 \operatorname{cov} 9$
$621874 \operatorname{cov} 9$

```
\(321874 \operatorname{cov} 9\) \#pe
421874 cov 9
\(521874 \operatorname{cov} 9\)
\(621874 \operatorname{cov} 9\)
RANDOM_RESIDUAL VALUES
100
RANDOM_GROUP
6789
RANDOM_TYPE
add animal
FILE
pedirr
(CO)VARIANCES
(4 x 4 matrix)
RANDOM_GROUP
10111213
RANDOM TYPE
diagonal
FILE
(CO)VARIANCES
(4 x 4 matrix)
```


Appendix F

A terminal cross model by Fernando et al. and Lo et al.

breed A:	ya $=$ cga +	ua		+ ea
breed B:	yb $=$ cgb+		ub	+ +eb
cross:	yab $=$ cgab +	uab +	ubab	+ +eab

Data file (data cross)

1. cg A (85 levels)
2. cg B (110 levels)
3. cg crossbred (87 levels)
4. animal - breed A (2400 animals) or parent from breed A
5. animal - breed B (3000 animals) or parent from breed B
6. ya
7. yb
8. yc
$\underline{\text { Pedigree files: }}$ pedig_A for breed A and pedig_B for breed B
```
Parameter file
# Example of a terminal-cross model
DATAFILE
data-cross
NUMBER_OF_TRAITS
3
NUMBER_OF EFFECTS
3
OBSERVATION(S)
6 7 8
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT
NESTED]
1 2 3 110 cross
4 0 4 2400 cross cross
0 5 3000 cross
RANDOM_RESIDUAL VALUES
100 0 
0 100 0
0 0 100
RANDOM_GROUP
2
RANDOM TYPE
add_anīmal
FIL\overline{E}
pedig_A
(CO) VA}RIANCE
40 0 30
0 0 0
30 0 50
RANDOM_GROUP
3
RANDOM_TYPE
add anīmal
FIL\overline{E}
pedig B
(CO) V\overline{A}RIANCES
0 0 0
0}503
0 30 40
40 30
```


Appendix G

Example of a competitive model (a la Muir and Schinkel)
$y=c g+a+c 1+c 2+. .+c 5+e$
ci is the effect of the i-th competitor; assumed pen size of up to 6 .

Datafile (data comp)

1. y
2. $\operatorname{cg}(\max 120)$
3. animal (max 3000)
4. competitor 1
5. c 2
6. c 5
if pen size is less than 10 , unused fields set to 0 .
```
Parameter file
# Example of a competitive model
DATAFILE
data_comp
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
7
OBSERVATION(S)
1
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT
NESTED]
2 120 cross
3 3000 cross
4 0 cross
5 0 cross
6 cross
7 cross
8000 cross
RANDOM_RESIDUAL VALUES
50
RANDOM_GROUP
2 3
RANDOM TYPE
add_animal
FILE
pedig
(CO) VARIANCES
40-10
-10 10
```


Appendix H
 Design of the program

The model is completely described in the module MODEL.

The core of the program is presented below.

```
program BLUPF90
use model;use sparsem; use sparseop
implicit none
real,allocatable :: y(:),& ! observation value
    indata(:) ! one line of input data
    weight_y ! weight for records
real :: weight_y l weight for records
type (sparse_hashm)::xx ! X'X in sparse hash form
type (sparse_ija):: xx_ija ! X'X in IJA form, for use with FSPAK only
real, allocatable:: xy(:),sol(:) !X'Y and solutions
real,allocatable :: weight_cov(:,:)
integer,allocatable:: address(:,:) ! start and address of each effect
integer :: neq,io,&
    data len,&
    i,j,\overline{k},l
    number of equations and io-status
    ! length of data record to read
    ! extra variables
real:: val, dat_eff
!
call read_parameters
call print_parameters
neq=ntrait*sum(nlev)
data_len=max(pos_weight,maxval (pos_y),maxval (pos_eff))
print*,'Data record length = ',data len
allocate (xy(neq), sol(neq), address(neff,ntrait),&
    weight_cov(neff,ntrait),y(ntrait),indata(data_len))
call zerom(xx,neq}) ; xy=
call setup_g ! invert R matrices
open(50,file=datafile) !data file
```

```
! Contributions from records
do
    read(50,*,iostat=io)indata
    if (io.ne.0) exit
    call decode_record
    call find_addresses
    call find rinv
    do i=1,neff
        do j=1,neff
            do k=1,ntrait
                do l=1,ntrait
                                    val=weight cov(i,k) *weight cov(j,l)*weight y*rinv(k,l)
                                    call addm(\overline{val,address (i,k), address (j,l), xx)}
                    enddo
            enddo
        enddo
        do k=1,ntrait
            do l=1,ntrait
                        xy(address (i,k))=xy (address (i,k))+rinv(k,l)*y(l)*weight_cov(i,k) &
                enddo
        enddo
    enddo
enddo
!
Random effects' contributions
do i=1,neff
    select case (randomtype(i))
        case (g_fixed)
            continue ! fixed effect, do nothing
        case (g_diag)
            call-add_g_diag(i)
        case (g_A, \overline{g_}\overline{A}s, g_A_UPG,g_A_UPG INB)
            call add_g_add (randomtype(i),i)
        case (g_PD)
            call_add_g_domin(i)
        case default
            print*,'unimplemented random type',randomtype(i)
    endselect
enddo
if (neq < 15) then
    print*,'left hand side'
    call printm(xx)
    print '( '' right hand side:'' ,100f8.1)',xy
endif
call solve_iterm(xx,xy,sol)
! Comment the line above and uncomments the lines below only if
! solutions by FSPAK are desired
!xx ija=xx;
!ca\ll fspak90('solve',xx_ija,xy,sol)
if (neq <15) print '( '' solution:'' ,100f7.3)',sol
call store_solutions
```


Warning

When the program is modified to solve for different left hand sides repeatedly by FSPAK, e.g., in variance component procedures, always factorize before solving:

```
call fspak90('factorize',xx_ija)
call fspak90('solve',xx_ija,xy,sol)
```

The solving step assumes that the first factorization is intact, and subsequent solves involve the initial factorization.

Appendix I

Extensions to the parameter file

BLUPF90 can be modified so that the parameter file can contain additional lines with the following format:

```
OPTION name str1 str2 ....
```

This line(s) can be read by subroutine

```
call getoption(name,n,x,xc)
```

where $\operatorname{str} 1, \operatorname{str} 2$ are strings separated by spaces. If the line with a given name cannot be located, $\mathrm{n}=-1$. Otherwise, the subroutine assigns: $\mathrm{xc}(1)=\operatorname{str} 1, \mathrm{xc}(2)=\operatorname{str} 2, \ldots$ and attempts to decode strings into real values: $\mathrm{x} 1=$ value(str1),...; n contains the number of strings. x and xc are optional and their dimensions may be smaller than n in which case some strings/values are not stored. Upon exit, unit 40 points to the next line in the parameter file to the one located.

Example

Suppose that BLUPF90 was modified to add an autoregressive effect. Details for that effect are specified in the following parameter line:

```
OPTION autoregressive effect 2 rho . 82 variance 500.0
```

Then, assuming declarations:

```
integer::n,x(20)
character (10)::xc(20)
```

the call
call getoption(`autoregressive, n, x,xc)
will result in $n=6, x c(1)=$ 'effect', $x c(2)={ }^{\prime} 2^{\prime}, x c(3)={ }^{\prime} r{ }^{\prime}{ }^{\prime}, \ldots$, and $x(1)=0, x(2)=2.0, x(3)=0$, $x(4)=.82, \ldots, x(6)=500.0$.

[^0]: 0.0
 $45.5 \quad 0.0$
 $0.0 \quad 0.0$
 0.0

