Environmental Sciences

Introduction to genomics

Daniela Lourenco
UGA USA

Andres Legarra
INRA France

Genomic Information

articles

Initial sequencing and analysis of the human genome

Mutation < 1\% < SNP

What are SNP used for?

Genetic polymorphism in varietal identification and genetic improvement*

M. Soller ${ }^{1}$ and J.S. Beckmann ${ }^{2}$

${ }^{1}$ Department of Genetics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
${ }^{2}$ Institute of Field and Garden Crops, Agricultural Research Organization, The Volcani Center 50250 Bet Dagan, Israel
Received July 14, 1982; Accepted July 3, 1983
Communicated by A. Robertson

Summary. New sources of genetic polymorphisms promise significant additions to the number of useful genetic markers in agricultural plants and animals, and prompt this review of potential applications of polymorphic genetic markers in plant and animal breeding. Two major areas of application can be distinguished. The first is based on the utilization of genetic markers to determine genetic relationships. These applications include varietal identification, protection of breeder's rights, and parentage determination. The second area of application is based on the use of genetic markers to identify and map loci affecting quantitative traits, and to monitor these loci during introgression or selection programs. A variety of breeding applications based on

Use of DNA polymorphisms as genetic markers

- Construct genetic relationships
- Parentage determination
- Identification of QTL

RFLP

Expensive

Excitement about genomics

Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps
T. H. E. Meuwissen, ${ }^{*}$ B. J. Hayes ${ }^{\dagger}$ and M. E. Goddard ${ }^{\dagger} \neq \dagger$
${ }^{*}$ Research Institute of Animal Science and Health, 8200 AB Lelystad, The Netherlands, ${ }^{\dagger}$ Victorian Institute of Animal Science, Attwood 3049, Victoria, Australia and ${ }^{\mathrm{I}}$ Institute of Land and Food Resources,
University of Melbourne, Parkville 3052, Victoria, Australia
Manuscript received August 17, 2000
Accepted for publication January 17, 2001

- Genotyping will become cheap
- Thousands of SNP
- Compute GEBV based on SNP
- High accuracy
- Animals with no phenotypes
- Select the best animals earlier

Genotyping became cheaper in 2008

- First genomic evaluation for dairy and beef cattle in 2009
- \$300 in 2009 vs. \$30 in 2022
- 50,000 SNP

What about statistical methods able to fit genomic information?

Statistical methods before genomics

- BLUP (Henderson, 1949-1976)
- Best: minimizes MSE
- Linear: linear function of the data
- Unbiased: $E(u)=E(\hat{u})$
- Prediction: for random effects
mome iminn
That BLUP Is a Good Thing: The Estimation of Random Effects
G. K. Robinson

$$
\left[\begin{array}{cc}
\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{W} \\
\mathbf{W}^{\prime} \mathbf{X} & \mathbf{W}^{\prime} \mathbf{W}+\mathbf{A}^{-1}
\end{array} \frac{\sigma_{e}^{2}}{\sigma_{u}^{2}}\right]\left[\begin{array}{l}
\widehat{\boldsymbol{\beta}} \\
\widehat{\mathbf{u}}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{X}^{\prime} \mathbf{y} \\
\mathbf{W}^{\prime} \mathbf{y}
\end{array}\right]
$$

Henderson's MME

- Model

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{W} \mathbf{u}+\mathbf{e}
$$

- Joint probability of phenotypes and EBV

$$
p(\mathbf{y}, \mathbf{u})=p(\mathbf{u} \mid \mathbf{y}) p(\mathbf{y})=p(\mathbf{y} \mid \mathbf{u}) p(\mathbf{u})
$$

- Joint probability density function of phenotypes and EBV

$$
\begin{aligned}
& p(\mathbf{y}, \mathbf{u})=p(\mathbf{y} \mid \mathbf{u}) p(\mathbf{u})=\frac{1}{\sqrt{2 \pi|\mathbf{R}|}} e^{-\frac{1}{2}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}-\mathbf{W u})^{\prime} \mathbf{R}^{-1}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}-\mathbf{W u})} \frac{1}{\sqrt{2 \pi|G|}} e^{-\frac{1}{2}(\mathbf{u}-0)^{\prime} \mathbf{G}^{-1}(\mathbf{u}-0)} \\
& \left\{\begin{array}{c}
\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X} \boldsymbol{\beta}+\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{W} \mathbf{u}=\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{y} \\
\mathbf{W}^{\prime} \mathbf{R}^{-1} \mathbf{X} \boldsymbol{\beta}+\left(\mathbf{W}^{\prime} \mathbf{R}^{-1} \mathbf{W}+\mathbf{G}^{-1}\right) \mathbf{u}=\mathbf{W}^{\prime} \mathbf{R}^{-1} \mathbf{y}
\end{array} \quad\left[\begin{array}{cc}
\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{W} \\
\mathbf{W}^{\prime} \mathbf{X} & \mathbf{W}^{\prime} \mathbf{W}+\mathbf{A}^{-1} \\
\frac{\sigma_{e}^{2}}{\sigma_{u}^{2}}
\end{array}\right]\left[\begin{array}{l}
\widehat{\boldsymbol{\beta}} \\
\widehat{\mathbf{u}}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{X}^{\prime} \mathbf{y} \\
\mathbf{W}^{\prime} \mathbf{y}
\end{array}\right]\right.
\end{aligned}
$$

Henderson's MME for dairy in 1989

- BLUP (Henderson, 1949-1976)
- Implementation for dairy in 1989

National genetic improvement programs for dairy cattle in the United States

G. R. Wiggans

J Anim Sci 1991. 69:3853-3860.

Challenges

Genetic improvement programs are in a period of rapid change. Advances in computer capability enable adoption of sophisticated computational procedures. Advances in repro-

Implementation of an Animal Model for Genetic Evaluation of Dairy Cattle in the United States
G.R. Wiggans, I. Misztal, L.D. Van Vleck

- 9.5 M animals
- 11 M lactations
- 23.5 M equations to solve
- 7.5 hours

ACKNOWLEDGMENTS

This research was conducted using the Cornell National Supercomputer Facility, a resource of the

From 1989 to 2009

- How to add genomic information to the evaluation system in 2009 ?

Bayesian Alphabet

- SNP effect models = outputs SNP effects
- BayesA (Meuwissen et al., 2001)
- All SNPs have effect on the trait (few with large effect) $a_{i} \sim N\left(\mu, \sigma_{a_{i}}^{2}\right)$
- Different variances for each SNP
- BayesB (Meuwissen et al., 2001)
- $p\left(a_{i} \mid \sigma_{a_{i}, \pi}^{2}, \pi\right)=\left\{\begin{array}{c}t\left(0, v, \sigma_{a_{i}}^{2}\right) \text { or } N\left(0, \sigma_{a_{i}}^{2}\right) \text { with probability }(1-\pi) \\ 0 \text { with probability } \pi\end{array}\right.$
- When $\pi=0$, BayesB becomes BayesA

Bayesian Alphabet

- BayesC (Habier et al., 2011)
- $p\left(a_{i} \mid \sigma_{a}^{2}\right)=\left\{\begin{array}{c}N\left(0, \sigma_{a}^{2}\right) \text { with probability }(1-\pi) \\ 0 \text { with probability } \pi\end{array}\right.$
- BayesR (Erbe et al., 2012)
- $p\left(a_{i} \mid \pi, \sigma_{a}^{2}\right)=\pi_{1} \times N\left(0,0 \times \sigma_{u}^{2}\right)+\pi_{2} \times N\left(0,10^{-4} \times \sigma_{u}^{2}\right)+\pi_{3} \times N\left(0,10^{-3} \times \sigma_{u}^{2}\right)+\pi_{4} \times N\left(0,10^{-2} \times \sigma_{u}^{2}\right)$
- BayesRC (MacLeod et al., 2016)
- BayesR using biological information to assign SNP to classes
- High computing cost and simple models
- After > 10 years, assumption of normality is good enough!

SNP-BLUP (ridge regression)

- SNP effect model = outputs SNP effects
- $a \sim N\left(0, \sigma_{a}^{2}\right)$

$$
\mathrm{y}=\mathrm{X} \boldsymbol{\beta}+\mathrm{Za}+\boldsymbol{e}
$$

$$
\left[\begin{array}{cc}
\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X} \mathbf{Z} \\
\mathbf{Z}^{\prime} \mathbf{X} & \mathbf{Z}^{\prime} \mathbf{Z}+\mathbf{I} \frac{\sigma_{e}^{2}}{\sigma_{a}^{2}}
\end{array}\right]\left[\begin{array}{l}
\hat{\boldsymbol{\beta}} \\
\widehat{\mathbf{a}}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{X}^{\prime} \mathbf{y} \\
\mathbf{Z}^{\prime} \mathbf{y}
\end{array}\right]
$$

GEBV = Zâ

- All SNP explain the same proportion of variance on the trait

SNP-BLUP (ridge regression)

- SNP effect model = outputs SNP effects
- All SNP explain the same proportion of variance on the trait

$$
\begin{aligned}
\mathbf{G E B V} & =\mathbf{Z} \hat{\mathbf{a}} \\
\mathbf{u} & =\mathbf{Z} \hat{\mathbf{a}}
\end{aligned}
$$

$$
\begin{gathered}
\operatorname{Var}(\mathbf{u})=\operatorname{Var}(\mathbf{Z a}) \\
\operatorname{Var}(\mathbf{u})=\mathbf{Z} \operatorname{Var}(\mathbf{a}) \mathbf{Z}^{\prime} \\
\operatorname{Var}(\mathbf{u})=\mathbf{Z Z}^{\prime} \sigma_{a}^{2}
\end{gathered}
$$

$$
\sigma_{a}^{2}=\frac{\sigma_{u}^{2}}{2 \sum_{i=1}^{S N P} p_{i}\left(1-p_{i}\right)}
$$

$$
\operatorname{Var}(\mathbf{u})=\mathbf{Z Z}^{\prime} \frac{\sigma_{u}^{2}}{2 \sum_{i=1}^{S N P} p_{i}\left(1-p_{i}\right)}
$$

$$
\operatorname{Var}(\mathbf{u})=\frac{\mathbf{Z Z}^{\prime}}{2 \sum_{i=1}^{S N P} p_{i}\left(1-p_{i}\right)} \sigma_{u}^{2}
$$

$$
\mathbf{G}=\frac{\mathbf{Z Z}^{\prime}}{2 \sum_{i=1}^{S N P} p_{i}\left(1-p_{i}\right)}
$$

Genomic relationship matrix VanRaden (2008)

$$
\operatorname{Var}(\mathbf{u})=\mathbf{G} \sigma_{u}^{2}
$$

Understanding SNP variance

$$
\sigma_{a}^{2}=\frac{\sigma_{u}^{2}}{2 \sum_{i=1}^{S N P} p_{i}\left(1-p_{i}\right)}
$$

How do we get the variance of SNP effects, σ_{a}^{2} ?

1) You can estimate it (Bayes C, REML)
2) You can «guess» from the genetic variance σ_{u}^{2}

SNP 1 contributes $2 p_{1} q_{1} a_{1}^{2}$ to the genetic variance
SNP 2 contributes $2 p_{2} q_{2} a_{2}^{2}$ to the genetic variance

Reversing the expression gives

$$
\sigma_{a}^{2} \approx \frac{\sigma_{u}^{2}}{2\left(\sum p_{i} q_{i}\right)}
$$

GBLUP: equivalent to SNP-BLUP

- GEBV-based model = outputs genomic predictions
- $\mathbf{u} \sim N\left(0, G \sigma_{u}^{2}\right)$

$$
\begin{gathered}
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{W u}+\boldsymbol{e} \\
{\left[\begin{array}{lc}
\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{W} \\
\mathbf{W}^{\prime} \mathbf{X} & \mathbf{W}^{\prime} \mathbf{W}+\mathbf{G}^{-1} \frac{\sigma_{e}^{2}}{\sigma_{u}^{2}}
\end{array}\right]\left[\begin{array}{l}
\widehat{\boldsymbol{\beta}} \\
\widehat{\mathbf{u}}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{X}^{\prime} \mathbf{y} \\
\mathbf{W}^{\prime} \mathbf{y}
\end{array}\right]}
\end{gathered}
$$

$$
\mathrm{G}=\frac{\mathbf{Z Z}^{\prime}}{2 \sum p_{i}\left(1-p_{i}\right)}
$$

Genomic relationship matrix

What are genomic relationships?

- Relationships were conceived as standardized covariances (Fisher, Wright)
- $\operatorname{Cov}\left(u_{i}, u_{j}\right)=R_{i j} \sigma_{u}^{2}$
- $R_{i j}$ "some" relationship
- σ_{u}^{2} genetic variance
- True relationships: two individuals are genetically identical (for a trait) if they carry the same genotype at the causal QTL or genes
- Genomic relationships: due to shared (Identical By State) alleles at causal genes
- If I share the blood group A with someone, we are like twins!
- Most of the genes are unknown
- We use proxies (SNP markers)

Early use of markers to infer \mathbf{A}

- A = pedigree relationships: due to shared (Identical By Descent) alleles at causal genes
- In conservation genetics
- Gather markers, then reconstruct pedigrees, then construct A
- Either estimates of $A_{x y}$, or estimates of « the most likely relation » (son-daughter, cousins, whatever) Li and Horvitz 1953, Cockerham 1969, Ritland 1996, Caballero \& Toro 2002, and many others
- With abundant marker data we can do better than this

Pedigree vs. Genomic relationships

- Identical By Descent Relationships based on pedigree are average relationships which assume infinite loci
- «Real » IBD relationships are a bit different due to finite genome size (Hill and Weir, 2010)
- Therefore \mathbf{A} is the expectation of realized or observed relationships
- SNPs more informative than A
- Two full sibs might have a correlation of 0.4 or 0.6
- Many markers needed to better estimate relationships
- Estimators of IBD

Pedigree vs. Genomic relationships

Genomic relationships

Scaled to refer to the genetic variance of a population with allele
frequencies p

If base allelic frequencies are used, \mathbf{G} is an unbiased and efficient estimator of IBD realized relationships

Some "interesting" properties of G

- If p are computed from the data

This implies that E (Breeding Values) $=0$

- Positive and negative inbreeding

Some individuals are more heterozygous than the average of the population (OK, no biological problem)

- Positive and negative genomic relationships

Individuals i and j are more distinct than an average pair of individuals in the data
Fixing negative estimates of relationships to 0 is a wrong praxis

Some "interesting" properties of G

- VanRaden (2008)
- G can be singular if few SNP or identical genotypes (twins)
- G must be singular if number of individuals > number of SNP
- Stranden and Christensen (2011)
- \mathbf{G} is singular if $p^{\prime} s$ are averages across the sample

$$
\mathbf{G}=0.95 \frac{\mathbf{Z Z}^{\prime}}{2 \sum p_{i}\left(1-p_{i}\right)}+0.05 \mathbf{I} \quad \text { OR } \quad \mathbf{G}=0.95 \frac{\mathbf{Z Z}^{\prime}}{2 \sum p_{i}\left(1-p_{i}\right)}+0.05 \mathbf{A} \quad \rightarrow \quad \mathbf{G}=\alpha \mathbf{G}_{0}+\beta \mathbf{A}
$$

- Blending \approx Adding a residual polygenic effect

Some "interesting" properties of G

$$
\mathbf{G}=\frac{\mathbf{Z Z}^{\prime}}{2 \sum p_{i}\left(1-p_{i}\right)}=\frac{(\mathbf{M}-\mathbf{2 P})(\mathbf{M}-\mathbf{2 P})^{\prime}}{2 \sum p_{i}\left(1-p_{i}\right)}
$$

- We don't need to put the same p 's in the upper and and in the lower part
- Changing allele frequencies in \boldsymbol{P} shifts EBV's by a constant
- Irrelevant if there is an overall mean or fixed effect in the model (Stranden and Christensen, 2011)
- Changing allele frequencies in $\frac{1}{2 \sum p_{i} q_{i}}$ "scales"

Not all individuals are genotyped

- Genomic evaluation would be simpler if all individuals were genotyped
- What to do when there are genotyped and non-genotyped individuals?
- SNPs are capturing relationships
- Pedigrees give information about relationships
- Genomic and pedigree relationships can be combined in a single matrix!

Not all animals are genotyped

- Genomic info can be extended to non-genotyped animals
- joint distribution of EBV for non-genotyped $\left(u_{1}\right)$ and genotyped $\left(u_{2}\right)$

$$
p\left(u_{1}, u_{2}\right)=p\left(u_{2}\right) p\left(u_{1} \mid u_{2}\right)
$$

$$
\mathbf{H}=\left(\begin{array}{cc}
\operatorname{var}\left(u_{1}\right) & \operatorname{cov}\left(u_{1}, u_{2}\right) \\
\operatorname{cov}\left(u_{2}, u_{1}\right) & \operatorname{var}\left(u_{2}\right)
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{A}_{11}+\mathbf{A}_{12} \mathbf{A}_{22}^{-1}\left(\mathbf{G}-\mathbf{A}_{22}\right) \mathbf{A}_{22}^{-1} \mathbf{A}_{21} & \mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{G} \\
\mathbf{G} \mathbf{A}_{22}^{-1} \mathbf{A}_{21} & \mathbf{G}
\end{array}\right)
$$

Variance of prediction of genotypes for
non-genotyped animals

Prediction generates a covariance
Error in the prediction

$$
\left.\mathbf{H}=\left[\begin{array}{c|c}
\mathbf{A}_{11}-\mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{A}_{21}+\mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{G} \mathbf{A}_{22}^{-1} \mathbf{A}_{21} & \mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{G} \\
\hline \mathbf{G} \mathbf{A}_{22}^{-1} \mathbf{A}_{21} & \mathbf{G}
\end{array}\right] \begin{array}{c}
\text { Relationships from } \\
\text { genotypes }
\end{array}\right]
$$

Understanding \mathbf{H}

- It is a projection of \mathbf{G} matrix on the rest of individuals "so that" \mathbf{G} matrix makes sense - e.g. parents of two animals related in \mathbf{G} should be related in \mathbf{A}
- It is a Bayesian update of the pedigree matrix based on new information from genotypes
- Typically
- \mathbf{A} in the millions
- \mathbf{G} and \mathbf{A}_{22} in the thousands
- Leads to a very efficient method of genomic evaluation:
- Single Step GBLUP

Some properties of \mathbf{H}

- Always semi-positive definite
- eigenvalues are always positive or zero
- Positive definite \& invertible if \mathbf{G} is invertible
- In practice, if \mathbf{G} is too different from \mathbf{A}_{22} (wrong pedigree or genotyping), this gives lots of numerical problems
- If no one is genotyped, Single-step is BLUP
- If everyone is genotyped, Single-step is GBLUP

Realized relationship matrix (H)

Animal	Sire	Dam
1	0	0
2	0	0
3	1	2
4	1	2

Pedigree	Genomic	Realized
Relationship	Relationship	Relationship
Matrix (A)	Matrix (G)	Matrix (H)

$\left[\begin{array}{cccc}1.0 & 0.0 & 0.5 & 0.5 \\ \cdot & 1.0 & 0.5 & 0.5 \\ \cdot & \cdot & 1.0 & 0.5 \\ . & . & . & 1.0\end{array}\right] \quad\left[\begin{array}{cc}1.0 & 0.52 \\ . & 1.0\end{array}\right] \quad\left[\begin{array}{cccc}1.004 & 0.0 & 0.507 & 0.507 \\ . & 1.004 & 0.507 & 0.507 \\ . & . & 1.0 & 0.52 \\ . & . & . & 1.0\end{array}\right]$

Single-step Genomic BLUP (ssGBLUP)

- Because not all animals are genotyped
- 5% to 10% in large populations

$$
\left[\begin{array}{ccc}
\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{Z} \\
\mathbf{Z}^{\prime} \mathbf{X} & \mathbf{Z}^{\prime} \mathbf{Z}+\mathbf{H}^{-1} \frac{\sigma_{e}^{2}}{\sigma_{u}^{2}}
\end{array}\right]\left[\begin{array}{l}
\widehat{\boldsymbol{\beta}} \\
\hat{\mathbf{u}}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{X}^{\prime} \mathbf{y} \\
\mathbf{Z}^{\prime} \mathbf{y}
\end{array}\right]
$$

$$
\mathbf{H}^{-1}=\mathbf{A}^{-1}+\left[\begin{array}{cc}
\mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{G}^{-1}-\mathbf{A}_{22}^{-1}
\end{array}\right]
$$

Combining two sources of relationships

$$
\mathbf{H}=\mathbf{A}+\left[\begin{array}{cc}
\mathbf{A}_{12} \mathbf{A}_{2}^{-1}\left(\mathbf{G}-\mathbf{A}_{22}\right) \mathbf{A}_{22}^{-1} \mathbf{A}_{21} & \mathbf{A}_{12} \mathbf{A}_{22}^{-1}\left(\mathbf{G}-\mathbf{A}_{22}\right) \\
\left(\mathbf{G}-\mathbf{A}_{22}\right) \mathbf{A}_{22}^{-1} \mathbf{A}_{21} & \mathbf{G - \mathbf { A } _ { 2 2 }}
\end{array}\right]
$$

- A
- Contains expected relationships
- Is limited by the pedigree depth and completeness
- Depends on accuracy of recording pedigrees
- G
- Contains number of alleles shared between animals weighted by heterozygosity
- No limitations regarding to the number of past generations
- Depends on allele frequency and quality of genomic data

Combining two sources of relationships

- Tuning
- Base of G is genotyped animals
- Base of \mathbf{A} is founders of the pedigree
- For SSGBLUP, Vitezica et al. 2011 modeled a mean in genotyped animals:

$$
\begin{aligned}
& \qquad p\left(\boldsymbol{u}_{2}\right)=N(\mathbf{1} \mu, \mathbf{G}) \\
& \text { Integrate } \mu: \mathbf{G}^{*}=a+b \mathbf{G} \\
& \mu=\text { (Pedigree base) }- \text { (Genomic base) }
\end{aligned}
$$

Single-step

$\left[\begin{array}{cc}\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{Z} \\ \mathbf{Z}^{\prime} \mathbf{X} & \mathbf{Z}^{\prime} \mathbf{Z}+\mathbf{H}^{-1} \frac{\sigma_{e}^{2}}{\sigma_{u}^{2}}\end{array}\right]\left[\begin{array}{c}\widehat{\boldsymbol{\beta}} \\ \hat{\mathbf{u}}\end{array}\right]=\left[\begin{array}{l}\mathbf{X}^{\prime} \mathbf{y} \\ \mathbf{Z}^{\prime} \mathbf{y}\end{array}\right]$

ssGBLUP

Misztal et al. (2009)
Legarra et al. (2009)
Aguilar et al. (2010)
Christensen \& Lund (2010)
$\left[\begin{array}{lll}\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{Z} \mathbf{M} & \mathbf{X}_{n}^{\prime} \mathbf{Z}_{n} \\ \mathbf{M}^{\prime} \mathbf{Z}^{\prime} \mathbf{X} & \mathbf{M}^{\prime} \mathbf{Z}^{\prime} \mathbf{Z} \mathbf{M}+\mathbf{I} \frac{\sigma_{\mathbf{e}}^{2}}{\sigma_{\alpha}^{2}} & \mathbf{M}_{n}^{\prime} \mathbf{Z}_{n}^{\prime} \mathbf{Z}_{n} \\ \mathbf{Z}_{n}^{\prime} \mathbf{X}_{n} & \mathbf{Z}_{n}^{\prime} \mathbf{Z}_{n} \mathbf{M}_{n} & \mathbf{Z}_{n}^{\prime} \mathbf{Z}_{n}+\mathbf{A}^{n n} \frac{\sigma_{e}^{2}}{\sigma_{g}^{2}}\end{array}\right]\left[\begin{array}{c}\hat{\boldsymbol{\beta}} \\ \hat{\boldsymbol{\alpha}} \\ \hat{\boldsymbol{\epsilon}}\end{array}\right]=\left[\begin{array}{c}\mathbf{X}^{\prime} \mathbf{y} \\ \mathbf{M}^{\prime} \mathbf{Z}^{\prime} \mathbf{y} \\ \mathbf{Z}_{n}^{\prime} \mathbf{y}_{n}\end{array}\right]$

ssSNPBLUP or ssBR

Fernando et al. (2014)
Liu et al. (2014)
Mantysaari \& Stranden (2016) the BVM.

Theory underlying SSBV-BLUP

Fernando et al. Genetics Selection Evolution 2014, 46:50 http://www.gsejournal.org/content/46/50
equation (3) results in the usual non-genomic MME for

Legarra et al. [11] proposed an ingenious strategy to combine information from genotyped and non-genotyped animals in a single BLUP analysis based on a BVM, which we refer to as SSBV-BLUP. Suppose \mathbf{g} is partitioned as:

$$
\mathbf{g}=\left[\begin{array}{l}
\mathbf{g}_{1} \\
\mathbf{g}_{2}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{g}_{1} \\
\mathbf{T}_{2} \boldsymbol{\alpha}
\end{array}\right]
$$

https://doi.org/10.3168/jds.2018-14913
https://doi.org/10.3168/jds.2018-14913
© 2018, The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association ${ }^{\star}$.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0).
Short communication: Genomic prediction using different single-step methods in the Finnish red dairy cattle population
H. Gao, ${ }^{*} \dagger^{1}$ M. Koivula, \ddagger J. Jensen, ${ }^{*}$ I. Strandén $\ddagger \ddagger$ P. Madsen, ${ }^{*}$ T. Pitkänen, \ddagger G. P. Aamand, \dagger

We confirmed that regular ssGBLUP and ssBR with an extra polygenic effect led to the same predictions.

QC of SNP data in BLUPF90

ssGBLUP and GBLUP in BLUPF90

