
Parallel	Computing
with	OpenMP

Yutaka	Masuda

Computing	cores

• A	modern	CPU	usually	has	2	or	
more	computing	cores.
• A	regular	program	(your	Fortran	
program)	uses	only	1	core.
• Why	don’t	you	use	multiple	
cores	for	your	computations?

Two	major	approaches

• OpenMP
• A	set	of	directives
• Focus	on	parallelization	for	loops
=	limited	purpose
• Automatic	management	by	the	
program	=	easier	to	program
• Shared	memory

• MPI	(Message	Passing	Interface)
• A	collection	of	subroutines
• Any	kinds	of	parallel	computing
=	flexible
• Manual	control	of	data	flow	&	
management	=	complicated
• Distributed	/	shared	memory

From	www.comsol.com

Computing	model	in	OpenMP

From	Wikipedia

Regular	(sequential)	
program:

Parallel	program:

Fork-Join	model

From	Wikipedia

Parallel
Region	1

Parallel
Region	2

Parallel
Region	3

Fork Join Fork Join Fork Join

Fork:	creation	&	initialization	of	threads
Join:	synchronization	of	the	threads

Program	structure	with	OpenMP

do i=1,10
x(i)=sqrt(x(i))

end do

!$omp parallel
!$omp do
do i=1,10
x(i)=sqrt(x(i))

end do
!$omp end do
!$omp end parallel

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10

i=1

i=2i=3

i=4

i=5i=6

i=7

i=8

i=9

i=10 Using	3	threads.

X(1)=sqrt(x(1))

OpenMP directives

• The	directive	must	begin	with	a	
keyword	!$omp.
• The	directives	will	be	effective	
obly if	you	put	a	compiler	option.
• Otherwise,	the	directives	will	be	
ignored	(because	it	looks	like	a	
comment).

• An	OpenMP region	must	be	
encircled	with	!$omp directive
and	!$omp end	directive.

!$omp parallel
!$omp do
do i=1,10
x(i)=sqrt(x(i))

end do
!$omp end do
!$omp end parallel

OpenMP directives	(cont’d)

• Each	directive	can	have	an	
optional	clause.
• Variable	type,	number	of	threads,	
conditional	execution	etc.

• A	statement	starts	with	!$ will	
be	complied	only	when	the	
OpenMP is	effective	(conditional	
compilation).
• Put	a	space	between	!$ and	the	
statement.

!$omp parallel private(i) shared(x)
!$omp do
do i=1,10
x(i)=sqrt(x(i))

end do
!$omp end do
!$omp end parallel

!$ print *,’OpenMP is active!’

Compiler	options

• Depends	on	compilers
• Intel	Fortran	Compiler	(ifort):	-openmp or	-qopenmp (v16	or	later)
• Gfortran:	-fopenmp
• Absoft:	-openmp
• NAG:	-openmp
• PGI:	-mp

• Examples
• ifort -openmp prog.f90

• gfortran -fopenmp prog.f90

Directive:	parallel
!$omp parallel
print *,’Hi!’
!$omp end parallel

• Defines	a	parallel	region	and	
assigns	the	task	to	each	thread.
• The	region	will	be	executed	by	
multiple	threads.
• The	number	of	threads	can	be	
controlled	by	the	an	optional	
clause,	supplemental	functions	or	
an	environmental	variable.

print	*,’Hi!’

print	*,’Hi!’

print	*,’Hi!’

(Output)
Hi!
Hi!
Hi!

Directive	do

• Perform	the	do-loop	with	
multiple	threads.
• The	!$omp do directive	must	be	
placed	just	before	a	do-loop.
• The	directive	must	be	surrounded	
by	parallel.
• The	counter	is	not	necessarily	
incremented	in	order.
• The	counter	i is	treated	as	a	
separate	variable	for	each	thread	
(private	variable).

!$omp parallel
!$omp do
do i=1,10
x(i)=sqrt(x(i))

end do
!$omp end do
!$omp end parallel

i=1 i=5i=6

i=4 i=7i=9

i=2i=3 i=8 i=10

Shared	variable	by	default
! compute parent average (PA)

!$omp parallel
!$omp do
do i=1,n

s=sire(i)
d=dam(i)
pa(i)=(ebv(s)+ebv(d))/2.0

end do
!$omp end do
!$omp end parallel

n
sire(:)

dam(:)
s d

pa(:)

ebv(:)

Shared	variable

= 1
=
=

=(+)/2.0

i

s sire(1)

d dam(1)
pa(1) ebv()s ebv()d

iPrivate	variable

= 2
=
=

=(+)/2.0

i

s sire(2)

d dam(2)
pa(2) ebv()s ebv()d

iPrivate	variable
• All	threads	share	the	variables	s and	d.
• One	thread	rewrites	the	variables	while	

another	thread	cites	the	variable!

Private	and	shared	variable
! compute parent average (PA)

!$omp parallel private(i,s,d) &
!$omp shared(n,sire,dam,ebv,pa)
!$omp do
do i=1,n

s=sire(i)
d=dam(i)
pa(i)=(ebv(s)+ebv(d))/2.0

end do
!$omp end do
!$omp end parallel

• Each	thread	has	own	variables	s and	d
so	there	is	no	competition	any	more.

n
sire(:)

dam(:)

pa(:)

ebv(:)

Shared	variable

= 1
=
=

=(+)/2.0

i

s sire(1)

d dam(1)
pa(1) ebv()s ebv()d

iPrivate	variable

= 2
=
=

=(+)/2.0

i

s sire(2)

d dam(2)
pa(2) ebv()s ebv()d

iPrivate	variable

s d

s d

Clause:	shared and	private

• Define	variable	types.
• Use	private() and	shared()
clauses	in	the	parallel directive.
• Private	variables will	be	created	
for	each	thread.
• Shared	variables will	be	shared	
(rewritten)	by	all	threads.
• Variables	will	be	shared	by	default	
except	loop	counters.
• Always	declare	the	variable	type	
to	avoid	bugs.

! compute parent average (PA)

!$omp parallel private(i,s,d) &
!$omp shared(n,sire,dam,ebv,pa)
!$omp do
do i=1,n

s=sire(i)
d=dam(i)
pa(i)=(ebv(s)+ebv(d))/2.0

end do
!$omp end do
!$omp end parallel

Clause:	reduction
known=0

!$omp parallel private(i,s,d) &
!$omp shared(n,sire,dam,ebv,pa) &
!$omp reduction(+:known)
!$omp do
do i=1,n

s=sire(i)
d=dam(i)
pa(i)=(ebv(s)+ebv(d))/2.0
if(s/=0.and.d/=0) known=known+1

end do
!$omp end do
!$omp end parallel

• Specify	variable	for	“reduction”	
operations.
• A	variable	known is	treated	as	
private	for	each	thread.
• In	the	end	of	the	loop,	all	threads	
will	add	their	private	known to	the	
global	known.
• Other	operations	(instead	of	+)	are	
available:
• +,*,max,min etc.

Clause:	if
known=0

!$omp parallel private(i,s,d) &
!$omp shared(n,sire,dam,ebv,pa) &
!$omp reduction(+:known) &
!$omp if(n>100000)
!$omp do
do i=1,n

s=sire(i)
d=dam(i)
pa(i)=(ebv(s)+ebv(d))/2.0
if(s/=0.and.d/=0) known=known+1

end do
!$omp end do
!$omp end parallel

• Conditional	use	of	OpenMP
• If	the	condition	is	true,	OpenMP
will	be	invoked	in	the	parallel	
region.
• If	not,	the	OpenMP directives	in	
this	region	will	be	ignored	(i.e.	
single-thread	execution).

Built-in	functions/subroutines

• Built-in	functions/subroutines	
for	OpenMP are	defined	in	the	
module	omp_lib.
• Recommendation:	always	cite	this	
module	as	!$	use	omp_lib because	
the	module	is	usable	only	when	
you	put	a	compiler	option.

• See	the	textbook	or	openmp.org	
for	details.

use omp_lib

or

!$ use omp_lib

Built-in	function:	omp_get_wtime

• OpenMP function	omp_get_wtime()	returns	wall-clock	time.
!$ use omp_lib

integer,parameter :: r8=selected_real_kind(15,300)
real(r8) :: tic,toc
...

!$ tic=omp_get_wtime()
!$omp parallel
!$omp do
do

...

end do
!$omp end do
!$omp end parallel
!$ toc=omp_get_wtime()
!$ print *,’running time=’,toc-tic

Number	of	threads

• The	default	number	of	threads	is	the	maximum	number	on	your	
system.
• A	parallel	program	will	be	slow	if	…
• You	separately	run	another	parallel	program	and	each	program	tries	to	use	
the	maximum	number	of	threads.

• Three	different	ways	to	change	the	number	of	threads.
1. Region-specific	configuration	(use	of	a	clause	in	the	parallel directive)
2. Program-specific	configuration	(use	of	a	built-in	subroutine)
3. Run-time	configuration	(use	of	an	environmental	variable)

Approach	1

integer :: n

n = 2

!$omp parallel num_threads(n)
!$omp do

do

...

end do

!$omp end do

!$omp end parallel

• Use	of	num_threads clause.
• This	is	a	region-specific	
configuration.	

Approach	2

!$ use omp_lib

integer :: n

N=2

!$call omp_set_num_threads(n)

!$omp parallel

!$omp do

do

...

end do

!$omp end do

!$omp end parallel

• Use	of	a	built-in	function	
omp_set_num_threads.
• It	changes	the	default	number	of	
threads	in	the	program.
• It	affects	all	the	subsequent	
parallel	regions	without	the	
num_threads clause.

Approach	3

Linux	and	Mac	OS	X:
$	export	OMP_NUM_THREADS=5
or
$	OMP_NUM_THREADS=5	./a.out

Windows:

• Use	of	an	environmental	variable	
OMP_NUM_THREADS.
• It	means	you	don’t	have	to	change	
the	program.	You	can	just	change	
the	system	variable.
• In	Linux	and	Mac	OS	X,	this	
variable	is	effective	only	in	the	
session.	Write	the	variable	in	your	
Bash-profile.
• In	Windows,	open	the	computer's	
property	to	set	the	variable.

OpenMP is	not	perfect.

• Suitable:	A	task	can	be	split	into	several	independent computations.
• Not	directly	applicable	if	there	are	data-dependencies.

do i=3,n
x(i)=x(i-1)+x(i-2)

end do

• Even	if	OpenMP is	applicable,	it	is	not	always	working	well.
• There	is	always	overhead	to	control/synchronize	the	threads.

• OpenMP is	useful	only	if	the	overhead	can	be	ignored	e.g.	heavy	
computations	repeated	many	times.

BLUPF90	programs	and	parallelization

• BLUPF90	programs	depends	on	parallel	libraries	and	modules.
• A	genomic	module	depends	on	Intel	MKL	i.e.	optimized	BLAS	&	LAPACK	
subroutines.	MKL	is	parallelized	by	OpenMP.
• The	module	also	uses	OpenMPdirectives.
• YAMS	(a	sparse	matrix	library)	calls	MKL	as	well.
• BLUPF90IOD2	(a	commercial	product)	supports	parallel	computing	with	
OpenMP.

• Please	make	sure	how	many	threads	you	will	be	actually	using	before	
running	the	parallel	programs.

