Parallel Computing
with OpenMP

Yutaka Masuda

Computing cores

oL s - « A modern CPU usually has 2 or
more computing cores.

. . * A regular program (your Fortran
| e - program) uses only 1 core.

_ « Why don’t you use multiple
cores for your computations?

:Applicab'ons [Processes | Services | Performance | Networking I Users

Physical Memory (MB) System

Total 8110 Handles 31575

Cached 4370 Threads 1119

Available 4842 Processes 100

Free 17 Up Time 14:06:53:50
Commit (GB) 4/15

Kernel Memory (MB)

Paged 610

Nonpaged 93 [“; Resource Monitor...

Processes: 100 CPU Usage: 15% Physical Memory: 40%

Two major approaches

* OpenMP * MPI (Message Passing Interface)
* Aset of directives * A collection of subroutines
* Focus on parallelization for loops * Any kinds of parallel computing
= [imited purpose = flexible
* Automatic management by the Manual control of data flow &
program = easier to program management = complicated
* Shared memory * Distributed/ shared memory
Shared memory computer Distributed memory computer

CORE CORE
‘ ‘ CORE

From www.comsol.com

Computing model in OpenMP

Regular (sequential)

program: Parallel Task | Parallel Task Il Parallel Task Il
e n T R
Master Thread
Parallel program:
Parallel Task | Parallel Task Il Parallel Task [l
Master Thread - - T
\ | f— e B8
e o ‘

From Wikipedia

Fork-Join model

Fork: creation & initialization ofthreads
Join: synchronization of the threads

Fork Join Fork Join Fork Join
Parallel Parallel Parallel
Region 1 Region 2 Region 3
- - T - -
, W B V 4 N
Y o Y Y A Ty J) SN

From Wikipedia

Program structure with OpenMP

do 1=1,10

X(1)=sqrt(x(1))
end do

$omp paralleT

'$omp do

do 1=1,10
X(1)=sqrt(x(i))

end do

$Somp end do

$Somp end parallel

Using 3 threads.

OpenMP directives

* The directive must begin with a
keyword !Somp.

l$omp parallel * The directives will be effective

! $omp do obly if you put a compiler option.
doxgiigrtcxﬁ)) * Otherwise, the directives will be
end do ignored (because it looks like a
l$omp end do comment).

!$omp end parallel * An OpenMP region must be

encircled with !Somp directive
and ISomp end directive.

OpenMP directives (cont’d)

 Each directive can have an
optional clause.

'$omp parallel private(i) shared(x) * Variable type, number of threads,

!$omp do conditional execution etc.

do 1=1,10 : :
x(1)=sqrt(x(i)) * A statement starts with ! $ will

end do be complied only when the

$omp end do

OpenMP is effective (conditional
compilation).

1$ print *,’OpenMP is active!’ * Put a space between !S and the
statement.

l$omp end parallel

Compiler options

* Depends on compilers
* Intel Fortran Compiler (ifort): —openmp or -gopenmp (v16 or later)
« Gfortran: -fopenmp
* Absoft: —openmp
« NAG: -openmp
* PGl: —mp

* Examples
« ifort -openmp prog.f90
« gfortran -fopenmp prog.f90

Directive: parallel

F!)i?::_'z Eafﬁﬂ?1 * Defines a parallel region and
d - assigns the task to each thread.

$omp end parallel
* The region will be executed by

it * THil multiple threads.

rint *,’Hi!
pH e The number of threads can be
‘ print *,/Hil’ '

controlled by the an optional
print *,Hil’

clause, supplemental functions or
an environmental variable.

(Output)
Hi!
Hi!
Hi!

Directive do

iiomp ga'"a”‘ﬂ e Perform the do-loop with

| $omp do :

do i=1,10 multiple threads.
x(i)=sqrt(x(i)) e The !Somp do directive must be

end do placed just before a do-loop.

!$omp end do * The directive must be surrounded

l$omp end parallel

by parallel.

* The counteris not necessarily
incremented in order.

* The counteriis treated as a
separate variable for each thread
(private variable).

Shared variable by default

! compute parent average (PA) Shared variable

l$omp parallel

)
LSomp, do s
s=sire(1)
d=dam(i)

1
sire(l)
dam(1)
pa) =(C ev(s) + ew(d))/2.0

pa(i)=(Cebv(s)+ebv(d))/2.0
end do
$omp end do
$omp end parallel

2

e Allthreadssharethe variables s and d.
e Onethreadrewritesthe variables while
anotherthread cites the variable!

sire(2)
= dam(2)
pa =(C eébv(s) + ebv(d))/2.0

Private and shared variable

I compute parent average (PA) [re—————— e — e — e ————————————
Shared variable

]

$omp parallel private(i,s,d) &
' $omp shared(n,sire,dam,ebv,pa)

(!j$orpp1d0
o i=1,n

s=sire(i)

d=dam(i) 1

pa(i)=(Cebv(s)+ebv(d))/2.0
end do
'$omp end do
'$omp end parallel

sire(1l)
dam(1)
pa) =C ebv(s) + eov(d))/2.0

2

* Each thread hasown variabless andd
so thereis no competition any more.

sire(2)
= dam(2)
pa@ =(Clebv(s) +ebv(d))/2.0

Clause: sharedand private

| compute parent average (PA) * Define variable types.
| $omp parallel private(i,s,d) & * Use private() and shared()
|$omp shared(n,sire,dam,ebv,pa) clauses in the parallel directive.
(!j gngldcn) * Private variables will be created
s=sire(i) for each thread.
d=dam(i) * Shared variables will be shared
ga§1)=(ebVC5)+ebVCd))/2-0 (rewritten) by all threads.
E!”;ompoend do Variables will be shared by default

| $omp end parallel except loop counters.

* Always declare the variable type
to avoid bugs.

Clause: reduction

known=0 * Specify variable for “reduction”
| $omp parallel private(i,s,d) & operations.
'$omp shared(n,sire,dam,ebv,pa) & e Avariable known is treated as
' $omp reduction(+:known) .
private for each thread.
' $omp do
do i=1,n * In the end of the loop, all threads
3=31' r‘%@;’) will add their private known to the
=dam(1
0a(i)=(ebv(s)+ebv(d))/2.0 global known.
if(s/=0.and.d/=0) known=known+1 e Other operations (instead of +) are
end do available:
$omp end do

| $omp end parallel * +,%,max,min etc.

Clause: 1T

known=0 * Conditional use of OpenMP

| $omp parallel private(i,s,d) & * |f the conditionistrue, OpenMP

'$omp shared(n,sire,dam,ebv,pa) & will be invoked in the parallel

I $omp reduction(+:known) & region

I $omp 1f(n>100000) ' , . :

| $omp do * If not, the OpenMP directivesin

do i=1,n this region will be ignored (i.e.
s=sire(i) single-thread execution).
d=dam(3)

pa(i)=(ebv(s)+ebv(d))/2.0
1if(s/=0.and.d/=0) known=known+1
end do
$omp end do
$omp end parallel

Built-in functions/subroutines

use omp_1lib

or

'$ use omp_Tib

 Built-in functions/subroutines
for OpenMP are defined in the
module omp _lib.

* Recommendation:always cite this
module as !S use omp_lib because
the module is usable only when
you put a compiler option.

* See the textbook or openmp.org
for details.

Built-in function: omp_get_wtime

* OpenMP function omp_get wtime() returns wall-clock time.
1$ use omp_Tib

integer,parameter :: r8=selected_real_kind(15,300)
real(r8) :: tic,toc

'$ tic=omp_get_wtime()
$omp parallel

$omp do

do

end do

'$omp end do

$omp end parallel

I'$ toc=omp_get_wtime()

'$ print *,’running time=’,toc-tic

Number of threads

* The default number of threads is the maximum number on your
system.

* A parallel program will be slow if ...
* You separately run another parallel program and each program tries to use
the maximum number of threads.
* Three different ways to change the number of threads.
1. Region-specific configuration (use of a clause in the parallel directive)
2. Program-specific configuration (use of a built-in subroutine)
3. Run-time configuration (use of an environmental variable)

Approach 1

"“tege'" 2oon * Use of num threads clause.
n = . . . O o

| $omp parallel num_threads(n) * Th's.'sa reglon-speuflc

| $omp do configuration.

do

end do

'$omp end do

$omp end parallel

Approach 2

1$ use omp_Tib
integer :: n
N=2

I$call omp_set_num_threads(n)

$omp parallel
$omp do
do

end do
$omp end do
$omp end parallel

e Use of a built-in function
omp_set num_threads.

* |t changes the default number of

threads in the program.

e |t affects all the subsequent

parallel regions without the
num_threads clause.

Approach 3

Linux and Mac OS X: e Use of an environmental variable
S export OMP_NUM_THREADS=5 OMP_NUM_THREADS.

or * It means you don’t have to change
S OMP_NUM_THREADS=5 ./a.out the program. You can just change

the system variable.

Windows: * In Linux and Mac OS X, this
Y T — ; variable is effective only in the
e e oo session. Write the variable in your
) Bash-profile.
e — , * In Windows, open the computer's
e Comesse property to set the variable.
New.. | [Edt.. | [peete]
Coc) Com]

OpenMP is not perfect.

 Suitable: A task can be split into several independent computations.
* Not directly applicableif there are data-dependencies.

do 1=3,n
X(1)=x(-D)+x(1-2)
end do

* Even if OpenMP is applicable, it is not always working well.
* There is always overhead to control/synchronize the threads.

* OpenMP is useful only if the overhead can be ignored e.g. heavy
computations repeated many times.

BLUPFSO programs and parallelization

* BLUPF90 programs depends on parallel libraries and modules.

* A genomic module dependson Intel MKL i.e. optimized BLAS & LAPACK
subroutines. MKL is parallelized by OpenMP.

* The module also uses OpenMP directives.
* YAMS (a sparse matrix library) calls MKL as well.

 BLUPF90IOD2 (a commercial product) supports parallel computing with
OpenMP.

* Please make sure how many threads you will be actually using before
running the parallel programs.

