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1 Introduction

1.1 Short introduction to BLUPF90 programs

1.1.1 What is BLUPF90?
BLUPF90 is the name of the software. Also, it is the name of a collection of programs derived from
BLUPF90. In the latter case, we will refer it to BLUPF90 family or BLUPF90 programs. A concise
description is also found at the official wiki at the University of Georgia (http://nce.ads.uga.edu/
wiki/doku.php).

BLUPF90 family of programs is a collection of software in Fortran 90/95 for mixed model
computations in animal breeding. The goal of the software is to be as simple as with a matrix
package and as efficient as in a programming language.

The BLUPF90 program creates and solves the mixed model equations. It supports various models in-
cluding animal model, maternal model and random regression model with multiple traits. The BLUPF90
family has several programs for variance component estimation using REML and Gibbs sampling with
various models. The set of programs is available at the official website (http://nce.ads.uga.edu) and
you can freely use it for academic or research purposes.

1.1.2 Why BLUPF90?
BLUPF90 has several advantages over similar software for users: simplicity, stability and active devel-
opment. For programmers, the internal structure is documented in a course note (http://nce.ads.
uga.edu/wiki/doku.php?id=course_information_-_uga_2018) and the working source code is
available; so a developer can modify the program to support new ideas.

We will see the advantage in a user’s point of view.

Simplicity

The program’s behavior is very simple. Every BLUPF90 program reads a parameter file, which describes
the name of data and pedigree files, models and (initial) variance components to be used in the analysis.
The parameter file is a short text file and it has a few pairs of keywords and values to describe the in-
formation. The parameter file is concise but capable of general models. Once you learn how to write a
parameter file, you can perform very complicated analyses with the program.

Every program saves the solutions of the mixed model equations (e.g., EBV) to a file. Estimated
variance components are also saved in files permanently.

Stability

The programs have been tested by many researchers since its public release around 2000. The programs
are now stable enough to be used in a routine genetic evaluation at the national level. The team at the
University of Georgia heavily uses the programs for their research.
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Active development

The programs are continuously maintained by the UGA team. New features are added to the existing
software to incorporate a new methodology and to improve the usability and the computing time. The
programs fully support single-step genomic BLUP (ssGBLUP); GWAS can be done with the ssGBLUP
framework.

Speed

We have been optimizing the programs in terms of speed not only using multithreaded libraries (MKL)
but also with detailed optimization in fundamental subroutines. The current version is remarkably faster
than the old version, especially in REML and Gibbs sampling.

1.1.3 Is it easy?
Yes, it is. But the learning process is not always easy. There might be several hurdles to learn how to use
BLUPF90 programs in actual research. It is the opposite side of the advantage.

• A little documentation. The official website hosts a manual for the programs (http://nce.ads.
uga.edu/wiki/doku.php). The official wiki also provides various information about the soft-
ware. But, documentation, especially for learners, is not fully available in the existing resources.
• Data manipulation. This is not a specific disadvantage in BLUPF90 but in much similar software.

BLUPF90 family focuses on mixed model analyses so it doesn’t provide any data manipulation
framework as R and SAS do. The programs use text files as a common format so a few text
manipulation can be needed. You should prepare data and pedigree with a specific format and
check erroneous records in the files before running the programs.
• Pre-process. Every program accepts numerical values only because of keeping simplicity in the

programming. If your data or pedigree file contains characters (alphabets or symbols), you should
replace the characters with integer code before the analysis. One of the programs, RENUMF90,
can perform this editing. With field or commercial data, you will have to run RENUMF90 before
BLUPF90.

The purpose of this tutorial is to provides such documentation with many examples.

1.2 Differences with other software
It is better for a new user to know the differences between BLUPF90 programs and other software which
you are familiar with. We briefly introduce the differences for your understanding.

1.2.1 General differences
R and SAS

• BLUPF90 can handle really large data sets. BLUPF90 is most likely faster than R and SAS.
• BLUPF90 is not interactive software. A user should prepare a parameter file that describes the

details of analysis (names of files, model, genetic parameters and options). The program simply
reads the file and run a defined task.
• BLUPF90 is not a scripting language. The programs don’t provide any features for data manipula-

tions. All the editing should be done before invoking the program. The data file must contain all
the information needed for the analysis.
• BLUPF90 can only read text files. Headers (or comments) are not allowed in the data or pedigree

files. The items in a text file should be separated from one or more spaces.
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• BLUPF90 shows the results on screen as well as text files.
• BLUPF90 accepts only integer values as levels of effects in the data and pedigree file, and real

values as covariables and trait values. Alphabets or symbols should be replaced with integer code
before the analysis. RENUMF90 helps this process.
• BLUPF90 has no window system. It is like a Rscript, a command line utility. Basically, the

program runs on Command Prompt (or so-called ‘DOS’ window) in Windows, Terminal on macOS
and various shell on Linux.
• BLUPF90 has no functions to perform hypothetical tests. Some programs show −2logL or similar

statistics so you can manually perform a likelihood ratio test.

ASREML

• BLUPF90 is free for research and academic purposes but has limited support from the development
team.
• BLUPF90 supports Gibbs sampling.
• BLUPF90 covers linear mixed models and the threshold models. It doesn’t have procedures for

generalized linear models.
• BLUPF90 uses simple text format for data and pedigree files. No headers, no comments, no alpha-

bets or symbols are allowed in the files. The edited data should be prepared by a user before the
analysis.
• BLUPF90 has no comprehensive directives for the analysis. The parameter file contains minimal

information including file names, model, variance components and options. BLUPF90 does not use
labels to refer to the effects in the model description.
• BLUPF90 generates minimal output.

WOMBAT

• In the data file for BLUPF90, observations for an animal taken at the same time should be basically
listed in the same line. Multiple observations should be saved in the same line. The case, where
observations from the same animals are stored in 2 or more lines, will be allowed only in repeated
records or a special multiple-trait model (e.g. G-by-E analysis). In WOMBAT, each trait is on a
different line.
• BLUPF90 does not compute by default the inbreeding coefficients. The inverse of the numerator

relationship matrix (A−1) is created based on the non-inbred approach (i.e. Henderson’s method
pretending that there is no inbreeding). To consider inbreeding in A−1, a user should supply in-
breeding coefficients as a special format to the pedigree file as additional information.
• BLUPF90 does not use labels to describe the model. Instead, the program directly uses the positions

(columns) of effect identifiers.
• BLUPF90 does not create interaction effects in the program. It has no * description in the parameter

file. Interactions should be prepared as cross-classified effects before the analysis.
• BLUPF90 accepts positive and negative reals as covariates, as opposed to WOMBAT which only

accepts integers.
• WOMBAT has more options for maximization of the likelihood (Derivative Free, PX, reduced

rank), whereas BLUPF90 has Bayesian estimation by Gibbs sampler.
• BLUPF90 programs support the threshold model. WOMBAT does not.

VCE

• The data and pedigree files for BLUPF90 should not contain headers (or comments). The first row
in the file must be a data line.

• BLUPF90 uses very simple parameter file that is not as readable as ones for VCE. BLUPF90 does
not use labels to describe effects. The order of parameters in the file is fixed.

3
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• Pedigree file contains the animal ID, sire ID, and dam ID as the first 3 columns for the animal
model. The additional 4th column can be used as a special feature.
• BLUPF90 does not compute by default the inbreeding coefficients. The inverse of the numerator

relationship matrix (A−1) is created based on non-inbred approach (i.e. Henderson’s method pre-
tending that there is no inbreeding). To consider inbreeding in A−1, a user should supply inbreeding
coefficients as a special format to the pedigree file as additional information.

DMU

• BLUPF90 directly reads the data and pedigree files i.e. a user does not have to run DMU1 type of
software. Data preparation programs can be optionally used for a user’s convenience.
• Parameter file (the same concept to driver file) contains model descriptions. BLUPF90 does not use

labels to refer to effects.
• BLUPF90 does not care about data types (integer or real). All the data will be read as real values

and converted into an appropriate type as needed.
• BLUPF90 prints minimal outputs on the screen. It does not create any log files.

1.2.2 Differences in purpose
BLUPF90 is specialized for estimation of BLUE, prediction of BLUP, and estimation of variance compo-
nents in the linear mixed model. The assumption is that the user knows which fixed effects are influential
to the phenotypes prior to the analysis. This is the reason why the programs do not perform hypothetical
testing for fixed effects. The goodness of fit about random effects can be compared using −2logL which
is available from the REML programs.

1.2.3 Difference in software design
The philosophy of BLUPF90 programs is described in the official wiki and several publications. The
basic idea is to support general linear mixed models with minimal effort in programming. Fortran 90
enables us to write and re-use the code easily. BLUPF90 is the primary software to demonstrate that this
idea actually works well with one common code. Other application programs have been derived from
BLUPF90.

The current programs support genomic analyses, especially for single-step GBLUP. Computing time
has been greatly improved in REML, Gibbs sampling, and BLUP with iteration on data, using paralleliza-
tion and optimized libraries. The development team actively updates the programs to support a new idea
and improve stability.

BLUPF90 programs use user-supplied information only. It is intended so that the software is as simple
as possible. The programs do not generate any additional effects and covariates for the user’s convenience.
For example, the program does not add the general mean as a fixed effect to the model although the model
does not have any fixed effects. In random regression models, the programs do not automatically generate
covariates (e.g., Legendre polynomials and spline functions). It reminds the user of which information is
actually needed in the model.

1.3 About the software

1.3.1 Condition of use
For the detailed information about the condition of use and the support, please visit the official wiki
(http://nce.ads.uga.edu/wiki/doku.php). The programs are free for research, but the publica-
tion should acknowledge the use of the programs. For the non-research purposes, please contact Ignacy
Misztal (ignacy@uga.edu).
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1.3.2 Bug report and support
A bug report is welcome. Please contact one of the developers at UGA or the other institutes. Or, please
post the report to Yahoo Group (https://groups.yahoo.com/neo/groups/blupf90/info). Limited
support may be available at Yahoo Group because the support is volunteer-based. Github Issues is also
a place for discussion (https://github.com/ABGG-UGA/blupf90-public). If you need full support
for the programs, please consider visiting our team.

1.3.3 Citations
You can cite the following publications when you used the BLUPF90 programs in your study.

• Misztal, I., S. Tsuruta, D. A. L. Lourenco, Y. Masuda, I. Aguilar, A. Legarra, Z. Vitezica. 2018.
Manual for BLUPF90 family programs. University of Georgia. http://nce.ads.uga.edu/
wiki/doku.php?id=documentation (This is the standard reference to be usually cited by any
users.)

If you cite this tutorial in your publication, please use the following reference in addition to the refer-
ence to the manual shown above.

• Masuda, Y. 2018. Introduction to BLUPF90 suite programs. University of Georgia. http://nce.
ads.uga.edu/wiki/doku.php?id=documentation

If you have a reason to cite a particular feature in BLUPF90 programs, the following references can be
useful.

• Aguilar, I, S. Tsuruta, Y. Masuda, D. A. L. Lourenco, A. Legarra, I. Misztal. 2018. BLUPF90 suite
of programs for animal breeding with focus on genomics. No. 11.751. The 11th World Congress of
Genetics Applied to Livestock Production, Auckland, New Zealand. (This is the newest reference
for BLUPF90 programs focusing on genomic analysis.)
• Aguilar, I., I. Misztal, S. Tsuruta, A. Legarra, H. Wang. 2014. PREGSF90 - POSTGSF90: Compu-

tational Tools for the Implementation of Single-step Genomic Selection and Genome-wide Associ-
ation with Ungenotyped Individuals in BLUPF90 Programs. The 10th World Congress of Genetics
Applied to Livestock Production, Vancouver, BC, Canada. (This can be cited if you used a combi-
nation of PREGSF90 and POSTGSF90 to perform single-step GWAS.)
• Misztal, I., S. Tsuruta, T. Strabel, B. Auvray, T. Druet, D. H. Lee. 2002. BLUPF90 and related

programs (BGF90). Communication No. 28-07. The 7th World Congress on Genetics Applied to
Livestock Production, August 19-23, 2002, Montpellier, France. (This used to be widely referred
but it is too old to cite. Use this reference only if you have a reason to exclusively cite it.)

The following references will be cited in technical descriptions in the subsequent chapters.

• Misztal I. 2018. Computational techniques in animal breeding. 2018. Course Note. University of
Georgia.

1.4 About this tutorial

1.4.1 General information
This document explains how a model is described in a parameter file used with the BLUPF90 family pro-
grams, how data or pedigree files are prepared, and how genomic analyses perform with the programs. So,
this tutorial assumes that a reader has enough knowledge in linear mixed models and data manipulation
techniques on a computer. Experiences with similar software will be very helpful to understand.
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1 Introduction

Features of BLUPF90 program are introduced in an introductory style. Especially, the first section in
each chapter will introduce essential features using a very simple example. In the later sections, new ideas
will come along with more practical examples. We recommend that a reader not skip any sections even if
it looks too elementary for the reader.

This tutorial is a complement of the official manual or wiki pages. Because the official manual is
more like a reference manual, you should find a specific topic written in concise words. Also, if you
want to know advanced topics or tricks, please check the manual. Conversely, if you found something
missing in the manual, this tutorial would help you understand the background. If you have a question
not covered with any of the manual, the official wiki and this tutorial, please ask somebody at Yahoo
Group (https://groups.yahoo.com/neo/groups/blupf90/info). We also have a Github repos-
itory for public discussion (https://github.com/ABGG-UGA/blupf90-public). You may find the
right answers from a historical log of this forum.

1.4.2 Examples in each section
Example data

In each section, I will give various examples to the reader. The files are available at the author’s Github
repository (https://github.com/masuday/data). The example in this tutorial is enclosed by a frame
as shown below.

Listing 1.1: example.txt

1 1 2.5
2 1 1.8
3 1 4.2
4 1 2.2
5 1 3.6

Parameter file for BLUPF90

Parameter files used in the BLUPF90 programs will be highlighted as follows.

Listing 1.2: param0.txt

# This is a BLUPF90 parameter file.
DATAFILE
data0.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
1
OBSERVATION(S)
1
WEIGHT(S)

EFFECTS:
2 3 cross
RANDOM_RESIDUAL VALUES
1.0

6



1 Introduction

Parameter file for renumbering by RENUMF90

Alternative parameter files used in RENUMF90 (we refer them to instruction files in this tutorial) will be
shown as follows.

Listing 1.3: renum1.txt

# This is an example of renum-parameter file.
DATAFILE
rawdata1.txt
TRAITS
5
FIELDS_PASSED TO OUTPUT

WEIGHT(S)

RESIDUAL_VARIANCE
1.0
EFFECT # 1st effect
2 cross alpha
EFFECT # 2nd effect
3 cross alpha
EFFECT # 3rd effect
4 cov

Output

The output from the programs is encircled with a different format.

name of parameter file?

Commands on shell

If you need to type a command in your shell (terminal or Command Prompt), the command line will be
shown as follows.

./airemlf90 renf90.par

1.4.3 Disclaimer
The disclaimer is taken from the MIT License, although this tutorial is distributed under the Creative
Commons BY-NC-ND 4.0 International license.

This tutorial is provided “as is”, without warranty of any kind, express or implied, includ-
ing but not limited to the warranties of merchantability, fitness for a particular purpose and
noninfringement. In no event shall the authors or copyright holders be liable for any claim,
damages or other liability, whether in an action of contract, tort or otherwise, arising from,
out of or in connection with the tutorial or the use or other dealings in the tutorial.

I wrote this documentation in Markdown with Pandoc’s extension. Pandoc generates the PDF file, and
there may be typeset and layout issues.
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2 Download and Installation
This chapter covers how to install and run the programs. We also introduce methods to save the screen
message (output log) and to omit the key-in at the beginning of a program. A text editor is helpful to work
with the files.

2.1 Availability
The BLUPF90 family programs are available at the official web site of the Animal Breeding and Genetics
Group at the University of Georgia. This web site provides the latest version of the programs. See the
following link.

• Animal Breeding and Genetics Group – University of Georgia (http://nce.ads.uga.edu/)

You can download the programs and use them for personal or academic purposes. Some programs are
not available online. These programs are provided under a contract with our team. See the official webs
site for details.

Now the official manual for a series of the programs is available at the official web site. The manual
provides detailed options to control the programs as well as demonstrations on analyses with various
linear models.

2.2 Running a program in Windows
BLUPF90 programs don’t show a graphical window, and the software looks like a “DOS”-style program.
You should prepare a parameter file to describe the name of data and pedigree files, the model and variance
components to be used in the analysis. You will type in the name of the parameter file on the screen. If
you have some experience with such software, you can skip this section.

We recommend that readers use the standard (traditional) way to run the program. If you aren’t really
interested in a command line interface in Windows, just check the last subsection. We provide a quick
way to use the program.

2.2.1 A basic procedure
If you have no experience to run a command line program. . .

The running a command-line program is actually a FAQ. The formal way is to use the Command Prompt
or simply cmd. This is a simple console to accept commands typed with a keyboard. You can see several
tutorials on this topic.

• Command Prompt - How to Use Basic Commands (http://www.digitalcitizen.life/command-prompt-how-use-basic-commands)
• How to use the Window command line (DOS) (http://www.computerhope.com/issues/chusedos.
htm)
• How do I run a file from MS-DOS? (http://www.computerhope.com/issues/ch000598.htm)
• Beginners Guides: Windows Command Prompt (http://www.pcstats.com/articleview.cfm?
articleID=1723)
• How To Open Command Prompt (http://pcsupport.about.com/od/commandlinereference/
f/open-command-prompt.htm)
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2 Download and Installation

How to run the program

A basic procedure to run the program is the following:

1. Download the program and store it to a folder. You can add a folder to PATH (if you are unsure of
PATH, just ignore this step).

2. Save the needed files into a folder (If you are unsure of PATH, the downloaded program should be
placed in the same folder).

3. Open the Command Prompt window and change directory to the folder with the cd command.
4. Type the name of a program (e.g. blupf90 or blupf90.exe) to invoke the software.
5. Type the name of the parameter file. Some programs would ask you to type in additional informa-

tion.
6. Wait for finishing the analysis.
7. Collect the results.

If you successfully run a program, it asks you the name of parameter file with a short message.

name of parameter file?

Here you type the name of parameter file with a keyboard. The Gibbs sampling programs will ask you
additional questions. You can also type the answers there.

Save the output

If you want to save the output log (screen messages out of the program), please use the redirection.

blupf90 > out.txt

With this command, nothing shows, but it accepts key types. You can type the name of the parameter
file, and it runs. The output is going to the file out.txt.

Omit the typing

If you don’t like to type-in, you can also use the redirection. You prepare a text file with the name of the
parameter file:

Listing 2.1: in.txt

parameter.txt

Let’s say this file is in.txt then you can invoke the program.

blupf90 < in.txt > out.txt

This technique is useful for Gibbs sampling programs that need several key-in at the beginning of the
program. You can write several lines in in.txt instead directly typing-in.

Stop the program

If you stop the program immediately, hit 2 keys simultaneously: Ctrl and C. For easier operation, you can
keep pushing Ctrl and hit C. The program immediately stops with some messages, and you can safely
ignore them. In some cases with multi-threaded computations, the program will be still running after
receiving the STOP signal. You can close the Command Prompt, and the program completely stops.
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2 Download and Installation

2.2.2 Quick run
You can run the program without Command Prompt.

1. Save all required files in a folder.
2. Download the program and store it to the same folder.
3. Double click the program. A black window is popping up.
4. Input the name of parameter file in the black window using the keyboard. If the program asks you

more questions, type the answers.
5. Wait for finishing the analysis. Don’t close the black window. When the analysis ends, the windows

will automatically disappear.
6. Check the results. The program saves the results as files in the same directory.

If you want to save the screen (output.log), download the following file (run.bat) and save it in
the folder. Then open this file with Notepad and rewrite the name of the program as you like and save
it. Double click the run.bat. Although a black window appears and nothing will show in the window,
you can type the name of the parameter file. The program implicitly runs and all the output is going to
out.txt.

Running the program double-clicking on it is less recommended than the Command Line because if
there is any error the window will close automatically and the error may not be read by the user.

Listing 2.2: run.bat

blupf90 > out.txt

This procedure may not work in some cases. The reason will be due to the hidden-extension stuff. We
don’t support this method at all.

2.3 Running a program in Linux and macOS

2.3.1 Command line software
BLUPF90 programs are command line software. The program reads a parameter file describing the name
of data and pedigree files, the models, and covariance components used in the analysis. It shows logs
on screen and writes a file (or several files) for the results. This is designed to be used on the shell with
keyboard operations.

Here we assume a standard bash environment. For macOS, all the operations will be done on Terminal.
No GUI (graphical user interface) will be used.

2.3.2 Installation
The software does not need a special installation method. Just download it from the official web site. Then
change the permission e.g. chmod 755 or chmod u+x (easier to remember: ch ange the mod e adding (+)
permission of e x ecution to the u ser). You can move the program to your favorite directory which may
be listed in the variable PATH. If you don’t have such a directory, you can create the directory. Then you
move the program there.

The following is an example of this process.

# 1. download a program; you can use another way like using curl.
wget http://nce.ads.uga.edu/html/projects/programs/Mac_OSX/new/blupf90

# 2. change the permission to executable
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chmod 755 blupf90

# 3. make a directory for binaries if you don’t have it.
mkdir ~/bin

# 4. move the program to the directory.
mv blupf90 ~/bin

You can use other software (e.g., curl) instead of wget to download a file. If the above directory is
not listed in the environmental variable PATH, add the directory to this variable. You can check it with a
command.

echo $PATH

If you find the directory, you don’t have to do any extra task. If you don’t find, you can change the
variable. You can do this by typing the following command on your shell.

export PATH=~/bin:$PATH

If you have installed the program in another directory than ~/bin, please put the correct path there. This
setting will disappear after log-out. To execute this command on log-in, set the variable in /.bash_profile.
If you are unsure of this file, just open it with a text editor, then add the above command in the bottom of
the file. Do not forget to log-out once then log-in again because the setting file will be effective only on
your log-in.

2.3.3 Running a program
Move to the directory with all the required files (e.g. pedigree, data). Just type the program name to
invoke the software. If you successfully run a program, it asks you the name of parameter file with a short
message.

name of parameter file?

Here you type the name of parameter file with the keyboard. Additional typing will be needed for
Gibbs sampling programs. The messages will be shown on screen (standard output), so you can capture
them to a file.

# All messages are saved to a file.
# The program accepts key-in even nothing shown.
blupf90 > out.txt

# As above.
# Messages are shown and saved.
blupf90 | tee out.txt

Using a redirection, you can omit the key-in in the beginning of the program.

# one line input
echo parameter.txt | blupf90

# different way using a file
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echo parameter.txt > input
blupf90 < input

The second method is useful for Gibbs sampling programs, which require several inputs.

2.3.4 Stop a program
If you stop the program immediately, hit 2 keys simultaneously: Ctrl and C. For easier operation, you can
keep pushing Ctrl and hit C. The program immediately stops with some messages, and you can safely
ignore such messages. In some cases with multi-threaded computations, the program will be still running
after receiving the STOP signal. You can close the terminal, and the program completely stops.

2.4 Additional settings
The BLUPF90 programs may use a lot of memory especially when the data set is large and a genomic
model is applied. The big memory-consumption often results in a program crash with the error segmen-
tation fault (or bus error). A segmentation fault occurs when a program tries to access an inappropriate
memory area or to access it with an abnormal way. Note that this error may happen even if your com-
puter has a lot of free memory. The operating system (Linux, macOS, or Windows) has a limitation of
memory consumption by a program. Strictly, the system limits the amount of memory called stack, and
our programs consume a lot of stack memory to get the maximum performance.

It is a common error with a big data set, you may hit it when you update the program (i.e., when using
a new version) with the same files used as before. A small modification in the code may change the
memory-management strategy in the program.

You can remove the limitation or increase the stack size. The following settings are always rec-
ommended even if you do not hit this issue. The details are also available on our website: http:
//nce.ads.uga.edu/wiki/doku.php?id=faq.segfault.

2.4.1 Increase stack size
This setting is required in Linux and macOS. First, type the following command in your shell (terminal).

ulimit

If it shows unlimited, the configuration looks good. If you see a number (like 8192), probably it is a
problem. This number is the stack size and it should be unlimited. To change the size, type the following
command before running our programs.

ulimit -s unlimited

You can put this command at the end of .bash_profile in your home directory. In this way, you can
load this setting whenever you log-in this system.

2.4.2 Increase stack size for OpenMP
There is a separate setting to define stack size for OpenMP. This value is unrelated to the system stack
size explained above. You can use an environment variable for the stack size.
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Linux and macOS

Please type the following command in your shell.

echo $OMP_STACKSIZE

If it shows nothing, it may be a problem. Even if you have a number with a unit (like 4M for 4
megabytes), it may be small. By default, this value is 4M, and most likely it is too small. Please type the
following command before running our program. Do not put any spaces around =.

export OMP_STACKSIZE=64M

This put 64 megabytes to stack size. If the program still stops with the same error, please increase
the number gradually (like 128M, 192M, and so on). A too big value will consume a lot of memory
because each thread can use this amount of memory. It is hard to tell what is suitable for the user; it is
system-dependent.

If you want to change it temporarily (one-time-run), you can put it to the command line when you run
the program (no export). In this way, you can find a reasonable setting empirically.

OMP_STACKSIZE=64M ./blupf90

As ulimit, you can save it in .bash_profile.

Windows

You can set the environment variable OMP_STACKSIZE in Command Prompt (for a temporary change)
or Control Panel/system-configuration page (for the permanent change). To see the current stack size for
OpenMP, you can type the following command in Command Prompt.

set %OMP_STACKSIZE%

To put the value to this variable, type the following command (64 megabytes in this case).

set OMP_STACKSIZE=64M

If you close this window, the setting is lost. So, you have to run BLUPF90 programs in this session just
after typing this command. If you make this permanent, use the Control Panel. For details, please search
the keywords like windows, environment, variable on the Internet by search engines.

The stack size for OpenMP should be the number plus unit like 64M for 64 megabytes. First, try 64M,
and if you still see the problem, increase the number to 128M or more. The too big number will consume
a lot of memory because each thread can use this amount of memory. The suitable value is up to your
computer, so please find it empirically.

2.5 Setup a text editor
What is the text editor?

BLUPF90 programs use various text files. A text file contains only characters (basic alphabet, numbers,
and symbols). Microsoft Word can read a text file but it is too heavy to edit the file. A text editor is a
category of software specialized to edit a text file. A text editor usually supports many functions useful
for the edit. Some of them can open a very large text file.
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Well-known text editors

Typical text editors include Notepad (Windows), TextEdit (macOS), and vi, Emacs, and nano (Linux/U-
nix). They are the default editor in each system but you can install the other editors for your convenience.
Especially in Windows, Notepad has too few features to be of practical use. There are so many free text
editors developed in Windows as well as the other systems.

Here we show several well-known, free, text editors. Some editors are multi-platform supporting Linux,
macOS, and Windows. You can test each editor and choose your favorite one.

• Notepad++ (https://notepad-plus-plus.org) for Windows
• SciTE (http://www.scintilla.org/SciTE.html) for Windows
• Atom (https://atom.io) for all platforms
• Visual Studio Code (https://code.visualstudio.com) for all platforms

Several websites maintain a list of text editors. A page in Wikipedia (https://en.wikipedia.org/
wiki/Comparison_of_text_editors) is one of them. It may help you to find your favorite.

Edit a file over network

You may need to work with the programs remotely (you access a server over the internet and run the
program on the server). In that case, there are several ways to edit text files. We assume the remote server
is running Linux (or Unix-like environment).

1. Use an editor on the server (perhaps vi or Emacs). You edit a file on a terminal window.
2. Use an editor on the server but show the window on your system with X forwarding (perhaps

GEdit or similar GUI editor). The editor looks working on your local computer but is actually
working on the server; the editor can read and write a file on the server directly. A web site
(http://pdc-amd01.poly.edu/Xhowto.html) explains a setting to do this.

3. Use a local editor which can access a file on the server remotely. A few editors provide such a
feature.
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3 Quick tour of BLUPF90

In this chapter, we perform several analyses with simple linear models using BLUPF90. The program
creates and solves the mixed model equations. These small examples will provide you some basic ideas
on how to prepare a data set, to write a parameter file, and to run the program. Let’s start with this chapter
even if you are actually interested in another software or more complicated models.

3.1 Trivial analyses for fixed models
This section describes the basic design and essential elements of BLUPF90 programs. We will explain
how to prepare a data file and how to describe a parameter file using simple fixed effect models. Most of
the basic ideas will be introduced here and you can expand to more complicated models.

We use the BLUPF90 program here. BLUPF90 quickly solves mixed model equations and save the
solutions to a file. This program also solves the least square equations (i.e., normal equations) for fixed
effect models. Other programs for variance component estimation (e.g., AIREMLF90 and GIBBSF90)
also accepts the same parameter file.

BLUPF90 needs at least 2 files: a data file and a parameter file. The data file contains observations
and related information (animal ID, age, sex, month, and so on). The parameter file defines the model,
the name of the data file, genetic and non-genetic variance components, and optionally the name of the
pedigree file. The files should be prepared by a user. Here we start with a linear fixed model with 1 class
variable; this is equivalent to 1-way ANOVA (with unbalanced data).

3.1.1 One-way ANOVA model
Model

First, we describe the statistical model for the 1-way ANOVA:

yi j = Ai + ei j

where yi j is an observation, Ai is a fixed effect, and ei j is the residual effect. The corresponding matrix
notation is

y = Xb+ e

and the system of generalized least-squares equations is

X′R−1Xb̂ = X′R−1y

where R = var(e) = var(y). We actually assume R = Iσ2
e with a residual variance σ2

e , so the above
equations reduce to ordinary normal equations: X′Xb̂ = X′y. The purpose of this example is to solve the
equations with BLUPF90. The program doesn’t perform any hypothetical tests.

Data

In this analysis, we need at least 2 information: 1) observations and 2) code to distinguish the level of a
class. Following table shows an actual data set with 10 observations.
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Observation Group

3.0 A1
2.0 A1
4.0 A1
6.0 A2
3.0 A2
6.0 A2
6.0 A3
6.0 A3
8.0 A3
4.0 A3

The first column represents observations, and the second column has the group code. You can put
any positive or negative observations to the data file. You can use any numerical values for observations
except for 0. By default, the program treats 0 as a missing code. If you want to use an arbitrary number
including 0 as a measurement, see the Remarks section below to correctly handle such a case.

In BLUPF90, the user should prepare the data set as a text file in columns separated by spaces, with
the same number of columns in every line. If you use other software like R and SAS, you should save
the data as a text file. Almost any software can export the data to a text file. Do not forget to replace the
symbolic, missing code (like NA or .) with a numeric value which BLUPF90 treats as missing.

Here we can write down the data file. You can put any file name. We save the following 7 lines as a file
data0.txt.

Listing 3.1: data0.txt

3.0 1
2.0 1
4.0 1
6.0 2
3.0 2
6.0 2
6.0 3
6.0 3
8.0 3
4.0 3

This file shows the rules in a data file used with BLUPF90. The data is a space-separated format with
several columns as supported in much statistical software. No headers are allowed. The file should contain
numerical expressions only. We will explain the acceptable data format later.

Parameter file

A parameter file to run this analysis is something like:

Listing 3.2: param0.txt

DATAFILE
data0.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
1
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OBSERVATION(S)
1
WEIGHT(S)

EFFECTS:
2 3 cross
RANDOM_RESIDUAL VALUES
1.0

The parameter file is described as pairs of keyword and value(s). For example, the first line DATAFILE
is a keyword and the next line data.txt is the corresponding value. The value(s) should be placed in the
next line to the keyword. The keyword must start from the 1st position in a line (i.e., no leading spaces).
The value can have leading spaces at the beginning of a line. The above example is a minimal one. We
need at least 7 keywords in every parameter file even some values are empty. Following is a detailed
explanation of the above parameter file.

1. DATAFILE = the name of the data file

• data.txt in this case

2. NUMBER_OF_TRAITS

• 1 for a single-trait model

3. NUMBER_OF_EFFECTS = number of effects except residual

• 1 for the fixed effect (only 1 effect in this model except residual)

4. OBSERVATION(S) = position of observation in the data file

• 1 for the 1st column

5. WEIGHT(S) = position of weight in the data file 1

• There is no weight but empty line must be there.

6. EFFECTS: = description of the model (2 3 cross; see below)

• 2 for the position of group code [2nd column in the data file]
• 3 for the maximum level [the columns has 1 or 2 or 3; so the maximum is 3]
• cross for the cross-classified effect

7. RANDOM_RESIDUAL VALUES = residual variance σ2
e

• 1.0; this value doesn’t affect the results in this case (see the normal equations).

The EFFECTS: block describes the model and its style is different from other software. In this case,
this block has only 1 line because the model has only 1 effect except for residual. If you have more effects
in the model, you can add the description for each effect.

Running a program

You can save the data file and parameter file in the same folder (directory) and run BLUPF90. When the
program is invoked, it prints a message on the screen and waits for key-in.

name of parameter file?

1WEIGHT does not mean the physical weight (i.e., in kg or pounds). It means the importance that we attach to this particular
record. For instance, a weight of 10 may indicate that the measure was taken 10 times. See wikipedia.
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When you supply the name of parameter file param1.txt, the program reads the parameters, builds
and solves the equations, and writes the solutions to a file.

What will happen if you give a wrong name of parameter file or your parameter file has erroneous
statements? In both cases, an error message is shown and the program stops. Possible results are:

• Nonexistent parameter file: The message could be forrtl: severe (24): end-of-file during read.....
• Wrong description in the parameter file: A massage depends on the situation. Modify the parameter

file as the message says.

Computations

After running the program, you can find a file solutions after the computations. This is also a text file
and it contains the following lines.

Listing 3.3: solutions

trait/effect level solution
1 1 1 3.00000000
1 1 2 5.00000000
1 1 3 6.00000000

Ignoring the first line as a header, we have 3 lines with 4 columns and the 4th column has the solutions.
The first solution (3.0) can be interpreted as it is for trait 1, effect 1, and level (group) 1. The second (5.0)
is for trait 1, effect 1, and level (group) 2. The third (6.0) is for trait 1, effect 2, and level (group) 3. With
mathematical notations, Â1 = 3.0, Â2 = 5.0, and Â3 = 6.0. The solution is actually within-class average
because we employed a 1-way model with an assumption of homogeneous residual variance.

3.1.2 Fixed effect model
We consider another fixed model with more effects with the same data set. The model has 1 additional
class effect and 1 regression coefficient as

yi jk = Ai +S j +βxi jk + ei jk

where yi jk is an observation, Ai is a fixed effect, Si is another fixed effect, β is a regression coefficient,
xi jk is a covariate, and ei j is the residual effect. The matrix notation and the covariance structure are the
same as the previous one. We will use the same data as before but there are some additional columns.

Observation Group1 Group2 x

3.0 A1 S1 1.0
2.0 A1 S2 1.0
4.0 A1 S1 2.0
6.0 A2 S2 2.0
3.0 A2 S1 1.0
6.0 A2 S2 2.0
6.0 A3 S1 2.0
6.0 A3 S2 1.0
8.0 A3 S1 1.0
4.0 A3 S2 2.0

The data file contains 4 columns in this case.
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Listing 3.4: data1.txt

3.0 1 1 1.0
2.0 1 2 1.0
4.0 1 1 2.0
6.0 2 2 2.0
3.0 2 1 1.0
6.0 2 2 2.0
6.0 3 1 2.0
6.0 3 2 1.0
8.0 3 1 1.0
4.0 3 2 2.0

The parameter file is also similar to the previous one but we need extra entries for additional 2 effects.

Listing 3.5: param1.txt

DATAFILE
data1.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
3
OBSERVATION(S)
1
WEIGHT(S)

EFFECTS:
2 3 cross
3 2 cross
4 1 cov
RANDOM_RESIDUAL VALUES
1.0

What is the difference? The only difference is in NUMBER_OF_EFFECTS and EFFECTS:. Because the
model has 3 effects (2 for class, 1 for regression), we have changed the value in NUMBER_OF_EFFECTS,
and EFFECTS: needs 3 lines. Note that the 3rd effect is regression and its description is different from the
previous 2 cross-classified effects. Following is a detailed explanation.

• Effect 1: 2 3 cross = group code in the column 2 in data; maximum level 3; cross-classified effect
• Effect 2: 3 2 cross = group code in the column 3 in data; maximum level 2; cross-classified effect
• Effect 3: 4 1 cov = covariate in the column 4 in data; number of coefficient 1; regression

BLUPF90 refer the first effect to effect 1, the second to effect 2, and so on. The order is kept in the
solutions file.

Running the program with the parameter file, you can find the following result.

Listing 3.6: solutions

trait/effect level solution
1 1 1 0.22500000
1 1 2 2.22500000
1 1 3 3.22500000
1 2 1 2.27500000
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1 2 2 1.77500000
1 3 1 0.50000000

The program provides 6 estimates; top 3 for the first effect, next 2 for the second effect, the bottom 1
for the last effect. With mathematical notations, Â1 = 0.225, Â2 = 2.225, and Â3 = 3.225, Ŝ1 = 2.275,
Ŝ2 = 1.775, and β̂ = 0.500. This is a single trait model, so the first column is always 1. The second
column contains the effect number from the order of items in EFFECTS: in the parameter file.

Note that this system of equation is not full-rank, so the estimate is one of infinite numbers of solutions.
BLUPF90 doesn’t support arbitrary constraints to solve the equations. Although the estimates can look
different from ones with other software, the contrasts from an estimable function will be consistent.

3.1.3 Options to control the program
BLUPF90 and related programs can change the behavior with an option. The option should be written
in a parameter file as an additional line at the bottom of the file. There are many options and the official
manual explains them. Here we just show a typical option line. We use an option which changes the
method of solving mixed model equations from the default PCG (preconditioned conjugate gradient) to
the direct method using the FSPAK subroutine.

OPTION solv_method FSPAK

The option-line starts with the capital OPTION followed by a keyword (option name) and additional
information (if needed). In the above case, the option name is solv_method and additional information
is FSPAK. Be careful to write an option because BLUPF90 distinguishes capital and small letters in the
option-line and fails if the name or information is wrong.

The modified parameter file with this option looks like as follows.

Listing 3.7: param1a.txt

DATAFILE
data1.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
3
OBSERVATION(S)
1
WEIGHT(S)

EFFECTS:
2 3 cross
3 2 cross
4 1 cov
RANDOM_RESIDUAL VALUES
1.0
OPTION solv_method FSPAK

With this parameter file, BLUPF90 successfully works but prints different messages on the screen. The
solutions are also different from the previous ones because the equations have no unique solutions.

Listing 3.8: solutions
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trait/effect level solution
1 1 1 2.50000000
1 1 2 4.50000000
1 1 3 5.50000000
1 2 1 0.00000000
1 2 2 -0.50000000
1 3 1 0.50000000

You can still see the consistency in a linear combination of the solutions. For example, Â1 + Ŝ1 + β̂ =
3.0 in both cases.

3.1.4 Comment lines in parameter file
A parameter file can contain comments, which will be ignored by the program. A comment is a small
memorandum to keep additional information in a parameter file. A comment starts with the character #
and the program ignores any characters between # and the end of the line. The following example works
as the previous parameter file.

Listing 3.9: param1b.txt

#
# This is an example parameter file for a fixed effect model.
# Solving method: FSPAK
#
DATAFILE
data1.txt # write the name of data file here
NUMBER_OF_TRAITS
1 # single trait model
NUMBER_OF_EFFECTS
3 # A, S, b
OBSERVATION(S)
1
WEIGHT(S)

EFFECTS: # y = A + S + b*x + e
2 3 cross # effect A
3 2 cross # effect S
4 1 cov # regression
RANDOM_RESIDUAL VALUES # any values okay
1.0
# added options
OPTION solv_method FSPAK

This example shows how comments are ignored. You can write comments almost anywhere in a pa-
rameter file. There is one exception; you don’t write a comment in lines for variance components. If a
comment is with the variance component, the program stops with an error.

A comment line is a useful feature so we will put comments on a parameter file in the later chapters.

3.1.5 Remarks
In real-life applications, you may have the data file with alphabets or symbols (alpha-numerics). Even
when a class variable is an integer value, it may not start from 1 and may end in a huge value (like
2087654512). Before the analysis, you should edit the files to conform to the requirements of the program.
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RENUMF90 is a data preparation tool and it replaces alphabets or large numbers to sequential numbers
starting from 1. Besides limited situations (e.g., simulated data or data renumbered by other means), you
should usually use RENUMF90 to prepare and check the files.

By default, an observation (a trait) with value 0 (or similar numerical expression i.e. 0.0) is recognized
as a missing observation. Similarly, an effect level read as 0 is treated as missing information. This means
that that effect is ignored for that particular record. For the single-trait model, the missing observation
makes little sense, except in rare circumstances like cross-validation or automatic repeated analysis (i.e.,
dozens of univariate analysis from the same, already recorded, file). Missing effect is also an abnormal
assumption. So you should avoid 0 in the data. If your observation has a real 0 record, you can make the
program treat this value as a regular observation by adding an OPTION statement as follows:

OPTION missing -999

The missing option switches the missing value recognized in BLUPF90 from 0 to -999. The value is
treated as an integer. No real values will be accepted.

How do we put the interaction among effects commonly found in a 2-way ANOVA (y = A+B+A×
B+ e)? To do this, we should prepare all the effects A, B, and A×B in the data file. BLUPF90 does not
generate A×B from the effects A and B. Also, BLUPF90 does not support automatic generation of nested
effects. All interactions or nested effects should be prepared as class effects in the data file. RENUMF90,
a data preparation software, can help to generate such effects. One exception is regressions nested in
a class variable, which is supported by BLUPF90; we will mention this model in a context of random
regressions.

3.1.6 Summary
• BLUPF90 supports linear mixed models.
• BLUPF90 needs 2 text files: a data file and a parameter file.
• BLUPF90 creates equations based on the files, solve the equations, and save the solutions to a file.
• The data file is a space-separated file containing integer or real numbers.
• Parameter file should be prepared with a specific form.
• Order of solutions depends on the description of a parameter file.
• BLUPF90 can change its behavior with options supplied in the bottom of a parameter file.
• A comment starts with # and ends at the end of the line. A comment is totally ignored by a program.
• Observation or effect 0 means missing. If you really want to use 0 as an observation, change the

missing code with the option missing.

3.2 Trivial analyses for mixed models
In this section, we perform mixed model analyses using BLUPF90. We start with a simple mixed model
(random effects, unrelated to each other) and finally consider pedigree information.

If you perform the simple mixed model, BLUPF90 needs only 2 files (data and parameter file), which
are the same as explained in the previous section. If you consider pedigree, in addition to the data and the
parameter file, a pedigree file has to be prepared.

3.2.1 A simple mixed model
We assume the similar model described in the previous section and the second effect is now a random
effect as

yi jk = Ai +S j +βxi jk + ei jk
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where yi jk is an observation, Ai is a fixed effect, S j is a random effect, β is a regression coefficient, xi jk is
a covariate, and ei j is the residual effect. The model in matrix notation will be

y = Xb+Zu+ e

where y is a vector of observations, b is a vector of fixed effects, u is a vector of random effects, e is a
vector of residuals, X and Z are incidence matrices. In a general form, we can write var(u) = G2 and
var(e) = R and the mixed model equations should be

[
X′R−1X X′R−1Z
Z′R−1X Z′R−1Z+G−1

][
b̂
û

]
=

[
X′R−1y
Z′R−1y

]
.

For simplicity, we here assume var(u) = Iσ2
s and var(e) = Iσ2

e so, the mixed model equations reduce
to [

X′Xσ−2
e X′Zσ−2

e
Z′Xσ−2

e Z′Zσ−2
e + Iσ−2

s

][
b̂
û

]
=

[
X′yσ−2

e
Z′yσ−2

e

]

The system of mixed model equations is often presented as
[

X′X X′Z
Z′X Z′Z+ Iλ

][
b̂
û

]
=

[
X′y
Z′y

]

where λ = σ2
e /σ2

s . This model looks like a simple sire model with unrelated sires in animal breeding.
Note that BLUPF90 always creates the equations with R−1; λ is never calculated. Precisely, 1/σ2

e is
always calculated and accumulated to the left-hand side (LHS) and 1/σ2

s is also added to LHS. Basically,
the program needs explicit values for variance components. Here we assume σ2

s = 1.0 and σ2
e = 2.0.

We can use exactly the same data file shown before. The file name is altered just for our convenience.

Listing 3.10: data2.txt

3.0 1 1 1.0
2.0 1 2 1.0
4.0 1 1 2.0
6.0 2 2 2.0
3.0 2 1 1.0
6.0 2 2 2.0
6.0 3 1 2.0
6.0 3 2 1.0
8.0 3 1 1.0
4.0 3 2 2.0

The parameter file is shown below.

Listing 3.11: param2.txt

DATAFILE
data2.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
3
OBSERVATION(S)

2This G does not mean the genomic relationship matrix. This is the traditional notation describing a covariance structure of random
effects.
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1
WEIGHT(S)

EFFECTS:
2 3 cross
3 2 cross
4 1 cov
RANDOM_RESIDUAL VALUES
2.0
RANDOM_GROUP
2
RANDOM_TYPE
diagonal
FILE

(CO)VARIANCES
1.0

The first 7 keywords are the same as used in the fixed effect models. To define the random effect, we
use 4 extra keywords3 just placed after the common keywords.

1. RANDOM GROUP = showing which effect is random in the EFFECTS block

• 2 for the second line (effect 2) in EFFECTS is the random effect

2. RANDOM_TYPE = covariance structure

• diagonal for identity covariance matrix i.e. diagonals only

3. FILE = additional file for the covariance structure

• empty for no information needed here

4. (CO)VARIANCES = variance component σ2
s

• 1.0 for the variance

If you have 2 or more random effects (e.g., permanent environmental or maternal effect), you can add
another extra 4 keywords to the parameter file. We will see such a case later. The solutions will be very
different from the previous one which assumes effect 2 is a fixed effect.

Listing 3.12: solutions

trait/effect level solution
1 1 1 2.30434783
1 1 2 4.26086957
1 1 3 5.28260870
1 2 1 0.17391304
1 2 2 -0.17391304
1 3 1 0.47826087

The solution file contains both BLUE for the fixed effects and BLUP for the random effects. The first
column is always 1 because it is a single-trait model; the 2nd column shows the effect number from 1
to 3; the 3rd column shows the level in each effect; the fourth column contains the solutions. The first
3 solutions are for the effct 1 (Ai), the next 2 solutions for effect 2 (S j) and the last 1 solution for the
regression (β ). Details are: Â1 = 2.30, Â2 = 4.26, Â3 = 5.28, Ŝ1 = 0.17, Ŝ2 =−0.17 and β̂ = 0.48.

3The common 7 keywords build the design-matrix parts in the mixed model equations i.e., X′X, X′Z, Z′X and Z′Z. The additional
4 keywords provide the covariance structure, and G−1

24



3 Quick tour of BLUPF90

3.2.2 The animal model
The animal model specifically refers to a mixed model with individual additive genetic effect as a random
effect. Genetic covariances between animals are considered with a numerator relationship matrix. You
need a pedigree file for this model. In this section, we assume the same model above with additive genetic
effects. An animal has either one observation or no observation (where the animal is only in a pedigree
file). The mathematical model is the following:

yi jk = Ai +S j +βxk +uk + ei jk

where uk is the additive genetic effect for an animal k. Here we treat S j as a fixed effect. The system of
mixed model equations is

[
X′Xσ−2

e X′Zσ−2
e

Z′Xσ−2
e Z′Zσ−2

e +A−1σ−2
u

][
b̂
û

]
=

[
X′yσ−2

e
Z′yσ−2

e

]

where A is a numerator relationship matrix, σ2
u is the additive genetic variance, and σ2

e is the residual
variance.

We further extend the data table to add an animal’s ID (code). We show the actual data file to be used
in this analysis.

Listing 3.13: data3.txt

3.0 1 1 1.0 6
2.0 1 2 1.0 9
4.0 1 1 2.0 12
6.0 2 2 2.0 7
3.0 2 1 1.0 10
6.0 2 2 2.0 13
6.0 3 1 2.0 8
6.0 3 2 1.0 11
8.0 3 1 1.0 14
4.0 3 2 2.0 15

In the data file, animal ID starts with 6; it means animals 1 to 5 have no observation so, they are not
included in the data file. The order of animal ID is totally arbitrary, and you don’t have to order the
animals chronologically.

We show the pedigree file below. Pedigree information consists of 3 columns: animal ID, its sire’s
ID, and its dam’s ID. If an animal’s parent is unknown (missing), you should put 0. The following is the
pedigree in this analysis.

Listing 3.14: pedigree3.txt

1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 2 5
8 1 4
9 2 3
10 7 6
11 7 4
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12 11 8
13 11 10
14 9 13
15 11 10

The individual ID should be an integer value, and it corresponds to one in the data file. If your data
has non-integer animal IDs, you can use the RENUMF90 program to replace the characters with integer
values in both pedigree and data. You don’t have to records the ID is chronological order. Also, you don’t
need to sort the ID in this file.

The basic format of the parameter file is the same as the previous one. We assume σ2
a = 0.5 and

σ2
e = 2.0.

Listing 3.15: param3.txt

DATAFILE
data3.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
4
OBSERVATION(S)
1
WEIGHT(S)

EFFECTS:
2 3 cross
3 2 cross
4 1 cov
5 15 cross
RANDOM_RESIDUAL VALUES
2.0
RANDOM_GROUP
4
RANDOM_TYPE
add_animal
FILE
pedigree3.txt
(CO)VARIANCES
0.5

There are 6 modifications in this file compared to the previous one.

1. NUMBER_OF_EFFECTS = Because the additive genetic effect is added, the number of effects should
be incremented.

• The total number of effects is 4.

2. EFFECTS: = The added effect is in the 4th row.

• 5 for the position of ID in the data file, 15 for the total number of animals (in the pedigree),
and cross for cross-classified effect.

3. RANDOM_GROUP = It represents which effect is random in EFFECTS:

• The 4th effect in the block is a random effect.

4. RANDOM_TYPE = covariance structure
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• add_animal for additive genetic effect

5. FILE = pedigree file

• pedigree4.txt

6. (CO)VARIANCES = the variance component of this random effect

• σ2
a = 0.5

Now you can run BLUPF90 and obtain the solutions.

Listing 3.16: solutions

trait/effect level solution
1 1 1 0.20259645
1 1 2 2.21996461
1 1 3 3.16680208
1 2 1 2.27537292
1 2 2 1.71160538
1 3 1 0.52442755
1 4 1 -0.03487115
1 4 2 0.08280493
1 4 3 0.03843921
1 4 4 0.04492008
1 4 5 0.04436203
1 4 6 -0.17565609
1 4 7 0.10794668
1 4 8 -0.02984646
1 4 9 0.09906236
1 4 10 -0.25282594
1 4 11 0.15622415
1 4 12 0.10874296
1 4 13 0.16426465
1 4 14 0.34296714
1 4 15 -0.25707431

The solution file contains both BLUE for the fixed effects and BLUP for the random effects. The first
column is always 1 because it is a single-trait model; the 2nd column shows the effect number from 1
to 4; the 3rd column shows the level in each effect; the fourth column contains the solutions. The first 3
solutions are for effect 1 (Ai), the next 2 solutions for effect 2 (S j), the next 1 solution for the regression
(β ) and the remaining 15 solutions for the additive genetic effect i.e., estimated breeding values (uk).
Details are: Â1 = 0.203, Â2 = 2.220, Â3 = 3.167, Ŝ1 = 2.275, Ŝ2 = 1.711, β̂ = 0.524, û1 = −0.035,
û2 = 0.083, û3 = 0.038, and so on.

3.2.3 More than 1 random effect
We often meet a model with more than 1 random effect such as repeatability model (additive genetic +
permanent environmental [PE] effect) or maternal effect model (direct + maternal + maternal PE effect).
BLUPF90 supports such a complicated model. We assume the same animal model described above except
for S j as random:

yi jk = Ai +S j +βxk +uk + ei jk

where S j and uk are random effects. To perform the analysis, we can use the same data file and the
pedigree file. We assume that the two random effects S j and uk are not related to each other and σ2

s = 1.0,
σ2

u = 0.5 and σ2
e = 2.0. We need to modify the parameter file to include additional random effect.
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Listing 3.17: param3a.txt

DATAFILE
data3.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
4
OBSERVATION(S)
1
WEIGHT(S)

EFFECTS:
2 3 cross
3 2 cross
4 1 cov
5 15 cross
RANDOM_RESIDUAL VALUES
2.0
RANDOM_GROUP
4
RANDOM_TYPE
add_animal
FILE
pedigree3.txt
(CO)VARIANCES
0.5
RANDOM_GROUP
2
RANDOM_TYPE
diagonal
FILE

(CO)VARIANCES
1.0

We just a set of 4 keywords (RANDOM_GROUP, RANDOM_TYPE, FILE and (CO)VARIANCES) to the last
parameter file for the additional random effect S j. In other words, such 4 keywords are optional; you can
add the 4 keywords as you include one more random effect if the effects are unrelated to each other.

If the random effects are correlated with each other, you should use a different way. This happens
in a maternal effect model (direct and maternal genetic effect) and random regression model (random
regression coefficients). Multiple-trait model is also another story. We do not explain such cases here but
we will consider them in later chapters.

The solutions are shown below.

Listing 3.18: solutions

trait/effect level solution
1 1 1 2.27101829
1 1 2 4.24566929
1 1 3 5.21524118
1 2 1 0.18586035
1 2 2 -0.18586066
1 3 1 0.49101139
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1 4 1 -0.01963655
1 4 2 0.06556686
1 4 3 0.02911205
1 4 4 0.04793111
1 4 5 0.03646405
1 4 6 -0.15943505
1 4 7 0.08747653
1 4 8 -0.00548994
1 4 9 0.07644881
1 4 10 -0.24829955
1 4 11 0.13527276
1 4 12 0.12002543
1 4 13 0.15461713
1 4 14 0.33690598
1 4 15 -0.27372367

The order of the solutions is the same as the previous animal model but the effect 2 is now a random
effect. The order of the solutions is determined using EFFECTS: block in the parameter file. So even if
you add more random effects, the order will not be changed.

3.2.4 Remarks
BLUPF90 builds the mixed model equations simply following the parameter file. Even if your parameter
file has no fixed effect (i.e., it has random effects only), the program doesn’t add any fixed effect to the
model. Without any fixed effects, the solutions may be nonsense. If you want to perform a random effect
model with the general mean, you should prepare an additional column containing 1 in the data file and
describe it as a fixed effect in the parameter file.

In the animal model with add_animal, BLUPF90 doesn’t consider inbreeding; A−1 is constructed
with Henderson’s method ignoring inbreeding. BLUPF90 supports A−1 with inbreeding but the pro-
gram doesn’t calculate the inbreeding coefficients. The user should calculate the inbreeding coeffi-
cients and put them into the pedigree file with a special format. With this special pedigree file and
the use of add_an_upginb (instead of add_animal), the inbreeding will be successfully incorporated.
RENUMF90 can prepare such a pedigree file.

3.2.5 Summary
• BLUPF90 supports linear mixed models with 1 or more random effects.
• BLUPF90 needs 3 text files: data, pedigree and parameter files.
• A pedigree file is needed if you conduct genetic analyses.
• The pedigree file should contain 3 columns: animal ID, sire ID, and dam ID. The ID must be an

integer value.
• To define a random effect, add 4 keywords (RANDOM_GROUP, RANDOM_TYPE, FILE and (CO)VARIANCES)

and the corresponding values to the parameter file.
• The order of the solutions depends on the EFFECTS: block in the parameter file.
• You should manually add the general mean if you use a random effect model.
• With add_animal, inbreeding is ignored in the calculation of A−1.

3.3 Trivial analyses for single-step GBLUP
In ssGBLUP, the program requires 5 files: parameter, data, pedigree, marker, and cross-reference files.
The first 3 files are the same as a regular animal model so you need additional 2 files for ssGBLUP. In
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this section, first, we describe the relationship matrices needed in the analysis. Then we introduce the 2
additional files and run the program.

3.3.1 Single-step GBLUP
Model and relationship matrices

To demonstrate ssGBLUP, we will use the same animal model introduced in the previous section

yi jk = Ai +S j +βxk +uk + ei jk

where uk is the additive genetic effect for an animal k. We treat S j as a fixed effect. Following is the
mixed model equations.

[
X′R−1X X′R−1Z
Z′R−1X Z′R−1Z+A−1/σ2

u

][
b̂
û

]
=

[
X′R−1y
Z′R−1y

]

In ssGBLUP, A−1 is replaced with H−1 which has the following structure:

H−1 = A−1 +

[
0 0
0 G−1−A−1

22

]

where G is the genomic relationship matrix for genotyped animals and A22 is the subset of the numer-
ator relationship matrix for genotyped animals. So this method can combine both genotyped and non-
genotyped animals in the same equations.

BLUPF90 prepares G−1 and A−1
22 before the program solves the equations. The program also checks

SNP markers and reports errors if found.

Files

We can use exactly the same data and pedigree files used in the previous animal model. We, nevertheless,
put different file names to data and pedigree to avoid the confusion.

Listing 3.19: data4.txt

3.0 1 1 1.0 6
2.0 1 2 1.0 9
4.0 1 1 2.0 12
6.0 2 2 2.0 7
3.0 2 1 1.0 10
6.0 2 2 2.0 13
6.0 3 1 2.0 8
6.0 3 2 1.0 11
8.0 3 1 1.0 14
4.0 3 2 2.0 15

The following is the pedigree file.

Listing 3.20: pedigree4.txt

1 0 0
2 0 0
3 0 0
4 0 0

30



3 Quick tour of BLUPF90

5 0 0
6 0 0
7 2 5
8 1 4
9 2 3
10 7 6
11 7 4
12 11 8
13 11 10
14 9 13
15 11 10

The parameter file is also the same except for an option to read a marker file.

Listing 3.21: param4.txt

DATAFILE
data4.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
4
OBSERVATION(S)
1
WEIGHT(S)

EFFECTS:
2 3 cross
3 2 cross
4 1 cov
5 15 cross
RANDOM_RESIDUAL VALUES
2.0
RANDOM_GROUP
4
RANDOM_TYPE
add_animal
FILE
pedigree4.txt
(CO)VARIANCES
0.5
OPTION SNP_file snp4.txt snp4index.txt

The last line specifies the name of the marker file. The option SNP file makes BLUPF90 read the marker
file snp4.txt and the cross-reference file snp4index.txt, and invoke the genomic computations. You
can omit the second argument (the name of cross-reference file) if its name is the name of marker file +
_XrefID. In this case, if the cross-reference file is snp4.txt_XrefID, you can omit the second argument
in that option.

We assume only 8 animals are genotyped (2, 4, 6, 10, 11, 12, 13, and 15). We also assume each
genotyped animal has the original name and the marker file contains the names (ID002, ID004, ID006,
ID010, ID011, ID012, ID013, and ID015, respectively). The following is the marker file.

Listing 3.22: snp4.txt
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ID002 1212020111001211212000102001202022201112000110020102011001012212110122100001210101112200210
ID004 2222020200110122210121001100022221102111000010011202020002002222000222000020120000020200200
ID006 2122020101100221121111212100112111112212000101012211111001201211112022100201220110022200220
ID010 2111121101111210121211112210202021211211000110021211111001101211101122100111221000022200120
ID011 2211121200121111220211011210112121111201000120011202020002002222000222000021221000021200110
ID012 2222020200110122210121001100022221102111000010011202020002002222000222000020120000020200200
ID013 2122020101210121121222101200112122102212000010012211111001101211101122100110220000021200210
ID015 2122020101210121121222101200112122102212000010012211111001101211101122100110220000021200210

BLUPF90 accepts only a marker file prepared with the following rules.

• A marker file is a text file with a fixed-width format including 2 columns.
• The first column contains an animal’s ID. You don’t have to use the common ID to data and pedi-

gree. So you can put the animal’s original ID here. (BLUPF90 actually skip this column so you can
put any information here.)
• The second column contains an animal’s genotypes. It has 4 possible value: 0 (homozygote), 1

(heterozygote), 2 (alternative homozygote) and 5 (missing or unknown).
• All the second column must start with a fixed position in a line. In the above example, the second

column always starts the 9th character.
• Each genotyped animals must have the same number of markers.
• You must not insert a space between 2 adjacent genotypes.
• You don’t have to sort the marker file by ID.

The program will immediately stop if it finds the inconsistent data in the file.
We need one more file to run BLUPF90. The last file is a cross-reference file that relates the integer

code used in BLUPF90 to the ID in the marker file. This is a text file with 2 columns separated with
spaces.

Listing 3.23: snp4index.txt

2 ID002
4 ID004
6 ID006
10 ID010
11 ID011
12 ID012
13 ID013
15 ID015

The order of animals must be the same as the marker file. The first column contains the integer value
(common to pedigree file) and the second line has the original ID found in the marker file. This file can
be automatically prepared by RENUMF90.

Why do we consider such a tricky example? Because the original-ID-in-the-marker-file situation ac-
tually happens in real life. A farm animal usually has a unique (original) ID and phenotypes. Pedigrees
and genotypes are recorded with the original ID whereas BLUPF90 accepts only an integer value as an
animal’s ID. So we usually use RENUMF90 to replace the original ID with integer values and create
renumbered files. However, the marker file is really huge and it is very inefficient to replace the orig-
inal ID with an integer code. The RENUMF90 does not rewrite the marker file. Instead, RENUMF90
generates the cross-reference file to make the correspondence between the ID in markers and the ID in
pedigree.

Running the program

We can now run BLUPF90 program with the 5 files. You can see a very long output from the genomic
routine on the screen. We briefly explain what happens in this process.
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• Read the pedigrees for genotyped animals and compute A22.
• Read SNP markers and perform quality control on the data (possibly remove unqualified markers).
• Compute G and compare it with A22.
• Compute A−1

22 and G−1.
• Finally compute G−1−A−1

22 as a gingle matrix, and store them into a file.
• After the process, BLUPF90 starts building the system of the mixed model equations with G−1−

A−1
22 , and the program solve it.

There are many options to precisely control the genomic routine. Each option has the default value.
The user should know the default behavior of the program. This explanation is out of the scope of this
introductory chapter. We will see the details in the later chapters.

After running the program, we can find the solutions file.

Listing 3.24: solutions

trait/effect level solution
1 1 1 0.23340767
1 1 2 2.19314788
1 1 3 3.16386924
1 2 1 2.28753998
1 2 2 1.69948874
1 3 1 0.52196308
1 4 1 0.00700521
1 4 2 0.08747780
1 4 3 -0.01954304
1 4 4 0.02639925
1 4 5 0.07679027
1 4 6 -0.18438116
1 4 7 0.15271384
1 4 8 -0.09012753
1 4 9 0.01442435
1 4 10 -0.23558188
1 4 11 0.22278505
1 4 12 0.10730577
1 4 13 0.20708267
1 4 14 0.32362808
1 4 15 -0.21760840

Single-step GBLUP directly provides GEBV (estimated breeding values enhanced with genomic in-
formation). The above solutions for animals are GEBV. The values are very different from the previous
animal-model analysis. This is due to the model difference as well as the small data.

3.3.2 Remarks
If your marker data is relatively large, you should consider a more efficient way. Each relationship matrix
created in the genomic routine is fully stored in memory i.e., dense matrix consuming a lot of memory.
The required memory is 8n2 /10243 GB (gigabytes) for each relationship matrix with n genotyped animals.
Computing time will be longer with many genotyped animals. To determine appropriate options to obtain
stable GEBV, you should run the program many times. You can save a relationship matrix to a file and
reuse the file.

The PREGSF90 performs the genomic computations only. It can do the same computation as BLUPF90
does (except for the solution of mixed model equations). The best practice is to run PREGSF90 to check
and clean up the markers, to compute the relationship matrices, and to save the matrices to files before
you run BLUPF90. BLUPF90 can read the files generated with PREGSF90, and you can save your time.
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3.3.3 Summary
• BLUPF90 can perform a single-step GBLUP (ssGBLUP) analysis.
• With ssGBLUP, a marker file and cross-reference file are needed in addition to data, pedigree, and

parameter files needed in a regular animal model analysis.
• An option in a parameter file is needed.
• There are many options to control genomic computations. See the manual.
• The marker file is a fixed-length text file with an animal’s ID and genotypes.
• Cross-reference (XrefID) file relates the animal’s ID in marker file to integer code in the pedigree

file. This file is generated by RENUMF90.
• GEBV is directly obtained as a solution.
• PREGSF90 is useful to save a relationship matrix to a file if you run the program several times

using the same pedigree and genomic information. BLUPF90 reads the file so you can save time.

3.4 Trivial analyses for multiple-trait models
BLUPF90 supports multiple-trait models with few modifications to a parameter file for the single-trait
model. In this section, we consider a simple multiple-trait model and introduce some extensions in a
parameter file.

3.4.1 Basic elements
Model description

We extend the single-trait animal-model shown in the previous section, but no genomics. We will consider
a 2-trait model with the same effects on both traits. Also, we assume we have no missing observations. A
mathematical model for each trait can be written as follows.

yi jk:1 = Ai:1 +S j:1 +βxi jk:1 +uk:1 + ei jk:1

yi jk:2 = Ai:2 +S j:2 +βxi jk:2 +uk:2 + ei jk:2

The mixed model can be written with a typical form introduced as before.

y = Xb+Zu+ e

With matrix notation, this model can be expressed in 2 ways depending on the order of observations.
Ordering animals within trait: y =

[
y1:1,y2:1,y3:1, · · · ,yn:1 y1:2,y2:2,y3:2, · · · ,yn:2

]

Ordering traits within animal: y =
[

y1:1,y1:2 y2:1,y2:2 y3:1,y3:2 · · · yn:1,yn:2
]

This difference is not essential on conducting the analysis but you should recognize the difference when
writing down the mathematical model in matrix notation. Above two results in the different representation
of mixed model equations even if the solutions are identical. Because BLUPF90 programs use the latter,
we will describe the model with this rule.

In this case, the variance of y is

var(y) = Z(A⊗G0)Z′+ I⊗R0

where G0 is the genetic variance-covariance matrix among traits (2× 2 in this case), R0 is the residual
variance-covariance matrix among traits (also 2× 2 in this case), I is the identity matrix (N×N; N is
the number of observations in a trait) and ⊗ is an operator for Kronecker product. Elements of each
covariance matrix and its inverse can be written as

G0 =

[
σ2

g1 σg12

σg21 σ2
g2

]
and G−1

0 =

[
σg1 σg12

σg21 σg2

]

R0 =

[
σ2

e1 σe12
σe21 σ2

e2

]
and R−1

0 =

[
σ e1 σ e12

σ e21 σ e2

]
.
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Kronecker product is not a regular product. Consult the following examples:

A⊗G0 =




a11G0 a12G0 · · · a1nG0
a21G0 a22G0 · · · a2nG0
... · · ·

. . .
...

an1G0 an2G0 · · · annG0


 and I⊗R0 =




R0 0 · · · 0
0 R0 · · · 0
...

...
. . .

...
0 0 · · · R0




where n is the number of pedigree animals and ai j is the ith row and the jth column element of A. In the
latter equation, R0 is repeated N times on diagonal.

The system of mixed model equations is
[

X′(I⊗R−1
0 )X X′(I⊗R−1

0 )Z
Z′(I⊗R−1

0 )X Z′(I⊗R−1
0 )Z+A−1⊗G−1

0

][
b̂
û

]
=

[
X′(I⊗R−1

0 )y
Z′(I⊗R−1

0 )y

]
.

This may look very different from a typical description for some people. But, again, the form of the
equations don’t affect the solutions.

Required files

In this 2-trait model, we need 2 columns for observations (one for the trait 1 and the other one for trait
2). Also, we need the columns for effects in each trait. We assume the same model in both traits. We can
share the same columns for the effects in the data file.

As an example, we extend the data used in the previous animal model analysis.

Listing 3.25: data5.txt

3.0 4.5 1 1 1.0 6
2.0 7.5 1 2 1.0 9
4.0 3.5 1 1 2.0 12
6.0 -0.5 2 2 2.0 7
3.0 5.5 2 1 1.0 10
6.0 1.5 2 2 2.0 13
6.0 -1.5 3 1 2.0 8
6.0 2.5 3 2 1.0 11
8.0 0.5 3 1 1.0 14
4.0 4.5 3 2 2.0 15

The pedigree file is the same as the previous one. Here we changed the file name with the same content.

Listing 3.26: pedigree5.txt

1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 2 5
8 1 4
9 2 3
10 7 6
11 7 4
12 11 8
13 11 10
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14 9 13
15 11 10

The parameter file also looks like very similar to the previous one except it describes covariance
matrices and a model for each trait. We assume σ2

g1 = 0.5, σg12 = −0.25, and σ2
g2 = 1.0 for genetic

(co)variances and σ2
e1 = 2.0, σe12 = 1.0, and σe2 = 1.5 for residual (co)variances.

Listing 3.27: param5.txt

DATAFILE
data5.txt
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
4
OBSERVATION(S)
1 2
WEIGHT(S)

EFFECTS:
3 3 3 cross
4 4 2 cross
5 5 1 cov
6 6 15 cross
RANDOM_RESIDUAL VALUES
2.0 1.0
1.0 1.5
RANDOM_GROUP
4
RANDOM_TYPE
add_animal
FILE
pedigree5.txt
(CO)VARIANCES
0.50 -0.25
-0.25 1.00

For a multiple-trait mode, we should carefully describe the following values.

• NUMBER_OF_TRAITS = appropriate number of traits

– 2: two-trait model

• OBSERVATION(S) = enumerate the positions of observations in the data file

– 1 2: the first and second columns; 1 for trait 1 and 2 for trait 2.

• EFFECTS: = enumerate the positions of effect, the number of levels and the effect type

– 3 3 3 cross: the position of effect 1 for trait 1 (3); the position of effect 1 for trait 2 (3);
the number of levels (3); effect type (cross)

– 4 4 2 cross: the position of effect 2 for trait 1 (4); the position of effect 2 for trait 2 (4);
the number of levels (2); effect type (cross)

– 5 5 1 cov: the position of effect 3 for trait 1 (5); the position of effect 3 for trait 2 (5); the
number of levels (3); effect type (cov)

36



3 Quick tour of BLUPF90

– 6 6 15 cross: the position of effect 4 for trait 1 (6); the position of effect 4 for trait 2 (6);
the number of levels (15); effect type (cross)

• RANDOM RESIDUAL VALUES = residual covariance matrix

– full 2×2 matrix; total 4 elements should be here.

• (CO)VARIANCES = genetic covariance matrix

– full 2×2 matrix; total 4 elements should be here.

You should be careful to write the EFFECT: block. With 2-trait model, each statement has to have 4
elements; the first 2 for the positions of effect for each trait in the data file, the next 1 for the number of
levels and the last 1 for effect type. If you run a model with n traits, the first n elements should be the
positions of effects for each trait.

Residual and genetic covariance matrices should be fully described i.e., all upper, diagonal, and lower
elements. The lines including a covariance matrix can’t accept comments.

3.4.2 Resulting solutions
Running BLUPF90 with above parameter file, the solutions file contains are following.

Listing 3.28: solutions

trait/effect level solution
1 1 1 0.19990999
2 1 1 5.43362035
1 1 2 2.30088577
2 1 2 2.42229505
1 1 3 3.21493025
2 1 3 1.78930980
1 2 1 2.31093239
2 2 1 2.25555489
1 2 2 1.76148927
2 2 2 3.88944218
1 3 1 0.54865198
2 3 1 -2.42030677
1 4 1 -0.02253416
2 4 1 -0.04249548
1 4 2 0.10792661
2 4 2 -0.13113037
1 4 3 -0.02682949
2 4 3 0.09896514
1 4 4 0.03164894
2 4 4 -0.02495242
1 4 5 0.13475233
2 4 5 -0.23009750
1 4 6 -0.22496602
2 4 6 0.32971990
1 4 7 0.25609198
2 4 7 -0.41070894
1 4 8 -0.01797409
2 4 8 -0.07622271
1 4 9 0.01371895
2 4 9 0.08288296
1 4 10 -0.84143020
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2 4 10 1.63889151
1 4 11 0.19804880
2 4 11 -0.20028530
1 4 12 0.03355559
2 4 12 0.06720834
1 4 13 0.10550434
2 4 13 0.07202442
1 4 14 0.52502266
2 4 14 -0.66337381
1 4 15 -1.00156891
2 4 15 2.01449847

This is long because every effect was considered in both traits. The format is the same as the previous
one except for the first column containing 1 or 2. You can obtain 2 solutions, for trait 1 and trait 2, in
every effect. For example, estimated breeding values for animal 13 are 0.1055 for trait 1 and 0.0702 for
trait 2.

For your information, the order of solutions in the file is the same as in memory. It is corresponding to
the matrix notation described before.

3.4.3 Remarks
You can put a missing observation in the data file. The missing value is 0 by default but you can change
the value with an option OPTION missing. The missing code is an integer value (positive or negative).
At least 1 trait has a real observation. In other words, missing-in-all-traits is not allowed.

The program supports different models in different traits (unequal design matrices). You can put 0 as a
position in EFFECT: block if the trait doesn’t the effect. At least 1 trait has to have a non-zero position.
We will see such models in the later chapter.

Single-step GBLUP is supported in the multiple-trait model. You can add OPTION SNP_file to per-
form such a model.

3.4.4 Summary
• BLUPF90 supports multiple-trait models.
• The same data and pedigree files to a single-trait case can be used.
• Parameter file should be modified to fit the multiple-trait model.
• In the EFFECT: block, each statement should have n positions of effects for n trait model.
• Missing values are allowed. The default is 0 and you can change the missing code with an option.
• Each trait may have a different model i.e., different effects.
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This chapter provides an instruction on RENUMF90 to prepare the files for data, pedigree, genomic
markers, and parameters. LUPF90 requires several files with a particular format which the “raw” data may
not have. RENUMF90 can check the raw files and convert them to new files suitable for the BLUPF90
suite. We will start with a minimal example as before.

4.1 Basic data preparation

4.1.1 Basic usage of RENUMF90
Why RENUMF90?

BLUPF90 accepts data and pedigree files containing only numerical expressions (integer or real values).
A group label should be integer starting from 1. A raw data file usually contains characters (alphabets
or symbols) for animals’ ID or group code. The characters should be replaced with numerical values
before the analysis with BLUPF90 programs. RENUMF90 performs such a job. We call this process as
renumbering.

Trivial instruction file

RENUMF90 reads a parameter file, but it is totally different from the one used in BLUPF90. Don’t
confuse 2 kinds of parameter files. Here, to avoid the confusion, we will refer to the parameter file used
in RENUMF90 as an instruction file in this tutorial. This name is unofficial but easier to differentiate two
kinds of parameter files.

To understand the behavior of RENUMF90, let’s try a small example without pedigree. Here we use a
raw data file and an instruction file. The raw data is a space-separated text file and contains 5 columns.

Listing 4.1: rawdata1.txt

ID006 A 1 1.0 3.0
ID009 A 2 1.0 2.0
ID012 A 1 2.0 4.0
ID007 B 2 2.0 6.0
ID010 B 1 1.0 3.0
ID013 B 2 2.0 6.0
ID008 C 1 2.0 6.0
ID011 C 2 1.0 6.0
ID014 C 1 1.0 8.0
ID015 C 2 2.0 4.0

We will create a parameter file for the following model.

yi jk = Ai +S j +βxi jk + ei jk

This model is actually the same as one introduced in the previous chapter as a fixed effect model; The
first column is animal ID, the next 2 columns are fixed cross-classified effects, and the third one is a fixed
regression. So, this example tries to produce a similar data set used before.
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RENUMF90 will read the only necessary columns in the raw data-file, as described in the instruction
file. The following instruction file demonstrates the renumbering of column 2 and 3 as fixed cross-
classified effects, column 4 as a covariate, and column 5 as a phenotype. In this case, column 1 will not
be used.

Listing 4.2: renum1.txt

DATAFILE
rawdata1.txt
TRAITS
5
FIELDS_PASSED TO OUTPUT

WEIGHT(S)

RESIDUAL_VARIANCE
1.0
EFFECT # 1st effect
2 cross alpha
EFFECT # 2nd effect
3 cross alpha
EFFECT # 3rd effect
4 cov

Instruction file can also have comments, which starts with # as seen in the above example.
The instruction file looks like the parameter file for BLUPF90. The file contains several pairs of key-

word and value(s). The file contains 6 keywords. EFFECT can be repeated several times. The following
keywords are required in the minimal instruction file.

Keyword possible value description

DATAFILE characters The name of raw data-file to be processed.
TRAITS integer A list of the position(s) of observation in the

data file.
FIELDS_PASSED TO OUTPUT integer A list of the position(s) of unchanged

columns in the data file. Empty value is
ac ceptable if not ne eded (just keep the line empty).

The columns will be passed through the renumbered file.
WEIGHT(S) integer The position(s) for weight in the data file.

Empty value is acceptable if not needed.
RESIDUAL_VARIANCE real value(s) Residual (co)variances.
EFFECT (see below) Description of an effect. Repeatable.

The EFFECT keyword can be repeated as many as you need. The above instruction file contains 3
effects. The EFFECT keyword has several values as follows.

Keyword Position effect type data type

EFFECT integer cross alpha
numer

cov (none)
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In the above table, the position means the position(s) of group code (for class effect) or covariate (for
regression) in the raw data-file. You can choose one of two effect types (cross for cross-classified or cov
for regression). For cross-classified effects, you can also choose the data type: alpha if the column may
contain alphabets, or numer if the column surely contains integer values only. Following is an explanation
for EFFECT block in the above instruction.

EFFECT
2 cross alpha # treat 2nd column as cross - classified effect ; assuming alphabets

EFFECT
3 cross alpha # treat 3rd column as cross - classified effect ; assuming alphabets

EFFECT
4 cov # treat 4th column as covariate

Note that, in this case, you can technically use numer instead of alpha in the second effect because this
column contains integer values only. We, nevertheless, recommend a user to always use alpha because
it can accept any types of data including both alphabets and numbers.

Resulting files

RENUMF90 asks you to type the name of the instruction file. The program reads the original data, and it
replaces the group labels with sequential, integer values. Finally, this program generates 3 files, and each
file has a fixed name. If you have the existing file with the same name, the file will be replaced with a new
one.

• renf90.dat: renumbered data file
• renf90.par: a suggested parameter file for BLUPF90
• renf90.tables: a correspondence table between the original code with a new integer value

Let’s look into the inside of renf90.dat.

3.0 1 1 1.0
2.0 1 2 1.0
4.0 1 1 2.0
6.0 2 2 2.0
3.0 2 1 1.0
6.0 2 2 2.0
6.0 3 1 2.0
6.0 3 2 1.0
8.0 3 1 1.0
4.0 3 2 2.0

You can see the difference between the original and renumbered files. The order of lines (rows) are
preserved but the order of columns is different. Each column has integer values or real (numerical) values.
RENUMF90 change the column order as the following rules.

1. First, observations: RENUMF90 doesn’t change the values.

• column 1: a single-trait model is assumed and the 1st column is for observations.

2. Second, effects: the order is determined with the order of EFFECT statements in the instruction file.

• column 2 for effect 1 (corresponding to the 2nd column in the original file).
• column 3 for effect 2 (3rd column in the original file).
• column 4 for effect 3 (4th column in the original file).
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3. Last, passed columns: RENUMF90 adds the columns specified in FIELDS_PASSED TO OUTPUT
keyword in instruction. It doesn’t change the content in anyway so, the passed columns may have
alphabets and symbols.

• no additional columns in this case: we didn’t set any values for this keyword.

Class variables for effect 1 and 2 (column 2 and 3) are successfully replaced with integer values. For
effect 1, A is replaced with 1, B with 2 and C with 3. For effect 2, 1 is 1 and 2 is 2. The correspondence
is saved in renf90.tables.

Effect group 1 of column 1 with 3 levels, effect # 1
Value # consecutive number
A 3 1
B 3 2
C 4 3
Effect group 2 of column 1 with 2 levels, effect # 2
Value # consecutive number
1 5 1
2 5 2

In this case, each Effect group hash 3 columns: 1st for the original group code, 2nd for the number
of times the code occurred in the input, and 3rd for the replaced integer value.

RENUMF90 kindly generates a parameter file for BLUPF90.

# BLUPF90 parameter file created by RENF90
DATAFILE
renf90.dat
NUMBER_OF_TRAITS

1
NUMBER_OF_EFFECTS

3
OBSERVATION(S)

1
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
2 3 cross
3 2 cross
4 1 cov

RANDOM_RESIDUAL VALUES
1.0000

This looks like perfect for you to use it in BLUPF90, and the program will run the analysis successfully.
In this parameter file, the model description is inherited from the instruction file. For example, the above
instruction contains 3 effects so renf90.par also contains 3 effects corresponding to the description in
instruction. Note that the EFFECTS: line is followed by extra words (POSITIONS_IN_DATAFILE etc.),
but it is no problem for BLUPF90.

Running BLUPF90 with this renf90.par will produce the same solutions as described before. A reader
can confirm the fact with these files.

4.1.2 Optional features in RENUMF90
RENUMF90 specifically accepts some options with an additional line beginning with OPTION at the end
of the instruction file. Following options are available.
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• OPTION alpha_size n: change the size of character fields (maximum number of letters in a col-
umn with alpha specification) to n.
• OPTION max_string_readline n: change the size of the record length (maximum number of

letters in a line) to n.
• OPTION max_field_readline n: change the maximum number of fields (columns) in a line to n.

The n above is replaced with an actual integer value. See the examples.

OPTION max_string_readline 2048

If the option is not usable in RENUMF90, the program simply passes it through renf90.par. So, you
can put some OPTION lines, which will be used in BLUPF90, in instruction, and you will obtain a perfect
parameter file with desired options for your analysis. See the following example.

Listing 4.3: renum1a.txt

DATAFILE
rawdata1.txt
TRAITS
5
FIELDS_PASSED TO OUTPUT

WEIGHT(S)

RESIDUAL_VARIANCE
1.0
EFFECT
2 cross alpha # 1st effect
EFFECT
3 cross alpha # 2nd effect
EFFECT
4 cov # 3rd effect
OPTION max_string_readline 2048
OPTION alpha_size 40
OPTION solv_method FSPAK

The first 2 options will be taken by RENUMF90, but the last one will be passed through the output file
renf90.par.

4.1.3 What is the best practice?
Suppose you have to perform many analyses with the same data but different models. How many times
do you run RENUMF90? Basically, there are 2 solutions.

1. In every analysis, rewrite the instruction and run RENUMF90. Then just use the generated renf90.par.
2. First, prepare the instruction with maximal models and run RENUMF90. Then, every time, copy

the generated renf90.par to the new file and modify it to fit a model.

The better solution can depend on your situation. If you have a relatively small data set and the anal-
ysis will not take a long time, the first approach could be applicable. If your data is large enough and
the analysis will take time, the second option is the only efficient way. Also, in some cases, the gen-
erated renf90.par is incomplete. The second approach is more general and it is the use case that the
development team assumes.

43



4 Data preparation with RENUMF90

4.1.4 Summary
• RENUMF90 reads a parameter file, which is totally different from one for BLUPF90. We call it

the instruction file (or, simply instruction) in this chapter.
• RENUMF90 replaces alphabets or symbols with integer values which BLUPF90 can use. This

process is called renumbering.
• RENUMF90 generates a renumbered data file, a table file, and a template parameter file for BLUPF90.
• RENUMF90 generates a template parameter file which parameters are inherited from the instruc-

tion file.
• An instruction file consists of pairs of keyword and values. The file can have the comments with

the # syntax.
• RENUMF90 passes option lines in instruction to renf90.par.
• If you use the same data with different analyses, a possible way is to run RENUMF90 once and

modify the generated renf90.par to fit a model you should use.

4.2 Animal model with pedigree file

4.2.1 Random effect specification
Here we consider a mixed model with 1 or more random effects. Note that, even adding random effects,
the renumbered data file will be the same as one for the fixed effect model. Only differences when
considering random effects in RENUMF90 are: 1) output parameter file contains statements for random
effects and 2) pedigree or related files will be properly processed if needed.

First, we reconsider the previous example and assume the second effect (S j) is random.

yi jk = Ai +S j +βxi jk + ei jk

The raw data file is the same as before but we change the name of the file.

Listing 4.4: rawdata2.txt

ID006 A 1 1.0 3.0
ID009 A 2 1.0 2.0
ID012 A 1 2.0 4.0
ID007 B 2 2.0 6.0
ID010 B 1 1.0 3.0
ID013 B 2 2.0 6.0
ID008 C 1 2.0 6.0
ID011 C 2 1.0 6.0
ID014 C 1 1.0 8.0
ID015 C 2 2.0 4.0

Assuming the residual variance σ2
e = 2.0 and the random effect’s variance σ2

s = 1.0, the parameter file
looks like:

Listing 4.5: renum2.txt

DATAFILE
rawdata2.txt
TRAITS
5
FIELDS_PASSED TO OUTPUT
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WEIGHT(S)

RESIDUAL_VARIANCE
2.0
EFFECT # 1st effect
2 cross alpha
EFFECT # 2nd effect
3 cross alpha
RANDOM ## treated as a random effect
diagonal
(CO)VARIANCES ## its variance components
1.0
EFFECT # 3rd effect
4 cov

This parameter file is also the same as before except we inserted 2 extra keywords and the corresponding
values: the keyword RANDOM with the value diagonal and the keyword (CO)VARIANCES with the value
1.0 just after the definition of effect 2. Basically, RENUMF90 treats the effect as random if RANDOM places
after the effect specification; otherwise, the effect is fixed. 1

This produces the data and parameter files equivalent to ones used in the previous chapter. You can
confirm the generated files provides the same solutions as before.

4.2.2 Animal model
Raw data

RENUMF90 can handle an animal model with the same framework using RANDOM and other optional
keywords to read a raw pedigree file. We can use the same data file as before. Here we duplicate the data
file to another one with a different name.

Listing 4.6: rawdata3.txt

ID006 A 1 1.0 3.0
ID009 A 2 1.0 2.0
ID012 A 1 2.0 4.0
ID007 B 2 2.0 6.0
ID010 B 1 1.0 3.0
ID013 B 2 2.0 6.0
ID008 C 1 2.0 6.0
ID011 C 2 1.0 6.0
ID014 C 1 1.0 8.0
ID015 C 2 2.0 4.0

Raw pedigree

The following is the raw pedigree which is corresponding to the pedigree shown in the previous chapter.

Listing 4.7: rawpedigree3.txt

ID001 0 0

1A tricky feature is to omit (CO)VARIANCES. If you don’t put this keyword, RENUMF90 implicitly assumes the variance
component is 1.0 by default. We highly recommend to use (CO)VARIANCES option to avoid the confusion.
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ID002 0 0
ID003 0 0
ID004 0 0
ID005 0 0
ID006 0 0
ID007 ID002 ID005
ID008 ID001 ID004
ID009 ID002 ID003
ID010 ID007 ID006
ID011 ID007 ID004
ID012 ID011 ID008
ID013 ID011 ID010
ID014 ID009 ID013
ID015 ID011 ID010

The animal ID shares in both raw data and raw pedigree files. A raw pedigree with the following format
is allowed for RENUMF90.

• It contains at least 3 columns, animal ID, sire ID, and dam ID, separated with 1 or more spaces. A
tab is not allowed.
• Each ID can place any position. For example, animal ID can be in column 4.
• An unknown or missing parent must be 0. Other expressions (like 00 or 00000 or NA) are not

allowed as missing, and they will be recognized as real animals.
• You can also put the date of birth (year of birth) as an additional column. The information should

be an integer value.
• Animals don’t have to be ordered either chronologically nor alphabetically. Any random order is

allowed.
• Although an animal appears in the sire or dam column, it is not necessarily in the animal column.

Such an animal is assumed to have unknown parents (both sire and dam unknown).

Parameter file

We assume a mixed model:
yi jk = Ai +S j +βxi jk +uk + ei jk

where Ai and S j are fixed effects, β is a fixed regression, uk is the additive genetic effect and ei jk is the
random residual. The variances are assumed as σ2

e = 2.0 and σ2
u = 0.5. We add the statement EFFECT to

the previous instruction as the additive genetic effect with the RANDOM keyword.

Listing 4.8: renum3.txt

DATAFILE
rawdata3.txt
TRAITS
5
FIELDS_PASSED TO OUTPUT

WEIGHT(S)

RESIDUAL_VARIANCE
2.0
EFFECT # 1st effect fixed
2 cross alpha
EFFECT # 2nd effect fixed
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3 cross alpha
EFFECT # 3rd effect fixed
4 cov
EFFECT # 4th effect
1 cross alpha
RANDOM ## treated as a random effect
animal
FILE ## pedigree file
rawpedigree3.txt
FILE_POS ## animal, sire and dam IDs, and two 0s
1 2 3 0 0
(CO)VARIANCES ## its variance component
0.5

We can see two new keywords here.

• FILE: the name of the raw pedigree file.

– rawpedigree3.txt

• FILE_POS: the position of IDs in the raw pedigree file; 5 items needed.

– 1st item = the position of animal ID (1 for the 1st column)
– 2nd item = the position of sire ID (2 for the 2nd column)
– 3rd item = the position of dam ID (3 for the 3rd column)
– 4th item = usually 0 (will be explained in the later section)
– 5th item = usually 0 (will be explained in the later section)

Be careful of the order of keywords for random effects. RENUMF90 only accept the keywords properly
ordered in instruction. In this example, the order should be:

1. RANDOM
2. FILE
3. FILE_POS
4. (CO)VARIANCES

We have many more keywords related to random effects. The keywords should be ordered to be read
by RENUMF90. We will review the proper ordering later.

Output files

After running RENUMF90, you can see some files in the same directory: renf90.dat, renf90.par,
renf90.tables, and renadd04.ped. The last one is renumbered pedigree. Why 4? This 4 comes
from the position of the effect in instruction; the additive genetic effect was defined as the 4th EFFECT
statement. If your additive genetic effect is declared as the 6th effect, the name of the pedigree file will
be renadd06.ped.

The renumbered pedigree file (renadd04.ped) contains 10 columns.

1 7 5 1 0 2 1 0 0 ID015
13 0 0 3 0 0 0 0 2 ID004
11 0 0 3 0 0 0 0 1 ID005
2 0 0 3 0 0 1 0 1 ID006
3 12 11 1 0 2 1 2 0 ID007
4 14 13 1 0 2 1 0 1 ID008
5 3 2 1 0 2 1 0 2 ID010
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6 12 15 1 0 2 1 1 0 ID009
7 3 13 1 0 2 1 3 0 ID011
8 7 4 1 0 2 1 0 0 ID012
14 0 0 3 0 0 0 1 0 ID001
9 7 5 1 0 2 1 0 1 ID013
12 0 0 3 0 0 0 2 0 ID002
10 6 9 1 0 2 1 0 0 ID014
15 0 0 3 0 0 0 0 1 ID003

Column 1 is for renumbered animal ID, column 2 for sire ID and column 3 for dam ID. The remaining
columns contain additional information. The last (10th) column is the original ID. Many of them are
actually ignored in BLUPF90. 2 The official manual explains the meaning of each column.

1. animal number (from 1)
2. parent 1 number or unknown parent group number for parent 1
3. parent 2 number or unknown parent group number for parent 2
4. 3 minus number of known parents
5. known or estimated year of birth (0 if not provided)
6. number of known parents (parents might be eliminated if not contributing; if animal has genotype

10+number of know parents
7. number of records
8. number of progeny (before elimination due to other effects) as parent 1
9. number of progeny (before elimination due to other effects) as parent 2

10. original animal id

The conversion table for animal ID is not saved in renf90.tables. The correspondence can be found
only in the renumbered pedigree file (column 1 and 10).

Test run with the renumbered data

You can run BLUPF90 with the generated parameter file and obtain the solutions of the equation. The
analysis mimics the previous one in the previous chapter so the results should be identical (without nu-
merical error). You will find the BLUE is the same and the estimated breeding values (BLUP) are also
the same but the order of animals are different. The following is a combination of previous ones (left) and
the current ones (right).

1 1 1 0.20259644 1 1 1 0.20259637
1 1 2 2.21996461 1 1 2 2.21996452
1 1 3 3.16680208 1 1 3 3.16680200
1 2 1 2.27537292 1 2 1 2.27537284
1 2 2 1.71160537 1 2 2 1.71160529
1 3 1 0.52442755 1 3 1 0.52442750
1 4 1 -0.03487115 1 4 1 -0.25707432
1 4 2 0.08280493 1 4 2 -0.17565610
1 4 3 0.03843921 1 4 3 0.10794666
1 4 4 0.04492008 1 4 4 -0.02984647
1 4 5 0.04436203 1 4 5 -0.25282594
1 4 6 -0.17565609 1 4 6 0.09906235
1 4 7 0.10794667 1 4 7 0.15622415
1 4 8 -0.02984646 1 4 8 0.10874295
1 4 9 0.09906236 1 4 9 0.16426464
1 4 10 -0.25282594 1 4 10 0.34296713

2The 4th column will be used if you put certain options in the parameter file. We don’t explain such options here.
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1 4 11 0.15622415 1 4 11 0.04436204
1 4 12 0.10874296 1 4 12 0.08280494
1 4 13 0.16426465 1 4 13 0.04492008
1 4 14 0.34296714 1 4 14 -0.03487115
1 4 15 -0.25707431 1 4 15 0.03843922

This is because of the different order of animals in the pedigree file between 2 datasets. RENUMF90
orders pedigree animals as follows.

1. First, the program assigns smaller numbers to animals with the record(s). The order of animals are
unpredictable (i.e. not following the order found in the data file).

2. Then, the program assigns larger numbers to animals found only in pedigree.

Note that RENUMF90 doesn’t order the pedigree animals chronologically (i.e., from oldest to youngest).
No options are available to order the animals chronologically. The above rules are from the simplifica-
tion of implementation, but it is useful for fitting the permanent environmental effect in the repeatability
model.

Usually, you will combine the solutions (estimated breeding values) with the original animal ID. This
can be done with several ways e.g., Linux (Unix) tools, database management systems, statistical lan-
guages like R, even Microsoft Excel.

4.2.3 More than 1 random effect
As the last demonstration of RENUMF90 in this section, let us assume that the effect S j is also random
as well as uk in the above model. The variance components are σ2

e = 2.0, σ2
s = 1.0, and σ2

u = 0.5. A
suggested instruction file is following.

Listing 4.9: renum3a.txt

DATAFILE
rawdata3.txt
TRAITS
5
FIELDS_PASSED TO OUTPUT

WEIGHT(S)

RESIDUAL_VARIANCE
2.0
EFFECT # 1st effect fixed
2 cross alpha
EFFECT # 2nd effect fixed
3 cross alpha
RANDOM ## treated as a random effect
diagnonal
(CO)VARIANCES ## its variance component
1.0
EFFECT # 3rd effect fixed
4 cov
EFFECT # 4th effect
1 cross alpha
RANDOM ## treated as a random effect
animal
FILE ## pedigree file
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rawpedigree3.txt
FILE_POS ## animal, sire and dam IDs with two 0s
1 2 3 0 0
(CO)VARIANCES ## its variance component
0.5

This is a combination of the first and second examples in this section. You can easily figure it out how
each statement works.

4.2.4 Summary
• RENUMF90 treats the effect with the RANDOM keyword as a random effect.
• The RANDOM keyword may require other keywords.
• If a random effect doesn’t need the pedigree, just put RANDOM and (CO)VARIANCES only.
• If a random effect needs the pedigree, put RANDOM, FILE, FILE_POS, and (CO)VARIANCES in this

order.
• A raw pedigree-file should contain at least 3 columns: animal ID, sire ID, and dam ID. The order

of columns is arbitrary.
• The renumbered pedigree-file has a name as renaddnn.ped where nn is the position of this effect

in instruction.
• The renumbered pedigree file has 10 columns including the original ID. The renumbered ID will

not be in renf90.tables.
• The animals with records have smaller numbers than animals found only in pedigree.
• RENUMF90 supports more than 1 random effects.

4.3 Genomic model with SNP-marker file

4.3.1 Required files
Single-step GBLUP (ssGBLUP) model is an extension to the animal model. RENUMF90 can handle
ssGBLUP using a similar parameter file to the animal model with an additional option. Let us use the
previous files. The following files are the same as the previous ones with different names.

Listing 4.10: rawdata4.txt

ID006 A 1 1.0 3.0
ID009 A 2 1.0 2.0
ID012 A 1 2.0 4.0
ID007 B 2 2.0 6.0
ID010 B 1 1.0 3.0
ID013 B 2 2.0 6.0
ID008 C 1 2.0 6.0
ID011 C 2 1.0 6.0
ID014 C 1 1.0 8.0
ID015 C 2 2.0 4.0

The pedigree file is as follows.

Listing 4.11: rawpedigree4.txt

ID001 0 0
ID002 0 0
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ID003 0 0
ID004 0 0
ID005 0 0
ID006 0 0
ID007 ID002 ID005
ID008 ID001 ID004
ID009 ID002 ID003
ID010 ID007 ID006
ID011 ID007 ID004
ID012 ID011 ID008
ID013 ID011 ID010
ID014 ID009 ID013
ID015 ID011 ID010

An SNP-marker file should be prepared as a fixed-length text file with 2 columns: the original ID for
column 1 and genotypes for column 2. See the previous chapter for the detailed explanation about the
marker-file format. We use the same file shown before.

Listing 4.12: snp4.txt

ID002 1212020111001211212000102001202022201112000110020102011001012212110122100001210101112200210010022220
ID004 2222020200110122210121001100022221102111000010011202020002002222000222000020120000020200200000200220
ID006 2122020101100221121111212100112111112212000101012211111001201211112022100201220110022200220020111120
ID010 2111121101111210121211112210202021211211000110021211111001101211101122100111221000022200120020101120
ID011 2211121200121111220211011210112121111201000120011202020002002222000222000021221000021200110010101220
ID012 2222020200110122210121001100022221102111000010011202020002002222000222000020120000020200200000200220
ID013 2122020101210121121222101200112122102212000010012211111001101211101122100110220000021200210010200120
ID015 2122020101210121121222101200112122102212000010012211111001101211101122100110220000021200210010200120

The marker file is never altered and duplicated by RENUMF90. The program just read the 1st column
(the original ID) and make a table relating the renumbered animal ID to the original animal ID. The table
will be saved as a cross-reference file.

We assume the same animal model described before except that the genomic information is included.
The following is a parameter file to handle the SNP file.

Listing 4.13: renum4.txt

DATAFILE
rawdata4.txt
TRAITS
5
FIELDS_PASSED TO OUTPUT

WEIGHT(S)

RESIDUAL_VARIANCE
2.0
EFFECT # 1st effect fixed
2 cross alpha
EFFECT # 2nd effect fixed
3 cross alpha
EFFECT # 3rd effect fixed
4 cov
EFFECT # 4th effect
1 cross alpha
RANDOM ## treated as a random effect
animal
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FILE ## pedigree file
rawpedigree4.txt
FILE_POS ## animal, sire and dam IDs with two 0s
1 2 3 0 0
SNP_FILE ## SNP marker file
snp4.txt
(CO)VARIANCES ## its variance component
0.5

A new keyword SNP_FILE with the name of marker file tells RENUMF90 to properly treat the marker
file. This keyword should be placed just after FILE_POS.

4.3.2 Renumbered files
Running RENUMF90 with the above instruction, it generates several files in the same folder (directory).
With this example, RENUMF90 will generate 5 files: renf90.dat, renf90.par, renf90.tables,
renadd04.ped, and snp4.txt_XrefID. The last one is the cross-reference file (or simply, the XrefID
file), which contains 2 columns for the renumbered ID and the original ID as follows.

11 ID002
12 ID004
2 ID006
5 ID010
7 ID011
8 ID012
9 ID013
1 ID015

The order of genotyped animal is the same as the marker file. The name of this file is automatically
determined and fixed as the original SNP file-name plus _XrefID, e.g., snp.txt_XrefID for a marker
file snp.txt. You can’t change the file name.

The renumbered parameter file renf90.par looks similar as before except the option found in the last
line.

OPTION SNP_file snp4.txt

The parameter file doesn’t refer to the cross-reference file because, by default, BLUPF90 programs
read the standard XrefID file (SNP file name + XrefID). Usually, you don’t have to change the name of
cross-reference file, so you just keep this option line. If you do rename the XrefID file, you have to add
the XrefID file name to the option-line by hand (as shown in the quick tour).

The renumbered pedigree is different from the previous one.

1 7 5 1 0 12 1 0 0 ID015
12 0 0 3 0 10 0 0 2 ID004
13 0 0 3 0 0 0 0 1 ID005
2 0 0 3 0 10 1 0 1 ID006
3 11 13 1 0 2 1 2 0 ID007
4 14 12 1 0 2 1 0 1 ID008
5 3 2 1 0 12 1 0 2 ID010
6 11 15 1 0 2 1 1 0 ID009
7 3 12 1 0 12 1 3 0 ID011
8 7 4 1 0 12 1 0 0 ID012
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14 0 0 3 0 0 0 1 0 ID001
9 7 5 1 0 12 1 0 1 ID013
11 0 0 3 0 10 0 2 0 ID002
10 6 9 1 0 2 1 0 0 ID014
15 0 0 3 0 0 0 0 1 ID003

With genomics, RENUMF90 assigns new integer values to animals with the following rules.

1. First, the program assigns the smallest numbers to animals with the record(s). The order of assigned
numbers will be random (i.e., not following the order found in the data file).

2. Secondly, the program assigns the larger numbers to genotyped animals. The order will be random
(i.e., not following the order found in the marker file).

3. Lastly, the program assigns the larger numbers to animals found only in pedigree. The order will
be random (i.e., not be sorted in any way).

You can find the genotyped animals in the renumbered pedigree file. When an animal is genotyped, the
6th column will be 10 or larger.

4.3.3 Summary
• RENUMF90 supports ssGBLUP.
• The instruction for ssGBLUP is the same as the animal model except for additional SNP_FILE

keyword and the name of marker file.
• RENUMF90 doesn’t change the SNP marker file. Instead, it creates a cross-reference file relating

the original ID to the renumbered ID. The name of the cross-reference file ends with _XrefID by
default.

• A suggested renf90.par contains the options line with SNP file.
• The order of animals in the pedigree is determined as phenotyped animals the first, genotyped

animals the second, and the other animals the last.

4.4 Multiple-trait models

4.4.1 Model
For renumbering on a multiple-trait model, we still need a very similar instruction file to the single-trait
model. Only differences include 1) a need to specify the model for each trait and 2) use of covariance
matrix instead of a scalar value.

We will consider a 2-trait model with equal design matrices, which means all traits have the same
model. The mathematical model is

yi jk:1 = Ai:1 +S j:1 +β1xi jk:1 +uk:1 + ei jk:1

yi jk:2 = Ai:2 +S j:2 +β2xi jk:2 +uk:2 + ei jk:2

where yi jk:t is a observation for trait t, Ai:t is the fixed effect for trait t, Si:t is also the fixed effect for trait
t, βt is the fixed regression coefficient for trait t, xi jk:t is a covariate for trait t, uk:t is the additive genetic
effect for trait t, and ei jk:t is the random residual effect. The genetic (G0) and residual (R0) covariance
matrices are

G0 =

[
0.50 −0.25
−0.25 1.00

]
and R0 =

[
2.0 1.0
1.0 1.5

]
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4.4.2 Required files
The raw data file is identical to the previous single-trait data except for the new column (trait 2) added.
The data file should contain all required effects and observations for all traits.

Listing 4.14: rawdata5.txt

ID006 A 1 1.0 3.0 4.5
ID009 A 2 1.0 2.0 7.5
ID012 A 1 2.0 4.0 3.5
ID007 B 2 2.0 6.0 -0.5
ID010 B 1 1.0 3.0 5.5
ID013 B 2 2.0 6.0 1.5
ID008 C 1 2.0 6.0 -1.5
ID011 C 2 1.0 6.0 2.5
ID014 C 1 1.0 8.0 0.5
ID015 C 2 2.0 4.0 4.5

The pedigree file is also the same as the previous one.

Listing 4.15: rawpedigree5.txt

ID001 0 0
ID002 0 0
ID003 0 0
ID004 0 0
ID005 0 0
ID006 0 0
ID007 ID002 ID005
ID008 ID001 ID004
ID009 ID002 ID003
ID010 ID007 ID006
ID011 ID007 ID004
ID012 ID011 ID008
ID013 ID011 ID010
ID014 ID009 ID013
ID015 ID011 ID010

The instruction file for this 2-trait model is as follows.

Listing 4.16: renum5.txt

DATAFILE
rawdata5.txt
TRAITS # 2-trait model: put 2 positions
5 6
FIELDS_PASSED TO OUTPUT

WEIGHT(S)

RESIDUAL_VARIANCE
2.0 1.0
1.0 1.5
EFFECT # 1st effect fixed
2 2 cross alpha
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EFFECT # 2nd effect fixed
3 3 cross alpha
EFFECT # 3rd effect fixed
4 4 cov
EFFECT # 4th effect
1 1 cross alpha
RANDOM ## treated as a random effect
animal
FILE ## pedigree file
rawpedigree5.txt
FILE_POS ## animal, sire and dam IDs, and two 0s
1 2 3 0 0
(CO)VARIANCES ## its variance component
0.50 -0.25
-0.25 1.00

For a multiple-trait model, you can check the following points in an instruction file. Incorrect descrip-
tion in these statements falls in the sudden stop of RENUMF90.

• TRAITS: Enumerate the positions of observations in the data file. If you have 2 traits, you should
put 2 numbers (positions) here.
• RESIDUAL_VARIANCE: Put a residual covariance matrix here. The whole matrix is needed (all

upper, lower, and diagonal elements).
• EFFECT: Enumerate the position of effects for each trait in the data file; then put the effect type

(and data type). For example, with a 2-trait model, first, you should put 2 numbers (for positions of
effects for trait 1 and 2), 1 keyword (cross or cov) and, possibly, data type (numer or alpha) if
the data type is cross.
• (CO)VARIANCES: Put a covariance matrix here. The whole matrix is needed.

Run RENUMF90 with the above files, and you can see the parameter file configured with the 2-trait
model.

4.4.3 Missing observations
You can include missing observations in the data file. RENUMF90 does not distinguish the real and the
missing observations; the program just read the raw data and just pass the observation to the renumbered
file. Although RENUMF90 doesn’t care about missing observations, BLUPF90 cares about the values.
So the generated parameter file (renf90.par) should include an option to define the missing code. You
can write the following option in the instruction file, and RENUMF90 passes it to renf90.par.

OPTION missing -999

This example defines an observation with the value -999 as a missing code. The default is 0 (i.e. if you
don’t define any missing code, the program assumes 0 as missing).

Note that RENUMF90 still recognizes 0 as a missing observation in the computations of the basic
statistics (e.g. average and standard deviation) just for your information. In this case, the statistics may be
inaccurate but all the files are correctly renumbered.
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4.4.4 Different models across traits (Unequal design matrices)
Now we consider a multiple-trait model which has different mathematical models across traits. It is
typically called a model with unequal design matrices. Let’s see the following 2-trait model.

yi jk:1 = Ai:1 + β1xi jk:1 +uk:1 + ei jk:1

yi jk:2 = Ai:2 +S j:2 +β2xi jk:2 +uk:2 + ei jk:2

In this model, the S j:1 is missing for trait 1. To support it with RENUMF90, you can just change a line in
the previous instruction file.

EFFECT # 2nd effect fixed
0 3 cross alpha

The position 0 means that this effect will not be included in the model for this trait.
We further consider the following 2-trait model.

yi jk:1 = Ai:1 +β1xi jk:1 +uk:1 + ei jk:1

yi jk:2 = S j:2 +β2xi jk:2 +uk:2 + ei jk:2

In this case, S j:1 is missing for trait 1 and Ai:2 is missing for trait 2. Applying the above principle to this
case, you can figure out the following solution (just showing a piece of instruction file).

EFFECT # 1st effect fixed
2 0 cross alpha
EFFECT # 2nd effect fixed
0 3 cross alpha

Above statements are easy to understand which effects are missing for a particular trait.
There is another way to handle such a model. You can combine above 2 EFFECT lines into 1 as follows.

EFFECT # 1st and 2nd effects fixed
2 3 cross alpha

This statement may be useful when the different effects are considered as similar types of effects. For
example, in dairy cattle, a contemporary group effect (like HYS: herd-year-season) is commonly included
in the model for production traits but the definition should be different across parities. HYS in the 1st
lactation and HYS in the 2nd lactation are different but considered as similar effects. With this compact
definition, memory requirements would reduce. If you are confused with this notation, you don’t have to
use the compact statement.

4.4.5 Summary
• RENUMF90 supports multiple-trait models.
• Carefully describe TRAITS, RESIDUAL_VARIANCE, EFFECT and (CO)VARIANCES in an instruction

file.
• TRAIT has the same number of entries to the number of traits.
• Covariance matrix should be wholly stated.
• EFFECT describes the position of effect in each trait.
• Missing observations are passed to renf90.dat. You can use OPTION missing to the instruction

file to change the code for missing observations.
• RENUMF90 supports a multiple-trait model with unequal design matrices.
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4.5 Advanced usage of RENUMF90
In this section, we will introduce some advanced features in RENUMF90. We commonly use the fol-
lowing raw data and pedigree file. The files come from the multiple-trait model shown in the previous
chapter.

Listing 4.17: rawdata9.txt

ID006 A 1 1.0 3.0 4.5
ID009 A 2 1.0 2.0 7.5
ID012 A 1 2.0 4.0 3.5
ID007 B 2 2.0 6.0 -0.5
ID010 B 1 1.0 3.0 5.5
ID013 B 2 2.0 6.0 1.5
ID008 C 1 2.0 6.0 -1.5
ID011 C 2 1.0 6.0 2.5
ID014 C 1 1.0 8.0 0.5
ID015 C 2 2.0 4.0 4.5

The pedigree file is as follows.

Listing 4.18: rawpedigree9.txt

ID001 0 0
ID002 0 0
ID003 0 0
ID004 0 0
ID005 0 0
ID006 0 0
ID007 ID002 ID005
ID008 ID001 ID004
ID009 ID002 ID003
ID010 ID007 ID006
ID011 ID007 ID004
ID012 ID011 ID008
ID013 ID011 ID010
ID014 ID009 ID013
ID015 ID011 ID010

4.5.1 Combined effects
RENUMF90 can treat a field as a combination of the existing fields. This is useful when an interaction
effect is incorporated. The keyword COMBINE performs this feature. The following example is from the
previous section and the keyword is added.

Listing 4.19: renum9a.txt

COMBINE
6 2 3
DATAFILE
rawdata9.txt
TRAITS
5
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FIELDS_PASSED TO OUTPUT

WEIGHT(S)

RESIDUAL_VARIANCE
1.0
EFFECT # 1st effect
2 cross alpha
EFFECT # 2nd effect
3 cross alpha
EFFECT # 3rd effect
4 cov
EFFECT # interaction effect 1 x 2
6 cross alpha

The COMBINE statement should be used as follows.

• COMBINE must appear at the beginning of the instruction file (before DATAFILE).
• At least 2 values are needed; The 2nd or later values will be combined into 1 field. The field can be

referred to as the first value.
• In this case, 6 2 3 means that columns 2 and 3 are combined into column 6 (i.e., creating a new

column, 6, as a combination of 2 and 3).
• You can use any number in the first value even if your data file doesn’t have such a column.
• You can repeat the COMBINE statement.
• The combined field can be used in the EFFECT statement.

You can run RENUMF90 and check renf90.tables. Column 2 and 3 are successfully combined into
one effect (group 4).

Effect group 1 of column 1 with 3 levels , effect # 1
Value # consecutive number
A 3 1
B 3 2
C 4 3
Effect group 2 of column 1 with 2 levels , effect # 2
Value # consecutive number
1 5 1
2 5 2
Effect group 4 of column 1 with 6 levels , effect # 4
Value # consecutive number
A1 2 1
A2 1 2
B1 1 3
B2 2 4
C1 2 5
C2 2 6

4.5.2 Pedigree manipulation
RENUMF90 prunes the pedigree. By default, the program traces back 3-generation (up to great-grandsires
and dams) from the animals with phenotype or genotype. The number of generations back can be changed
with the option PED_DEPTH, which should place just after SNP_FILE (or FILE_POS if no genetic markers
are used). The following statements define 10 generations to be traced.
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PED_DEPTH
10

If you put a large number (like 100), you can consider all ancestors to be traced back from the current
animals. If you put 0, RENUMF90 tries to include all animals found in the raw pedigree file even if the
pedigree animals are not related to the animals with phenotype or genotype.

4.5.3 Animal model options
RENUMF90 supports the permanent environmental (PE) effect and the maternal genetic (MG) and the
maternal environmental (MPE) effects as additional random effects in the animal model using the OPTIONAL
keyword. The following is a parameter file with maximal options (PE, MG, and MPE).

Listing 4.20: renum9b.txt

DATAFILE
rawdata9.txt
TRAITS
5
FIELDS_PASSED TO OUTPUT

WEIGHT(S)

RESIDUAL_VARIANCE
1.0
EFFECT # 1st effect
2 cross alpha
EFFECT # 2nd effect
3 cross alpha
EFFECT # 3rd effect
4 cov
EFFECT # 4th effect = animal
1 cross alpha
RANDOM
animal
OPTIONAL
pe mat mpe
FILE
rawpedigree9.txt
(CO)VARIANCES
1.0 0.2
0.2 0.3
(CO)VARIANCES_PE
1.5
(CO)VARIANCES_MPE
0.5

You can read this file as follows.

• The OPTIONAL keyword places just after the EFFECT defining additive genetic effect.
• Possible values are pe for the animal’s permanent environmental effect, mat for the maternal genetic

effect, and mpe for the maternal environmental effect. They are optional; you can use only the
options you want.

59



4 Data preparation with RENUMF90

• If you put mat, you should put a genetic covariance matrix including direct and maternal genetic
effects at (CO)VARIANCES. For a single-trait model, the rank of the covariance matrix should be
2; for a t trait model, the rank should be 2t. See RENUMF90 Cheat Sheet for details. Without
mat, you just put a direct genetic variance (for a single-trait model) or a covariance matrix (for a
multiple-trait model).

• If you put pe, you should put a permanent-environmental variance (for a single-trait model) or a
covariance matrix (for a multiple-trait model) at (CO)VARIANCES_PE. Otherwise, you can omit
(CO)VARIANCES_PE.
• If you put mpe, you should put a maternal permanent-environmental variance (for a single-trait

model) or a covariance matrix (for a multiple-trait model) at (CO)VARIANCES_MPE. Otherwise,
you can omit (CO)VARIANCES_MPE.

4.5.4 Definition of unknown parent groups (UPGs)
RENUMF90 can assign UPGs to unknown parents. There are 2 ways to do this but here we just introduce
the one approach (because of its simplicity). The following keyword generates UPGs.

UPG_TYPE
in_pedigrees

The option should be just after PED_DEPTH. With this option, RENUMF90 interprets a negative sire (or
dam) ID as a UPG. So you should prepare different columns for sires and dams which contain negative
integers for unknown animals instead of 0. Also, all the real animals should be in the pedigree file with
the standard ID (other than negative integers).

The following is a simple example of UPGs. The 4th column is for sires with groups (1 and 2) and the
5th column is for dams with groups (3 and 4). You can specify column 4 (instead of 2) as the sire and
column 5 (instead of 3) as the dam with the FILE_POS keyword.

Listing 4.21: rawpedigree9c.txt

ID001 0 0 -1 -4
ID002 0 0 -2 -3
ID003 0 0 -1 -3
ID004 0 0 -2 -3
ID005 0 0 -2 -4
ID006 0 0 -1 -3
ID007 ID002 ID005 ID002 ID005
ID008 ID001 ID004 ID001 ID004
ID009 ID002 ID003 ID002 ID003
ID010 ID007 ID006 ID007 ID006
ID011 ID007 ID004 ID007 ID004
ID012 ID011 ID008 ID011 ID008
ID013 ID011 ID010 ID011 ID010
ID014 ID009 ID013 ID009 ID013
ID015 ID011 ID010 ID011 ID010

The instruction file can be as follows.

Listing 4.22: renum9c.txt

DATAFILE
rawdata9.txt
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TRAITS
5
FIELDS_PASSED TO OUTPUT

WEIGHT(S)

RESIDUAL_VARIANCE
1.0
EFFECT # 1st effect
2 cross alpha
EFFECT # 2nd effect
3 cross alpha
EFFECT # 3rd effect
4 cov
EFFECT # 4th effect = animal
1 cross alpha
RANDOM
animal
FILE
rawpedigree9c.txt
FILE_POS # positions of animal, sire, dam, 0, 0
1 4 5 0 0
UPG_TYPE
in_pedigrees
(CO)VARIANCES
1.0

The resulting pedigree file is as follows. You have only 15 real animals but there are the codes greater
than 15 (between 16 and 19) in the sire and dam columns. These numbers greater than the number of real
animals represent UPGs.

1 7 5 1 0 2 1 0 0 ID015
13 17 18 3 0 0 0 0 2 ID004
11 17 19 3 0 0 0 0 1 ID005
2 16 18 3 0 0 1 0 1 ID006
3 12 11 1 0 2 1 2 0 ID007
4 14 13 1 0 2 1 0 1 ID008
5 3 2 1 0 2 1 0 2 ID010
6 12 15 1 0 2 1 1 0 ID009
7 3 13 1 0 2 1 3 0 ID011
8 7 4 1 0 2 1 0 0 ID012
14 16 19 3 0 0 0 1 0 ID001
9 7 5 1 0 2 1 0 1 ID013
12 17 18 3 0 0 0 2 0 ID002
10 6 9 1 0 2 1 0 0 ID014
15 16 18 3 0 0 0 0 1 ID003

4.5.5 Considering inbreeding coefficients in A−1

By default, RENUMF90 creates a pedigree file which will result in A−1 without inbreeding. To put
inbreeding coefficients in A−1, you have to generate a special, renumbered pedigree-file by RENUMF90
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using the INBREEDING keyword.3 This keyword should be placed after UPG_TYPE.
The basic usage of this option is shown below.

INBREEDING
pedigree

You should put the literal word pedigree here (you shouldn’t replace it with the pedigree file name).
With this option, RENUMF90 calculates inbreeding coefficients with Meuwissen and Luo (1992) based
on the pedigree to be saved in the file renaddxx.ped which has been possibly pruned by some genera-
tions (see PED_DEPTH for details).

If you want to supply pre-calculated inbreeding coefficients stored in a file, use the different option.
Assuming your file is inb.txt, the following option can be used.

INBREEDING
file inb.txt

The file is a space-separated text file with 2 columns: 1) the original animal ID and 2) inbreeding
coefficient (ranging from 0 to 1).

The following example uses the pedigree option.

Listing 4.23: renum9d.txt

DATAFILE
rawdata9.txt
TRAITS
5
FIELDS_PASSED TO OUTPUT

WEIGHT(S)

RESIDUAL_VARIANCE
1.0
EFFECT # 1st effect
2 cross alpha
EFFECT # 2nd effect
3 cross alpha
EFFECT # 3rd effect
4 cov
EFFECT # 4th effect = animal
1 cross alpha
RANDOM
animal
FILE
rawpedigree9.txt
INBREEDING
pedigree
(CO)VARIANCES
1.0

3Technically, the alternative, renumbered pedigree-file has the same as the standard one except for the 4th column. In the alternative
pedigree, the 4th column has a special 4-digit integer (inb/upg code) which combines the inbreeding coefficients and the number
of missing parents. Although the user can manually calculate the code, this process may be complicated, and I recommend the
user to use RENUMF90 to generate the pedigree file with such a code.
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The resulting pedigree file renadd04.ped has the inb/upg code in the 4th column.

Listing 4.24: renadd04.ped

1 7 5 2000 0 2 1 0 0 ID015
13 0 0 1000 0 0 0 0 2 ID004
11 0 0 1000 0 0 0 0 1 ID005
2 0 0 1000 0 0 1 0 1 ID006
3 12 11 2000 0 2 1 2 0 ID007
4 14 13 2000 0 2 1 0 1 ID008
5 3 2 2000 0 2 1 0 2 ID010
6 12 15 2000 0 2 1 1 0 ID009
7 3 13 2000 0 2 1 3 0 ID011
8 7 4 2000 0 2 1 0 0 ID012
14 0 0 1000 0 0 0 1 0 ID001
9 7 5 2000 0 2 1 0 1 ID013
12 0 0 1000 0 0 0 2 0 ID002
10 6 9 2133 0 2 1 0 0 ID014
15 0 0 1000 0 0 0 0 1 ID003

Looking at the 4th column, when an animal has non-inbred parents, the value should be 1000 with
unknown parents, 1333 with one parent unknown, or 2000 with known parents. Animal 10 (ID014) has
inbred parents so the inb/upg code is different from the other animals.

4.5.6 Order of keywords
The keywords used in the instruction file should be ordered following the manual. Here we show the
exact order of keywords supported by RENUMF90.

Keyword optional possible values

COMBINE optional definition of new field as a combination of existing fields
DATAFILE mandatory name of raw data file
TRAITS mandatory positions of observations in the raw data file
FIELDS_PASSED mandatory positions of items in the raw data file to be passed to renf90.dat
WEIGHT(S) mandatory positions of weights in the raw data file
RESIDUAL_VARIANCE mandatory residual covariance matrix
EFFECT mandatory effect description
NESTED optional positions of nested covariates
RANDOM optional declaration of random effect
FILE optional name of raw pedigree file
FILE_POS optional positions of animal ID, sire ID and dam ID
SNP_FILE optional name of SNP marker file
PED_DEPTH optional the maximum generation back from animals with phenotype or genotype
GEN_INT optional generation interval to set unknown parent groups (UPG)
REC_SEX optional check if records are found in specific sex
UPG_TYPE optional UPG specification
INBREEDING optional create pedigree file with inbreeding
RANDOM_REGRESSION optional put covariates for random regressions
RR_POSITION optional positions of covariates for random regressions
(CO)VARIANCES optional covariance components
(CO)VARIANCES_PE optional covariance components for animal’s PE effects
(CO)VARIANCES_MPE optional covariance components for maternal PE effects
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Keyword optional possible values

OPTION optional option parameters

4.6 What if I don’t want to use RENUMF90?
It happens that the user does not want to use RENUMF90. Common reasons for this are:

• It is simulated data and it is already renumbered
• I do my own renumbering and I want to use it
• I have a complex model and I want better control on the recorded numbers

In the next section, we will give instructions on how the files should be coded. We will not give software
but you may take a look here.

4.6.1 Main requirements of recoding for BLUPF90 programs
• Levels of effects should be coded with consecutive numbers. The order may be “natural” or not. For

instance, if years in data are (2010, 2011, 2013, 2014) may be renumbered as (1,2,3,4) or (2,1,3,4).
• The animal is another effect, so it has receive codes from 1 to the number of animals in the pedigree

file (this is usually greater than the number of animals in the data file).
• The animal effect does not need to be renumbered in consecutive order (parents before offspring),

but this order is a correct one and may be used. So, for instance, this renumbering is correct:

Listing 4.25: ped_kempthorne

A 0 0
B 0 0
D A B
E A D
F B E
Z A B

could be recoded as

Listing 4.26: ped_kempthorne_recoded

1 0 0 A 0 0
2 0 0 B 0 0
3 1 2 D A B
4 1 2 Z A B
5 1 3 E A D
6 2 5 F B E

(the last three columns are not needed but help the visualization).

4.6.2 Unknown parent groups
However, if unknown parent groups (UPGs) are in the pedigree, things get more complicated. Assume
that we have n real animals and m UPGs. Animals have to be renumbered with codes from 1 to n, and
UPGs have to be renumbered with codes from n+ 1 to n+m. In addition, because they do not have
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ancestors, the UPGs must not have a line on their own in the pedigree file for BLUPF90. In that way,
BLUPF90 “knows” that a given number is a UPG and not an individual. For instance, in the previous
example assume that UPGs are “unknown2000” and “unknown2004”:

Listing 4.27: ped_kempthorne_unknown parent groups

A unknown2000 unknown2000
B unknown2000 unknown2004
D A B
E A D
F B E
Z A B

It should be recoded as follows.

Listing 4.28: ped_kempthorne_unknown parent groups_recoded

1 7 7 A unknown2000 unknown2000
2 7 8 B unknown2000 unknown2004
3 1 2 D A B
4 1 3 E A D
5 2 4 F B E
6 1 2 Z A B

4.6.3 Genotypes
Genotypes should be coded as 0/1/2 for {AA, Aa, aa} and 5 for missing as described elsewhere in this
tutorial, in a text format with fixed file. The first column of this file contains (possibly alphanumeric)
identifiers for animals, for instance:

Listing 4.29: genotype_file

A 120120202102111
Z 121111202111010

The only important requirement is the creation of the cross-reference file (usually called _XrefID).
This file contains the original ID and the new ID in the renumbered pedigree and data files. In the
previous example it would be:

Listing 4.30: genotype_file_XrefID

1 A
6 Z

4.6.4 Overall mean
BLUPF90 programs do not include by default an overall mean !! If you need one, add it by yourself as a
column of 1s in the data file
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5 Variance component estimation

5.1 Restricted (residual) maximum likelihood with
AIREMLF90

5.1.1 REML software
REML (restricted/residual maximum likelihood) is a popular method to estimate variance components in
animal breeding. BLUPF90 family currently provides 2 programs supporting different algorithms.

• AIREMLF90 supports the average information (AI) algorithm.
• REMLF90 supports the expectation-maximization (EM) algorithm.

The AI algorithm (AI REML) is an iterative method which needs initial values of variance components.
In the first round, the algorithm produces new values based on the initial values. In a subsequent round,
the new values come from the previous values. With several iterations, the values are expected to be close
enough to the estimates of variance components. The EM algorithm (EM REML) is another iterative
scheme and the computational details are different from AI REML. See Misztal (2008) for details on
differences between the algorithms.

AIREMLF90 for AI REML and REMLF90 for EM REML have the common usage. The estimates
should be identical between 2 programs in theory. We will introduce the usage of AIREMLF90 only
because this program has been the first choice of REML computations and it provides the (approximated)
standard error of genetic parameters. Also, AIREMLF90 can use the EM-algorithm with an option in the
parameter file.

5.1.2 Preparation
AIREMLF90 uses the same parameter file as BLUPF90 uses. AIREMLF90 reads the variance com-
ponents as initial values (starting values) from the parameter file. In this section, we will use simu-
lated files that have more observations than before. You can download the files from Github (https:
//github.com/masuday/data).

• simdata.txt : data file
• simped.txt : pedigree file

The pedigree file contains 3 columns: animal, sire, and dam. The data file has 12 columns as described
below.

Column Item type description

1 Animal ID integer Same as in pedigree (4641 animals)
2 Sire ID integer Same as in pedigree
3 Dam ID integer Same as in pedigree
4 Weight real Not used here
5 Mu integer All 1: not used here
6 Farm integer Class effect (155 levels)
7 Sex integer Class effect (2 levels)
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Column Item type description

8 Year integer Class effect (11 levels)
9 Obs. 1 real Phenotype for trait 1
10 Obs. 2 real Phenotype for trait 2
11 Obs. 3 real Phenotype for trait 3
12 Obs. 4 real Phenotype for trait 4

5.1.3 Single-trait analysis
Model

We here consider the following animal model:

yi jkl = Fi +S j +Yk +ul + ei jkl

where yi jkl is an observation, Fi is the fixed farm effect, S j is the fixed sex effect, Yk is the fixed year effect,
ul is the additive genetic effect, and ei jkl is the random residual effect. The purpose of this analysis is to
estimate the additive genetic variance (σ2

u ) and the residual variance (σ2
e ).

Parameter file

Let us start with a single-trait analysis for phenotype 1 (column 9). The model contains farm, sex, and
year as fixed cross-classified effects and the additive genetic effect as a random effect. Place the following
parameter file to a directory with the data and pedigree files. Although this parameter file is for variance
component estimation, it looks like the same as used by BLUPF90.

Listing 5.1: aireml1.txt

DATAFILE
simdata.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
4
OBSERVATION(S)
9
WEIGHT(S)
4
EFFECTS:
6 155 cross
7 2 cross
8 11 cross
1 4641 cross
RANDOM_RESIDUAL VALUES
100
RANDOM_GROUP
4
RANDOM_TYPE
add_animal
FILE
simped.txt
(CO)VARIANCES
100

67



5 Variance component estimation

The variance components in the parameter file will be used as the initial values (σ2
e = 100 and σ2

u = 100)
in AI REML.

Intermediate estimates

Running AIREMLF90 with the above parameter file, the program reports the intermediate estimates in
the current round. AI REML is an iterative method — the variance estimates will change in each round
and the updated values are expected to approach the final estimates. After some rounds, when the change
is very small, we can consider the values converge on the estimates. We show the messages from the first
round.

-2 logL = 34141.8991194978 : AIC = 34145.8991194978
In round 1 convergence = 0.240696612717812
delta convergence = 40.9948020571449
new R

50.924
new G

67.087

Some information is available.

• -2logL = negative twice of the restricted likelihood with the current variance components (along
with BLUE and BLUP).
• AIC = −2logL+2p where p is the number of unique variance components
• convergence = the current convergence indicator (see below)
• delta convergence = another convergence indicator
• new R = updated residual variance (σ2

e )
• new G = updated genetic variance (σ2

u )

In each round, the program computes two convergence indicators. One convergence indicator (C) is
calculated as

C =
∑i(θi−θ ∗i )

2

∑i θ 2
i

where θi is the current estimate of i-th variance component and θ ∗i is the previous estimate of i-th variance
component. This criterion is also used in REMLF90. The other indicator, called the delta convergence
(C∆), is calculated as

C∆ =
∑i |θi−θ ∗i |

n
where n is the number of unique (co)variance components. This indicator represents the average absolute
change across the estimates.

The iteration stops if C < ε or C∆ <
√

ε where ε is the convergence criterion and its default is ε = 10−12

(1.0E-12). When one indicator approaches the criterion, the other one usually approaches the criterion
as well.

Final estimates

If either of convergence indicators meets the criterion, the iteration stops and the final estimates will be
shown on the screen. For the current data and initial values, we need 8 rounds to converge.

-2 logL = 33423.4510659485 : AIC = 33427.4510659485
In round 8 convergence = 3.476428650201818E-015
delta convergence = 1.835758207312910E-006
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new R
62.691

new G
38.538

solutions stored in file : "solutions"

Final Estimates
Genetic variance(s) for effect 4
38.538

Residual variance(s)
62.691

inverse of AI matrix (Sampling Variance)
13.471 -6.7551
-6.7551 6.5499
Correlations from inverse of AI matrix
1.0000 -0.71914
-0.71914 1.0000
SE for G
3.6703

SE for R
2.5593

The program ends with Final Estimates showing the variance estimates at convergence. The same
information will be saved in the file airemlf90.log. The final estimates are σ̂2

u = 38.538 and σ̂2
e =

62.691 so that the heritability estimates is ĥ2 = 0.3807. The program doesn’t show the heritability by
default, and the user should calculate it manually.

The program saves the solutions of mixed model equations with the recent variance estimates in file
“solutions”. Note that the solutions don’t come from the last variance estimates but one round before
the convergence. In this example, the solutions are from the variance estimates in round 7. When the
algorithm works well and converges correctly, the last variance estimates are almost the same as the
previous estimates, so the difference between the two solutions is negligible. If the convergence trajectory
fluctuated, two solutions could be distant. In such a case, the variance estimates themselves are unreliable.
At the end of this section, we will consider convergence problems.

Approximated standard error

The approximated standard error (sampling variance) for a variance estimate is available from the inverse
of the AI matrix. Suppose a parameter vector is θ and the AI matrix is I (θ), the sampling variance of θ̂

is
var(θ̂) = [I (θ)]−1

where [I (θ)]−1 is the inverse of the AI matrix. In this example, θ =
[

σ2
u σ2

e
]′. The square root of

the diagonal of [I (θ)]−1 are shown as the SE for G (
√

13.471) and SE for R (
√

6.5499) in the last
lines of output.

Unfortunately, the program doesn’t calculate the standard error of the heritability. You can still cal-
culate the approximated standard error of a function of variance components (e.g. heritability) with the
delta method by hand. See the documentation on the official wiki (http://nce.ads.uga.edu/html/
projects/AI_SE_revised.pdf) for details. Here we just show a way of the calculation of the standard
error for heritability estimates. The heritability estimate is 0.3807. Using the approximation, the standard
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error is

SE
(
h2)=

(
h2

σ2
u

)[
(1−h2)2var(σ̂2

u )−2(1−h2)h2cov(σ̂2
u , σ̂

2
e )+(h2)2var(σ̂2

e )
]

=

(
0.3807
38.54

)[
(1−0.3807)2×13.471−2(1−0.3807)×0.3807× (−6.755)+(0.3807)2×6.550

]

= 0.007

Another way to evaluate the S.E. for the heritability estimate was the Monte-Carlo method suggested by
Meyer and Houle (2013). You can find a do-it-yourself description of the method at (http://artadia.
blogspot.fr/2016/05/standard-error-of-variance-components.html). AIREMLF90 can con-
duct this method with an option. You can add the following line to the bottom of the parameter file and
run AIREMLF90.

OPTION se_covar_function h2 G_4_4_1_1/(G_4_4_1_1+R_1_1)

This option has 2 arguments: label and formula. The label can contain arbitrary characters. The
formula describes an objective function for which the standard error should be calculated (σ2

u /(σ
2
u +σ2

e
) in this case). The formula is described using special labels for variance components. For an genetic
covariance component, use G_effect1_effect2_trait1_trait2; and for a residual covariance, use
R_trait1_trait2. In this single-trait case, the genetic variance σ2

u is defined as the effect 4 in the
parameter file so we refer σ2

u as G_4_4_1_1. Similarly, we refer σ2
e as R_1_1. Any spaces are not

allowed in the formula. See the manual for details on this option.
After the main iterations, the program calculates an approximated standard error using a Monte-Carlo

technique of Meyer and Houle. In this case, you can see the following output on the screen.

h2 - Function : g_4_4_1_1/(g_4_4_1_1+r_1_1)
Mean : 0.38070
Sample Mean : 0.38014
Sample SD : 0.30140E-01
elapsed time 1.098833

In the output, Sample Mean should be almost identical to the estimate. Sample SD is seen as an
approximated standard error, which is 0.03 (0.30140E-01 is 0.30140×10−1 i.e. 0.03014).

Don’t worry if you have forgotten to add the option to the parameter file. You can prepare a param-
eter file with the option se_covar_function and the variance components at convergence. Running
AIREMLF90 again, and the program will stop within 1 or 2 rounds and it will calculate the approximated
standard error of the parameter.

5.1.4 Convergence problems
The AI algorithm doesn’t guarantee the convergence. Sometimes you couldn’t meet the convergence in 2
ways:

• Divergence. The estimates suddenly jump to nonsense values and the program stops.
• Slow. The estimates hardly change and the program takes many rounds (several hundred or more).

The problems come from several reasons.

1. Mistakes in the parameter file, data, and/or pedigree.
2. Wrong initial values.

70

http://artadia.blogspot.fr/2016/05/standard-error-of-variance-components.html
http://artadia.blogspot.fr/2016/05/standard-error-of-variance-components.html


5 Variance component estimation

3. A too complicated model with a limited amount of observations and/or pedigree.
4. Too many variance components to be estimated.

If your files are correct and the initial values don’t solve the issues, change your model to be simplified.
AIREMLF90 tries to correct nonsense estimates using a technique described by Jensen at al. (1996).

The method blends the AI matrix from the regular algorithm (IAI) with the AI matrix from the EM
algorithm (IEM) i.e. I (θ) = (1−w)IAI +wIEM with a weight w. If w = 1, the algorithm is equivalent
to the regular EM algorithm, which always provides estimates within their parameter space. If an estimate
is not positive definite (i.e. nonsense value), AIREMLF90 sets a small w, blends two AI matrices, and
recalculates the estimates with the modified AI matrix. The program repeats this blending increasing w
until the estimates make sense. AIREMLF90 gives up this process after 5 trials (in the end, w is 1 or
similar value) and prints a message.

*** Warning *** corrected Covariance Matrix 5 times

In such a case, the estimates may be nonsense.
The blending is a band-aid method and successful only when the AI matrix is accidentally singular.

If the blending happens every round, you can still obtain estimates but you need much more rounds to
converge.

5.1.5 EM-REML algorithm
The EM (expectation-maximization) REML algorithm is much more stable than the AI algorithm and
very robust to poor initial estimates. Also, it can provide a good starting point for the AI algorithm.
However, it is much slower, that is, it needs more rounds to converge. For some very complex problems,
only the EM REML may converge.

You can run the EM algorithm using AIREMLF90 by using the option:

OPTION EM-REML 10

where 10 (or any integer value) is the number of iterations with EM REML prior to switching to AI
REML. If you want a “pure” EM REML, then set the number to a very large value like 10000.

5.1.6 Constraints on variance components
The user may hope to fix some variance components fixed (constant) through the iterations. Although
AIREMLF90 doesn’t support such a general constraint on variance components, the program supports to
force some variance components to be 0. This is useful when such variance components will never be
included in the model or when some covariance components should be 0 in a complicated model. When
the initial variance component is 0, this component never changes throughout the iterations. For example,
the following parameter file forces the direct and maternal genetic covariance fix to be 0.

DATAFILE
renf90.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
4
OBSERVATION(S)
6
WEIGHT(S)
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EFFECTS:
4 3 cross
5 2 cross
1 14 cross # direct genetic effect
3 14 cross # maternal genetic effect
RANDOM_RESIDUAL VALUES
350.0
RANDOM_GROUP
3 4
RANDOM_TYPE
add_animal
FILE
renadd01.ped
(CO)VARIANCES # fixed to be zero for covariance
150 0
0 90

When the initial values have 0, AIREMLF90 excludes such variance components from the estimation
process. Precisely, AIREMLF90 doesn’t put such parameters to the AI matrix, and therefore, the excluded
parameters will not be calculated in any way. One hand, you may expect a faster computation and a stable
convergence because fewer parameters will be estimated. On the other hand, if the constraint variance
component is not really zero, the other estimates may be biased.

Note that, when the estimate is out of the parameter space and AIREMLF90 fails to fix it by the AI-EM
combination, some variances would accidentally become 0. Once it happens, those variances will not
be back to non-zero. It is not because of the constraint mentioned above. This is simply bacause the
information needed in variance estimation will be lost if the variance is 0.

5.1.7 Summary
• AIREMLF90 calculates REML estimates of variance components.
• AIREMLF90 accepts the same parameter file as BLUPF90 and sets the variance components as

initial values.
• The final estimates are shown on screen and saved in the file airemlf90.log.
• The solutions are also calculated using covariance estimates in one round before the convergence.
• There are 2 methods to approximate the standard error of a genetic parameter.
• AIREMLF90 doesn’t guarantee the convergence even if it tries to make the estimates be in the

parameter space.
• If diverged, use a simpler model.
• For complex problems, you can use the EM algorithm with AIREMLF90.
• If the intial variance component is 0, it will be fixed to be 0 throughout the iterations.

5.2 Gibbs sampling and post-Gibbs analysis

5.2.1 Gibbs sampling software
BLUPF90 family has some software to conduct Gibbs sampling for linear mixed models. We recommend
the user use GIBBS2F90 or THRGIBBS1F90 for a linear mixed model. The THRGIBBS1F90 program
is capable both for a threshold model and a linear model. This program is faster than GIBBS2F90 for a
linear model especially using a large data set. GIBBS3F90 may be useful when you assume heterogeneous
residual variances by class. We will see the difference between Gibbs sampling programs. Here we will
use THRGIBBS1F90 even though the threshold model is not applied.

72



5 Variance component estimation

Gibbs sampling is totally different from REML. We don’t deal with the theoretical background of this
technique here; see Sorensen and Gianola (2002) or Misztal (2008) for details. Roughly speaking, Gibbs
sampling is a process to draw the posterior distribution out of the samples generated as random numbers
based on information available at a specific point. In one round, the Gibbs sampler solves the mixed
model equations with the current variance components and add a small random number (noise) to each
solution. Then the sampler generates a covariance estimate as a random number based on the solutions.
The samples of solutions and variance components in each round are not informative. Having many
samples from many rounds repeated, we can figure the posterior distribution of a variance component as
a histogram out of the samples. You can calculate the average of samples (posterior mean) as a point
estimator of a variance component. You can also calculate the standard deviation of samples (posterior
SD), which is corresponding to the standard error in a frequentist approach (e.g., REML).

THRGIBBS1F90 assumes, by default, noninformative (also known as vague or flat) priors for location
parameters as well as variance components. You can change the degree of belief in the prior distribution
for each variance component using an option in the parameter file.

Gibbs sampling needs post-Gibbs analyses. This can be done with a separate software POSTGIBBSF90,
or with manual processing by the user. The basic pipeline of Gibbs sampling analysis is that

1. use THRGIBBSF90 to generate samples for variance components and
2. use POSTGIBBSF90 to summarize the samples.

Both programs accept the same parameter file as BLUPF90 programs but ask you some additional
questions to control the Gibbs sampler.

5.2.2 Preparation
In this section, we will use the same simulated files which have been already introduced in the previous
section for REML.

• simdata.txt : data file
• simped.txt : pedigree file

The parameter file is the same shown in the previous section. Here we put a different name on this file.

Listing 5.2: gibbs1.txt

DATAFILE
simdata.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
4
OBSERVATION(S)
9
WEIGHT(S)
4
EFFECTS:
6 155 cross
7 2 cross
8 11 cross
1 4641 cross
RANDOM_RESIDUAL VALUES
100
RANDOM_GROUP
4
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RANDOM_TYPE
add_animal
FILE
simped.txt
(CO)VARIANCES
100

The variance components in the parameter file will be used as initial values but the impact of the values
on the results will be small. So you can put any values on the parameter file.

5.2.3 Sampling strategy
Invoking THRGIBBSF90, the program asks you the name of the parameter file.

* Start thrgibbs1f90 ........04-03-2016 12 h 12 m 36 s 173
name of parameter file?

After typing the name, then the program will ask you another question.

number of samples and length of burn-in

You should input 2 integer numbers here.

• The total number of samples to be generated.
• The number of burn-in; the first samples to be discarded.

The 2 numbers should be separated with space or newline (i.e. Enter key). The number of burn-in
should be smaller than the total number of samples. If you are not sure about the number of burn-in,
just put 0. After the sampling, you can manually discard any number of burn-in samples using a tool,
POSTGIBBSf90. If you generate 5,000 samples and discard the first 1,000 samples as burn-in, you can
key-in as follows (no commas are allowed).

5000 1000

You will be asked one more question.

Give n to store every n-th sample ? (1 means store all samples )

You should put one integer number here.

• The size of the interval to save the samples.

For example, if you want to save the sample every 10 rounds, type 10 here.

10

If you want to save all the samples, type 1 instead. After this, the program starts sampling.
What is the appropriate number of sampling? What is the best interval? The answer depends on the

model and data. We will consider this question later in this section.
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5.2.4 Constraints on variance components
As explained previously in the AI REML section, the program supports to force some variance compo-
nents to be 0. When the initial variance component is 0, this component never changes throughout the
iterations. See the previous section to see the example of the initial values with 0.

There is the difference between AIREMLF90 and THRGIBBS1F90 (and the other Gibbs samplers) on
the constraints. Whereas AIREMLF90 never computes the estimates of the constraint variance compo-
nents, the Gibbs samplers actually calculate all variance components, and then, replace the target param-
eters with 0. It means that the Gibbs samplers have the same computing cost on the constraints as the
non-constraint case.

The same as AIREMLF90, THRGIBBS1F90 tries to fix the estimated variance components which are
out of the parameter space. During this process, some variances may become 0. Again, the same as
AIREMLF90, once it happens, such variances may never come back to non-zero values simply because
no information is available to estimate the variance parameters. If you see such accidental zeros during
the iterations, it implies that your model is suboptimal or, the amount of data is not enough to estimate
the variance components.

5.2.5 Results shown on screen
Intermediate results

During the sampling, the program always prints the sampled variances in each round.

5000 rounds
G

36.27
R

62.00

Final posterior mean and SD

The program actually calculates the sampled solutions in each round as well. At the end of sampling, the
program shows several statistics on screen. You don’t always need all the information. We break it down
here.

elapsed time per iteration 6.7236428 E -03 : total 33.61821
* End of iteration04 -03 -2016 12 h 27 m 05 s 101
ave G
39.03

SD G
3.579

ave R
62.58

SD R
2.506

• ave G and SD G: Posterior mean and SD for σ2
u . Average and standard deviation of saved sam-

ples after removing burn-in.
• ave R and SD R: Posterior mean and SD for σ2

e . Average and standard deviation of saved sam-
ples after removing burn-in.
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Final status of sampling

These are not essential for a regular analysis.

* Last seeds = 2101474043 1031647242
* Number of samples kept = 4000
solutions stored in binary file : " last_solutions "

• Last seeds: Seeds of random number generator. Usually, the values are not crucial.
• Number of samples kept: The total number of samples after burn-in.
• solutions stored in a binary file: "last_solutions": The last sampled solutions are

stored in last_solutions. Usually, the file is not essential.

DIC and related information

DIC (Deviance Information Criterion) can be used to compare 2 or more models like AIC (smaller is
better). In each round, the program calculates partial information to form the DIC. In a general notation,
we can write a likelihood function as logL(θ) with parameters θ . In above mode, we assume that N is
the number of observations and σ̂2

e[k] (i.e. θ̂k) is a sampled residual variance in round k after burn-in, a
deviance Dk in round k is defined as

Dk =−2logL(θ̂k) =−2
N

∑
i=1

[
C+

ê2
i

σ̂2
e[k]

]

where C is log(2πσ̂2
e[k]) and êi s a observed residual for observation i (i.e. y− ŷ : observation minus

sampled solutions). With m samples after burn-in, D̄, an estimate of the expectation of D, is defined as

D̄ =
∑

m
k=1 Dk

m

Similar statistics are also calculated with posterior mean of σ2
e . We calculate the posterior deviance D(θ̄)

using above formula for Dk except σ̂2
e[k] (i.e. θ̂k) is replaced with its posterior mean σ̂2

e i.e. θ̂ as follows

D(θ̄) =−2logL(θ̂) =−2
N

∑
i=1

[
C+

ê2
i

σ̂2
e

]

These statistics are calculated using the samples stored after burn-in. THRGIBBSF90 prints the following
quantity as DIC.

DIC = 2D̄−D(θ̄)

THRGIBBS1F90 saves every Dk to a file fort.99.
The output is corresponding to the above formulas.

****************************************
***************** DIC ******************
****************************************
detR 62.5820466970185
# stored samples 400
D-bar 32364.1379063698
D(theta-bar) 30968.7777134920
DIC = 2*D-bar - D (theta-bar) = 33759.4980992475
Effective number of parameters = 1395.36019287775
solutions stored in file : "binary_final_solutions"
* End program04-03-2016 12 h 27 m 06 s 001
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• detR: Determinant of posterior mean of the residual covariance matrix (|R0| in the general case
and |σ2

e | in this case).
• # stored samples: The in geneal number of samples saved in a file (m above).
• D-bar: D̄
• D(theta-bar): D(θ̄)
• DIC = 2*D-bar - D(theta-bar): 2D̄−D(θ̄)
• Effective number of parameters: D̄−D(θ̄)
• solutions stored in file: "binary_final_solutions": posterior means for sampled so-

lutions after burn-in.

The estimated genetic variance is σ̂2
u = 39.03(±3.579) and the estimated residual variance is σ̂2

e =
62.58(±2.506). If you believe the numbers of samples and burn-in are appropriate, you can use the above
posterior mean and SD as the final results. Otherwise, and in most cases, you should run POSTGIBBSF90
to perform the post-Gibbs analyses to confirm the numbers of samples and burn-in were enough to draw
posterior statistics for variance parameters.

5.2.6 Generated files
THRGIBBSF90 generates several files including the following.

• gibbs_samples: Samples of variance components in specific rounds after burn-in.
• fort.99: Deviance in specific rounds after burn-in.
• last_solutions: The last sampled solutions saved in a binary form.
• binary_final_solutions: Posterior means for sampled solutions from specific rounds after

burn-in saved in binary form.

The samples and calculated statistics are based on samples in every n rounds after burn-in, where n is
an interval which you type-in at the beginning of the program.

The file gibbs_samples will be used by POSTGIBBSF90 to run post-Gibbs analyses. The number of
samples stored in this file depends on your initial answers. For example, using 5,000 samples with 1,000
burn-in and 10 sample intervals, the file will have 400 samples i.e. (5000− 1000)/10. The second file
fort.99 is optional and it will be used in the post-Gibbs analyses. The last_solutions file is useful
to continue the analysis from the last round; you do not usually have to see the inside of this file. The
last file binary_final_solutions contains samples of solutions for “fixed” and “random” effects. You
may want to see the solutions but it is not a text file. In the next section, we will consider the advanced
techniques including the extraction of solutions from this file.

5.2.7 Post Gibbs analyses
Invoking POSTGIBBSF90

POSTGIBBSF90 performs post-Gibbs analyses reading the parameter file, gibbs_samples, and fort.99.
You have to run POSTGIBBSF90 in a directory where you have these files. Invoking the program, it prints
the following message.

name of parameter file?

Type in the name of the parameter file used in this analysis. Then the program checks if gibbs_samples
was really generated from the parameter file. If success, you will see the information about the total num-
ber of saved samples.

77



5 Variance component estimation

POST-GIBBSF90 3.06
# parameters in gibbs_samples = 2
Read 400 samples from round 1010 to 5000

Then, POSTGIBBSF90 asks you another question.

Burn-in?

It is a tricky question. You should not input the same number what you typed at the beginning of
THRSIBBS1F90. The burn-in samples were already discarded. This question asks you the number of
additional samples to discard as burn-in. The answer is

• 0 if you don’t discard any more samples as burn-in,
• Or, any integer number if you need to discard additional samples as burn-in.

After this, you will be asked the last question.

Give n to read every n-th sample? (1 means read all samples)

Before typing 1 to keep all the samples, please wait for a moment. This question asks you the number of
intervals (thinnings) that you typed-in when you ran THRGIBBSf90. If you want to keep all the samples
you have drawn, you have to put the same number as you put before. Or, you can input a multiple of
the original number. For example, in this case, you can input 10, 20, 30 and so on, because the original
interval was 10. If you type an inappropriate number, the program will stop with a suspicious message.

5.2.8 Post statistics
We will see the following table with many statistics when we input 0 as burn-in and 10 as steps in our
example.

# samples after burn-in = 400
# samples after burn-in used = 400

******** Monte Carlo Error by Time Series ********
Pos. eff1 eff2 trt1 trt2 MCE Mean HPD Effective Median Mode Independent

Interval (95%) sample size chain size
1 4 4 1 1 0.36091 39.035 32.030 45.270 98.1 39.060 39.175 6
2 0 0 1 1 0.19923 62.582 57.640 67.440 157.8 62.640 63.362 4

******** Posterior Standard Deviation ********
Pos. eff1 eff2 trt1 trt2 PSD Mean PSD Geweke Autocorrelations Independent

Interval (95%) diagnostic lag: 1 10 50 # batches
1 4 4 1 1 3.5788 39.035 32.020 46.049 -0.09 0.660 -0.076 0.017 66
2 0 0 1 1 2.5062 62.582 57.670 67.494 0.09 0.406 -0.023 0.070 100

The output has 2 main tables. Each table contains statistics for each variance components. Variance
components can be identified with the columns Pos. eff1 eff2 trt1 trt2.

• Pos. is the position index of a parameter.
• eff1 and eff2 are the effects in which the variance defined. Without maternal genetic effect or

random regressions, eff1 equals eff2.
• trt1 and trt2 are corresponding traits. In a single-trait model, trt1 equals trt2.

In this case, we have 2 variances; one (σ2
u ) is the genetic variance defined as the 4th effect and the

other one is the residual variance (σ2
e ). This is from a single-trait model, so the trait number should be 1.

Finally we find the position 1 is for σ2
u and the position 2 is for σ2

e .
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As you see, this program displays plenty of information. We just pick essential numbers only. The rest
of the items will be covered with the next section.

• Mean: Posterior mean.
• HPD Interval (95%): High posterior density interval with 95%.
• Median: Posterior median.
• Mode: Posterior mode. It would provide a better estimate than posterior mean if the posterior

distribution is highly skewed.
• Independent chain size: The “effective” number of samples after adjusting autocorrelations

among samples.
• PSD: Posterior standard deviation.
• Autocolletations: Lag-correlation between 2 samples with a specific interval.

This table shows several point-estimates including posterior mean, median, and mode. A reasonable
estimate depends on its skewness of the posterior distribution. If the distribution is highly skewed and the
mean is apart from the mode, the posterior mode or median could be a better choice. Note that the mode
is just approximated from 50 interval classes.

High posterior density interval (HPD95) is often cited statistics to evaluate the accuracy of the param-
eters. This is a kind of interval estimates of a parameter. The values are the lower and upper bounds by
cutting off the sorted samples at the top 2.5% largest and the bottom 2.5% smallest values.

You can evaluate a sufficient interval for samples to be saved using Independent chain size and Auto-
correlations. Two adjacent samples are usually highly correlated because the next sample is drawn based
on the current one. When the correlation is still high between distant samples, the dependency-level is
also high and the absolute values of the samples should be very similar. It simply means the samples don’t
provide much information about the posterior distribution. The autocorrelation indicates how many inter-
vals between samples we need to achieve the zero-correlation. The independent chain size corresponds
to the number of independent samples that can be seen as independent. If the independent chain size is 3,
the statistics (i.e. posterior mean and SD) are equivalently calculated using only 3 independent samples,
and obviously, this is too small. This indicates whether you need more samples or not.

Time-series plot and histogram

After showing the above table, the program waits for your key-in with the following message.

Choose a graph for samples (= 1) or histogram (= 2); or exit (= 0)

POSTGIBBSF90 can draw a time-series plot or histogram of samples. It uses external software
Gnuplot to show the graph. So, to obtain the plot, you have to have Gnuplot in your system. You
can type 1 to draw time-series plot, or 2 to draw the histogram for samples. Type 0 to quit the program.

The time series plot visually indicates whether the length of burn-in or total sampling is enough or not.
If the initial samples seem to still keep the initial values, you would need more burn-in. If the samples
stayed longer in a specific value-range, the posterior mean doesn’t represent the entire samples, and you
should draw more samples. The histogram provides a visual image of the posterior distribution. Usually,
it is a one-peak distribution but skewed (with long right tail) more or less. If your distribution has 2 peaks
or very flat, you should check the parameter file for human error, or draw more samples.

5.2.9 Output files from POSTGIBBSF90
POSTGIBBSF90 creates 7 files which are derived from the post-Gibbs statistics described above.

• postout: The same content which is shown on screen.
• postind: Relation of a position index to a variance component.
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• postmean: Posterior means shown in a user-friendly format.
• postmeanCorr: Posterior means for correlations shown in a user-friendly format.
• postsd: Posterior standard deviations.
• fort.998: logL calculated from the file fort.99
• postgibbs_samples: The final samples after removing burn-in and applying thinning.

The postout file contains precise statistics from the post-Gibbs analysis. You can check the position
index with postind. A series of files contains posterior means and SDs for variance components. The
file fort.998 contains logL needed for the computation of Bayes factor.

The file postgibbs_samples is useful especially if you calculate other statistics by yourself. It con-
tains samples after burn-in. The content looks like the following.

1 1010 2 35.60 64.26
2 1020 2 36.98 63.53
3 1030 2 30.92 66.49
4 1040 2 34.93 65.60
5 1050 2 37.38 63.26

The meaning of each column is:

• Column 1: the sequential number for saved samples.
• Column 2: the actual round in which each sample was drawn.
• Column 3: the number of parameters.
• Column 4 or later: actual samples ordered by the position index.

5.2.10 Post-Gibbs Analysis for arbitrary function of variance components
A frequently-asked question is how to compute the posterior distribution of the heritability or the genetic
correlation, a function of variance components. There are two ways to perform the post-Gibbs analysis
on it.

Using the file postgibbs samples

The first option is simpler if you are familiar with scripting. From the file postgibbs_samples, you can
easily draw a graph and calculate additional statistics. For instance, you may compute, at each sample,
the sample of the heritability as a function of the samples of the variance components. The code in R
would be something like this.

a=read.table("postgibbs_samples",header=FALSE)
# tell what each thing is
colnames(a)=c("i","iter","varu","vare")
a$h2=a$varu/(a$varu+a$vare)
hist(a$h2)

In this way, you describe the posterior distribution of h2 from the samples of variance components. This
procedure can be done for any function of the variance components, for instance, genetic correlations.
More sophisticated analysis can be done with R package ‘boa’.

Using an option in the parameter file

The second option is to use the option se_covar_function in a parameter file. The user can define
the function of variance components in the option line, and POSTGIBBSF90 calculates a sample of the

80



5 Variance component estimation

function in each sampling round. The program displays all pos-Gibbs statistics on the screen as the
standard variance components.

The usage of this option was explained in the previous section for AIREMLF90. See the section for
details.

5.2.11 Remarks
You must not run 2 Gibbs-sampling programs in the same directory at the same time. One program will
overwrite gibbs_samples generated by the other programs. If you want to share the data and pedigree
files in multiple jobs, make a separate directory (or folder) and create a copy of the files (or, make a
symbolic link to the file)

There are several options for THRGIBBSF90. For example, one is for continuous sampling with
already finished results (starting sampling from the last round in the previous run). Another one can
put the degree of belief for prior information. Please see the manual for details.

There are many Gibbs sampling programs in BLUPF90 family. The difference is in their implementa-
tion.

• GIBBSF90: initial program; no longer distributed
• GIBBS1F90: much faster in multiple-trait models
• GIBBS2F90: faster in convergence for models with correlated effects (e.g. maternal model or ran-

dom regression models).
• GIBBS3F90: derived from GIBBS2; supporting heterogeneous residual variances; a little bit slower

than GIBBS2.
• THRGIBBS1F90: derived from GIBBS2; supporting threshold models; supporting huge dense

matrices; faster than GIBBS2 especially for large data set; required more memory than GIBBS2.
• THRGIBBS3F90: derived from THRGIBBS1; supporting heterogeneous residual variances.

Actually, recent improvements were done for GIBBS2F90 and THRGIBBS1F90. So we recommend a
user to use these 2 programs if you are not interested in heterogeneous residual variances.

5.2.12 Summary
• THRGIBBS1F90 or GIBBS2F90 is recommended.
• THRGIBBS1F90 can perform Gibbs sampling both with the regular linear mixed models and the

threshold models.
• THRGIBBS1F90 needs the numbers of total samples and burn-ins, and the interval for samples to

be saved.
• THRGIBBS1F90 saves the samples to the file gibbs_samples.
• POSTGIBBSF90 reads gibbs_samples and calculates post-Gibbs statistics.
• POSTGIBBSF90 creates many files containing the statistics.
• You can check whether the initial settings are suitable or not from the output.
• You can conduct post-analyses on a function of variance components with the file postgibbs_samples

by yourself, or using the option se_covar_function by POSTGIBBSF90.
• If the initial variance component is 0, it will be fixed to be 0 throughout the iterations.

5.3 Advanced usage of AIREMLF90

5.3.1 Heterogeneous residual variances
There is a situation where the residual variances vary over conditions. This is known as heteroge-
neous residual variances. There are 2 types of modeling for the heterogeneous residual variances in
AIREMLF90.
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1. The residual variance is related to a covariate. For example, the residual variance for body weight
increase by age of a month. The residual variance can be described as a function of a covariate
(age).

2. The residual variance differs by class. For example, in a test-day random-regression model, we
usually assume different residual variance in each lactation stage. The residual variances are inde-
pendent of each other.

Although AIREMLF90 is designed to handle the first case, the program can also handle the sec-
ond case with a trick. We will see both cases with a numerical example in REML. GIBBS3F90 (and
THRGIBBS3F90) supports the second case.

Model

In this example, we asuume the following model:

yi jkl = Fi +S j +Yk +ul + ei jkl

where yi jkl is the observation, Fi , S j, and Yk are the fixed effects, ul is the additive genetic effect and ei jkl
is the residual effect. The residual variance is defined as the following function

σ
2
e = exp(b0 +b1xi jkl)

where b0 and b1 are the regression coefficients to account for the residual variance and xi jkl is the covariate
measured with the observation yi jkl . The model is based on Foulley and Quaas (1995). AIREMLF90 will
estimate b0 and b1 with user-supplied xi jkl .

Data

In this section, we will use simulated files similar to the previous section. You can download the files
from Github.

• simdata2.txt : data file
• simped2.txt : pedigree file

The pedigree file contains 3 columns: animal, sire, and dam. The data file has 12 columns as described
below.

Column Item type description

1 Animal ID integer Same as in pedigree (4641 animals)
2 Sire ID integer Same as in pedigree
3 Dam ID integer Same as in pedigree
4 Weight real Not used here
5 Mu integer All 1: not used here
6 Farm integer Class effect (155 levels)
7 Sex integer Class effect (2 levels)
8 Year integer Class effect (11 levels)
9 Obs. 1 real Phenotype for trait 1
10 Obs. 2 real Phenotype for trait 2
11 Obs. 3 real Phenotype for trait 3
12 Obs. 4 real Phenotype for trait 4
13 Covariate real Related to residual variance
14 Class integer (Used in the next subsection)
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Column 13 contains a real value as a covariate. In this artificial data, the residual variance is expected to
be larger as the covariate becomes larger. The 14th column contains the heterogeneous-residual-variance
class (3 levels), and it will be used in the next subsection.

Parameter file

The following parameter file is used.

Listing 5.3: aireml2.txt

DATAFILE
simdata2.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
4
OBSERVATION(S)
9
WEIGHT(S)
4
EFFECTS:
6 155 cross
7 2 cross
8 11 cross
1 4641 cross
RANDOM_RESIDUAL VALUES
100
RANDOM_GROUP
4
RANDOM_TYPE
add_animal
FILE
simped2.txt
(CO)VARIANCES
100
OPTION hetres_pos 13
OPTION hetres_pol 4.5 0.5

The options define the model for heterogeneous residual variances.

• OPTION hetres_pos = the position of covariate x in the data file. Intercept b0 is implicitly con-
sidered in the program.
• OPTION hetres_pol = the starting values for b0 and b1.

– You should supply the values for all coefficients including intercept.
– In this example, the initial value will be exp(4.5+0.5) = 148.4 for x = 1.

In the above case, we define only 1 regression coefficient in hetres_pos but the program adds the
intercept. If you put 2 numbers in hetres_pos and also put 2 initial values in hetres_pol, the program
doesn’t add the intercept. In such a case, the model doesn’t contain any intercept but does contain user-
supplied covariates only.

Results

You can run AIREMLF90 with the above parameter file. The following output will be shown.
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Final Estimates
Genetic variance(s) for effect 4
39.384

new R
1 -th trait: 1 -th coefficient = 4.25520168650538
1 -th trait: 2 -th coefficient = 5.886409914144559E-002

inverse of AI matrix (Sampling Variance)
16.773 -0.12514 0.77591E-02

-0.12514 0.41370E-02 -0.16778E-02
0.77591E-02 -0.16778E-02 0.10722E-02
Correlations from inverse of AI matrix
1.0000 -0.47507 0.57858E-01

-0.47507 1.0000 -0.79664
0.57858E-01 -0.79664 1.0000
SE for G
4.0955

SE for R
0.64319E-01

The output shows b̂0 = 4.2552 and b̂1 = 0.058864. This corresponds to σ̂2
e = exp(4.26+ 0.0589×

0.5) = 72.9 for x = 0.5, σ̂2
e = exp(4.26+0.0589×1.5) = 77.4 for x = 1.5 and σ2

e = exp(4.26+0.0589×
2.5) = 82.0 for x = 2.5.

One drawback of this analysis is that the calculations of the standard error for the residual variance are
not easy. The AI matrix contains information for b̂0 and b̂1 (the last 2 rows/columns).

Another modeling by class

The heterogeneous residual variances are accounted for by class. We assume 3 levels in the class. The
14th column in the above data contains the level for each observation. AIREMLF90 doesn’t directly
accept the level number, and we should convert it to a different format.

Having 3 levels is equivalent to defining 3 regression coefficients without intercept. We now assume
the following parameterization without intercept.

σ
2
e = exp(b1x1 +b2x2 +b3x3)

If the observation has the residual variance level 1, we have x1 = 1, x2 = 0, and x3 = 0. For the level 2,
x1 = 0, x2 = 1, and x3 = 0 and for the level 3, x1 = 0, x2 = 0, and x3 = 1. We need 3 covariate with 1 or
0. We add 3 extra columns to the rightmost of the data file.

• tutorials:simdata2a.txt: extended data file

The first 10 rows are shown below.

Listing 5.4: simdata2a.txt

1 0 0 1.00 1 67 1 1 85.0 0.0 92.1 91.0 0.46 1 1 0 0
2 0 0 0.98 1 144 1 1 115.2 103.9 94.8 90.6 1.52 2 0 1 0
3 0 0 1.04 1 92 1 1 93.0 107.4 114.9 107.0 0.00 1 1 0 0
4 0 0 0.97 1 26 1 1 84.0 91.8 93.7 107.1 0.61 1 1 0 0
5 0 0 0.96 1 83 1 1 100.9 87.9 88.9 91.5 0.55 1 1 0 0
6 0 0 0.99 1 62 1 1 69.8 71.5 69.3 0.0 0.88 1 1 0 0
7 0 0 0.97 1 40 1 1 101.2 0.0 92.1 88.6 0.27 1 1 0 0
8 0 0 1.07 1 82 1 1 77.4 72.7 84.1 105.2 1.69 2 0 1 0
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9 0 0 1.01 1 71 1 1 107.8 87.0 97.8 76.0 2.89 3 0 0 1
10 0 0 0.95 1 114 1 1 94.4 100.5 103.8 89.8 1.26 2 0 1 0

The column 15, 16 and 17 contains 1 or 0. In column 15, it is 1 if the level is 1, otherwise 0. In column
16, it is 1 if the level is 2, otherwise 0. In column 17, it is 1 if the level is 3, otherwise 0. With this data
file, the parameter file is as follows.

Listing 5.5: aireml2a.txt

DATAFILE
simdata2a.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
4
OBSERVATION(S)
9
WEIGHT(S)
4
EFFECTS:
6 155 cross
7 2 cross
8 11 cross
1 4641 cross
RANDOM_RESIDUAL VALUES
100
RANDOM_GROUP
4
RANDOM_TYPE
add_animal
FILE
simped2.txt
(CO)VARIANCES
100
OPTION hetres_pos 15 16 17
OPTION hetres_pol 4.5 4.5 4.5

The results from the above parameter file are shown here.

Final Estimates
Genetic variance(s) for effect 4
39.296

new R
1 -th trait: 1 -th coefficient = 4.28231169726656
1 -th trait: 2 -th coefficient = 4.36065608258819
1 -th trait: 3 -th coefficient = 4.38963108448880

inverse of AI matrix (Sampling Variance)
16.735 -0.11982 -0.11288 -0.10685

-0.11982 0.32743E-02 0.75391E-03 0.69459E-03
-0.11288 0.75391E-03 0.31352E-02 0.67693E-03
-0.10685 0.69459E-03 0.67693E-03 0.29536E-02
Correlations from inverse of AI matrix
1.0000 -0.51184 -0.49281 -0.48059

-0.51184 1.0000 0.23530 0.22335
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-0.49281 0.23530 1.0000 0.22245
-0.48059 0.22335 0.22245 1.0000
SE for G
4.0909

SE for R
0.57221E-01

The estimate for the level 1 is σ̂2
e = exp(4.28) = 72.2, for the level 2, σ̂2

e = exp(4.36) = 78.3 and for
the level 3, σ̂2

e = exp(4.39) = 80.6. These values are very similar to the previous results from a regression
parameterization i.e. exp(b0 +b1x) for x = 0.5, 1.5, and 2.5.

Remarks

The methods explained here will not work well for multiple-trait models or complicated models with
many variance components.

5.3.2 Likelihood Ratio Test
REML methods allow statistical testing of variance components. For instance, imagine that we have to
choose one of two competing models:

• model 1 not including the maternal permanent environmental effect
• model 2 including maternal permanent effects.

The Likelihood Ratio Test (LRT) checks if the extra random effect, with associated variance component
gives a better fit of the model, against not fitting it. The model without the extra random effect is the null
(H0) model versus the model with the extra random effect, which is the alternative model (H1). Then the
difference between the two, which is a positive number, is an LRT statistic which follows a mixture of χ2

distributions. The theory of the LRT can be found in standard books and a nice description is in Sorensen
& Gianola book.

Output of AIREMLF90 under H0 is x = −2logL ; output under H1 is y = −2logL. These are positive
numbers, so the smaller the better; always y < x as H1 is a more complex (so more likely) model. The
trick resides in knowing if x− y is “big enough”. The LRT statistic is LRT = x− y, which is a statistic
distributed as χ2. For one variance component, the p-value is (in R) :

pchisq(x-y,1,lower.tail=FALSE)/2

Classical applications of LRT in quantitative genetics include testing h2 > 0 or testing of QTL effects.
An application for association analysis for a multi-allelic gene is (http://dx.doi.org/10.3168/jds.
2013-6570).

Example for test of heritability in dairy sheep

I tested if genetic effects (u) should be fit in an old data set from dairy sheep (80,000 records, 50,000
animals in pedigree) with a model including permanent (σ2

p ), genetic (σ2
p ) and residual (σ2

e ) variances.
Under the complete model H1 (y = Xb+Zu+Zp+ e) ) we have in the (last lines of) the output of

AIREMLF90 :

-2logL = 825227.48

Then we run the reduced model H0 with a parameter file that will not include the genetic effect
(y = Xb+Zp+ e) we have:
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-2logL = 828095.614456413

then the test in R is:

pchisq(828095.614456413-825227.48,1,lower.tail=FALSE)/2

[1] 0

the p-value is so small that we cannot see the difference from 0. We can take the log, then transform to
a scale of − log10(p−value), a scale typically used in GWAS:

pval=pchisq(828095.614456413-825227.48,1,lower.tail=FALSE,log.p=TRUE)/2
> pval
[1] -719.137
-log10(exp(pval))
[1] 312.3172

So, the p-value is p < 10−312, the evidence against H0 is very strong and we should accept that there is
genetic variance in this data set.

5.4 Advanced features in Gibbs sampling programs

5.4.1 Heterogeneous residual variances
GIBBS3F90 supports heterogeneous residual variances defined by a class. Here we will demonstrate an
analysis with the heterogeneity in residual variance.

Files

We use the same data and pedigree file as before.

• simdata2.txt : data file
• simped2.txt : pedigree file

The pedigree file contains 3 columns: animal, sire, and dam. The data file has 12 columns as described
below.

Column Item type description

1 Animal ID integer Same as in pedigree (4641 animals)
2 Sire ID integer Same as in pedigree
3 Dam ID integer Same as in pedigree
4 Weight real Not used here
5 Mu integer All 1: not used here
6 Farm integer Class effect (155 levels)
7 Sex integer Class effect (2 levels)
8 Year integer Class effect (11 levels)
9 Obs. 1 real Phenotype for trait 1
10 Obs. 2 real Phenotype for trait 2
11 Obs. 3 real Phenotype for trait 3
12 Obs. 4 real Phenotype for trait 4
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Column Item type description

13 Covariate real Not used
14 Class integer Heterogeneous residual class

The 14th column contains the heterogeneous-residual-variance class (3 levels) which is used in this
section.

The parameter file has 1 option to define the heterogeneous residual class.

Listing 5.6: gibbs2.txt

DATAFILE
simdata2.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
4
OBSERVATION(S)
9
WEIGHT(S)
4
EFFECTS:
6 155 cross
7 2 cross
8 11 cross
1 4641 cross
RANDOM_RESIDUAL VALUES
100
RANDOM_GROUP
4
RANDOM_TYPE
add_animal
FILE
simped2.txt
(CO)VARIANCES
100
OPTION hetres_int 14 3

The option has 2 arguments.

• OPTION hetres_int = defines the heterogeneous residual class with 2 values: 1) the position of
the class in the data file and 2) the maximum level in the class.

In this case, we specify that the 14th column has 3 levels.
With 20,000 samples (saved each 10 samples) with 10,000 burn-in, the following results can be found.

ave G
39.845

SD G
3.9917

ave R
72.313

SD R
3.9497
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ave R
78.248

SD R
4.4558

ave R
80.646
SD R
4.3320

There are 3 ave_R (and SD_R) blocks. The first one corresponds to the variance in heterogeneous level
1, the second line for level 2 and so on. Compare the above estimates to the results from AIREMLF90
shown in the previous section.

5.4.2 Restart the sampling
After the sampling, you would find more samples are needed. The Gibbs sampling programs support to
restart the sampling from the end point of the previous run. Any Gibbs samplers in recent BLUPF90
programs support this feature.

When the Gibbs sampler finishes sampling, 4 files will be created. To continue the sampling, all the
files are required.

• binary_final_solutions = Posterior means and SDs for location parameters
• last_solutions = The last samples for location parameters
• fort.99 = Values needed for DIC
• gibbs_samples = Sampled variance components

If you want to restart the sampling, you have to add an option to the parameter file. It needs the number
of samples drawn in the previous run. If you had 10000 samples, the option should be

OPTION cont 10000

where 10000 is the number of samples obtained previously. Run the Gibbs sampler with a parameter
file with the above option, and the program restarts the sampling (from 10001 in the example).

5.4.3 Extraction of solutions from binary final solutions
The file binary_final_solutions contains the posterior mean of a location parameter (i.e. a solution
of “fixed” or “random” effect). This file is saved as a non-text format. The following Fortran program
can extract the solutions and print them to a file final_solutions.txt. You can compile the program
using a Fortran compiler (like GFortran) and run it in a directory where the binary final solutions are. The
output format is equivalent to BLUPF90 with OPTION sol_se.

Listing 5.7: binsol_to_textsol.f90

program binsol_to_textsol
implicit none
integer :: io, t, e, l
double precision :: v, sol, se
open(10, file=’binary_final_solutions’, form=’unformatted’, &

status=’old’, iostat=io)
if(io /= 0) stop
open(20, file=’final_solutions.txt’)
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write(20,’("␣trait␣/␣effect␣level␣solution␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣s.e.")’)
do

read(10, iostat=io) t,e,l,sol,se
if(io /= 0) exit
write(20, ’(2i4,i10,2f20.8)’) t,e,l,sol,se

end do
close(10)
close(20)

end program binsol_to_textsol

5.4.4 Output of POSTGIBBSF90
The POSTGIBBSF90 program shows many diagnoses for the Gibbs samples. Here we just show the basic
ideas for the information.

• MCE = Monte Carlo error, corresponding to the ‘’standard error” of the posterior mean of a parameter
(µ̂−µ).
• Mean = Posterior mean of a parameter.
• HPD = High probability density within 95%, close idea to ‘’95% confidence interval” in frequentist

approach.
• Effective sample size = Number of samples after deducting auto-correlation among samples.
• Median = Posterior median of a parameter.
• Mode = Posterior mode of a parameter; just an approximation.
• Independent chain size
• PSD = Posterior standard deviation of a parameter.
• Mean = the same as above.
• PSD Interval (95%) = Lower and upper bounds of Mean ± 1.96PSD.
• Geweke diagnostic = Convergence diagnosis; could be converged if this is < 1.0 (according to the

official manual, this is almost useless because this is < 1.0 in almost all cases).
• Autocorrelations = Lag-correlations with lag 1, 10 and 50; calculated for the saved samples.
• Independent # batches = The effective number of blocks after deducting the auto-correlation

among samples.
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In this chapter, we will see how BLUPF90 applies to a variety of models. We will look at various models
in a standard textbook, Linear Models for the Prediction of Animal Breeding Values, written by Mrode
(2014). We explain how to write a parameter file to handle a model in his book. We will not represent the
content of data, pedigree, and genotype files. You can easily create these files if you have the book. We
do not only solve the equations but do introduce new options and tricks useful for actual data analyses.

6.1 Animal model

6.1.1 Model
Mrode (2014) considered the pre-weaning gain (WWG) as a target trait, and he applied a linear mixed
model to the trait with a fixed effect (sex), a random effect (animal), and the residual effect. Assume that
the genetic variance was σ2

u = 20 and the residual variance was σ2
e = 40. This is a typical animal model

which have been already introduced in the previous chapter.
There are two possible systems of equations: 1) each variance component is explicitly involved in

the equations, or 2) α , the variance ratio, is used. Two systems of equations should result in the same
solutions.

6.1.2 Files
We now prepare the data file (data_mr03a.txt). It includes 5 observations just from 5 animals.

The data file has 5 columns as follows. This is the exact copy of the original table in the textbook.

1. Animal ID (calves)
2. Sex (1 for male and 2 for female)
3. Sire ID
4. Dam ID
5. Observations (WWG, kg)

Column 3 and 4 are not actually used in this analysis.
A pedigree file is also prepared. The 1st column is animal ID, the 2nd column for sire ID and the 3rd

column for dam ID.
The parameter file is following. To obtain the exact solutions, we have OPTION solve_method FSPAK.

With this option, we can calculate the reliability of a solution using the diagonal elements i.e., prediction
error variance (PEV)) of the inverse of the left-hand side of mixed model equations. Additional option
OPTION sol se is needed to calculate PEV.

Listing 6.1: param_mr03a.txt

DATAFILE
data_mr03a.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
2
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OBSERVATION(S)
5
WEIGHT(S)

EFFECTS:
2 2 cross
1 8 cross
RANDOM_RESIDUAL VALUES
40.0
RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
pedigree_mr03a.txt
(CO)VARIANCES
20.0
OPTION solv_method FSPAK
OPTION sol se

6.1.3 Solutions
Invoking BLUPF90 with above parameter file, we immediately see the solution in the file solutions.

Listing 6.2: solutions

trait/effect level solution s.e.
1 1 1 4.35850233 4.88082357
1 1 2 3.40443010 5.66554023
1 2 1 0.09844458 4.34094096
1 2 2 -0.01877010 4.43664612
1 2 3 -0.04108420 4.27297922
1 2 4 -0.00866312 4.13608581
1 2 5 -0.18573210 4.13814812
1 2 6 0.17687209 4.20610397
1 2 7 -0.24945855 4.20407502
1 2 8 0.18261469 4.11029997

The solutions are identical to solutions shown in the textbook (pp.39). The above s.e. is the square
root of diagonal elements of the inverse of the left-hand side. Note that the above s.e. is actually SEP
(standard error of prediction) in the textbook (pp.45) not PEV. This happened because BLUPF90 created
general mixed model equations explicitly containing σ2

e and σ2
u rather than the variance ratio α = σ2

e /σ2
u .

So we don’t need to multiply extra σ2
e by the inverse element to obtain PEV. Below, we will demonstrate

the same left-hand side shown in the textbook and confirm its inverse equals to results in the textbook.

6.1.4 Alternative parameter file
The textbook uses a simplified form of mixed model equations in the single-trait analysis. BLUPF90 can
handle this form with a tricky (not recommended) way. In this form, only the variance ratio matters. The
ratio is α = σ2

e /σ2
u = 2.0 and it is equivalent to assuming σ2

e = 1.0 and σ2
u = 0.5. The parameter file has

these “equivalent” variance components.
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Listing 6.3: param_mr03a1.txt

DATAFILE
data_mr03a.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
5
WEIGHT(S)

EFFECTS:
2 2 cross
1 8 cross
RANDOM_RESIDUAL VALUES
1.0
RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
pedigree_mr03a.txt
(CO)VARIANCES
0.5
OPTION solv_method FSPAK
OPTION sol se

The solutions are the following.

Listing 6.4: solutions

trait/effect level solution s.e.
1 1 1 4.35850233 0.77172597
1 1 2 3.40443010 0.89580057
1 2 1 0.09844458 0.68636303
1 2 2 -0.01877010 0.70149535
1 2 3 -0.04108420 0.67561734
1 2 4 -0.00866312 0.65397259
1 2 5 -0.18573210 0.65429867
1 2 6 0.17687209 0.66504343
1 2 7 -0.24945855 0.66472263
1 2 8 0.18261469 0.64989549

This parameter file will provide the same solutions as before. An advantage of this method is to possibly
reduce the numerical error because of σ2

e = 1, which doesn’t add the noise to the equations. We square
the s.e. to obtain a diagonal element of the inverse of the left-hand side matrix. You can calculate the
reliability or accuracy of the estimated breeding value by hand.

For example, the diagonal element for animal 1 is d1 = 0.686363032 ≈ 0.471 which is the same as the
reference value in the textbook (pp.45). The PEV for animal 1 is PEV1 = diσ

2
e = 0.471× 40 = 18.84.

The standard error of prediction is SEP1 =
√

PEV1 =
√

18.84 = 4.341 which is also the same as the
textbook. The reliability for animal 1 is r2 = 1−SEP2/σ2

u = 1−PEV/σ2
u = 1−18.84/20 = 0.058. You

can confirm that this rule is true for the other animals.

93



6 Various models

6.2 Sire model

6.2.1 Model
Here we apply a sire model to the previous data. The mathematical model is the same as the previous
section but the individual genetic effect is replaced with the sire genetic effect. In this model, we consider
as if an observation belongs to the sire of the animal rather than to the animal itself. Additive genetic
variation is explained by sires. So, the sire variance is σ2

s = 0.25σ2
u = 5 and the residual variance absorbs

the remaining part of genetic variance and σ2∗
e = 0.75σ2

u +σ2
e = 55. The phenotypic variance is the same

(60) between the animal and sire models.

6.2.2 Files
We can use the same data set shown in the previous section (data_mr03b.txt). In this case, we use the
3rd column (sire ID) instead of the 1st column (animal ID) as an animal’s effect.

The pedigree file in sire model for BLUPF90 is different from the one used in the animal model. This
file (pedigree_mr03b.txt) contains 3 columns:

1. The ID for sire.
2. The ID for sire of the sire.
3. The ID for maternal grandsire (MGS) of the sire.

In this case, all MGS are unknown so the 3rd column should be 0 for all animals.
The parameter file is also altered. We put comments around lines to be changed.

Listing 6.5: param_mr03b.txt

DATAFILE
data_mr03b.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
5
WEIGHT(S)

EFFECTS:
2 2 cross
3 4 cross # 3rd column = sire effect; 4 sires
RANDOM_RESIDUAL VALUES # residual variance
55.0
RANDOM_GROUP
2
RANDOM_TYPE # type changed
add_sire
FILE
pedigree_mr03b.txt
(CO)VARIANCES # sire variance
5.0
OPTION solv_method FSPAK

The value add_sire is a keyword for the sire model in BLUPF90. The pedigree file does not have sire
2 because it is missing, but the program doesn’t care about it.
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6.2.3 Solutions
The solutions are following.

Listing 6.6: solutions

trait/effect level solution
1 1 1 4.33567107
1 1 2 3.38198579
1 2 1 0.02200220
1 2 2 0.00000000
1 2 3 0.01402640
1 2 4 -0.04304180

The solution for sire ID 2 is 0.0. BLUPF90 always produces the solution 0.0 for such a missing level
in data and pedigree files. Otherwise, the solutions are identical to the textbook (pp.48).

6.3 Reduced animal model

6.3.1 Model
The reduced animal model is an animal model except that the model includes only parents (i.e. animals
with progeny). Breeding values for animals without progeny will be indirectly calculated using their
parents’ breeding values. We omit the description of the model and theory here. See the textbook or
Quaas and Pollak (1980) for details.

BLUPF90 doesn’t directly support the reduced animal model, but it still handles it using (very) tricky
ways. Some techniques used here will also be used in random regression models and social interac-
tion models. Although there are several ways to perform reduced animal model in BLUPF90, we here
introduce an educational example which is redundant but easier to understand.

6.3.2 Files
We can use the same pedigree file (pedigree_mr03c.txt) to the previous animal model except for
removing animals without progeny (animal 7 and 8 in this case).

The data file is extended with 5 additional columns. We here show few lines of the data file.

Listing 6.7: data_mr03c.txt

4 1 1 0 4.5 4 0.0 0.0 1.0 1.0
...
7 1 4 5 3.5 0 0.5 0.5 0.0 0.8
...

The 6th column (the first additional column) is animal ID but has 0 if the animal has no progeny.
Columns 7, 8, and 9 contain actual values to be added to the incidence matrix W (see the textbook). This
idea is similar to a way to support random regressions. The columns 7 and 8 are 0.0 if the animal is a
parent, or 0.5 otherwise. Column 9 is 1.0 if the animal is a parent, or 0 otherwise.

The column 10 (the last column) contains a weight to adjust residual variance. For parent animals, the
residual variance is σ2

e = 40 and its inverse is 1/σ2
e = 0.025. For non-parents, in this case, the residual

variance should be σ2∗
e = σ2

e + 0.5σ2
u = 40+ 0.5× 20 = 50 and its inverse is 1/σ2∗

e = 0.020. If the
non-parent animal has missing parent, you should set different weight on σ2

u (see the textbook). We use
WEIGHT(S) to alter the residual variances. The program reads the weight from the data file and multiplies
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it by the inverse of residual variance. In our example, the weight is 1.0 for parent animals and 0.8 for
non-parent animals because 0.8× (1/σ2

e ) = 0.8×0.025 = 0.020 and it is the correct value for non-parent
animals.

One issue is how to add these constants to W. BLUPF90 can usually add only values of 1 to the
incidence matrix per record for a cross-classified effect. To overcome this limitation, we introduce a
tricky description in the EFFECT: block in a parameter file.

Listing 6.8: param_mr03c.txt

DATAFILE
data_mr03c.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
4
OBSERVATION(S)
5
WEIGHT(S)
10
EFFECTS:
2 2 cross
7 0 cov 3
8 0 cov 4
9 6 cov 6
RANDOM_RESIDUAL VALUES
40.0
RANDOM_GROUP
4
RANDOM_TYPE
add_animal
FILE
pedigree_mr03c.txt
(CO)VARIANCES
20.0
OPTION solv_method FSPAK

In the EFFECTS: block, the last 3 statements pass the value in the data file through the incidence matrix.
You can see these 3 effects are in one block and only the last statement 9 6 cov 6 define the number of
levels (i.e. the number of animals). For each statement, the program reads the value from the data file (the
position is in the first number of that line) and recognizes it as a covariate (because of the cov keyword)
and puts it into the location in the design matrix corresponding to an animal ID (the location is defined by
the number after cov).

Let’s see what happens when the program process these 3 statements for each record. We consider the
first line of the data file.

4 1 1 0 4.5 4 0.0 0.0 1.0 1.0

• Processing the statement 2 (7 0 cov 3): the program reads the 7th column from the data, and
recognizes it as a real value (0.0), and adds it to W at the location defined by the 3rd column in the
data file (1st column in W).
• Processing the statement 3 (8 0 cov 4): the program reads the 8th column from the data, and

recognizes it as a real value (0.0), and adds it to W at the location defined by the 4th column in the
data file (the location 0; it is ignored).
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• Processing the statement 4 (9 6 cov 6): the program reads the 9th column from the data, and
recognizes it as a real value (1.0), and adds it to W at the location defined by the 6th column in the
data file (4th column in W).

After the process, the first row in W should be the following.
[

0.0 0.0 0.0 1.0 0.0 0.0
]

The we will see the 4th line of the data file.

7 1 4 5 3.5 0 0.5 0.5 0.0 0.8

• Processing the statement 2 (7 0 cov 3): the program reads the 7th column from the data, and
recognizes it as a real value (0.5), and adds it to W at the location defined by the 3rd column in the
data file (4th column in W).
• Processing the statement 3 (8 0 cov 4): the program reads the 8th column from the data, and

recognizes it as a real value (0.5), and adds it to W at the location defined by the 4th column in the
data file (5th column in W).

• Processing the statement 4 (9 6 cov 6): the program reads the 9th column from the data, and
recognizes it as a real value (0.0), and adds it to W at the location defined by the 6th column in the
data file (the location 0; it is ignored).

After the process, the 4th row in W should be the following.
[

0.0 0.0 0.0 0.5 0.5 0.0
]

A similar technique will be used in a competitive model (social interaction model) which needs an
incidence matrix where 2 or more elements take place in one row.

6.3.3 Solutions
You can see the solutions are identical to the textbook (pp.53). You will find the other ways to use the
reduced animal model using the same technique used above. Now BLUPF90 supports the heterogeneous
residual variances. It may simplify the implementation of the reduced animal model. A curious reader
can try this method.

6.4 Animal model with unknown parent groups

6.4.1 Short introduction to unknown parent groups
Unknown parent groups (as known as genetic groups or phantom groups) are one of the less-understood
concepts in animal breeding. We usually assume the mean breeding value in a base population is 0. The
average breeding value by generation or birth year will increase (or decrease) by selection. If we have
complete pedigree back to the base population, the complete phenotype used as the selection criterion and
an appropriate model to describe the factors for observation, the mixed model can provide an unbiased
prediction of breeding values for all animals. But the reality is different. One of the biggest challenges is
incomplete pedigree. Many young animals may have no pedigree information in a population undergoing
selection. In this case, it is an incorrect assumption that unknown parents belong to the base population.
Under the selection, younger animals have significantly higher (or lower) genetic base so their parents
should have a nonzero average of breeding values.
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The genetic group can partially solve this problem. A genetic group looks like a real animal. We assign
a group to unknown parents that are expected to have the same genetic level. A group to be assigned to
parents in the younger generation should be different from a group for older parents because of different
genetic levels. In addition to generation (or birth year), the group may also be defined by sex, a region
of origin, and the selection path. Because the group is a proxy of the base animal, every real animal is a
descendant of genetic groups.

The groups are likely treated as fixed effects. The expectation of breeding value of the base animals
is no longer 0, and it will be replaced with BLUE for the group effect. Therefore, the final prediction of
breeding value for an animal is a mixture of BLUE for the group effect and BLUP for the breeding value.
In spite of this complication, the mixed model equations with groups are surprisingly simple and look like
one from the standard animal model. For theoretical background, see the textbook in addition to Westell
and Van Vleck (1987) and Quaas (1988) for details.

6.4.2 Model
The mixed model with unknown-parernt groups can be written as follows

y = Xb+ZQg+Zu+ e

where Q is a matrix relates the groups to descendant animals and g is the fixed effect for groups. We are
interested in u∗ = u+Qg, i.e., the prediction of breeding value of the individual adjusted by the group
effect accounting for the non-zero expectation of base breeding values. Assuming a single-trait model,
the resulting system of mixed model equations is




X′R−1X X′R−1Z
Z′R−1X Z′R−1Z+A−1

nn /σ2
u A−1

np /σ2
u

0 A−1
pn /σ2

u A−1
pp/σ2

u






b̂
û∗
ĝ


=




X′R−1y
Z′R−1y
0




and

A−1 =

[
A−1

nn A−1
np

A−1
pn A−1

pp

]

where subscript n in A−1 is for real animals and the subscript p is for genetic groups. This A−1 can be
calculated with Henderson’s rule with a small extension (Quaas, 1988). BLUPF90 supports the groups
in a regular framework. The BLUPF90 papers prefer to use unknown parent groups (UPG) rather than
phantom parents or genetic groups.

6.4.3 Files
We can use the same data file as before (data_mr03d.txt).

The pedigree file (pedigree_mr03d.txt) has to contain a group code instead of 0 (unknown parent).
This pedigree file must contain 4 columns.

1. Animal ID (1 or larger integer).
2. Sire ID. Can contain a group code.
3. Dam ID. Can contain a group code.
4. Missing parent status: 1 = both parents known, 2 = one parent known and 3 = both parents unknown.

A group code must be larger than the last ID for real animals. In this example, because we have 8
real animals, codes 9 and 10 should be unknown parent codes. In this example, we have 10 “animals”
(actually 8 actual animals + 2 UPG) in the pedigree. The 4th column is needed to calculate the Mendelian
sampling variance for each animal in the program.

The parameter file is also similar to the previous one. You should make 2 changes.
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Listing 6.9: param_mr03d.txt

DATAFILE
data_mr03d.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
5
WEIGHT(S)

EFFECTS:
2 2 cross
1 10 cross # change the number of animals to 10 including groups
RANDOM_RESIDUAL VALUES
40.0
RANDOM_GROUP
2
RANDOM_TYPE # use upg = unknown parent groups
add_an_upg
FILE
pedigree_mr03d.txt
(CO)VARIANCES
20.0
OPTION solv_method FSPAK

6.4.4 Solutions
We will have the following solutions with the above files.

Listing 6.10: solutions

trait/effect level solution
1 1 1 4.35899605
1 1 2 3.21434490
1 2 1 0.33201730
1 2 2 0.17597293
1 2 3 0.13611581
1 2 4 -0.16882873
1 2 5 0.00000000
1 2 6 0.37131040
1 2 7 -0.23933070
1 2 8 0.33117127
1 2 9 1.09907877
1 2 10 -0.66967475

Do you think these values are very different from the ones in the textbook? The left-hand side of mixed
model equations is not full-rank; the groups are treated as fixed so the model contains 2 fixed class effects.
We should calculate the contrast (the difference between the solutions) to obtain a unique solution. For
example, the difference in breeding values for animal 1 and 2 (u1−u2) is 0.156; it is consistent between
this example and the textbook.
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In the textbook, the author puts the zero-constraint to the group 1 (corresponding to animal 9 here)
but BLUPF90 puts the constraint on the animal 5. BLUPF90 automatically detects linear-dependency in
the equations and puts a constraint to any columns and rows as soon as it finds it necessary. To make a
zero-constraint on the animal 9 in BLUPF90, replace 9 with 0 in the pedigree file and run BLUPF90 with
the same parameter file. You will obtain the following results.

Listing 6.11: solutions

trait/effect level solution
1 1 1 5.45807483
1 1 2 4.31342367
1 2 1 -0.76706148
1 2 2 -0.92310585
1 2 3 -0.96296296
1 2 4 -1.26790750
1 2 5 -1.09907877
1 2 6 -0.72776838
1 2 7 -1.33840948
1 2 8 -0.76790750
1 2 9 0.00000000
1 2 10 -1.76875353

Be aware that the numerical error is large because of the very small data set. Considering the rounding
error, those values are at a similar level to the textbook.

This analysis provides us caution about the solutions of breeding values from unknown parent groups.
Depending on methods or constraints, we obtain the infinite number of solutions because there is a de-
pendency between the group effect and the other fixed effects. The raw solutions have already included
the group effects, so we should look at the difference between the two solutions for comparison. A better
way to express the breeding value is to adjust it with the average of animals with a similar condition.
For example, in dairy cattle, the estimated breeding value is adjusted with the average of breeding values
for cows born in a specific year. Such a reference population is called a genetic base. In a population
undergoing selection, the average breeding value is continuously increasing (or decreasing) so the genetic
base should be revised every few years.

One more caution must be given. When using UPG, the square root of the prediction error variance
in the solution file (available by OPTION sol se) will be nonsense. This is because the prediction is a
combination of BLUE and BLUP (Qg+u) and the corresponding element of the inverse of the left-hand
side matrix does not give the prediction error variance. If you want to have PEV of the breeding value,
you have to use a workaround — just to use the non-UPG model for the PEV computation.

6.5 Repeatability model

6.5.1 Model
A repeatability model is an animal model applicable when an animal has more than 1 observations. In
such a case, we can split the residual effect into 2: “true” temporary environmental effect and a perma-
nent environmental effect which belongs to the animal. So the model contains 2 kinds of animal effects
(additive genetic and permanent environmental effects).

The author assumes the repeatability model in Example 4.1 for fat yield in dairy cattle. The model
has the fixed effects for parity and Herd-Year-Season, the additive genetic effect for the same animal, the
permanent environmental effect for an animal, and the random residual effect. The author assumes the
genetic variance is 20, the residual variance is 28, and the permanent-environmental variance is 12.
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6.5.2 Files
Data file (data_mr04a.txt) just contains the table shown at p.63 in the textbook.

This file has 6 columns. Column 2 and 3 are not actually used in this analysis.

1. Animal ID (cow)
2. Sire ID
3. Dam ID
4. Parity (1 or 2)
5. HYS (from 1 to 4)
6. Fat yield (kg)

The pedigree file (pedigree_mr04a.txt) can be prepared as an usual, 3-column file.
This model contains 2 random effects besides the random error. The permanent environmental effects

are not related to each other so you should use diagonal in the RANDOM_TYPE keyword. The position
of permanent environmental effects is, in this case, the same as the additive genetic effects, because both
effects are animal’s individual effects - the only difference is the covariance structure. The parameter file
is the following.

Listing 6.12: param_mr04a.txt

DATAFILE
data_mr04a.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
4
OBSERVATION(S)
6
WEIGHT(S)

EFFECTS:
5 4 cross
4 2 cross
1 8 cross # for additive genetic effect
1 8 cross # for permanent environmental effect
RANDOM_RESIDUAL VALUES
28.0
RANDOM_GROUP # additive genetic effect
3
RANDOM_TYPE
add_animal
FILE
pedigree_mr04a.txt
(CO)VARIANCES
20.0
RANDOM_GROUP # permanent environmental effect
4
RANDOM_TYPE
diagonal
FILE

(CO)VARIANCES
12.0
OPTION solv_method FSPAK
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6.5.3 Solutions
The BLUPF90 calculates the solutions (not shown here) with the above parameter file. The left-hand side
of the mixed model equations is not full rank and 2 solutions for fixed effects are replaced with 0. The
positions of the zero-constraints are different from the textbook (p.64; Parity 1 and 2 here vs HYS 1 and
3 in the textbook). As before, a linear contrast is the same in both cases. BLUP for random effects is the
same as the textbook. Solutions for PE for animal 1 to 3 are 0 (the expected value as a random effect with
no information) because they have no observations. In this case, column 1 was shared for additive genetic
and permanent environmental effects.

6.5.4 Putting arbitrary zero-constraints manually
There is a trick to manually put user-defined zero-constraints on the mixed model equations. You can
replace the target effect code in the data file with 0. This technique has been introduced in the previous
section for unknown parent groups. The alternative data file (data_mr04a1.txt) provides the same
solutions shown in the text file.

In the textbook, the author puts constraints on HYS 1 and 3. The 5th column in the above file has 0
for HYS 1 and 3. You can rewrite the parameter file to read the new data file; just change the DATAFILE
block. Run BLUPF90 with the modified parameter file, and you can see different solutions.

Be careful if you use the manual constraints. If you put too many constraints on the equation, the
solutions will make no sense.

6.6 Common environmental effects as random

6.6.1 Model
In this example, the author considers a simple maternal model and the maternal effects (c) do not corre-
late to each other. The variance components include the animal genetic variance σ2

u = 20, the maternal
variance σ2

c = 15, and the residual variance σ2
e = 65.

6.6.2 Files
The data file (data_mr04b.txt) contains the whole table shown in the textbook (p.68). Here is the
explanation for each column.

1. Animal ID (piglet)
2. Sire ID
3. Dam ID
4. Sex (1=male and 2=female)
5. Weaning weight (kg)

Pedigree (pedigree_mr04b.txt) can be derived from the above data.
The parameter file should contain 2 random effects.

Listing 6.13: param_mr04b.txt

DATAFILE
data_mr04b.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
3
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OBSERVATION(S)
5
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
4 2 cross
1 15 cross
3 5 cross # for maternal environmental effect
RANDOM_RESIDUAL VALUES
65.0
RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
pedigree_mr04b.txt
(CO)VARIANCES
20.0
RANDOM_GROUP
3
RANDOM_TYPE
diagonal
FILE

(CO)VARIANCES
15.0
OPTION solv_method FSPAK

6.6.3 Solutions
The results are identical to the textbook.

6.7 Multiple-trait model with equal design matrix and no
missing observations

6.7.1 Model
Here we consider a multiple-trait model with equal design matrices, which means the same model is
applied to all traits. We will consider a situation without missing observations.

In this example, the author considers the 2-trait model for the pre-weaning gain as the first trait (WWG)
and the post-weaning gain as the second trait (PWG). Both traits have the same model i.e. the fixed effect
for sex, and two random effects, the additive genetic effect, and the residual effect.

We also consider the genetic covariance between 2 traits as well as the genetic variance for each trait.
This is true for residual covariance components. The genetic covariance matrix (G0) and the residual
covariance matrix R0 are both symmetric matrices (2×2). The values are defined in the textbook as

G0 =

[
20 18
18 40

]
and R0 =

[
40 11
11 30

]

A matrix notation of the above model and its mixed model equations have already introduced in the
previous chapter. So here we just show some relevant equations. The model can be written as

y = Xb+Zu+ e.
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We have 2 options to order the observations in y (within-trait or within-animal). According to a discussion
in the previous chapter, BLUPF90 orders the observations within-animal (see the previous chapter for
details). The variance of y is

var(y) = Z(A⊗G0)Z′+ I⊗R0

where ⊗ is the operator for Kronecker product. The mixed model equations can be written as
[

X′(I⊗R−1
0 )X X′(I⊗R−1

0 )Z
Z′(I⊗R−1

0 )X Z′(I⊗R−1
0 )Z+A−1⊗G−1

0

][
b̂
û

]
=

[
X′(I⊗R−1

0 )y
Z′(I⊗R−1

0 )y

]

6.7.2 Files
The data file (data_mr05a.txt) is actually an extension of Example 3.1. It has an extra observation in
the last column.

1. Animal ID (calves)
2. Sire ID
3. Dam ID
4. Pre-weaning gain (WWG; kg)
5. Post-weaning gain (PWG; kg)

The pedigree file (pedigree_mr05a.txt) is also the same as the previous one.
The parameter file contains 2 covariance matrices. We will compute the standard error of each estimate

as to the square root of the corresponding diagonal element of the inverse of the left-hand side of mixed
model equations.

Listing 6.14: param_mr05a.txt

DATAFILE
data_mr05a.txt
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
5 6
WEIGHT(S)

EFFECTS:
2 2 2 cross
1 1 8 cross
RANDOM_RESIDUAL VALUES
40.0 11.0
11.0 30.0
RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
pedigree_mr05a.txt
(CO)VARIANCES
20.0 18.0
18.0 40.0
OPTION solv_method FSPAK
OPTION sol se
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6.7.3 Solutions
The file solution has the solutions for the first and second traits. The solutions are identical to the values
shown in the textbook (p.74).

The reliability of the estimated breeding value of an animal can be calculated with the solutions from
BLUPF90. The reliability for trait j of animal i (r2

i j) is

r2
i j = 1−

PEVi j

σ2
u j

where PEVi j is the diagonal element of the inverse of the left-hand side of mixed model equations corre-
sponding to the effect to be considered. In the above solutions, the column s.e. contains the square root
of the inverse (

√
PEVi j). For example, the reliabilities of animal 1 can be calculated as:

r2
11 = 1− 4.3133206122

20
≈ 0.070 and r2

21 = 1− 5.9918099022

40
≈ 0.102.

6.8 Multiple-trait model with equal design matrix and missing
records

6.8.1 Model
Here we apply the same model described in the previous example to the data with missing observations.
Model descriptions and mixed model equations are identical as before.

With a missing observation, R0 and its inverse should be altered. For example, assuming a 2 trait
model, if the observation of the first trait is missing, the first row and column in R0 should be zeroed out.
The corresponding inverse is the generalized inverse of this altered R0. Illustrating this situation with the
previous example, the result is

R0 =

[
0 0
0 30

]
and R−0 =

[
0 0
0 30

]−
=

[
0 0
0 1/30

]
.

The generalized inverse of this zeroed matrix is equivalent to the inverse of a matrix containing only
nonzero elements in the zeroed matrix (Searle, 1971). BLUPF90 can detect a missing observation and
prepares an appropriate R0 and its generalized inverse.

6.8.2 Files
One animal is added to the previous example and 2 observations are marked as missing. The missing ob-
servation is indicated as 0, which is the default missing code used in the BLUPF90 family (data_mr05b.txt).

We can use an extended pedigree file as the previous one by adding the animal 9 (pedigree_mr05b.txt).
The parameter file is also identical except for omitting an option for standard error calculations.

Listing 6.15: param_mr05b.txt

DATAFILE
data_mr05b.txt
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
2
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OBSERVATION(S)
5 6
WEIGHT(S)

EFFECTS:
2 2 2 cross
1 1 9 cross
RANDOM_RESIDUAL VALUES
40.0 11.0
11.0 30.0
RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
pedigree_mr05b.txt
(CO)VARIANCES
20.0 18.0
18.0 40.0
OPTION solv_method FSPAK

6.8.3 Solutions
You can confirm the results are identical to the values in the textbook (p.80).

6.9 Multiple-trait model with unequal design matrix

6.9.1 Model
When each trait has a different model, the design matrices are unequal. Even in this case, the matrix
notation of the model and the mixed model equations are the same described as before.

BLUPF90 can handle a multiple-trait model with unequal design matrices in 2 ways. Both approaches
provide the same results so the difference is only from a user’s preference 1.

6.9.2 Files
The data are shown in the textbook at p.81, as a file data_mr05c.txt. This contains 2 different class
effects and each trait takes an alternative one.

1. Animal ID (Cow)
2. Sire ID
3. Dam ID
4. HYS 1 (for Fat yield 1)
5. HYS 2 (for Fat yield 2)
6. Fat yield 1
7. Fat yield 2

The pedigree (pedigree_mr05c.txt) is from the previous example.
First, we show a parameter file to handle the unequal design matrices in one way.

1Gibbs sampling programs accept only 1 way out of 2 ways.
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Listing 6.16: param_mr05c.txt

DATAFILE
data_mr05c.txt
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
6 7
WEIGHT(S)

EFFECTS:
4 5 2 cross
1 1 8 cross
RANDOM_RESIDUAL VALUES
65.0 27.0
27.0 70.0
RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
pedigree_mr05c.txt
(CO)VARIANCES
35.0 28.0
28.0 30.0
OPTION solv_method FSPAK

Look at the first line in EFFECT: which refers to 2 different columns; column 4 for trait 1 and column
5 for trait 2. So you can put different effects together into the single statement. You should put the
maximum number of levels among effects enumerated in this statement. For example, in this case, the
maximum level in column 4 is 2 and the maximum number of level in column 5 is also 2 — so you can
put 2 as the representative number of levels.

6.9.3 Solutions
This is identical to the textbook shown in p.82.

6.9.4 Another parameter file
BLUPF90 supports a different way to handle unequal design matrices. Consult the following parameter
file with the same data and pedigree files.

Listing 6.17: param_mr05c1.txt

DATAFILE
data_mr05c.txt
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
3
OBSERVATION(S)
6 7
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WEIGHT(S)

EFFECTS:
4 0 2 cross
0 5 2 cross
1 1 8 cross
RANDOM_RESIDUAL VALUES
65.0 27.0
27.0 70.0
RANDOM_GROUP
3
RANDOM_TYPE
add_animal
FILE
pedigree_mr05c.txt
(CO)VARIANCES
35.0 28.0
28.0 30.0
OPTION solv_method FSPAK

In this parameter file, the fixed effect for each trait is separately defined. The column number will be 0
for a trait which doesn’t need the effect. In this case, the first line describes the effect HY S1 and only the
first trait needs this effect (so you should put 0 to the second trait). Note that the Gibbs sampling programs
(including GIBBS2F90 and THRGIBBS1F90) accept only this style.

You can immediately find the results are identical to the previous ones. Some effects (HY S1 for trait 2
and HY S2 for trait 1) are not estimated because they are not defined in the parameter file.

6.10 Multiple-trait model with no environmental covariance

6.10.1 Model
Assuming a 2-trait model, there is a situation where some animals are recorded only in one trait and the
other animals are recorded only in another trait. In other words, no animals have observations for both
traits. This situation also happens when evaluating genotype by environment (G by E) effects. Animals
in the environment 1 don’t have records in environment 2, and vice versa. In this case, we should assume
that the residual covariance is exactly zero.

The author assumes dual-purpose sires in cattle. The male and female calves are raised in different
feeding systems. Male calves are recorded for yearling weight and females for fat yield. The genetic
covariance is nonzero but the residual covariance is zero. Note that the results from BLUPF90 must be
different from the values in the textbook.

6.10.2 Files
The data set (data_mr05d.txt) is shown in the textbook at p.85. Animal 4 can be omitted in the data
file because it has no observations.

1. Animal ID (Calf)
2. Sex (1=male and 2=female)
3. Sire ID
4. Dam ID
5. HYS
6. Yearling weight (kg)
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7. Fat yield (kg)

The pedigree is from the above data set.
The parameter file should be the following.

Listing 6.18: param_mr05d.txt

DATAFILE
data_mr05d.txt
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
6 7
WEIGHT(S)

EFFECTS:
5 5 3 cross
1 1 17 cross
RANDOM_RESIDUAL VALUES
77.0 0.0
0.0 70.0
RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
pedigree_mr05d.txt
(CO)VARIANCES
43.0 18.0
18.0 30.0
OPTION solv_method FSPAK

6.10.3 Solutions
The solutions are different from the textbook.

Listing 6.19: solutions

trait/effect level solution
1 1 1 412.26462367
2 1 1 194.02892921
1 1 2 276.21351695
2 1 2 204.76619557
1 1 3 0.00000000
2 1 3 161.66294167
1 2 1 -3.36497774
2 2 1 1.25823921
1 2 2 -1.48909004
2 2 2 3.77372023
1 2 3 4.23664594
2 2 3 -1.68697171
1 2 4 -6.93946803
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2 2 4 -1.57147632
1 2 5 -5.01220042
2 2 5 -2.09813041
1 2 6 5.01220042
2 2 6 2.09813041
1 2 7 2.13678047
2 2 7 3.56130079
1 2 8 -4.27356095
2 2 8 -7.12260158
1 2 9 -12.16152864
2 2 9 -3.09074655
1 2 10 -8.26284566
2 2 10 -1.26033550
1 2 11 5.83581177
2 2 11 3.77631522
1 2 12 12.63228129
2 2 12 3.55770600
1 2 13 1.52268184
2 2 13 5.97107079
1 2 14 -4.29201845
2 2 14 -11.52738822
1 2 15 -1.87022083
2 2 15 0.01073376
1 2 16 4.29035684
2 2 16 11.99499708
1 2 17 2.68411368
2 2 17 1.66338290

6.11 Animal model for a maternal trait

6.11.1 Model
For some traits, especially defined early in an animal’s life, the phenotypes are largely affected by its dam.
For example, weaning weight is expected to be associated with its dam’s milk yield. The dam provides
an environment for its progeny to increase (or decrease) their phenotypic values. The dam’s contribution
is assumed to consists of genetic and environmental factors. Also, the animal model includes the dam’s
contribution originally from a non-genetic background.

In this example, the author applied a typical maternal model. Simply, the model has two, correlated
additive-genetic effects, the direct genetic effect due to the animal’s genes and the maternal genetic effect
due to the dam’s contribution. Assume the following model:

y = Xb+Zu+Wm+Sp+ e

where y is a vector of observations, b is a vector of fixed effects, u is a vector of direct genetic effects, m
is a vector of maternal genetic effects, p is a vector of maternal permanent-environmental effects, e is a
vector of residual effects, and other matrices are incidence matrices. The covariance structure is typically
assumed as

var




u
m
p
e


=




Aσ2
d Aσdm 0 0

Aσmd Aσ2
d 0 0

0 0 Iσ2
p 0

0 0 0 Iσ2
e




where σ2
u is the direct genetic variance, σ2

m is the maternal genetic variance, σdm is the covariance between
direct and maternal genetic effects, σ2

p is the permanent environmental variance and σ2
e is the residual
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variance. Note that this model contains a genetic covariance matrix (G0) even though this is a single-trait
model. In this numerical example, the covariance component is

G0 =

[
σ2

d σdm
σmd σ2

m

]
=

[
150 −40
−40 90

]

and σ2
p = 40 and σ2

e = 350.

6.11.2 Files
The data set is shown at p.111 (data_mr07a.txt).

1. Animal ID (Calf)
2. Sire ID
3. Dam ID
4. Herds
5. Pen
6. Birth weight (kg)

The pedigree is derived from the above data (pedigree_mr07a.txt).
The parameter file should be as follows.

Listing 6.20: param_mr07a.txt

DATAFILE
data_mr07a.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
5
OBSERVATION(S)
6
WEIGHT(S)

EFFECTS:
4 3 cross # herd
5 2 cross # pen
1 14 cross # direct genetic effect
3 14 cross # maternal genetic effect
3 7 cross # maternal permanent effect
RANDOM_RESIDUAL VALUES
350.0
RANDOM_GROUP
3 4
RANDOM_TYPE
add_animal
FILE
pedigree_mr07a.txt
(CO)VARIANCES
150.0 -40.0
-40.0 90.0
RANDOM_GROUP
5
RANDOM_TYPE
diagonal
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FILE

(CO)VARIANCES
40.0
OPTION solv_method FSPAK

In this model, we consider 5 effects (herd, pen, direct genetic, maternal genetic and maternal environ-
mental effects). The first 2 effects are fixed. The 3rd effect is for direct genetic effects so the number of
levels should be 14 (i.e. the number of animals found in the pedigree). The 4th effect is for maternal ge-
netic effect; here you can put the position of dam’s ID. Note that the number of levels must be 14 because
the maternal effect is correlated with the direct effect and the direct effect has 14 levels (in the pedigree).
In other words, each animal has both direct breeding value and maternal breeding value and the solutions
will be calculated for all 14 animals. The 5th column is for maternal permanent environmental effect.
This effect doesn’t consider the pedigree file; it will only be estimated for dams with records in the data
file. So the number of levels is only 7, because the maximum number of dam ID in the data is 7, although
the position of effect is the same as the previous one.2

The direct genetic effect and the maternal genetic effect are correlated. These effects are simultaneously
listed in RANDOM_GROUP, which has 3 4. This is still an animal model and you can specify add_animal
and the pedigree file. This is a single-trait model but it has 2 correlated genetic effects so the covariance
matrix (G0) should be 2×2 written in (CO)VARIANCES.

We have one more maternal effect which is an independent random effect. You just put 5 after
RANDOM_GROUP. The type is diagonal. You don’t need a pedigree file here. Only one variance com-
ponent is required in (CO)VARIANCES.

6.11.3 Solutions
You can confirm that the estimated direct and maternal breeding values are identical to the textbook
(p.113).

As noted in the textbook, this equation has a dependency between fixed effects so we will have an
infinite number of solutions for fixed effects. Above solutions are one of them. If you want to obtain the
same solutions presented in the textbook, you can replace 1 with 0 for herd number in the data file and
run BLUPF90 again. You can see that the solutions for the fixed effects are different from the previous
results. The solutions for random effects will remain unchanged.

6.12 Social interaction effects

6.12.1 Model
When an animal is raised with a few other animals in a limited space (e.g., a pen or cage), there is social
interaction (e.g., competition) among the animals. The animal’s phenotype will be affected with its own
genetic and environmental effects as well as the competitors’ contributions. The competitors’ effects
look like environmental contributions to the animal. This structure is similar to the maternal animal
model introduced in the previous section. Some of the competitors’ contributions can come from genes
carried by the competitors and the rest comes from non-genetic factors. The genetic component can
be correlated with the animal’s direct genetic effect. A statistical model should include a complicated
covariance structure.

In this example, we have 3 pens and each pen has 3 animals (n = 3). See the textbook for detailed
formulation.

2In this case, even if you put 14 as the number of levels in the 5th effect, the program correctly works. The program can work
when you put a larger number of levels than the actual number.
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The model contains sex as the fixed effect; the direct and associative genetic effects, pen (group), and
common environmental (full-sibs) effects as random effects. The author assume n = 3 and σ2

g = 12.12
(group variance), σ2

e = 60.6 (the original residual variance), σ2∗
e = 60.6−12.12= 48.48 (the final residual

variance), σ2
c = 12.5 (common environmental variance) and

G0 =

[
25.70 2.25
2.25 3.60

]
.

6.12.2 Files
The data set is shown in p.125 (data_mr08a.txt). We added 3 columns as competitors’ ID.

Listing 6.21: data_mr08a.txt

7 1 4 1 1 5.50 8 9 1
8 1 4 1 2 9.80 7 9 1
...

Each column has the following information.

1. Animal ID
2. Sire ID
3. Dam ID
4. Pen (group)
5. Sex (1=male and 2=female)
6. Growth rate (10×g/day)
7. ID of competitor 1 in the same pen
8. ID of competitor 2 in the same pen
9. Half-sib code (common environment)

The pedigree is derived from the data set.
The parameter file looks like a maternal animal model. See the textbook and make sure the order of

effects is correct (p.126).

Listing 6.22: param_mr08a.txt

DATAFILE
data_mr08a.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
6
OBSERVATION(S)
6
WEIGHT(S)

EFFECTS:
5 2 cross # sex
1 15 cross # direct genetic
7 0 cross # associative genetic 1
8 15 cross # associative genetic 2
9 3 cross # common environmental
4 3 cross # random group (pen)
RANDOM_RESIDUAL VALUES
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48.48
RANDOM_GROUP
2 3
RANDOM_TYPE
add_animal
FILE
pedigree_mr08a.txt
(CO)VARIANCES
25.7 2.25
2.25 3.60
RANDOM_GROUP
5
RANDOM_TYPE
diagonal
FILE

(CO)VARIANCES
12.5
RANDOM_GROUP
6
RANDOM_TYPE
diagonal
FILE

(CO)VARIANCES
12.12
OPTION solv_method FSPAK

The parameter file is tricky. The 3rd effect in EFFECTS: is defined with 0 levels. This works with the
4th effect to put two elements on the same row in the incidence matrix ZS (see p.126). Each statement
in EFFECTS can put only one element on a row of the system of mixed model equations. If we define an
effect with 0 levels, this effect is not recognized as a new effect and combined with the next effect. In this
case, the 3rd effect is successfully processed but the offset address is not incremented, so the 4th effect
will be put the same row in ZS.

We can see what is going on processing the data with those 2 statements (effect 3 and 4). Consider the
first line in the data file.

7 1 4 1 1 5.50 8 9 1

The 2 statements perform:

• to read the 7th column (the value is 8); and to put 1 (because of cross effect) on column 8 in the 1st
row in ZS.
• to read the 8th column (the value is 9); and to put 1 (because of cross effect) on column 9 in the 1st

row in ZS.

The resulting row in ZS is
[

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
]
.

The textbook omits the first 8 columns in ZS. So above row is identical to the textbook. Next, we
consider the 2nd line in the data file.

8 1 4 1 2 9.80 7 9 1
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The 2 statements perform:

• to read the 7th column (the value is 7); and to put 1 (because of cross effect) on column 7 in the 1st
row in ZS.
• to read the 8th column (the value is 9); and to put 1 (because of cross effect) on column 9 in the 1st

row in ZS. The resulting row in ZS is
[

0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
]
.

This is identical to the 2nd row in ZS in the textbook.

The specification of RANDOM_TYPE is also tricky. In the first RANDOM_GROUP, we only specify the effect
2 and 3. Effect 4 should be omitted because it is the same effect as effect 3. Also, BLUPF90 accepts only
consecutive effects in RANDOM_GROUP so we put 2 and 3 here.

6.12.3 Solutions
The solutions are very similar to the values in the textbook (p.126).

6.13 Fixed regression model

6.13.1 Model
When repeated measurements are considered as the same traits over time, a repeatability model can be
suitable to apply. The assumption in this situation is that the genetic correlation between observations
measured at any two time-points is 1. Even if the assumption is correct, the actual observations would
have an average curve by a group over time. This non-genetic, systematic change can be modeled by fixed
regression curves.

The author shows the test day measurements of fat yield in dairy cattle. A repeatability model with
a fixed regression curve is assumed. See the textbook for the details. The variance components are
σ2

u = 5.521, σ2
p = 8.470, and σ2

e = 3.710.
Usually, fixed regressions are nested within an environmental class. It models the fact that an average

trajectory can be differentiated depending on the specific environment nested within, for instance, herd,
region, season, age, parity, and so on. This example is small, so the nested fixed regressions are not
considered.

6.13.2 Files
The author shows the data set (data_mr09a.txt). The Legendre polynomials should be prepared by the
user and saved in the data file. The following is the detail of this data.

Listing 6.23: data_mr09a.txt

4 4 1 17.0 0.7071 -1.2247 1.5811 -1.8708 2.1213
4 38 2 18.6 0.7071 -0.9526 0.6442 -0.0180 -0.6205
4 72 3 24.0 0.7071 -0.6804 -0.0586 0.7571 -0.7757
...

1. Animal ID (cow)
2. Days in milk (DIM)
3. Herd-test-day class
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4. Test day fat yield
5. 0th order Legendre covariable φ0 (intercept)
6. 1st order Legendre covatiable φ1
7. 2nd order Legendre covariable φ2
8. 3rd order Legendre covariable φ3
9. 4th order Legendre covariable φ4

The pedigree is the same as Example 4.1 (pedigree_mr09a.txt).
The parameter file is shown below.

Listing 6.24: param_mr09a.txt

DATAFILE
data_mr09a.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
8
OBSERVATION(S)
4
WEIGHT(S)

EFFECTS:
3 10 cross # HTD
5 1 cov # Legendre polynomials (intercept)
6 1 cov # Legendre polynomials (1st order)
7 1 cov # Legendre polynomials (2nd order)
8 1 cov # Legendre polynomials (3rd order)
9 1 cov # Legendre polynomials (4th order)
1 8 cross # for additive genetic effect
1 8 cross # for permanent environmental effect
RANDOM_RESIDUAL VALUES
3.710
RANDOM_GROUP
7
RANDOM_TYPE
add_animal
FILE
pedigree_mr09a.txt
(CO)VARIANCES
5.521
RANDOM_GROUP
8
RANDOM_TYPE
diagonal
FILE

(CO)VARIANCES
8.470
OPTION solv_method FSPAK
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6.13.3 Solutions
The equations have a dependency so the solutions for fixed effects are not unique. Besides the fixed
effects, the results from BLUPF90 are slightly different from the textbook.

6.14 Random regression model

6.14.1 Model
Assume longitudinal data measured over time. If the genetic correlation between observations taken in 2
time-points is lower than 1, the repeatability model is inappropriate. In this case, a multiple-trait model,
which assumes that an observation measured in a differnt time-period is a separate trait, could be better
to describe the trait. If the time interval is shorter, we will have more traits. As the interval approaches
to 0, ultimately, we will have an infinite number of traits, and genetic correlations can be described using
a function of 2 time periods. The random environmental effects also have the same covariance structure.
This is equivalent to the random regression model.

In this example, we fit the 2nd order Legendre polynomials (3 coefficients including the intercept) to
both additive genetic and permanent environmental effects. In this model, each animal has 3 random
coefficients for the additive genetic effect and the other 3 coefficients for the permanent environmental
effect. See the textbook for detailed modeling.

There are correlations between random regressions. This looks like a maternal model with a direct and
maternal genetic covariance matrix. In this model, we have 3 random regression coefficients, each of
the random effects. So the variance components are 3×3 matrix in additive genetic (G0) and permanent
environmental effects (P0). The actual covariance matrices are

G0 =




3.297 0.594 −1.381
0.594 0.921 −0.289
−1.381 −0.289 1.005


 and P0 =




6.872 −0.254 −1.101
−0.254 3.171 0.167
−1.101 0.167 2.457




and σ2
e = 3.710.

6.14.2 Files
We use the same data and pedigree files to the previous section (data_mr09b.txt and pedigree_mr09b.txt).

The parameter file is an extension to the previous one.

Listing 6.25: param_mr09b.txt

DATAFILE
data_mr09b.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
12
OBSERVATION(S)
4
WEIGHT(S)

EFFECTS:
3 10 cross # HTD
5 1 cov # Legendre polynomials (intercept) for fixed regression
6 1 cov # Legendre polynomials (1st order) for fixed regression
7 1 cov # Legendre polynomials (2nd order) for fixed regression
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8 1 cov # Legendre polynomials (3rd order) for fixed regression
9 1 cov # Legendre polynomials (4th order) for fixed regression
5 8 cov 1 # Legendre polynomials (intercept) for additive genetic effect
6 8 cov 1 # Legendre polynomials (1st order) for additive genetic effect
7 8 cov 1 # Legendre polynomials (2nd order) for additive genetic effect
5 8 cov 1 # Legendre polynomials (intercept) for permanent environmental effect
6 8 cov 1 # Legendre polynomials (1st order) for permanent environmental effect
7 8 cov 1 # Legendre polynomials (2nd order) for permanent environmental effect
RANDOM_RESIDUAL VALUES
3.710
RANDOM_GROUP
7 8 9
RANDOM_TYPE
add_animal
FILE
pedigree_mr09b.txt
(CO)VARIANCES
3.297 0.594 -1.381
0.594 0.921 -0.289
-1.381 -0.289 1.005
RANDOM_GROUP
10 11 12
RANDOM_TYPE
diagonal
FILE

(CO)VARIANCES
6.872 -0.254 -1.101
-0.254 3.171 0.167
-1.101 0.167 2.457
OPTION solv_method FSPAK

The additive genetic effect is defined for effects 7, 8, and 9 and the permanent environmental effect is
defined for effects 10, 11, and 12. Both have a similar definition so we just explain the additive effect.
Now we look at effect 7:

5 8 cov 1

This refers to column 5 as an intercept of the regression. Because we have 8 animals in total so we
should estimate 8 intercepts. The above statement means that column 5 is treated as a covariate and
the regression is nested within the animal (column 1). The remaining 2 statements can be similarly
interpreted. The corresponding RANDOM_GROUP statement contains 3 effects: 7, 8, and 9, so we need a
3×3 genetic covariance matrix.

6.14.3 Solutions
The equations are not full rank so there are infinite solutions for fixed effects. The solutions for random
effects are slightly different from the values in the textbook due to numerical error, but very similar.

Additive genetic random regressions are defined as effects 7, 8, and 9. For these effects, the number
of levels is the maximum animal ID. With a random regression model, estimated breeding values for an
animal are presented as regression coefficients. In this case, each animal has 3 coefficients. For example,
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breeding values for animal 3 are

u3 =




0.13166310
−0.02908467

0.07039573


 .

6.15 Breeding values with marker information

6.15.1 Models
In this example, the author assumes one known genetic marker with the polygenic effect for a trait. The
genetic marker accounts for a certain level of genetic variance. Covariances among animals in terms of the
additive effects of the marker alleles can be represented as the marker covariance matrix (Gv). Fernando
and Grossman (1989) suggested a method to calculate G−1

v directly from the pedigree list and genotypes.
In this example, the author assumes a model with the additive genetic (polygenic) effect, the additive

genetic effect due to genetic markers, and the random residual effect. The author uses a pre-calculated
Gv to estimate the partial breeding values explained by the marker. Also, the model includes the additive
genetic relationship matrix (Au) which accounts for the “residual” polygenic effect. The mixed model
equations are




X′R−1X X′R−1Z X′R−1W
Z′R−1X Z′R−1Z+A−1

u /σ2
u Z′R−1W

W′R−1X W′R−1Z W′R−1W+G−1
v /σ2

v






b̂
û
v̂


=




X′R−1y
Z′R−1y
W′R−1y




The variance components are σ2
u = 0.30, σ2

v = 0.05, and σ2
e = 0.60.

We need to overcome several issues to conduct the analysis. First, BLUPF90 has no function to calcu-
late G−1

v . Instead, the program should read a user-supplied file containing the elements of G−1
v . Second,

the animals in the pedigree are highly inbred. By default, BLUPF90 ignores inbreeding coefficients when
calculating A−1. To consider inbreeding on A−1, a user should put an additional column to the pedigree
file, and accordingly modify the parameter file.

6.15.2 Files
The data file is prepared as shown in p.159 (data_mr10a.txt). The marker effects are inserted into
columns 5 and 6.

Listing 6.26: data_mr10a.txt

1 1 0 0 1 2 6.8
...

1. Animal ID (calf)
2. Sex (1=male and 2=female)
3. Sire ID
4. Dam ID
5. Paternal QTL allele
6. Maternal QTL allele
7. Post weaning weight (kg)
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Now we prepare the pedigree file with the additional 4th column to consider inbreeding coefficients for
A−1.

The first 3 columns are animal ID, sire ID, and dam ID as usual. The 4th column is an inb/upg code
exclusively used in the BLUPF90 family. The code is a 4-digit integer. It is calculated as

inb/upgcode =
4000

(1+ms)(1−Fs)+(1+md)(1−Fd)

where ms is 0 if its sire is known or 1 if the sire is unknown; md is 0 if its dam is known or 1 if the dam
is unknown; Fs is the inbreeding coefficient of the sire; and Fd is the inbreeding coefficient of the dam. If
the sire (or dam) is unknown, Fs (or Fd) is 0. In this case, the inbreeding coefficient of animal 4 is 0.25
(and animal 5 for 0.375 but this value is not used here). The inb/upg code (c) for each animal is

c1 = 4000/[(1+1)(1−0)+(1+1)(1−0)] = 1000
c2 = 4000/[(1+1)(1−0)+(1+1)(1−0)] = 1000
c3 = 4000/[(1+0)(1−0)+(1+0)(1−0)] = 2000
c4 = 4000/[(1+0)(1−0)+(1+0)(1−0)] = 1000
c5 = 4000/[(1+0)(1−0.25)+(1+0)(1−0)] = 2285.7≈ 2286.

RENUMF90 calculates the code and prepares an appropriate pedigree file using the INBREEDING key-
word. See the manual for details.

The inverse of marker genetic matrix (G−1
v ; p.164) is prepared as the following text file.

Listing 6.27: userinverse_mr10a.txt

1 1 5.556
1 2 1.000
1 5 -5.000

...
8 9 -0.663
9 9 6.630
10 10 5.556

The file contains 3 columns: row index, column index and the value (or column index, row index, and
the value). BLUPF90 supports a symmetric matrix as a user-supplied inverse of relationship matrix, so
the program needs only upper- or lower-diagonal elements as well as the diagonal elements. The above
file contains elements in and above the diagonal. Note that elements with a value of 0 do not need to be
provided, which is handy when the matrix is sparse.

The parameter file should be as follows.

Listing 6.28: param_mr10a.txt

DATAFILE
data_mr10a.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
4
OBSERVATION(S)
7
WEIGHT(S)

EFFECTS:
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2 2 cross # fixed effect
1 5 cross # additive genetic effect
5 0 cross # paternal QTL effect
6 10 cross # maternal QTL effect ( total 10 levels combined with paternal effect )
RANDOM_RESIDUAL VALUES
0.60
RANDOM_GROUP
2
RANDOM_TYPE # considering inbreeding
add_an_upginb
FILE
pedigree_mr10a.txt
(CO)VARIANCES
0.30
RANDOM_GROUP
4
RANDOM_TYPE # reading the user-supplied file
user_file
FILE # its file name
userinverse_mr10a.txt
(CO)VARIANCES
0.05
OPTION solv_method FSPAK

We should be careful to describe the parameter file in terms of the following information.

• EFFECTS: Use of the “level 0” technique. The incidence matrix for the QTL marker effects, W,
contains two 1s per row. A trick can do this. See the social interaction model for the detailed
explanation. Also, there are 10 levels combining paternal and maternal QTL effects.
• RANDOM_TYPE for the additive genetic effect: Use of add_an_upginb. The pedigree file contains

the 4th column which indicates the inb/upg code. With this keyword, BLUPF90 can read the
column and build A−1 with inbreeding. Even if we don’t put any unknown parent groups in this
analysis, the keyword should be add_an_upginb.
• RANDOM_TYPE for the marker effect: Use of user file to read the user-supplied file. The name of the

file should also be supplied at FILE section.

6.15.3 Solutions
The solutions are identical to the textbook (p.166).

6.16 Directly predicting the additive genetic merit with QTL

6.16.1 Model
There is an approach to directly predict an animal’s marker genetic merit. The QTL relationship matrix
(Gv) can be reduced to a relationship matrix among animals (Av). The mathematical model contains fixed
effects, additive polygenic effects and additive genetic effects related to the marker. The system of mixed
model equations is




X′R−1X X′R−1Z X′R−1W
Z′R−1X Z′R−1Z+A−1

u /σ2
u Z′R−1W

W′R−1X W′R−1Z W′R−1W+A−1
v /σ2

q






b̂
û
q̂


=




X′R−1y
Z′R−1y
W′R−1y


 .

The author assumes σ2
u = 0.30, σ2

q = 0.10, and σ2
e = 0.60.
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6.16.2 Files
We use the same data set as the previous example except for removing the paternal and maternal QTL
effects (data_mr10b.txt). An explanation for each column is given as follows.

1. Animal ID (calf)
2. Sex (1=male and 2=female)
3. Sire ID
4. Dam ID
5. Post weaning weight (kg)

The pedigree file is also the same as before (pedigree_mr10b.txt). It has the 4th column with the
inb/upg code.

In this case, we should prepare A−1
v as an user-supplied file. The following file contains its diagonal

and upper-triangular elements.

Listing 6.29: userinverse_mr10b.txt

1 1 4.966
1 2 0.286
1 3 -0.148

...
4 4 5.978
4 5 -2.971
5 5 4.836

The parameter file is as follows.

Listing 6.30: param_mr10b.txt

DATAFILE
data_mr10b.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
3
OBSERVATION(S)
5
WEIGHT(S)

EFFECTS:
2 2 cross # fixed effect
1 5 cross # additive polygenic effect
1 5 cross # additive QTL effect
RANDOM_RESIDUAL VALUES
0.60
RANDOM_GROUP
2
RANDOM_TYPE # considering inbreeding
add_an_upginb
FILE
pedigree_mr10b.txt
(CO)VARIANCES
0.30
RANDOM_GROUP
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3
RANDOM_TYPE # reading user-supplied file
user_file
FILE # its file name
userinverse_mr10b.txt
(CO)VARIANCES
0.10
OPTION solv_method FSPAK

6.16.3 Solutions
You can confirm the solutions are identical to the textbook.

6.17 Fixed effect model for SNP effects

6.17.1 Model
In this section, the author tries to estimate individual SNP effect as a fixed effect based on 8 reference
animals that have both genotype and phenotype (fat DYD). Only 3 SNP markers are considered in this
small example. We also consider the regular additive genetic (polygenic) effects. The model is

yi = µ +
3

∑
k=1

zikgk +ui + ei

where yi is an observation for animal i, µ is the general mean, zik is k-th weighted marker genotype for
the animal i.e. the (i,k) element in the Z matrix (see VanRaden, 2008), gk is the k-th fixed SNP effect, ui
is the additive genetic (polygenic) effect, and ei is the residual effect. We can consider more animals in
pedigree. The variance components are σ2

u = 35.241 and σ2
e = 245.0.

6.17.2 Files
In this model, the elements of Z are used as covariates so they should be saved in the data file. The data
file contains the first 3 columns of Z; see p.181 in the textbook. Also, the weight used in this analysis is
actually the inverse of EDC so the values should be calculated and stored in the data file.

Listing 6.31: data_mr11a.txt

13 0 0 1 558 9.0 0.00179211 1.357 -0.357 0.286
...

The data file (data_mr11a.txt) has 10 columns.

1. Animal ID
2. Sire ID
3. Dam ID
4. General mean
5. EDC
6. Phenotype (Fat DYD)
7. Weight = inverse of EDC
8. Covariate for SNP 1
9. Covariate for SNP 2
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10. Covariate for SNP 3

The pedigree file includes all 26 animals. Animal 1 to 12 have missing parents.
The parameter file for the weighted analysis is shown below.

Listing 6.32: param_mr11a.txt

DATAFILE
data_mr11a.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
5
OBSERVATION(S)
6
WEIGHT(S)
7
EFFECTS:
4 1 cross # general mean
8 1 cov # SNP effect 1
9 1 cov # SNP effect 2
10 1 cov # SNP effect 3
1 26 cross # additive genetic ( polygenic ) effect
RANDOM_RESIDUAL VALUES
245.0
RANDOM_GROUP
5
RANDOM_TYPE
add_animal
FILE
pedigree_mr11a.txt
(CO)VARIANCES
35.241
OPTION solv_method FSPAK

If you conduct the unweighted analysis, remove 7 from the WEIGHT(S) section.

6.17.3 Solutions
In the weighted analysis, the solutions are the same as the textbook (p.181). The estimate of the general
mean is different but I believe this is a typo in the textbook.

6.18 Mixed linear model for computing SNP effects

6.18.1 Model
When we have many SNP markers, we can expect that almost all the additive genetic variation can be
captured by the markers. In this case, the marker effects should be random because of too many effects to
be estimated compared with the number of observations. With the random marker model, we might not
need the polygenic effect. In this example, the author assumes the following model:

yi = µ +
m

∑
k=1

zikgk +ui + ei = 1µ +Zu+ e
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where yi is the observation of animal i, µ is the general mean, m is the number of markers to be considered,
zik is the k-th weighted marker genotype of the animal i.e. the (i,k) element in Z, gk is the k-th fixed SNP
effectm, and ei is the residual effect. The system of mixed model equations is

[
X′R−1X X′R−1Z
Z′R−1X Z′R−1Z+ I/σ2

g

][
b̂
ĝ

]
=

[
X′R−1y
Z′R−1y

]
.

The residual variance was shown as σ2
e = 245.0 in the textbook. The marker variance (σ2

g ) can be es-
timated based on the additive genetic variance (σ2

u ) using σ2
u / [2∑ p j(1− p j)] where p j is the allele

frequency for marker j. In this example, the author uses the latter equation and shows 2∑ p j(1− p j) =
3.5383 so the variance components are σ2

g = 35.242/3.5382 = 9.96.

6.18.2 Files
The data file (data_mr11b.txt) now contains 10 columns from Z (p.184).

1. Animal ID
2. Sire ID
3. Dam ID
4. General mean
5. EDC
6. Phenotype (Fat DYD)
7. Weight = inverse of EDC
8. Covariate for SNP 1
9. Covariate for SNP 2

10. Covariate for SNP 3
11. Covariate for SNP 4
12. Covariate for SNP 5
13. Covariate for SNP 6
14. Covariate for SNP 7
15. Covariate for SNP 8
16. Covariate for SNP 9
17. Covariate for SNP 10

We can use the same pedigree defined as before (pedigree_mr11b.txt).
The parameter file contains 10 SNP effects.

Listing 6.33: param_mr11b.txt

DATAFILE
data_mr11b.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
11
OBSERVATION(S)
6
WEIGHT(S)
7
EFFECTS:
4 1 cross # general mean
8 1 cov # SNP effect 1
9 1 cov # SNP effect 2
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10 1 cov # SNP effect 3
11 1 cov # SNP effect 4
12 1 cov # SNP effect 5
13 1 cov # SNP effect 6
14 1 cov # SNP effect 7
15 1 cov # SNP effect 8
16 1 cov # SNP effect 9
17 1 cov # SNP effect 10
RANDOM_RESIDUAL VALUES
245.0
RANDOM_GROUP
2 3 4 5 6 7 8 9 10 11
RANDOM_TYPE
diagonal
FILE

(CO)VARIANCES
9.96 0 0 0 0 0 0 0 0 0
0 9.96 0 0 0 0 0 0 0 0
0 0 9.96 0 0 0 0 0 0 0
0 0 0 9.96 0 0 0 0 0 0
0 0 0 0 9.96 0 0 0 0 0
0 0 0 0 0 9.96 0 0 0 0
0 0 0 0 0 0 9.96 0 0 0
0 0 0 0 0 0 0 9.96 0 0
0 0 0 0 0 0 0 0 9.96 0
0 0 0 0 0 0 0 0 0 9.96
OPTION solv_method FSPAK

In the above parameter file, we defined 10 SNP effects as a group of random effects. The covariances
among the effects are 0 so all the SNP effects are independent to each other. This description is equivalent
to separately define each SNP effect (i.e. 10 RANDOM_GROUP blocks). A user can confirm that these 2
parameter files produce the same results.

6.18.3 Solutions
We should carefully look at the results shown in the textbook (p.185). The solutions from the weighted
analysis seem inaccurate. The solutions come from the analysis with EDC (column 5) and the results
are not correct. The correct weight is the inverse of EDC (column 7), and the following solutions in our
analysis should be correct.

Listing 6.34: solutions

trait/effect level solution
1 1 1 9.12440501
1 2 1 0.00004355
1 3 1 -0.00440133
1 4 1 0.00439876
1 5 1 -0.00104827
1 6 1 0.00048476
1 7 1 0.00229457
1 8 1 0.00000000
1 9 1 -0.00000000
1 10 1 0.00179833
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1 11 1 -0.00125140

Unweighted results are also shown.

Listing 6.35: solutions

trait/effect level solution
1 1 1 9.94392543
1 2 1 0.08702093
1 3 1 -0.31079216
1 4 1 0.26246003
1 5 1 -0.08027711
1 6 1 0.11020813
1 7 1 0.13908022
1 8 1 -0.00000000
1 9 1 0.00000000
1 10 1 -0.06069044
1 11 1 -0.01580233

6.19 GBLUP

6.19.1 Model
The SNP marker model is equivalent to a model, so-called GBLUP, under some assumptions. The model
includes a genomic relationship matrix, G. This matrix is calculated using SNP marker data. It is analog
to the pedigree-based additive relationship matrix although there is an essential difference between the
two matrices; see VanRaden (2008) for details. The G matrix may be defined in several ways but the
best-known one is defined as

G =
ZZ′

2∑ j p j(1− p j)

where Z contains genotypes adjusted with allele frequency and p j is the allele frequency for marker j
(VanRaden 2008). When the number of genotypes is limited, the above G is most likely singular, and its
inverse does not exist. To avoid this issue, we blend the above G with a numerator relationship matrix for
genotyped animals (A22). Therefore, as long as we use this blending, the pedigree file is still needed. The
formula of the blending is

Gw = wG+(1−w)A22

where Gw is the final (weighted) genomic relationship matrix and w is a weight. When A22 is not available,
I may be useful. An appropriate weight usually ranges from 0.80 to 0.99 depending on the profile of G.
This blending is expected to makes G be positive definite. The weighted matrix, Gw, will be used as a
genomic relationship matrix in prediction.

The system of mixed model equations is
[

X′R−1X X′R−1W
W′R−1X W′R−1W+Gw/σ2

u

][
b̂
û

]
=

[
X′R−1y
W′R−1y

]

and σ2
u = 35.241 and σ2

e = 245.0. In the simplest case, only the general mean (µ) is considered as the
fixed effect, and b̂ reduces to µ̂ .

BLUPF90 is designed for the single-step GBLUP model which has the inverse of a numerator rela-
tionship matrix (A−1). It means that the final equations should include A−1, which is not usually used in
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GBLUP. There are several ways to perform GBLUP with BLUPF90. Here I introduce you to a method
that has the following 2 steps: 1) preparation of G−1 and 2) build and solve the equations.

In the former step, we can use the PREGSF90 program. This program accepts the same parameter file
as BLUPF90. It calculates G−1 with various options and saves it to a file. BLUPF90 can read the file and
use it to build the mixed model equations. BLUPF90 supports two file-formats for G−1

w : a text file and a
binary file. The use of the text format is simpler especially for a small data set and easier to understand
how to run GBLUP using BLUPF90. The use of the binary file is more efficient but you need a trick
which mimics single-step GBLUP removing the pedigree relationship matrix. In this section, first, we
will use the text format to demonstrate how G−1

w can be calculated with PREGSF90 with an educational
parameter file. Then, we move to the second approach using the binary file with a different parameter file.

Note that the method introduced here may seem to be complicated. This is because we will not use
RENUMF90 here. When using the renumbering tool, GBLUP will be performed easily. In the later
chapter, we will see how RENUMF90 simply prepares the files required in pure GBLUP.

6.19.2 Common files
In both approaches, we will use the common marker file and the cross-reference file. The SNP file is as
follows.

Listing 6.36: snp_mr11c.txt

13 20110002120000000000000000000000000000000000000000
...
26 10110201000000000000000000000000000000000000000000

The format of the SNP file is described in the previous chapter. The textbook uses only 10 SNP markers
but the above file contains 50 markers. The extra 40 markers are padding because BLUPF90 can’t read
fewer than 50 markers. All animals have the genotype 0 for the extra markers so the markers don’t provide
any information. The resulting G is the same as using only the first 10 markers.

The accompanying cross-reference file is also needed. This file relates the ID for genotyped animals
and the order of animals in the marker file. The detailed explanation is also available in the previous
chapter.

Listing 6.37: snp_mr11c_XrefID.txt

13 13
14 14
15 15
16 16
17 17
18 18
19 19
20 20
21 21
22 22
23 23
24 24
25 25
26 26
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6.19.3 The first approach with a text file for G-inverse
For PREGSF90

To obtain the text file to have G−1
w using PREGSF90, we use the data file (data_mr11c1.txt) as before

except for the last column for genotyped animals with different coding. Note that the data file is not really
read by PREGSF90 but we need it, because the program checks whether the data file is present or not.

Listing 6.38: data_mr11c1.txt

13 0 0 1 558 9.0 0.00179211 1
...
20 14 9 1 103 4.8 0.00970874 8

1. The original animal ID
2. The original sire ID
3. The original dam ID
4. general mean
5. EDC
6. Observation (Fat DYD)
7. 1/EDC
8. new ID for genotyped animals (in the order of the marker file - this is important)

The key is the 8-th column. This approach needs a new ID corresponding to the order in the marker
file. For example, animal 13 appears in the 1st row in the marker file, and it has 1 as a new ID. Later, we
will see the details of the new ID.

The pedigree file (pedigree_mr11c1.txt) contains all the animals with and without genotypes. The
program creates a subset of relationship matrix (A22) only for genotyped animals.

The parameter file for PREGSF90 is the same as BLUPF90.

Listing 6.39: preparam_mr11c1.txt

#
# Approach 1: creates a text G - Inverse file with PREGSF90
#
DATAFILE
data_mr11c1.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
6
WEIGHT(S)
7
EFFECTS:
4 1 cross
1 26 cross
RANDOM_RESIDUAL VALUES
245.0
RANDOM_GROUP
2
RANDOM_TYPE
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add_animal
FILE
pedigree_mr11c1.txt
(CO)VARIANCES
35.25
OPTION SNP_file snp_mr11c.txt snp_mr11c_XrefID.txt
OPTION no_quality_control
OPTION AlphaBeta 0.99 0.01
OPTION tunedG 0
OPTION saveAscii
OPTION saveG
OPTION saveGInverse
OPTION createGimA22i 0

The purpose of PREGSF90 is to create a text file with the elements of Gw. By default, PREGSF90 tries
to manipulate Gw in many ways. The options change the behavior of PREGSF90. Note that the options
are case-sensitive. Simple explanations for the options are available:

• SNP_file = Invoking the genomic routine. It needs 2 values in this case: the name of the marker
file and the name of the cross-reference file.

• no_quality_control = Turns off the quality control process to remove unqualified markers and
genotyped animals. In this example, we will use all the markers and genotyped animals.

• AlphaBeta = Defines weight w. This option has 2 values: α = w and β = 1−w. In this example,
we put w = 0.99 which is implicitly used by the author.

• tunedG = Controls the tuning method for Gw. It tries to adjust the scale of G to A22 using a method
described by Chen et al. (2011). This tuning is a different step as blending. The argument 0 turns
off the adjustment (i.e. uses Gw ).

• saveAscii = Uses the text format for a file to save G−1
w . Without this option, the program saves

the matrix to a binary file (a machine-readable file).
• saveG = Saves Gw to a file. The file name will be G. Actually, you don’t have to put this option in

this analysis. We just use it as an educational purpose to see the actual values in Gw.
• saveGInverse = Saves G−1

w to a file. The file name will be Gi.
• createGimA22i = Turns off the calculation of G−1

w −A22 which is required in single-step GBLUP.
You don’t have to put this option in this small example because the computing cost is negligible.
Turning off this option is important for a large-size problem in GBLUP.

We have more than 100 options just for PREGSF90. Many of them are implemented for experimental
purposes and unused. We will demonstrate such options in the later chapter. In this section, a user can
just recognize that there are plenty of options for PREGSF90, but only a few options may be essential for
the regular use in genomic prediction.

You can run PREGSF90 with the above parameter file. You can see the basic statistics for Gw on the
screen. Also, you will find that some files are created.

• Gen_call_rate = Empty in this case. Just ignore it.
• freq.count = Allele frequency for each marker. The values should be the same as the textbook

(see p.181).
• sum2pq = 2∑ j p j(1− p j)
• G = Elements in Gw. The values are slightly different from the textbook (p.186) because the text-

book values are from the pure G (not blended with A22). You can find the same values as the
textbook when you put OPTION AlphaBeta 1.0 0.0, but the program cannot calculate its in-
verse because it is singular.

• Gi = Elements in G−1
w . Only the diagonals and the upper triangular elements are stored.
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Among the above files, only Gi is required in the analysis with BLUPF90. The first 5 rows and the last
5 rows in this file are as follows.

1 1 36.374112147756
1 2 -27.980861774302
2 2 88.270926666258
1 3 -8.255548353247
2 3 31.300275470378
...
10 14 2.733882533018
11 14 6.555679888597
12 14 5.120296531692
13 14 4.504947248223
14 14 6.133181220876

The first 2 integers are the row and column indices for the element. Note that the maximum row and
column ID is 14 because the rank of this matrix (G−1

w ) is 14. So the row/column index doesn’t directly
refer to the animal’s ID. PREGSF90 internally re-assigns IDs for genotyped animals as the consecutive
order of animals in the marker file. For example, row 1 and column 1 (the first line in the above file)
corresponds to the relationship between animal 13 and 13 (i.e., the diagonal for the animal 13) because
the animal 13 appears the first in the marker file (animal 13 = new ID 1). The row 1 and column 2 (the
second line) is for the relationships between animal 13 and 14 because the animal 14 appears secondly
in the marker file (animal 14 = new ID 2). Therefore, we should use the new ID to refer to genotyped
animals.

We have already prepared the data file with the new ID (the 8th column). BLUPF90 can read the new
column as an animal ID.

For BLUPF90

The parameter file for BLUPF90 is shown below.

Listing 6.40: param_mr11c1.txt

DATAFILE
data_mr11c1.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
6
WEIGHT(S)

EFFECTS:
4 1 cross
8 14 cross # new ID (renumbered only for genotyped animals)
RANDOM_RESIDUAL VALUES
245.0
RANDOM_GROUP
2
RANDOM_TYPE
user_file
FILE
Gi

131



6 Various models

(CO)VARIANCES
35.25
OPTION solv_method FSPAK

We use the keyword user_file to read the text file for G−1
w With this keyword, we don’t need the

marker file anymore. BLUPF90 simply read the file and put the elements into the equations. Run
BLUPF90 with the parameter file, and you will find the results. The solutions look very similar to the
values in the textbook (p.185; GBLUP).

6.19.4 Second approach with a binary file for G-inverse
The parameter file for PREGSF90 is very similar to the previous one.

Listing 6.41: preparam_mr11c2.txt

DATAFILE
data_mr11c1.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
6
WEIGHT(S)

EFFECTS:
4 1 cross
1 26 cross
RANDOM_RESIDUAL VALUES
245.0
RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
pedigree_mr11c1.txt
(CO)VARIANCES
35.25
OPTION SNP_file snp_mr11c.txt snp_mr11c_XrefID.txt
OPTION no_quality_control
OPTION AlphaBeta 0.99 0.01
OPTION tunedG 0
#OPTION saveAscii
#OPTION saveG
OPTION saveGInverse
OPTION createGimA22i 0

The only differences between this parameter file and the previous one are options. We remove (actually
comment out) the two options. With this parameter file, the G-inverse file (Gi) is saved as a binary format
readable only for the computer. Also, we don’t need a file, G. Run PREGSF90 with this parameter file,
and you can see the very similar output on the screen.

With this approach, we trick BLUPF90 as if the single-step GBLUP was applied. In this analysis, we
shouldn’t use the pedigree file. The prepared G−1

w is already blended with A22 so we do not need the
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pedigree file. We just prepare a dummy, empry pedigree file. This file contains 26 lines, which is the
same number of lines as the original pedigree.

Listing 6.42: pedigree_mr11c2.txt

0 0 0
...
0 0 0

We need the data, (empty) pedigree, marker and cross-reference files as well as Gi for the analysis with
BLUPF90. The parameter file for BLUPF90 is slightly different from one for PREGSF90.

Listing 6.43: param_mr11c2.txt

DATAFILE
data_mr11c1.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
6
WEIGHT(S)

EFFECTS:
4 1 cross
1 26 cross # use the original ID
RANDOM_RESIDUAL VALUES
245.0
RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
pedigree_mr11c2.txt
(CO)VARIANCES
35.25
OPTION SNP_file snp_mr11c.txt snp_mr11c_XrefID.txt
OPTION readGimA22i Gi
OPTION solv_method FSPAK

This parameter file is for single-step GBLUP. In this case, the pedigree file is empty, and A−1 = 0. The
program will read Gi instead of creating G−1

w and A22 with the second option (OPTION readGimA22i).
The program reads G−1

w , and it performs GBLUP.
Run BLUPF90 with the parameter file, and you can find the solutions that are identical to approach 1.

You can see many warnings (Animal Id equal to Sire/Dam Id - relationships removed !!)
because we use a trick which never happens in the regular single-step GBLUP.

Again, the approaches demonstrated here require some manual operations. In the later chapter, we will
see an automatic approach to perform GBLUP using RENUMF90 and BLUPF90.
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6.20 Mixed linear models with polygenic effects

6.20.1 Model
See the textbook for the details.

6.20.2 Files and solutions for SNP-BLUP
First, we perform the SNP-BLUP analysis. The data file (data_mr11d1.txt) is from the previous ex-
ample.

We can use the same pedigree defined before (pedigree_mr11d1.txt).
The parameter file contains 10 SNP effects with the residual polygenic effects.

Listing 6.44: param_mr11d1.txt

DATAFILE
data_mr11d1.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
12
OBSERVATION(S)
6
WEIGHT(S)

EFFECTS:
4 1 cross # general mean
1 26 cross # residual polygenic effects
8 1 cov # SNP effect 1
9 1 cov # SNP effect 2
10 1 cov # SNP effect 3
11 1 cov # SNP effect 4
12 1 cov # SNP effect 5
13 1 cov # SNP effect 6
14 1 cov # SNP effect 7
15 1 cov # SNP effect 8
16 1 cov # SNP effect 9
17 1 cov # SNP effect 10
RANDOM_RESIDUAL VALUES
245.0
RANDOM_GROUP # polygenic effect
2
RANDOM_TYPE
add_animal
FILE
pedigree_mr11d1.txt
(CO)VARIANCES
3.5241
RANDOM_GROUP # jointly considering independent 10 SNP effects
3 4 5 6 7 8 9 10 11 12
RANDOM_TYPE
diagonal
FILE

(CO)VARIANCES
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8.9636 0 0 0 0 0 0 0 0 0
0 8.9636 0 0 0 0 0 0 0 0
0 0 8.9636 0 0 0 0 0 0 0
0 0 0 8.9636 0 0 0 0 0 0
0 0 0 0 8.9636 0 0 0 0 0
0 0 0 0 0 8.9636 0 0 0 0
0 0 0 0 0 0 8.9636 0 0 0
0 0 0 0 0 0 0 8.9636 0 0
0 0 0 0 0 0 0 0 8.9636 0
0 0 0 0 0 0 0 0 0 8.9636
OPTION solv_method FSPAK

You can check the solutions. See the reference values in the textbook (p.190).

6.20.3 Files and solutions for GBLUP
In this example with GBLUP, we use a text file for G−1

w created with PREGSF90 in the previous section
(the first approach). See the instruction and prepare the file.

The data file (data_mr11d2.txt) is also common to the previous one.
The pedigree file is the same as SNP-BLUP.
The parameter file is shown below.

Listing 6.45: param_mr11d2.txt

DATAFILE
data_mr11d2.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
3
OBSERVATION(S)
6
WEIGHT(S)

EFFECTS:
4 1 cross
1 26 cross # residual polygenic effect
8 14 cross # new ID (renumbered only for genotyped animals)
RANDOM_RESIDUAL VALUES
245.0
RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
pedigree_mr11d2.txt
(CO)VARIANCES
3.5241
RANDOM_GROUP
3
RANDOM_TYPE
user_file
FILE
Gi
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(CO)VARIANCES
31.717
OPTION solv_method FSPAK

The solutions are available by running the program.

6.21 Single-step approach

6.21.1 Model
We consider the standard animal model

y = Xb+Wu+ e.

If some animals are genotyped, their additive relationships are described with the genomic relationship
matrix (G). When the genotyped and the non-genotyped animals are simultaneously considered in the
relationship matrix, the resulting matrix is H. Its inverse falls into a simple form.

H−1 = A−1 +

[
0 0
0 G−1−A−1

22

]

This G−1 is usually blended with the pedigree matrix (G−1
w shown in the previous section). The system

of mixed model equations is the same as the standard animal model with H−1 instead of A−1:
[

X′R−1X X′R−1Z
Z′R−1X Z′R−1Z+H−1/σ2

u

][
b̂
û

]
=

[
X′R−1y
Z′R−1y

]

where σ2
u = 35.241 and σ2

e = 245.0 in this case. BLUPF90 fully supports ssGBLUP with a minimal
description in the parameter file.

6.21.2 Files
The data file is different from the previous ones (data_mr11e.txt).

The pedigree information is common to the previous analysis (pedigree_mr11e.txt).
The SNP marker file is unique for this analysis.

Listing 6.46: snp_mr11e.txt

18 11010202210000000000000000000000000000000000000000
...

The corresponding cross-reference file is as follows.

Listing 6.47: snp_mr11e_XrefID.txt

18 18
19 19
20 20
21 21
22 22
23 23
24 24
25 25
26 26
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The parameter file is shown as follows.

Listing 6.48: param_mr11e.txt

DATAFILE
data_mr11e.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
6
WEIGHT(S)
5
EFFECTS:
4 1 cross
1 26 cross
RANDOM_RESIDUAL VALUES
245.0
RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
pedigree_mr11e.txt
(CO)VARIANCES
35.241
OPTION SNP_file snp_mr11e.txt snp_mr11e_XrefID.txt
OPTION no_ quality_control
OPTION AlphaBeta 0.95 0.05
OPTION tunedG 0
OPTION thrStopCorAG 0.10
OPTION solv_method FSPAK

BLUPF90 (actually the embedded genomic routine) may stop because of the very low correlation
between diagonals from G and A22. The correlation should be usually high enough; otherwise, there may
be a problem in the quality of the genotypes or the pedigree. It is low in this case due to the small data
set. The option thrStopCorAG prevents the program from stopping from the low correlation.

6.21.3 Solutions
Unfortunately, the solutions are totally different from the reference values in the textbook (p.193).

Listing 6.49: solutions

trait/effect level solution
1 1 1 8.38509553
1 2 1 -0.27072327
1 2 2 2.90677899
1 2 3 -0.27072327
1 2 4 2.58838142
1 2 5 -2.59488845
1 2 6 -1.88195674
1 2 7 -0.99299119
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1 2 8 -1.02617193
1 2 9 -3.14377983
1 2 10 -1.69066025
1 2 11 -3.31615787
1 2 12 0.81555256
1 2 13 0.63918948
1 2 14 4.85991512
1 2 15 4.20216687
1 2 16 6.46125192
1 2 17 -1.79124924
1 2 18 -0.39297755
1 2 19 1.47720048
1 2 20 -2.90484503
1 2 21 -0.54144654
1 2 22 0.89069967
1 2 23 -2.54427924
1 2 24 -0.10603281
1 2 25 0.94047078
1 2 26 3.65328640

6.22 Animal model with dominance effect

6.22.1 Model
Linear mixed models can handle a non-additive genetic model with dominance or epistatic relationship
matrices. In the dominance model, we can consider the additive genetic effect and the dominance effect
simultaneously. In this example, the author assumes the animal model with one fixed effect, the additive
genetic effect, the dominance effect, and the residual effect. In this example, the additive variance σ2

u =
90, the dominance variance σ2

d = 80, and the residual variance σ2
e = 120. BLUPF90 doesn’t have a

function to calculate D−1, so we need to supply the elements as a file to the program.

6.22.2 Files
A data file (data_mr12a.txt) should be prepared.

The pedigree file (pedigree_mr12a.txt) is also created.
The inverse of the dominance relationship matrix is supplied as a text file. See the textbook for details

(p.207).

Listing 6.50: userinverse_mr12a.txt

1 1 1.000
2 2 1.000
...
11 12 -0.241
12 12 1.092

The parameter file defines 2 random effects.

Listing 6.51: param_mr12a.txt

DATAFILE
data_mr12a.txt
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NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
3
OBSERVATION(S)
5
WEIGHT(S)

EFFECTS:
4 2 cross # fixed effect
1 12 cross # additive effect
1 12 cross # dominance effect
RANDOM_RESIDUAL VALUES
120.0
RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
pedigree_mr12a.txt
(CO)VARIANCES
90.0
RANDOM_GROUP
3
RANDOM_TYPE
user_file
FILE
userinverse_mr12a.txt
(CO)VARIANCES
80.0
OPTION solv_method FSPAK

6.22.3 Solutions
The solutions are identical to the reference values in the textbook (p.207).

6.23 Inversion of the dominance matrix

6.23.1 Model
A rapid algorithm to calculate D−1 (ignoring inbreeding) was developed by Hoeschele and VanRaden
(1991). Their method was derived from the parental subclass effects f and its covariance matrix F. The
dominance effect is an interaction of genes, and the effect is inherited through the combination of parents
and ancestors rather than through individuals. Therefore, the dominance variation can be described with
the combination of ancestral animals. Here we just introduce the idea of parental subclasses. See the
original paper or the textbook for the detailed algorithm for the inverse.

For an animal i, its dominance effect di can be expressed as

di = fS,D + ε

where fS,D is the expected dominance effect of many hypothetical fill-sibs from the sire S and the dam
D, and ε is the Mendelian sampling deviation. We assume var( fS,D) = σ2

f and it is equivalent to the
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dominance covariance among the full-sibs. So we can find σ2
f = 0.25σ2

d and var(ε) = 0.75σ2
d . The

parental dominance effect actually consists of several components:

fS,D = 0.50( fS,SD + fS,DD + fSS,D + fDS,D)−0.25( fSS,SD + fSS,DD + fDS,SD + fDS,DD)+ e

where SS and SD refer to the sire and the dam of the sire, respectively, and SD and DD refer to the sire
and the dam of the dam, respectively. We have to put a label on each combination of animals (subclass).
A dominance pedigree file contains the labels on the above 8 subclass for each fS,D. The vector f contains
the parental dominance effects and its variance is

var(f) = Fσ
2
f

and its inverse is rapidly calculated using the dominance pedigree file. The final inverse D−1 is also
calculated with F−1.

BLUPF90 calculates F−1 only. This matrix itself can’t be used to estimate individual dominance effect.
However, F−1 is still useful to estimate the variance components. In this section, we will prepare the files
as usual even we will not solve the mixed model equations.

6.23.2 Files
The dominance pedigree file for BLUPF90 contains 10 columns.

1. Parental dominance subclass (φ ).
2. Subclass S,SD (code:1)
3. Subclass S,DD (code:2)
4. Subclass SS,D (code:4)
5. Subclass DS,D (code:8)
6. Subclass SS,SD (code:16)
7. Subclass SS,DD (code:32)
8. Subclass DS,SD (code:64)
9. Subclass DS,DD (code:128)

10. Sum of the code for nonempty subclasses.

If the subclass is unknown or empty, put 0. The last column contains an integer value from the sum-
mation of all the code number for nonempty subclasses. The final code should be ranging from 0 to 255.
For example, in φ = 1 i.e., f6,8, the final code is 2+4+32 = 38. If the final code is 0, you can omit such
a line.

The dominance pedigree file for this example is shown below.

Listing 6.52: dominance_mr12b.txt

1 0 2 3 0 0 6 0 0 38
...

The data file has to contain the parental subclass labels. The 4th column is the subclass label.

Listing 6.53: data_mr12b.txt

5 2 17 5
...

The pedigree file is the same as the previous one (pedigree_mr12b.txt).
The parameter file is shown below.
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Listing 6.54: param_mr12b.txt

DATAFILE
data_mr12b.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
3
OBSERVATION(S)
3
WEIGHT(S)

EFFECTS:
2 2 cross # fixed effect
1 12 cross # additive genetic
4 6 cross # parental dominance
RANDOM_RESIDUAL VALUES
180.0
RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
pedigree_mr12b.txt
(CO)VARIANCES
90.0
RANDOM_GROUP
3
RANDOM_TYPE
par_domin
FILE
dominance_mr12b.txt
(CO)VARIANCES
20.0
OPTION solv_method FSPAK

With the keyword par_domin, BLUPF90 creates F−1 from the dominance pedigree file. Note that
the parental subclass variance is one quarter of the dominance variance (σ2

f = σ2
d /4 = 80/4 = 20). The

remaining variance goes into the residual variance (120+60 = 180).
You can run BLUPF90 with this parameter file. The solutions are similar in BLUE and BLUP for

the additive effects compared with the previous results. The predictions for parental dominance are not
equivalent to the previous results. In this analysis, we just consider the quarter of dominance variance
through F−1. For the precise prediction of the dominance effects, a user should use the software that fully
supports the dominance effect. As we mentioned before, however, the parameter file is still useful for
variance component estimation with a dominance model.

What is the most efficient way to create a dominance pedigree file? A renumbering program REN-
DOMN supports generating the file. This program is based on the old design and different usage com-
pared to RENUMF90. A solver supporting a dominance model is JAADOMN which is also old software.
You can find the programs at http://nce.ads.uga.edu/~ignacy/numpub/dominance/.
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6.24 The threshold model

6.24.1 Model
Some traits show categorical responses which can be potentially ordered by degree e.g., calving difficulty
(easy, slightly difficult, or difficult) and disease (no treatment needed, treated, or died). For such traits,
although the phenotype is not continuous, we can still assume that both genetic and environmental factors
affect the traits and there is the polygenic effect. In this case, it is a reasonable model that each animal has
a non-observable, hypothetical random variable like a phenotype in a continuous trait, and such a variable
contributes to the categorical response. In this model, various factors can contribute to the underlying
variable. When the variable exceeds a certain level, it expresses the different category of response. This
is a basic idea of the threshold model and the variable is called liability and the level is known as the
threshold. The liability is usually assumed to be normally distributed in an underlying scale. We can
apply a linear model to the underlying variable. In this theory, the number of thresholds is equivalent to
the number of categories minus 1.

The author cites a well-known data set originally provided by Gianola and Foulley (1983). The trait is
calving ease with 3 categories. The sire model for liability is as follows:

li jkl = Hi +C j + sk + ei jkl

where li jkl is the liability, Hi and C j are the fixed effects, sk is the random sire effect and ei jkl is the
residual. The variance components are σ2

s = 1/19 = 0.0526 and σ2
e = 1.0.

The BLUPF90 family used to have several software to handle the threshold. Now THRGIBBS1F90
is the only publicly available program. This is Gibbs sampler so we need many samples to estimate the
location parameters as the posterior means.

6.24.2 Files
The pedigree file is prepared for the sire model.

Listing 6.55: pedigree_mr13a.txt

1 0 0
...

The items are different from the animal model.

1. Animal (sire) ID
2. Sire (sire of sire) ID
3. Maternal grand sire ID

The data file is shown below. All the phenotype should be written in the flat file. There are 28 observa-
tions from 28 calves (p.223).

Listing 6.56: data_mr13a.txt

1 1 1 1 1
...
2 1 4 1 20

The file has the 4th column just to show the original row in the table.

1. Herd (Hi)
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2. Sex (S j); 1=male and 2=female
3. Sire of calf (sk)
4. The row in the original table corresponding to the data line.

The parameter file is similar to the standard one except some options.

Listing 6.57: param_mr13a.txt

DATAFILE
data_mr13a.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
3
OBSERVATION(S)
4
WEIGHT(S)

EFFECTS: # l=H+C+s+e
1 2 cross # Herd
2 2 cross # Sex
3 4 cross # sire
RANDOM_RESIDUAL VALUES # residual variance = 1
1.0
RANDOM_GROUP
3
RANDOM_TYPE # sire model
add_sire
FILE
pedigree_mr13a.txt
(CO)VARIANCES # sire variance = 1/19
0.0526
OPTION cat 3
OPTION fixed_var mean

The following 2 options are required to perform the threshold analysis with THRGIBBS1F90.

• OPTION cat = defines the number of categories. This is a single-trait model so just put one value
(3 categories for the trait 1). If you apply a multiple-trait model, supply as many integers as traits.
The value 0 specifies that a trait is continuous (i.e. non-categorical trait).
• OPTION fixed_var mean = performs sampling only for the location parameters (i.e. solutions)

with the fixed variance components supplied in the parameter file. This is useful when only the
solutions are of interest.

You can run THRGIBBSF90 with many samples. In this example, we try 10,000 samples with 5,000
burn-in and save all the samples after burn-in. It may have too many samples but we make sure we have
the converged results.

Note that THRGIBBS1F90 doesn’t estimate the thresholds in this case. If there are 2 thresholds (3 cat-
egories), the program assumes two thresholds are fixed to be 0 and 1. If there is 1 threshold (2 categories),
the program fixes the value to 0.

6.24.3 Solutions
The solutions are stored in final_solutions.
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Listing 6.58: solutions

trait/effect level solution SD
1 1 1 9.52944466 8.75831636
1 1 2 9.85646244 8.76150641
1 2 1 -9.88169090 8.75776616
1 2 2 -10.30709508 8.74507553
1 3 1 -0.05309676 0.21738782
1 3 2 0.06929745 0.21682631
1 3 3 0.03496753 0.21566398
1 3 4 -0.08110327 0.22041841

P11 = Φ(t1− ĥ1− ĉ2− û1) = 0.758

P12 = Φ(t2− ĥ1− ĉ2− û1)−Φ(t1− ĥ1− ĉ2− û1) = 0.197

P13 = 1−Φ(t2− ĥ1− ĉ2− û1) = 0.044

where Φ(x) is the cumulative density normal function e.g., pnorm() in R. The reference values are
P11 = 0.800, P12 = 0.129, and P13 = 0.071. The results are apparently different from the textbook. Why?
There are 2 possible reasons why the results don’t match.

The first one, which is minor, is over-constraint equations. The author put 2 zero-constraint to the
equations. Although the left-hand side (LHS) of the equations has very small 2 eigenvalues, it is not small
enough to drop the rank of LHS. The problem is in the linear model. The author put the same constraints
to the corresponding linear model analysis but it is inappropriate.

The second one is from fixed thresholds with σ2
e = 1.0. When the number of categories (c) is 2 i.e. bi-

nary traits, there is only 1 threshold and its value can be arbitrarily fixed. When c = 3, we have 2 ways
to parameterize the thresholds: 1) one threshold is fixed and another threshold is estimated, or 2) both
thresholds are fixed and σ2

e is estimated (i.e. σ2
e is no longer fixed to 1.0). With the latter parameter-

ization, we need to estimate c− 3 threshold parameters in addition to σ2
e . THRGIBBS1F90 uses this

parameterization, so we need appropriate σ2
e instead of 1.0 for the fixed thresholds. In the above exam-

ple, the residual variance was not appropriate. A question is why this software implements the model in
this way. In the variance component estimation using Gibbs sampling for a threshold model with 3 or
more categories (2 or more thresholds), the convergence rate for a threshold parameter is very slow. The
sampling of residual variance is a better strategy when 2 or more thresholds are assumed in the model.
See Sorensen et al. (1995) or Wang et al. (1997) for the detailed discussion. Thus, it may happen that
OPTION fixed_var mean is not such a good idea. You may explore this by yourself.

6.24.4 Reasonable solutions
In this subsection, we will find ways to obtain the same solutions to the textbook. First, we try CBLUPF90THR
which is available from our web server. This program supports the computation of 2 or more thresholds
in a single-trait threshold model. 3

The program implements Hoeschele et al. (1995) which generalized Foulley et al. (1983) and Janss and
Foulley (1993) with some unpublished work by Richard Quaas (presented at a meeting of Beef Improve-
ment Federation).

The following results are from the program with the same parameter file with many iterations enough
to converge (100 rounds here).

Listing 6.59: solutions

3Actually, it supports a multiple-trait model with one threshold trait and many linear traits.
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trait/effect level solution
1 1 1 -0.8942
1 1 2 -0.6168
1 2 1 0.4014
1 2 2 0.0425
1 3 1 -0.0434
1 3 2 0.0592
1 3 3 0.0412
1 3 4 -0.0660

The thresholds are t1 =−0.0550 and t2 = 0.5748. The difference between thresholds is t2−t1 = 0.6298
and it is the same as the reference analysis. With above solutions, P11 = 0.800, P12 = 0.130, and P13 =
0.070. The results are nearly identical to the reference values in the textbook.

Then, we try to run THRGIBBS1F90 with a different residual variance. Let’s try σ2
e = 3.0. To keep

the same variance ratio, σ2
s should be 0.158 to be σ2

e /σ2
s = 19.0. The thresholds are fixed to t1 = 0.0 and

t2 = 1.0. The final solutions from THRGIBBS1F90 are as follows.

Listing 6.60: solutions

trait/effect level solution SD
1 1 1 16.34777283 15.17002602
1 1 2 16.82596758 15.17639696
1 2 1 -17.16324150 15.16948659
1 2 2 -17.80476157 15.14659841
1 3 1 -0.08323076 0.37743431
1 3 2 0.10108613 0.37648625
1 3 3 0.05924918 0.37371633
1 3 4 -0.12015570 0.38254070

When σ2
e 6= 1.0, we should standardize the liability predictor with the residual standard deviation before

applying the cumulative normal function to calculate the probabilities. See the following computations.

P11 = Φ

(
t1− ĥ1− ĉ2− û1

σe

)
= 0.813

P12 = Φ

(
t2− ĥ1− ĉ2− û1

σe

)
−Φ

(
t1− ĥ1− ĉ2− û1

σe

)
= 0.116

P13 = 1−Φ

(
t2− ĥ1− ĉ2− û1

σe

)
= 0.071

Again, σe is the standard deviation of residual variance (
√

σ2
e ) because the formula is based on the

standardization of the latent variable. The probabilities are very similar to the reference results for all
sires (p.229).

6.25 Joint analysis of quantitative and binary traits

6.25.1 Model
We can consider a 2-trait model with one threshold trait and one continuous trait. When we use Gibbs
sampling to draw the posterior distribution for a location parameter, we can simply obtain a solution as
the posterior mean. However, once we try to calculate the solutions without Gibbs sampling, the resulting
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equations become nonlinear and a complicated strategy is needed to solve the equations. See Wang et
al. (1997) for detailed discussion. For the threshold trait, the solutions obtained with anyways should be
converted differently as the regular threshold model. The author cited Foulley et al. (1983) and explains
how to do it.

In this section, we will simply use THRGIBBS1F90 to draw the posterior mean for a location param-
eter. In this example, we have only 1 threshold, so the program fixes the threshold to 0 and the residual
variance to 1.0.

6.25.2 File
The data file is from Foulley et al. (1983) and shown below.

Listing 6.61: data_mr13b.txt

1 1 1 1 41.0 1
1 1 1 1 37.5 1
1 1 1 2 41.5 1
1 1 2 2 40.0 1
1 1 2 2 43.0 1
1 1 2 2 42.0 1
1 1 2 2 35.0 1
2 1 1 2 46.0 1
2 1 1 2 40.5 1
2 1 2 2 39.0 1
1 2 1 1 41.4 1
1 2 1 1 43.0 2
1 2 2 2 34.0 1
1 2 2 1 47.0 2
1 2 2 1 42.0 1
2 2 2 1 44.5 1
2 2 2 1 49.0 1
1 3 1 1 41.6 1
2 3 1 1 36.0 1
2 3 1 2 42.7 1
2 3 2 2 32.5 1
2 3 2 2 44.4 1
2 3 2 1 46.0 1
1 4 2 1 47.0 2
1 4 2 2 51.0 2
1 4 2 2 39.0 1
2 4 1 1 44.5 1
1 5 1 1 40.5 1
1 5 1 2 43.5 1
1 5 2 1 42.5 1
1 5 2 1 48.8 2
1 5 2 1 38.5 1
1 5 2 1 52.0 1
1 5 2 2 48.0 1
2 5 1 2 41.0 1
2 5 1 1 50.5 2
2 5 2 1 43.7 2
2 5 2 1 51.0 2
1 6 1 2 51.6 2
1 6 1 1 45.3 2
1 6 1 2 36.5 1
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1 6 2 1 50.5 1
1 6 2 1 46.0 2
1 6 2 1 45.0 1
1 6 2 2 36.0 1
2 6 1 2 43.5 1
2 6 1 2 36.5 1

This file contains 6 columns.

1. Heifer origin
2. Sire ID
3. Season
4. Sex (1=male and 2=female)
5. BW (body weight)
6. CD (calving difficulty)

The pedigree file contains a sire, sire of the sire, and the maternal grand-sire.

Listing 6.62: pedigree_mr13b.txt

1 0 0
2 0 0
3 1 0
4 2 1
5 3 2
6 2 3

As the author mentions, we should use the corrected genetic parameters (Gc) as shown on p.235. The
residual variance is 1.0 for CD and 20.0 for BW, and the residual covariance is 2.0527 because the residual
correlation is 0.459. The parameter file is as follows. In our case, we exchange the order of traits i.e. the
trait 1 is CD and the trait 2 is BW.

Listing 6.63: param_mr13b.txt

DATAFILE
data_mr13b.txt
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
4
OBSERVATION(S)
6 5
WEIGHT(S)

EFFECTS: # l=H+M+E+s+e
1 1 2 cross # origin
3 3 2 cross # season
4 4 2 cross # sex
2 2 6 cross # sire
RANDOM_RESIDUAL VALUES
1.0000 2.0527
2.0527 20.000
RANDOM_GROUP
4
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RANDOM_TYPE
add_sire
FILE
pedigree_mr13b.txt
(CO)VARIANCES
0.0300 0.0302
0.0302 0.7178
OPTION cat 2 0
OPTION fixed_var mean

Run THRGIBBS1F90 to draw 20,000 enough samples (saved in every 10 steps) and discard the first
10,000 samples as burn-in. You can see the following solutions.

Listing 6.64: solutions

trait/effect level solution SD
1 1 1 31.68328943 8.14595680
2 1 1 169.99014434 40.28879171
1 1 2 31.39648971 8.19080303
2 1 2 170.59358068 40.25222186
1 2 1 5.79121444 11.84634633
2 2 1 -41.86423776 40.85833310
1 2 2 5.81766544 11.83550515
2 2 2 -40.61954962 40.79757133
1 3 1 -37.80144849 6.85003521
2 3 1 -84.56393688 42.77593912
1 3 2 -38.97895373 6.85779916
2 3 2 -87.77970197 42.74683265
1 4 1 -0.07369834 0.17245459
2 4 1 -0.26275007 0.75528469
1 4 2 0.04477009 0.17053692
2 4 2 0.10034538 0.80205603
1 4 3 -0.04892810 0.16824589
2 4 3 -0.19454123 0.80070554
1 4 4 0.04296839 0.17226439
2 4 4 0.16601219 0.80871849
1 4 5 0.02241590 0.16946856
2 4 5 0.33065415 0.78077812
1 4 6 0.03339339 0.17470579
2 4 6 0.16620116 0.78877094

The estimated values are close to the reference values (p.237). The small difference comes from a
limited number of observations. If you put zero-constraints on the fixed effects, you may obtain more
similar values as in the textbook.

Just for comparison, we show the results from CBLUP90THR with the same files shown above. The
estimated threshold is −0.0198 with 100 rounds.

Listing 6.65: solutions

trait/effect level solution
1 1 1 -1.0100
2 1 1 54.1493
1 1 2 -1.2648
2 1 2 54.7189
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1 2 1 0.3162
2 2 1 -16.9395
1 2 2 0.3255
2 2 2 -15.6956
1 3 1 0.3685
2 3 1 6.3608
1 3 2 -0.7128
2 3 2 3.1574
1 4 1 -0.0601
2 4 1 -0.2699
1 4 2 0.0387
2 4 2 0.0690
1 4 3 -0.0499
2 4 3 -0.2158
1 4 4 0.0418
2 4 4 0.1376
1 4 5 0.0172
2 4 5 0.2843
1 4 6 0.0322
2 4 6 0.1358
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Actual genetic evaluation often handles a large data set. Although the specific program blupf90 can read
quite large data and pedigree files ( for instance 1 million animals depending on the available memory), it
will fail in a large-scale analysis with tens of millions of individuals. Some special software is available
for such a purpose with a special contract with the development team at UGA. A member of our team can
access and test the software supporting the large data set. In this chapter, we will explain the usage of the
programs for large-scale genetic evaluations.

7.1 Issues in a large scale analysis
Recent computers can finish genetic evaluations or variance component estimation within a practical time
although we use a relatively large data set and a complicated model which weren’t handled in the past.
Even with modern computers, a genetic evaluation is a challenge both in computing time and required
memory. BLUPF90, AIREMLF90, and GIBBSF90 programs are designed to store the system of mixed
model equations (MME) in memory and they could be capable of 1 million pedigree animals in a single-
trait model. This is not enough with a large-scale analysis including more animals and effects.

There are several issues to be solved in large-scale genetic evaluation.

• The solution of the mixed model equations.
• Calculation of accuracy or reliability of individual EBV.
• Estimation of variance components.

The mixed model equations will be too large to be stored in memory in the large analysis. So we need
a trick to solve the equations without explicit creation of the equations. In this case, we can’t directly
calculate the inverse of the left-hand side of the equations, and the prediction error variance of EBV of
an animal is not available. Even if the mixed model equations are small enough to fit the memory, the
computational cost for the inverse is extremely high, and therefore, this calculation is often impractical in
many cases. We usually use subsets of the whole data for variance component estimation. But still, the
computation takes a really long time and never finishes if the data is large or the model is complicated.

We have several options for large-scale analysis. The BLUP90IOD2 program supports the iteration
on data technique. This technique is combined with an iterative method for solving the equations. The
algorithm partially builds the equations during reading the data and pedigree file and indirectly update
the solutions. When we have read through the files, we have also completed one round of iteration.
BLUP90IOD2 implements Preconditioned Conjugate Gradient (PCG) as the iterative method. See Tsu-
ruta et al. (2001) for details.

The ACCF90 program approximates the accuracy or reliability of EBV for an animal. This program
creates approximated elements in the left-hand side matrix for each animal. After collecting all the in-
formation, the program inverts the elements to obtain the approximated prediction-error variance (PEV).
This is an iterative method but the convergence will be met quickly. The basic idea is from Misztal and
Wiggans (1988) and Strabel et al. (2001).

AI REML is a primary choice of methods for variance component estimation. A typical computation
in AI REML contains the inversion of the left-hand side of mixed model equations. The FSPAK package
quickly calculates selected elements of the inverse needed for AI REML. It can still do a good job for
a small-scale analysis, but it is out of business for the large-scale analysis. The package was written
more than 20 years ago and its fundamental routine was written in the early 1980s. The new package,
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YAMS (Yet Another MME Solver), could remove the bottleneck. Although the results from YAMS are
compatible with the previous software, YAMS supports parallel computing or other modern techniques
i.e. highly efficient computations. Now AIREMLF90 and REMLF90 can use YAMS with an option. See
Masuda et al. (2014) and Masuda et al. (2015) for details.

7.2 Iteration on data with preconditioned conjugate gradient
(PCG)

7.2.1 Algorithm
Preconditioned conjugate gradient (PCG) is an iterative method to solve the linear equations. This method
is easily harmonized with the “iteration on data” technique. The intermediate status is kept in 4 vectors,
and the one iteration will be done by updating the vectors. BLUP90IOD2 is a program implementing this
algorithm. Here we will introduce a basic idea needed to understand what the program performs. See
Stranden and Lidauer (2000) and Tsuruta et al. (2001) for the detailed algorithm.

The mixed model equations can be written as

Cx = b

where C is the left-hand side matrix, x is the solution vector, and b is the right-hand side vector. If we
have a matrix M which is an approximation of C, above equations are equivalent to

M−1Cx = M−1b.

This matrix M is called preconditioner. If M = C, the equations are immediately solved. BLUPF90 uses
M = diag(C) so its inverse is easily calculated.

The residual is expressed as
r = b−Cx

and the algorithm tries to reduce with statistics containing the residual. The convergence criterion with
the current solution x̂ is

ε =
||b−Cx̂||2

||b||2

where || · || means the norm. The default of ε in BLUPF90IOD2 is 10−12.
Note that some other software, e.g., MiX99, uses

√
ε . The users should be careful about the definition

of convergence criterion when they have switched the software to BLUPF90IOD2.

7.2.2 Programs
BLUP90IOD2 is the current program to perform the iteration on data with PCG. CBLUP90IOD can
handle a threshold model or threshold-linear models with 1 threshold trait. BLUP90MBE is specialized
in multibreed models with external information (see Legarra et al., 2007). In this example, we use the
BLUP90IOD2 program.

A parallel version of BLUPF90IOD2 is now available. BLUP90IOD2OMP1 is a program supporting
parallel processing in reading data and pedigree files using OpenMP. This program is useful especially
for very large data set with a complicated model (like the multiple-trait model). There is no advantage to
use this program for small or moderate data set. The usage of this program is the same as BLUP90IOD2.
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7.2.3 Files and analysis
Here we will use the same sample files as used in REML estimation.

• simdata.txt : data file
• simped.txt : pedigree file

We will apply a 4-trait animal model to this data set with the following parameter file.

Listing 7.1: iodparam1.txt

DATAFILE
simdata.txt
NUMBER_OF_TRAITS
4
NUMBER_OF_EFFECTS
4
OBSERVATION(S)
9 10 11 12
WEIGHT(S)

EFFECTS:
6 6 6 6 155 cross
7 7 7 7 2 cross
8 8 8 8 11 cross
1 1 1 1 4641 cross
RANDOM_RESIDUAL VALUES
63.568 35.276 26.535 13.533
35.276 84.627 37.831 23.306
26.535 37.831 75.156 28.079
13.533 23.306 28.079 46.839
RANDOM_GROUP
4
RANDOM_TYPE
add_animal
FILE
simped.txt
(CO)VARIANCES
37.150 19.471 23.885 24.246
19.471 16.128 19.571 22.239
23.885 19.571 31.315 33.782
24.246 22.239 33.782 51.706

Run BLUP90IOD2 with the parameter file. It takes 185 rounds to meet the convergence.

round = 183 eps = 0.1707E-11 time = 0.01
round = 184 eps = 0.1139E-11 time = 0.01
round = 185 eps = 0.9976E-12 time = 0.01
7.1286485E-03 seconds per round
* END iteration: 11-14-2016 17h 52m 05s 737
solutions stored in file: "solutions"
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7.2.4 Options

OPTION conv_crit tol

This option defines the convergence criterion (ε) to stop the iterations. A real value tol should be a
small value. The default is 1.0E-12. The criterion should be carefully decided because the default value
could be too loose but the strict criterion requires too many rounds to converge. The best practice is to
compare solutions from different convergence criterions and determine enough convergence criterion.

OPTION blksize n

This option creates a block diagonal matrix for pre-conditioner (M). The integer value n defines the
block size. By default, the pre-conditioner is the diagonal matrix (i.e. n is 1). The block size should be
the same as the number of traits. This option will reduce the number of iterations if the specified value is
valid.

7.3 Approximation of accuracy and reliability

7.3.1 Algorithm
Accuracy or reliability of EBV of an animal can be calculated from the prediction error variance (PEV)
obtained from the diagonal elements of the inverse of left-hand side (LHS) of the mixed model equations.
The diagonals can be calculated with the sparse inversion with FSPAK or YAMS for smaller data set. As
expected, the computation cost for the inverse is really high and the left-hand side has to be in memory.
So this direct method cannot be applied to a large scale genetic evaluation.

There are two major classes to approximate accuracy and reliability. One is to approximate diagonal
elements in LHS after absorbing the non-genetic effects. This element looks like the effective number
of records for an animal. The other approach focuses on the effective number of progeny (daughters)
originally derived from the selection index theory based on a progeny test. This approach is especially
useful for parents.

ACCF90 implements the first approach. The method was described by Strabel et al. (2001) and Sanchez
et al. (2008) who extended the idea by Miszal and Wiggans (1988) to more complicated models. The
algorithm is iterative because too many unknown variables are involved in the final equations to provide
the approximated diagonal elements.

ACCF90GS supports ssGBLUP. The algorithm was described by Miszal et al. (2013) using G−1 and
A−1

22 . This program works well for smaller data set. For larger problems, now we are developing the
method without explicit computation of G−1 and A−1

22 .

7.3.2 Files
We will use the following files for a 4-trait repeatability model.

• simdata_rep.txt : data file
• simped.txt : pedigree file

The parameter file includes several options for ACCF90.

Listing 7.2: accparam1.txt

DATAFILE
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simdata_rep.txt
NUMBER_OF_TRAITS
4
NUMBER_OF_EFFECTS
5
OBSERVATION(S)
9 10 11 12
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [ EFFECT NESTED ]
6 6 6 6 155 cross
7 7 7 7 2 cross
8 8 8 8 11 cross
1 1 1 1 4641 cross
1 1 1 1 4641 cross
RANDOM_RESIDUAL VALUES
45.124 22.357 18.626 13.762
22.357 44.210 22.690 18.016
18.626 22.690 46.101 22.795
13.762 18.016 22.795 45.274
RANDOM_GROUP
4
RANDOM_TYPE
add_animal
FILE
simped.txt
(CO)VARIANCES
41.967 22.512 24.058 26.907
22.512 17.489 19.738 24.257
24.058 19.738 28.775 34.741
26.907 24.257 34.741 56.668
RANDOM_GROUP
5
RANDOM_TYPE
diagonal
FILE

(CO)VARIANCES
15.546 15.237 10.490 1.4105
15.237 40.937 19.562 6.4840
10.490 19.562 27.782 4.5379
1.4105 6.4840 4.5379 2.4410
OPTION cg 1 1 1 1
OPTION anim 4 4 4 4
OPTION pe 5 5 5 5
OPTION acc_maxrounds 20

The options will be explained later. ACCF90 reads the solutions file. Run BLUPF90 (or BLUPF90IOD2)
with the above parameter file, and then, run ACCF90 with the same parameter file. The program creates
the file sol_and_acc as follows (the first 9 lines are shown).

Listing 7.3: solutions

trait/effect level solution acc
1 4 1 -3.43278933 0.8728
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2 4 1 1.63205564 0.8147
3 4 1 1.86332893 0.8510
4 4 1 5.42050028 0.9237
1 4 2 1.35147071 0.8754
2 4 2 1.75742269 0.8140
3 4 2 6.60794020 0.8512
4 4 2 5.09637833 0.9268
1 4 3 -9.07606792 0.8820

This file is similar to solutions but the only estimated breeding values (EBV) are stored. The last
column is the reliability of EBV.

7.3.3 Options

OPTION cg [ position(s)] # contemporary group effect
OPTION anim [ position(s)] # additive genetic effect
OPTION pe [ position(s)] # PE effect
OPTION mat [ position(s)] # maternal genetic effect
OPTION hs [ position(s)] # herd by sire interaction effect

Each option defines the position(s) for the specific effect in the EFFECT: block. The positions should
be enumerated for all traits. If the effect is missing in a trait, put 0. The first 2 options cg and anim are
mandatory and the others are optional. With the above example, the contemporary group effect is the 1st
effect in the EFFECT: block. Because the contemporary group effect is considered in all 4 traits, we put
four 1s as cg 1 1 1 1. Similarly, the additive genetic effect is defined as the 4th effect for all the traits
so we put animal 4 4 4 4; the permanent environmental effect is the 5th effect for all the traits so we
put pe 5 5 5 5.

OPTION acc_maxrounds n # n = integer number
OPTION conv_crit x # x = real small number

The first option defines the maximum number of iterations (the default is 10) and the second defines
the convergence criterion (the default is 1.0e-8). The iterations stop when the program reaches either
criterion.

The program needs only a few iterations. Too many iterations would add bias to the approximated reli-
ability. The recommendation is to use the default convergence criterion. The default number of iterations
wouldn’t be enough, and you should put a larger number to acc_maxrounds.

OPTION type x # x = 1.0 or 0.5

This option defines the type of reliability. The final reliability will be calculated as (R2)x. The default x
is 1.0 and it corresponds to R2 (i.e. reliability). If you put 0.5 to x, the output is (R2)0.5 = R i.e. accuracy.
Traditionally, the beef industry has used the accuracy (x is 0.5) and the dairy has used the reliability (x is
1.0). The default value is 1.0.

OPTION parent_avg

With this option, the program calculates the parent average for each animal. The values are saved in
the additional column in sol_and_acc.
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OPTION original_id

This option puts the original ID (the 10th column in the renumbered pedigree file) to sol_and_acc.

7.4 REML estimation with large data

7.4.1 Background
In typical REML computations, there are several bottlenecks. First, the exact solutions of the mixed
model equations with the current variance components are needed. This means we should use Gaussian
elimination or similar methods (direct methods). The Cholesky factorization is often employed to solve
the equations. The LHS of mixed model equations generally contains many zero elements, and the ma-
trix is sparse. Although we can hold only the nonzero elements to save the memory, very complicated
operations are needed for the factorization.

Secondly, the REML algorithms use the first derivative of the restricted log-likelihood, which contains
the selected elements of the inverse of LHS. In the animal model, the derivative contains the following
trace term:

tr(A−1Cuu)

where A−1 is the inverse of the numerator relationship matrix and Cuu is the submatrix of the inverse
of the left-hand side (LHS) of the mixed model equations corresponding to the solutions for the additive
genetic effect (û). Simply speaking, the REML equations require the inverse of the LHS. The inverse of
a sparse matrix is usually dense (non-sparse). You can easily imagine that its computational and storage
costs are extremely high.

In this calculation, we don’t actually need the whole inverse. We just need the selected elements of
the inverse corresponding to non-zero elements in the original C. The selected subset is called sparse
inverse in animal breeding literature. An algorithm, so-called Takahashi algorithm, can calculate the
sparse inverse. This algorithm updates the Cholesky factor of the LHS.

FSPAK is a successful computer package to perform sparse operations including the factorization and
sparse inversion for the LHS of mixed model equations. This package is the default solver in REMLF90
and AIREMLF90 (and BLUPF90 with OPTION solv_method FSPAK). It is still useful for small equa-
tions although the back-end subroutines were written more than 20 years ago. Unfortunately, the old
design is inefficient in larger equations with many dense blocks. For example, a multiple-trait model
(or random regression/maternal model) contains many (genetic and residual) covariance matrices in the
equations. Although each covariance matrix is small, the small matrices are combined into large dense
blocks during the sparse operations. This is more typical of a genomic model including the (inverse of)
genomic relationship matrix, that is large and dense.

YAMS is a replacement of FSPAK. This package implements several advanced algorithms, including
the supernodal factorization and the inverse multifrontal approach, to efficiently handle the dense blocks
in the sparse matrix. YAMS intensively uses BLAS and LAPACK. For technical details, see Masuda et
al. (2014) and Masuda et al. (2015).

AIREMLF90 especially implements several options to accelerate the computation and stabilize the
estimation process. Here we also introduce the options.

7.4.2 Files
We will use the following files.

• simdata_rep.txt : data file
• simped.txt : pedigree file
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We will use a 4-trait repeatability model with the parameter file.

Listing 7.4: complicatedparam1.txt

DATAFILE
simdata_rep.txt
NUMBER_OF_TRAITS
4
NUMBER_OF_EFFECTS
5
OBSERVATION(S)
9 10 11 12
WEIGHT(S)

EFFECTS: POSITIONS_INDATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [ EFFECT NESTED ]
6 6 6 6 155 cross
7 7 7 7 2 cross
8 8 8 8 11 cross
1 1 1 1 4641 cross
1 1 1 1 4641 cross
RANDOM_RESIDUAL VALUES
100 80 80 80
80 100 80 80
80 80 100 80
80 80 80 100
RANDOM_GROUP
4
RANDOM_TYPE
add_animal
FILE
simped.txt
(CO)VARIANCES
100 80 80 80
80 100 80 80
80 80 100 80
80 80 80 100
RANDOM_GROUP
5
RANDOM_TYPE
diagonal
FILE

(CO)VARIANCES
100 80 80 80
80 100 80 80
80 80 100 80
80 80 80 100
OPTION use_yams
OPTION EM-REML 10

Here we put 2 options.

OPTION use_yams
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This option switches the sparse library from FSPAK to YAMS. If the program has multi-threaded
BLAS and LAPACK, the computations will be parallelized. This option is also effective in BLUPF90 in
a combination with OPTION solv_method FSPAK — it will use YAMS instead of FSPAK.

OPTION EM-REML n # default :0

This option forces the program performs EM REML (equivalent to REMLF90) in the first n rounds.
The default is 0 i.e. no EM rounds are performed and AI rounds start from round 1. For complicated
models, AI REML often diverges in the first round. Although this option can give a remedy for this
situation, it doesn’t always prevent the program from diverging.

We have several more options to accelerate the computations.

OPTION fact_once x

This option avoids the re-calculation of the Cholesky factor. It saves the Cholesky factor in temporary
memory (if x is memory) or a temporary file (if x is file). If you have enough memory, memory is
preferable because of its faster computations.

OPTION approx_loglike

This skips the computation of the exact log-likelihood. If you don’t need the exact value, we recom-
mend using this option for speed-up.

7.4.3 Results
The following results will be available in 17 rounds.

new R
45.124 22.357 18.626 13.762
22.357 44.210 22.690 18.016
18.626 22.690 46.101 22.795
13.762 18.016 22.795 45.274

new G
41.967 22.512 24.058 26.907
22.512 17.489 19.738 24.257
24.058 19.738 28.775 34.741
26.907 24.257 34.741 56.668

new G
15.546 15.237 10.490 1.4105
15.237 40.937 19.562 6.4840
10.490 19.562 27.782 4.5379
1.4105 6.4840 4.5379 2.4410

You can try alternative parameter file without use_yams and EM-REML. Without YAMS, the com-
putations will be slow. Without EM-REML, the estimates diverge in the 1st round. You can also try
fact_once and approx_loglike. Although you will not be sure that the options accelerate the compu-
tations in this small example, it surely reduces the computing time for a larger analysis.
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In genomic prediction, the results are often affected by the quality control of SNP markers and the fine-
tuning of the genomic relationship matrix. BLUPF90 programs support plenty of options to stabilize the
analysis. Here we will explain the additional features implemented in the programs.

8.1 Files used in genomic analysis
As seen in the tutorial in the previous chapter, PREGSF90 needs 2 files to handle genomic data: an SNP
marker file and a cross-reference file. In this section, we describe the detailed format for these 2 files.
Also, we will present some other files optionally needed in quality control of markers.

PREGSF90 reads the same parameter file as BLUPF90. From this file, the program reads the names of
the pedigree file, the marker file, (optionally) the cross-reference file, and some options. The rest of the
parameter file (e.g., the name of the data file and the model) is effectively ignored.

8.1.1 SNP file
The PREGSF90 program can accept 2 kinds of SNP files. One contains only integer numbers as genotypes
(e.g. from SNP chips) and the other one contains real numbers as gene content (possibly from imputation
software, from Genotyping by Sequence or from sequencing at low depth). First, we consider the former
one; we here call it an SNP-marker file.

SNP marker file

An SNP-marker file is a text file which contains 2 fields: animal ID (possibly alphanumeric) in the 1st
field and its genotypes in the 2nd field. We show the first and the last 5 lines from an example data
presented in the previous chapter again (limited to the first 30 characters in each line to save the space).

8003 211011112112012000211002
8007 212011111111012011111012
8016 200120111021012111102121
8019 112211021121202111011210
8020 211110101120002021002122
(skip)

13496 101001212012010210212201
13497 101112111021020120222111
13498 200000220202202000022222
13499 011011111111020111121112
13500 101020112122021000221001

The format was already described in the previous chapter.

Gene content file

The PREGSF90 program accepts another format. Here, we call it a gene content file. The gene content
file may have a number of fields with the following rules.
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• The Animal ID must be in the 1st field and the gene content on each locus must be in the 2nd or
later fields.
• Adjacent gene content can be separated by white spaces. No spaces are also allowed.
• No headers, no comments, no other fields are allowed. The data must start on the first line.
• In animal IDs, alphabets, numbers, and symbols (possibly ASCII) are acceptable. The link to the

renumbered pedigree is provided in the cross-reference file below.
• Gene content should contain an integer, a floating-point (e.g. 3.14), or exponential expression

(e.g. 0.314E+01) as a real number. All markers must have the same format.
• No missing gene content is allowed and all animals must have the same number of gene content.

The missing gene contents should be imputed before the analyses.
• The minimum number of gene content is 50. The fewer number of markers is not acceptable.

8.1.2 Cross-reference (XrefID) file
The BLUPF90 programs need a cross-reference file. This file is automatically generated with RENUMF90.
This file relates a renumbered ID to the original ID for genotyped animals. Again, we show the first 5 and
the last 5 lines of the actual cross-reference file presented in the previous chapter.

6127 8003
13570 8007
406 8016
10802 8019
10924 8020
(skip)

8585 13496
8941 13497
9369 13498
9753 13499
9905 13500

This file simply contains 2 fields: the first is for renumbered ID (same as in the pedigree file) and the
second is for the original ID (same as in the marker file). The 2 fields can be separated with at least 1
space. A tab is not allowed. The order of animals must be the same as the SNP file. Again, this file is
generated with RENUMF90, and the user should not edit it unless there is a reason to do it.

8.1.3 Allele frequency file (optional)
An allele frequency file contains the actual allele frequency on each marker. This file is optional because
the allele frequency is calculated with the current SNP file by default. Only if you expect to use external
information for it, you can provide a file containing the allele frequencies. Different allele frequency may
change characteristics of G.

Here is an example file. This contains the allele frequency only for the first 5 markers.

1 0.711667
2 0.328000
3 0.422000
4 0.157000
5 0.492333

This file contains 2 columns:

1. The position of the marker (from 1 to the maximum number of markers)
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2. Allele frequency as a real value (ranged from 0 to 1).

Note that PREGSF90 usually creates this file containing the allele frequency calculated from the current
SNP file by default (the file name is freqdata.count).

8.1.4 Map file (optional)
Map file relates a marker to a chromosome, a physical location, and a specific name. This file is needed
only when you try comprehensive quality control and GWAS with ssGBLUP. This file should contain at
least 3 fields separated at least 1 white space. The 4th column is optional and it contains the name of a
marker. Here we show an example (including the 4th field in this case). Only the first 3 lines are shown
here.

1 1 127 SNP-CODE-1
2 1 652 SNP-CODE-2
3 1 1022 SNP-CODE-3

This file follows the rules.

• The first 3 fields should contain integer values: the first is a marker number, the second specifies
the chromosome number, and the third represents the physical location on the chromosome. The
marker number is just an integer, not necessarily correlative, used for external data manipulation -
it is not actually used by the program.
• The sex chromosome (X) can be present, but it should be also an integer value. The code of the X

chromosome is 0 by default.
• The 4th column (optional) can contain any alphabets, numbers, and symbols (possibly in ASCII)

up to 50 characters.

8.1.5 Weight for SNP (optional)
The PREGSF90 program can create an alternative G weighting on each SNP marker. This weighted
matrix is especially useful for GWAS or related analyses with the POSTGSF90 program. If you supply
this file, the weighted G will be calculated. Otherwise, weights are set to 1 i.e. no specific weight on each
SNP marker. This file is optional.

The file contains only 1 column with real values. Each row corresponds to each SNP marker; the first
line contains a weight for the marker 1, and the second row contains a weight for the marker 2, and so on.
The number of lines in this file shouldn’t exceed the number of markers.

8.2 Quality control of SNP markers

8.2.1 Basic quality control options
The genomic module performs the quality control of SNP markers. This process removes unqualified
markers and genotyped animals from the original data. The genomic module supports a variety of options
for the quality control of markers. The following options change the behavior of the genomic module.

Save cleaned genotypes

The following option saves the cleaned marker information to files. By default, this option is off and the
cleaned genotypes will not be saved.
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OPTION saveCleanSNPs

This option generates 4 new files. We assume snpfile as a marker file.

• snpfile_clean = new SNP marker file.
• snpfile_clean_XrefID = new cross-reference file.
• snpfile_SNPs_removed = a list of removed markers.
• snpfile_Animals_removed = a list of removed animals.

Turn off the quality control

By default, the program performs quality control. The following option skips the quality control process
completely. Some statistics related to quality control may still be calculated.

OPTION no_quality_control

All the markers and genotyped animals will be retained even if they have obvious error or issues. This
option is useful especially when all the markers have already been quality-controlled.

8.2.2 Detailed quality control options
The following table shows useful options for this purpose. Some options have additional arguments but
you can omit them. If you omit the arguments, the default values are used. Some details will not be
checked. See the Default column in the following table. A detailed explanation for each option can be
found in the official manual.

Option name Default Possible arguments Description

minfreq x Enable 0≤ x≤ 1 (default:x =
0.05)

Minimum allele
frequency to retain the
marker

callrate x Enable 0≤ x≤ 1 (default:x =
0.90)

Minimum call rate for
markers

callrateAnim x Enable 0≤ x≤ 1 (default:x =
0.90)

Minimum call rate for
animals

monomorphic x Enable 0 or 1 (default:1) Remove monomorphic
markers

hwe x Skip any real values (default:x
= 0.15)

Maximum deviation of
heterozygote frequency
from expected

high_correlation x y Skip −1 < x, y < 1 (default: x
= 0.025 and y = 0.995)

Prune highly correlated
markers

verify_parentage x Enable 0,1,2 or 3 (default:3) Check the Mendelian
coherence of parent and
offspring

exclusion_threshold x Enable 0 < x < 100 % (default:x
= 1%)

Acceptance percentage
of Mendelian coherence

exclusion_threshold_snp x Enable 0 < x < 100 % (default x
= 20%)

Acceptance percentage
of Mendelian coherence

number_parent_progeny_evaluation xEnable integer value
(default:100)

Minimum number of
tests for Mendelian
coherence
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Option name Default Possible arguments Description

threshold_duplicate_samples xEnable −1 < x < 1 (default:x =
0.9)

Check too high genomic
relationships (duplicate
samples)

threshold_diagonal_g x Enable real value (default:x =
1.6)

Check too high genomic
inbreeding

thrWarnCorAG x Enable −1 < x < 1 (default:x =
0.50)

Warning: low
resemblance A22 and G

thrStopCorAG x Enable −1 < x < 1 (default:x =
0.30)

Error: low resemblance
A22 and G

thrCorAG x Enable −1 < x < 1 (default:x =
0.02)

Which values of A22 will
be considered for the
above

8.2.3 Extra options for quality control
The following options provide extra information from quality control.

Option name Default Possible arguments Description

chrinfo file Skip characters Specify the chromosome
map file

excludeCHR n1 n2 . . . Skip integer values Specify the chromosome
numbers to be excluded
from quality control

sex_chr n Skip integer value Specify the number for the
sex chromosome in the
marker file

plotpca Skip none Plot the first two principal
components of G

outcallrate Skip none Save the call rate
information on SNP
markers in the file

8.2.4 Numerical example for quality control
Files

We will examine the quality control with a small example including unqualified markers and animals.
The following files will be used in this section.

Listing 8.1: snpqc1_XrefID.txt

11 ID002
15 ID003
12 ID004
2 ID006
5 ID010
7 ID011
8 ID012
9 ID013
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1 ID015

The original SNP file is also prepared.

Listing 8.2: snpqc1.txt

ID002 12120201110012112120001020012020222011120001100201020110010122121101221000012101
ID003 15120251111512112211105021012021521121110005110112111010051011111112225001100110
ID004 22220202001101222101210011000222211021110000100112020200020022220002220000201200
ID006 21220201011002211211112121001121111122120001010122111110012012111120221002012201
ID010 21111211011112101212111122102020212112110001100212111110011012111011221001112210
ID011 22111212001211112202110112101121211112010001200112020200020022220002220000212210
ID012 22220202001101222101210011000222211021110000100112020200020022220002220000201200
ID013 21220201012101211212221012001121221022120000100122111110011012111011221001102200
ID015 21220201012101211212221012001121221022120000100122111110011012111011221001102200

This marker file is the same as the previous chapter except that there are many missing genotypes in
the animal ID003. This animal is expected to be removed during quality control.

The data file is as follows.

Listing 8.3: dataqc1.txt

3.0 1 1 1.0 2
2.0 1 2 1.0 6
4.0 1 1 2.0 8
6.0 2 2 2.0 3
3.0 2 1 1.0 5
6.0 2 2 2.0 9
6.0 3 1 2.0 4
6.0 3 2 1.0 7
8.0 3 1 1.0 10
4.0 3 2 2.0 1

Here is the pedigree file.

Listing 8.4: pedigreeqc1.txt

1 7 5 1 0 2 1 0 0 ID015
13 17 18 3 0 0 0 0 2 ID004
11 17 19 3 0 0 0 0 1 ID005
2 16 18 3 0 0 1 0 1 ID006
3 12 11 1 0 2 1 2 0 ID007
4 14 13 1 0 2 1 0 1 ID008
5 3 2 1 0 2 1 0 2 ID010
6 12 15 1 0 2 1 1 0 ID009
7 3 13 1 0 2 1 3 0 ID011
8 7 4 1 0 2 1 0 0 ID012
14 16 19 3 0 0 0 1 0 ID001
9 7 5 1 0 2 1 0 1 ID013
12 17 18 3 0 0 0 2 0 ID002
10 6 9 1 0 2 1 0 0 ID014
15 16 18 3 0 0 0 0 1 ID003

We will use the following parameter file for PREGSF90. The program will save the cleaned genotypes
as well as call-rate information. We put a loose criterion for several options because of the small data. For
example, we put a low call-rate criterion and relax the criterion for the correlation between G and A22. It
is just a demonstration, so do not use such low values in the real data set.
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Listing 8.5: paramqc1.txt

# BLUPF90 parameter file created by RENF90
DATAFILE
dataqc1.txt
NUMBER_OF_TRAITS

1
NUMBER_OF_EFFECTS

4
OBSERVATION(S)

1
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
2 3 cross
3 2 cross
4 1 cov
5 15 cross

RANDOM_RESIDUAL VALUES
2.0000

RANDOM_GROUP
4

RANDOM_TYPE
add_animal
FILE
pedigreeqc1.txt
(CO)VARIANCES
0.50000

OPTION SNP_file snpqc1.txt snpqc1_XrefID.txt
OPTION callrate 0.80
OPTION thrStopCorAG 0.10
OPTION outcallrate
OPTION saveCleanSNPs

Resulting files

You will see the following results.

• The new marker file snpqc1.txt clean is created. The corresponding new cross-reference file is
snpqc1.txt_clean_XrefID.
• The removed markers are listed in snpqc1.txt_SNPs_removed. You can see 20 markers are

removed.
• The removed animals are listed in snpqc1.txt_Animals_removed. The second animal (pedigree

ID 15 = ID003) is removed due to low call rate.
• Allele frequency after quality control is saved in freqdata.count.after.clean. The frequency

for a removed marker is shown as 0.0.
• The call rate values in the files (callrate and callrate_a) are calculated based on the original

marker data.

You also find there is the file GimA22i. What values does it have? The following is the dump of this
file.

-0.335 0.000 -0.161 -0.421 -0.091 0.405 -0.329 0.265 0.265
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0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
-0.161 0.000 10.624 -0.101 0.614 0.005 -11.035 -0.144 -0.144
-0.421 0.000 -0.101 0.212 -0.018 0.537 -0.154 -0.342 -0.342
-0.091 0.000 0.614 -0.018 0.773 -2.964 1.684 0.291 0.291
0.405 0.000 0.005 0.537 -2.964 0.064 -0.796 1.421 1.421
-0.329 0.000 -11.035 -0.154 1.684 -0.796 11.503 -0.587 -0.587
0.265 0.000 -0.144 -0.342 0.291 1.421 -0.587 20.186 -20.738
0.265 0.000 -0.144 -0.342 0.291 1.421 -0.587 -20.738 20.186

You can see this file has 9×9 matrix and the second animal is not actually removed from G−1−A−1
22 .

This matrix was calculated based on the cleaned markers keeping rows and columns corresponding to
removed animals. The program just filled 0 in such rows and columns. This is technically identical to use
reconstructed relationship matrices calculated from the cleaned marker file.

When you invoke genomic module from the application programs (BLUPF90, AIREMLF90, GIBBSF90,
etc.), the above GimA22i will be directly used in the analysis. When you use PREGSF90, be careful when
you use this GimA22i file. This file still corresponds to the original marker and cross-reference file, not
to the cleaned files. For instance, if there is one animal that has been excluded by quality control, this
animal is still present in GimA22i file (filled with 0 for all related elements). This situation really confuses
the user. There is also another issue. If you want to have the final matrix (G−1−A−1

22 ) from the cleaned
genotypes, it is a waste of time to compute the matrix retaining unqualified objects.

Better practice for quality control

We suggest a user follow a protocol for quality control of markers.

1. Perform only the quality control, and save the cleaned genotypes with PREGSF90.
2. Run PREGSF90 again to calculate and save the relationship matrices using the cleaned marker files.
3. Run an application program for your favorite analysis.

To be short, our suggestion is to do the creation of cleaned files as a separate step. This means you
need a different parameter file in each step (3 parameter files needed in total). In spite of more effort, the
above procedure can avoid the confusion raised from the removal of markers and animals during quality
control.

There is another software, QCF90 (quality-control-F-90), which supports non-renumbered files. This
tutorial does not cover the usage of QCF90. When QCF90 is used, the process will be

1. Perform quality control and output the cleaned genotypes with QCF90.
2. Run PREGSF90 to calculate and save the relationship matrices using the cleaned marker files.
3. Run an application program for your favorite analysis.

If you want to create the cleaned files only, in other words, if you want to skip all subsequent steps after
the creation of the cleaned files, the following options are helpful.

OPTION createA22 0 # doesn’t create A22
OPTION createA22Inverse 0 # doesn’t compute A22-inverse
OPTION createG 0 # doesn’t create G
OPTION createGInverse 0 # doesn’t compute G-inverse
OPTION createGimA22i 0 # doesn’t compute (G-inv - A22-inv)

With these 5 options, the correlation between G and A22 will not be calculated. You can calculate such
statistics using the cleaned files.
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8.3 Tuning and input/output of relationship matrices

Stability of single-step GBLUP depends on the characteristic of H−1 , which contains G−1 and A−1
22 . We

have several ways to adjust G and G−1 to obtain reasonable results in the genomic analysis. There are also
several options to harmonize between G−1 and A−1

22 . We will introduce the ideas as well as the options
needed.

8.3.1 Construction of G

OPTION whichfreq x

This option defines which type of allele frequency is used to calculate Z. The argument x could be 0
= use of the user-supplied file (see below), 1 = fixed value (0.5) and 2 = the current allele frequency cal-
culated from the marker data (default). With the argument 0, the file name is supplied with the following
option:

OPTION FreqFile x

where x is the name of the file for allele frequency. The format of this file is explained in the previous
section.

8.3.2 Blending

OPTION AlphaBeta a b
OPTION GammaDelta c d

These options define a as α , b as β , c as γ , and d as δ used in the blending αG+βA−1
22 + γI+ δ11′.

The default values are α = 0.95, β = 0.05, γ = 0, and δ = 0. We usually use a restriction as α +β = 1,
but the program will not check this restriction.

The original G matrix is completely updated (rewritten) by the blended G. After the blending, we
cannot retrieve the original elements in non-blended G.

8.3.3 Tuning

OPTION tunedG x

This option defines the method to tune G up. The tuning scales G to A22. This tuning is a separate step
from blending. In real population, most genotypes are from the recent generations but the pedigree comes
from long generations. The situation would cause the incompatibility between G and A22 due to different
amount of information accounting for changes in allele frequency. The tuning tries to make G compatible
with A22 by applying a single regression equation. See Chen et al. (2011), Vitezica et al. (2011), and
Christensen et al. (2012) for details.

The possible argument x is as follows.

• 0 = no scaling
• 1 = mean([diag(G)]) = 1 and mean([offdiag(G)]) = 0
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• 2 = mean([diag(G)]) = mean([diag(A22)]) and mean([offdiag(G)]) = mean([offdiag(A22)]) (de-
fault)
• 3 = mean(G) = mean(A22)
• 4 = Adjustement with the 1st method described as in Powell et al. (2010) or Vitezica et al. (2011).

This is very similar to (2).

8.3.4 Scaling the inverse matrices
Additional scaling may be needed for G−1 and A−1

22 to achieve the maximum predictive ability in GEBV
for young animals. The scaling factors τ and ω are used for this purpose.

H−1 = A−1 +

[
0 0
0 τG−1−ωA−1

22

]

In the ideal situation, τ = 1 and ω = 1. The scaling would solve some issues if there are issues including
incomplete pedigree and unqualified genotypes.

OPTION TauOmega t w

These options define t as τ and w as ω in above equation. The default values are τ = 1 and ω = 1.
The original inverses (G−1 and A−1

22 ) are completely replaced (rewritten) with the scaled ones (τG−1

and ωA−1
22 ). After the scaling, we cannot retrieve the non-scaled elements in G−1 and A−1

22 .

8.3.5 Output options
A relationship matrix and its inverse generated with the genomic module can be saved in a file. By default,
the format is binary which the software can efficiently read, but a human cannot easily read. If you really
want to save the matrix as text format, the following option is useful.

OPTION saveAscii

The format is space-separate text. It has 3 columns per line: 1) row number, 2) column number and
3) element value. This text file can be used as a user-supplied relationship matrix in BLUPF90 with the
user_file keyword. If you need the maximum efficiency, do not use this option — it will be slow in
operation.

The following options are available to output matrices. The options are case-sensitive so be careful to
write them.

OPTION saveA22 # save A22 to a file ’A22’
OPTION saveA22Inverse # save A22-inverse to a file ’A22i’
OPTION saveG # save G to a file ’G’
OPTION saveG all # save all intermediate G
OPTION saveGInverse # save G-inverse to a file ’Gi’

You can’t change the name of the file for each matrix. If you put OPTION saveG_all, the program
will save all the intermediate status of G:

• Gini = Initial matrix i.e. G← ZZ′/k.
• G_Alpha_Beta = Blended matrix with A22 i.e. G← αG+βA22.
• G_gamma = Blended matrix with I i.e. G←G+ γI.
• G_delta = Blended matrix with 11′ i.e. G←G+δ11′.
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• G_suggest = Tuned matrix.
• G = The final matrix.

We should mention that the options saveGInverse and saveA22Inverse save the scaled matrices with τ

and ω . This would be a serious problem if you read the matrices from the files.

8.3.6 Input options
The program can read the matrices from files. In this case, the program does not calculate the matrix from
the marker file or the pedigree file. If you read an inverse matrix from a file, the program could skip creat-
ing the original matrix. By default, the program reads only a binary file; with option OPTION saveAscii
1, the programs read a text file. The following options are available.

OPTION readA22 file # read A22 [ default : ’A22’]
OPTION readA22Inverse file # read A22-inverse [ default : ’A22i’]
OPTION readG file # read G [ default : ’G’]
OPTION readGInverse file # read G-inverse [ default: ’Gi’]
OPTION readGimA22i file # read (G-inverse - A22-inverse ) [ default: ’GimA22i’]

If you specify the name of the file, the program reads the file supplied. If you omit the name of the file,
the program tries to read the default file shown above. For example, you can use the following option to
read G−1 saved in Gi.

OPTION readGi

Or you can supply the name of file like this.

OPTION readGi condition1.Gi

There is a critical specification to be recognized by a user for the options readGInverse and readA22Inverse.
After reading the matrix, the program scales the matrix with τ or ω . It means that if you have already
scaled the matrix before saving it to a file and you read the matrix from the file, the program scales the
matrix again without any warnings or messages. Without knowing this fact, the results would be nonsense.

A better practice is as follows.

1. Create and save the relationship matrix without the scaling factor(τ or ω) i.e. the default values:
τ = 1 and ω = 1.

2. When reading the file, the scaling factors can be specified.

This strategy is really important to perform the analysis many times with different τ and ω parameters.

8.4 Perfroming GBLUP

8.4.1 GBLUP with BLUPF90
Background

BLUPF90 can perform GBLUP, but you will need a trick to do this because BLUPF90 always performs
single-step GBLUP, and the program does not have a “GBLUP-mode”. In the single-step approach, the
inverse of a relationship matrix consists of three dense matrices as seen in the previous chapters.

1Yes, use OPTION saveAscii, because OPTION readAscii does not exist.
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H−1 = A−1 +

[
0 0
0 G−1−A−1

22

]

BLUPF90 always creates all three matrices (A−1 and G−1, and A−1
22 ) by default when the genomic

relationship matrix is used. In other words, whenever the program creates G, the program always requires
a pedigree file even though the pedigree information is not really used in the program. You have to trick
the program to use a dummy pedigree file which nullifies the pedigree relationships in H−1, or not to
create the pedigree relationship matrices at all.

There are several methods to perform GBLUP using BLUPF90. The user can choose one of them.

• Use of a dummy pedigree-file. RENUMF90 prepares such a dummy file. This is the simplest way,
and it is always the first choice.
• Use of the user-supplied text file for G. It is useful only if you want to use customized genomic

relationships and you can prepare the matrix as a file by yourself.
• Use of a special option in the parameter file. It skips A−1 in a combination of the zero weight on

A−1
22 . It is useful only if you have to adjust G with the pedigree relationships but you do not need

the pedigree relationships in the final equations.

We will explain all of them in the subsequent sections. The last two methods have been explained in
the previous chapters.

Model

Before introducing the way to apply GBLUP in BLUPF90, we clarify the model used in GBLUP. We
assume the model has some fixed effects (b) and the additive genomic effect (u). An animal is assumed
to have only one phenotype. The matrix notation of the model is as follows.

y = Xb+u+ e

The phenotype can be a pseudo-observation such as a daughter yield deviation (DYD), progeny trait
deviation (PTD), de-regressed proof (DRP), and so on. When using the pseudo phenotype, each observa-
tion has different accuracy, so we should consider a weight that reflects the accuracy of the observation.
Furthermore, we need to know the variance components (σ2

u and σ2
e in the case) or the variance ratio

(λ = σ2
e /σ2

u ) as in the standard animal model. The system of mixed model equations is easily derived.
[

X′WXσ−2
e X′Wσ−2

e
WXσ−2

e Wσ−2
e +G−1σ−2

u

][
b̂
û

]
=

[
X′Wyσ−2

e
Wyσ−2

e

]

The diagonal matrix, W, has a weight corresponding to each observation. In the following section, we
assume X = 1 so that we have the general mean as the only fixed effect.

8.4.2 The simplest way with dummy pedigree
Idea

The simplest approach is to prepare the data using RENUMF90 using a dummy pedigree-file. RENUMF90
creates such a pedigree file that only contains the genotyped animals whose parents are missing (un-
known). With this pedigree file, the pedigree relationship matrix is equal to I.

If all animals are genotyped, all three matrices in H−1 (A−1, G−1, and A−1
22 ) have the same size. Also,

we have the equivalence: A−1 = A−1
22 = I. The resulting H−1 has G−1 only because the pedigree matrices

are canceled out.

H−1 = I+G−1− I = G−1
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The user must know that BLUPF90 does not avoid creating the identity matrices A−1 =A−1
22 = I. These

matrices are explicitly calculated and surely added to the system of equations, and in the end, two Is will
be canceled out numerically. This method just provides the same solutions as omitting A−1 and A−1

22 from
H−1 numerically, but actually not omitted in operation. This is because BLUPF90 by design reads the
pedigree file and build A−1 and A−1

22 whenever G is created.

Numerical example

We will use an example considered in the earlier chapter. There are 15 genotyped animals but only the
first 11 animals have phenotypes. The data file has 4 columns with 1) animal ID, 2) group code i.e. general
mean, 3) observation and 4) weight on observation. This file is also the same as the previous one but it
has the original ID corresponding to the marker file. If you don’t use the weight, you can omit the column
4 from the data file.

Listing 8.6: rawdata6.txt

ID001 1 -1.28 1.00
ID002 1 -1.78 0.98
ID003 1 0.54 0.90
ID004 1 1.36 1.00
ID005 1 0.47 0.93
ID006 1 0.04 1.00
ID007 1 0.68 1.00
ID008 1 -0.89 0.85
ID009 1 -0.48 0.88
ID010 1 0.89 0.99
ID011 1 -1.16 0.97

The marker file should have all 15 animals.

Listing 8.7: snp6.txt

ID002 1212020111001211212000102001202022201112000110020102011001012212110122100001210101112200210010022220
ID011 2211121200121111220211011210112121111201000120011202020002002222000222000021221000021200110010101220
ID005 1201121111012200221100012210201010110111000211011112120112101221110122100012211000022200110010012220
ID014 2122020101100221112111202101202022202222000000021111102000111201211022200101210000022200210010111120
ID010 2111121101111210121211112210202021211211000110021211111001101211101122100111221000022200120020101120
ID006 2122020101100221121111212100112111112212000101012211111001201211112022100201220110022200220020111120
ID004 2222020200110122210121001100022221102111000010011202020002002222000222000020120000020200200000200220
ID015 2122020101210121121222101200112122102212000010012211111001101211101122100110220000021200210010200120
ID012 2222020200110122210121001100022221102111000010011202020002002222000222000020120000020200200000200220
ID003 2122020210000221111111112010011100011112000202002112120112201221121022100111220110111200210010111220
ID007 1201121111012200221100012110202021210101000220020202020002002222000222000011221101112200120020012220
ID009 2222020200000222211000212001112111112212000101011102011001112212121022100102210110022200210010022220
ID001 1211121200011211220201121220102021210101000220020211021011002222000222000012211001112100120020012220
ID013 2122020101210121121222101200112122102212000010012211111001101211101122100110220000021200210010200120
ID008 1211121200011211210111111110012121201011000110020211021011002222000222000011110001111100210010111220

There is no pedigree file for this data.
In this dataset, some animals do not have phenotypes, and this is a typical case in GBLUP. RENUMF90

will create the dummy pedigree-file for all genotyped animals in the marker file. The number of pedigree
animals will be the same as the number of genotyped animals, and BLUPF90 properly performs GBLUP.

Renumbering

An instruction file for RENUMF90 is as follows. We assume σ2
u = 0.3 and σ2

e = 0.7. If you don’t need the
weight, you can put the empty line to WEIGHT (this keyword is mandatory so you should keep it even if
you don’t use the weights).
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Listing 8.8: renum6.txt

DATAFILE
rawdata6.txt
TRAITS
3
FIELDS_PASSED TO OUTPUT

WEIGHT(S)
4
RESIDUAL_VARIANCE
0.7
EFFECT # 1st effect fixed
2 cross alpha
EFFECT # 2nd effect (animal)
1 cross alpha
RANDOM ## additive effect without pedigree
animal
SNP_FILE ## SNP marker file
snp6.txt
(CO)VARIANCES ## its variance component
0.3
OPTION AlphaBeta 0.95 0.05
OPTION tunedG 0

The last two lines are the options for BLUPF90 (passed through the resulting parameter file renf90.par).
The first option, AlphaBeta, is needed to make G be positive definite. It performs the blending G←
0.95G+0.05A22 = 0.95G+0.05I. The second option tunedG 0 turns off the tuning to scale G to A22;
see the previous section for details. In this analysis, A22 is just a dummy (the identity matrix) so there is
no reason to perform the tuning. You can also put any options you need in the parameter file.

Note that there is no FILE keyword for pedigree, but the program generates the dummy pedigree-file.
After running RENUMF90, you will see the pedigree file renadd02.ped in the same directory.

13 0 0 3 0 10 0 0 0 ID015
4 0 0 3 0 10 1 0 0 ID004
5 0 0 3 0 10 1 0 0 ID005
6 0 0 3 0 10 1 0 0 ID006
7 0 0 3 0 10 1 0 0 ID007
8 0 0 3 0 10 1 0 0 ID008
10 0 0 3 0 10 1 0 0 ID010
9 0 0 3 0 10 1 0 0 ID009
11 0 0 3 0 10 1 0 0 ID011
14 0 0 3 0 10 0 0 0 ID012
1 0 0 3 0 10 1 0 0 ID001
15 0 0 3 0 10 0 0 0 ID013
2 0 0 3 0 10 1 0 0 ID002
12 0 0 3 0 10 0 0 0 ID014
3 0 0 3 0 10 1 0 0 ID003

The renumbering process assigns an integer code to each of genotyped animals. The first column
(animal ID) is filled with genotyped animals but the 2nd and the 3rd columns (parents) are 0 i.e. miss-
ing. This creates the identity matrix as the pedigree relationships. The 10th column has the original ID
corresponding to the integer (renumbered) code.
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The cross-reference file (XrefID) clearly shows the correspondence between the integer code and the
original ID. The integer code is randomly assigned to the original ID; the user should not expect any
meaningful order in the integer code.

2 ID002
11 ID011
5 ID005
12 ID014
10 ID010
6 ID006
4 ID004
13 ID015
14 ID012
3 ID003
7 ID007
9 ID009
1 ID001
15 ID013
8 ID008

Running GBLUP

BLUPF90 calculates the solution of mixed model equations.

Listing 8.9: solutions

trait/effect level solution
1 1 1 -0.08090772
1 2 1 -0.42220198
1 2 2 -0.44672494
1 2 3 0.26450865
1 2 4 0.24686356
1 2 5 0.05496292
1 2 6 0.16937536
1 2 7 -0.17601451
1 2 8 -0.24385662
1 2 9 -0.25750923
1 2 10 0.13351286
1 2 11 0.03869522
1 2 12 -0.10858569
1 2 13 0.26284875
1 2 14 0.22127690
1 2 15 0.26284875

The solution of the genomic effect is in rows with effect 2 (rows with 2 in the 2nd column). The
individual solution is labeled with the integer code (not the original ID), so the user has to manually
combine the solutions with the original ID using the pedigree file or the XrefID file. If Bash is available,
the following command immediately combines the solutions with the original ID, sorted by the original
ID.

paste <(sort -n snp6.txt_XrefID) <(awk ’$2==2{print $3,$4}’ solutions) | sort -k2,2
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Remarks

This method will work correctly unless non-genotyped animals have phenotypes. So what will happen
when non-genotyped animals have observations? The non-genotyped animals will be included in the
equations and have some solutions. However, the solutions are nonsense because those animals are not
related to the other animals, and the estimates are just artifact. The user is responsible for the data used in
GBLUP.

8.4.3 Genomic relationship matrix as a external text file
As explained in the previous chapter, the user can supply G−1 as a text file. The users should prepare the
file by themselves using external software like R. In this case, BLUPF90 doesn’t need the marker file.

The text file contains 3 columns: 1) row index, 2) column index, and 3) the value of the element in G−1.
Only the lower or upper triangular part is needed; the program stops if the file has the entire matrix. The
data file should be renumbered; only numerical expressions are allowed for an ID of genotyped animal
and it should be corresponding to the index in the file of G−1.

Numerical example

Here we will use the same example as the previous section to use the external text file. There are 15 geno-
typed animals but only the first 11 animals have phenotypes. The external file of G−1 (ginverse6.txt)
is too large to show here. Only the first some rows will be presented. The whole file is available at
https://githib.com/masuday/data on Github.

1 1 8.227580098846
1 2 3.438271310942
2 2 8.954010413251
1 3 1.176962440315
2 3 .432327333335
...

This file is obtained from the marker file shown above (snp6.txt) so the index of a matrix is the same
as the order of animals in the marker file.

Index in G ID in marker file

1 ID002
2 ID011
3 ID005
4 ID014
5 ID010
6 ID006
7 ID004
8 ID015
9 ID012
10 ID003
11 ID007
12 ID009
13 ID001
14 ID013
15 ID008
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The data file has 4 columns with 1) animal ID, 2) group code i.e. general mean, 3) observation, 4)
weight on observation, and 5) the original ID, just for your information (it has characters but no problem
because this column is never read by the program). The animal ID should be compatible with the external
file of G−1.

Listing 8.10: data6.txt

13 1 -1.28 1.00 ID001
1 1 -1.78 0.98 ID002
10 1 0.54 0.90 ID003
7 1 1.36 1.00 ID004
3 1 0.47 0.93 ID005
6 1 0.04 1.00 ID006
11 1 0.68 1.00 ID007
15 1 -0.89 0.85 ID008
12 1 -0.48 0.88 ID009
5 1 0.89 0.99 ID010
2 1 -1.16 0.97 ID011

The parameter file is as follows. The file doesn’t have any genomic options because the matrix has
already prepared and no additional operations are not allowed for the supplied matrix.

Listing 8.11: param6.txt

DATAFILE
data6.txt
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
3
WEIGHT(S)
4
EFFECTS:
2 1 cross
1 15 cross
RANDOM_RESIDUAL VALUES
0.7
RANDOM_GROUP
2
RANDOM_TYPE
user_file
FILE
ginverse6.txt
(CO)VARIANCES
0.3

Be careful to read the results; the order in solutions is different from the previous one. The user must
combine the solutions with the original ID. The following command correctly sorts the solutions by the
original ID.

paste <(awk ’{print $1}’ snp6.txt) <(awk ’$2==2{print $3,$4}’ solutions) | sort
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Remarks

This method doesn’t need RENUMF90. It is useful for simulated data that has renumbered ID. A problem
is to compute G−1 with the external programs. Also, this method may be slow in reading the file when
the matrix is too large.

8.4.4 GBLUP with partial use of pedigree
There is a case where a pedigree file is available but the user should perform GBLUP. The pedigree
information can be used to form G but the final equations contain G−1 only. Or, the user can perform
GBLUP with the (residual) polygenic effect which is explained with the additive relationship matrix.
The method introduced here is general and flexible but a bit complicated. We will use two software:
PREGSF90 for preparation and BLUPF90 for prediction as to the following protocol.

1. Run RENUMF90 to generate renumbered data and renf90.par.
2. Run PREGSF90 with renf90.par.
3. Make a copy of renf90.f90, modify the copy, and run BLUPF90 with the modified parameter file

Renumbering

In this method, we will use the same marker and data files (snp6.txt and rawdata6.txt) as the previous
section. The pedigree file is shown below.

Listing 8.12: rawpedigree6.txt

ID001 0 0
ID002 0 0
ID003 0 0
ID004 0 0
ID005 0 0
ID006 0 0
ID007 ID002 ID005
ID008 ID001 ID004
ID009 ID002 ID003
ID010 ID007 ID006
ID011 ID007 ID004
ID012 ID011 ID008
ID013 ID011 ID010
ID014 ID009 ID013
ID015 ID011 ID010

First, we have to process the files with RENUMF90. The following instruction file is used.

Listing 8.13: renum6a.txt

DATAFILE
rawdata6.txt
TRAITS
3
FIELDS_PASSED TO OUTPUT

WEIGHT(S)
4
RESIDUAL_VARIANCE
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0.7
EFFECT # 1st effect fixed
2 cross alpha
EFFECT # 2nd effect (animal)
1 cross alpha
RANDOM ## additive effect without pedigree
animal
FILE ## pedigree file
rawpedigree6.txt
SNP_FILE ## SNP marker file
snp6.txt
(CO)VARIANCES ## its variance component
0.3
OPTION TauOmega 1.00 0.00

The user can use any options for genomic setup. The option TauOmega is needed to remove A−1
22 from

H−1. The user can put more options to be suitable for your data.
Run RENUMF90, and several files including renf90.par will be created.

Run PREGSF90

First, look at renf90.par to see what we are going to do with it.

Listing 8.14: renf90.par

# BLUPF90 parameter file created by RENUMF90
DATAFILE
renf90.dat
NUMBER_OF_TRAITS

1
NUMBER_OF_EFFECTS

2
OBSERVATION(S)

1
WEIGHT(S)

2
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
3 1 cross
4 15 cross

RANDOM_RESIDUAL VALUES
0.70000
RANDOM_GROUP

2
RANDOM_TYPE
add_animal
FILE
renadd02.ped
(CO)VARIANCES
0.30000

OPTION SNP_file snp6.txt
OPTION TauOmega 1.00 0.00

PREGSF90 calculates the relationship matrices as follows.

1. Compute A22.
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2. Compute G.
3. Blend two matrices as G← αG+βA22.
4. Scale G to A22 (tuning).
5. Compute A−1

22 .
6. Compute G−1.
7. Merge two inverse matrices to ∆ = τG−1−ωA−1

22 and save it to a file GimA22i.

Note that PREGSF90 doesn’t compute A−1 itself, which will be computed with BLUPF90 from the
pedigree file. Using above parameter file, by default, α = 0.95 and β = 0.05 and the pedigree matrix is
integrated to G, the tuning is performed, and GimA22i will have only G−1 because of ω = 0. Again, the
above configurations are just to demonstrate the capability of PREGSF90/BLUPF90 in GBLUP. Please
use appropriate options for the user’s data.

After running PREGSF90, several files will be created in the working directory. There should be a file
GimA22i.

Run BLUPF90

BLUPF90 needs a separate parameter file that is slightly different from renf90.par used in PREGSF90.
Make a copy of renf90.par as blup.par then modify the options in the copy as follows (showing only
options).

Listing 8.15: blup.par

OPTION SNP_file snp6.txt
OPTION readGimA22i
OPTION omit_ainv

The first option SNP_file should be kept in the file. The remaining two options are crucial: OPTION readGimA22i
reads the file GimA22i as ∆ instead of computing it from data, and OPTION omit_ainv suppresses the
creation of A−1. In the end, H−1 has only G−1.

Run BLUPF90 with blup.par, and obtain the solution file. The solutions look similar to the previous
analysis for some animals (especially the young one) but very different in the other animals (the older
one). This is because, in this study, G was blended with A22 and it can capture the residual polygenic
effect.

Remarks

Dummy pedigree to remove A-inverse The option omit_ainv is effective only in BLUPF90. If
this option doesn’t work (or you are not sure the program supports it), use the alternative approach to
remove A−1. First, create a dummy pedigree file including only 0 in all 3 (or 4) columns. The pedigree
file should have the same (or more) number of lines as the number of genotyped animals. The awk
program easily creates the dummy pedigree. The following command assumes the renumbered pedigree
is renadd02.ped and writes 4 columns in case of unknown parent groups.

awk ’{print 0,0,0,0}’ renadd02.ped > dummy.ped

Then, modify blup.par to have dummy.ped instead of renadd02.ped. With this trick, A−1 becomes
0 so no contribution to the equations.
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Pure GBLUP without pedigree effect Even with the pedigree file, the user can run GBLUP without
any contribution from pedigree information (i.e. A22). In this case, the solutions should be identical to
one obtained in the previous two methods.

To do this, the user can put the following options in the renum-instruction file or renf90.par for
PREGSF90.

OPTION AlphaBeta 0.95 0.00
OPTION GammaDelta 0.05 0.00
OPTION tunedG 0
OPTION TauOmega 1.00 0.00

The first two options will be used in blending: G←αG+βA22+γI+δ11′. The above option specifies
α = 0.95, β = 0, γ = 0.05, and δ = 0 so that the blending is G← 0.95G+0.05I. The option tunedG 0
prohibits the program to scale G to A22. These three options are equivalent to the approach that we
introduced as the first method in this chapter. The last option removes A−1

22 from H−1.
Finally, the user should create a separate parameter file to use GimA22i and to omit A−1 in BLUPF90

using omit_ainv or the dummy pedigree file.

8.5 GWAS using the ssGBLUP framework
The single-step GBLUP methodology has been extended to be capable of genome-wide association study
(GWAS). This is an iterative procedure with 2 steps: 1) prediction of GEBV with ssGBLUP and 2)
prediction of SNP marker effects based on the GEBV. Here we call this method ssGWAS. The detailed
algorithm was described by Wang et al. (2012).

8.5.1 Algorithm
To describe the algorithm of ssGWAS, we use the notation made by Wang et al. (2012). The notation may
be different from the ones used in the previous chapters. Do not be confused with the same symbols as
before.

We assume a is a vector for breeding values for genotyped animals and u is a vector for SNP marker
effects. One is related to another with the following equation.

a = Zu

The variances of them can be written as

var(a) = Gσ
2
a and var(Zu) = ZDZ′σ2

u

where D is a diagonal matrix of weights accounting for variances of SNP markers. This matrix is usually
assumed to be I in the regular ssGBLUP. Above 2 variances are identical, so we can derive

var(a) = var(Zu) = Gσ
2
a = ZDZ′σ2

u

and this formula implies

G = ZDZ′
σ2

u

σ2
a
= ZDZ′λ

where λ = σ2
u /σ2

a . According to the definition of G, the variance ratio can be

λ =
σ2

u

σ2
a
=

1
2∑ j p j(1− p j)

.
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The prediction of breeding values â is calculated with ssGBLUP. The prediction of SNP effects û is also
calculated with the best prediction.

û = cov(u,a′) [var(a)]−1 â

= λDZ′G−1â

= DZ′(ZDZ′)−1â

With the prediction of an SNP effect, we can give weights to markers based on SNP solutions. The current
default weight is as in Wang et al. (2012):

wi = 2piqiû2
i .

This may be used as a weight in D = diag(wi) after its scaling (see Wang et al., 2012). We restart
the whole process with this new D. We can repeat the procedures until reasonable results are obtained.
However, this weighting scheme is not the most accurate and leads to unstable iterates. A well-tested
method for weights is VanRaden’s “nonlinearA” (2008), which likely becomes the default.

wi = 1.125
|ûi |√
varû
−2

The SNP effects can be used as the indirect prediction of GEBV based on a = Zu. At the end of this
section, we will demonstrate this approach.

8.5.2 Programs
We will use several programs to perform ssGWAS.

1. RENUMF90: general preparation of data set.
2. PREGSF90: quality control and creation of cleaned genotypes.
3. BLUPF90: prediction of a with a weighted G.
4. POSTGSF90: prediction of u and a new weight D.
5. PREDF90 (Optional): computation of GEBV based on the predicted SNP effects and genotypes

The first 2 programs are needed only once in the very first step. If your data is well prepared, you just
run BLUPF90 and POSTGSF90 repeatedly. In this case, it is easier to understand for a user to directly
use BLUPF90 to create G and calculate the solutions of GEBV in the same program.

8.5.3 Numerical example
Files

We will use the similar files used in the summer course at the UGA in 2012.

• http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=lab_gwas.zip - lab_gaws.zip

We made some corrections on the files. Download the zip package and extract it to your computer. It
has several files like

• phenotypes.txt = observation data file
• pedigree = pedigree file
• marker.geno.clean = marker file
• chemap = chromosome map file
• w = weight file
• renum.par = instruction file for RENUMF90

We will start with RENUMF90 to prepare the data set.
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8.5.4 Preparation
First, we run RENUMF90 to generate the required files. After renumbering, we can see renf90.par, a
template parameter file. We make 2 copies of this template; one is for BLUPF90 and another one is for
POSTGSF90. Here, we use param_ssgwas1a.txt as the parameter file for BLUPF90 and param_ssgwas1b.txt
for POSTGSF90.

BLUPF90 will generate G with weights, supplied as a weight file (see the previous section). The zip
package contains a weight file (w), and the option in the parameter file refers to the weight file. Following
is the whole parameter file for BLUPF90.

Listing 8.16: param_ssgwas1a.txt

#
# This is for BLUPF90
#
DATAFILE
renf90.dat
NUMBER_OF_TRAITS

1
NUMBER_OF_EFFECTS

2
OBSERVATION(S)
1
WEIGHT(S)

EFFECTS:
2 1 cross
3 15800 cross
RANDOM_RESIDUAL VALUES
0.50000
RANDOM_GROUP

2
RANDOM_TYPE
add_animal
FILE
renadd02.ped
(CO)VARIANCES
0.50000
OPTION SNP_file marker.geno.clean
OPTION saveGInverse
OPTION weightedG w

POSTGSF90 needs to read G−1 generated with BLUPF90. It also needs a chromosome map file
because the program will predict each SNP effect. The following is the complete parameter file for
POSTGSF90.

Listing 8.17: param_ssgwas1b.txt

#
# This is for POSTGSF90
#
DATAFILE
renf90.dat
NUMBER_OF_TRAITS
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1
NUMBER_OF_EFFECTS

2
OBSERVATION(S)
1
WEIGHT(S)

EFFECTS:
2 1 cross
3 15800 cross
RANDOM_RESIDUAL VALUES
0.50000
RANDOM_GROUP

2
RANDOM_TYPE
add_animal
FILE
renadd02.ped
(CO)VARIANCES
0.50000
OPTION SNP_file marker.geno.clean
OPTION readGInverse
OPTION weightedG w
OPTION chrinfo chrmap.txt

Iterative run and Manhattan plot

First, we run BLUPF90 with the parameter file param_ssgwas1a.txt following by running POST-
GSF90 with the different parameter file param_ssgwas1b.txt. POSTGSF90 creates several files.

• snp_sol = Solution for SNP markers (i.e. u). It has 7 columns.

1. Trait
2. Effect
3. SNP number
4. Chromosome
5. Position
6. SNP solution (ûi) . From this column you can compute weights yourself.
7. Weight (di) (see the official manual for what is the default method to get this value)

• chrsnp = Used in the Manhattan plot. It has 6 columns.

1. Trait
2. Effect
3. % of variance explained by adjacent SNPs
4. SNP number
5. Chromosome
6. Position

• dgv = Direct genomic values for genotyped animal. It has 5 columns.

1. Trait
2. Effect
3. Animal ID
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4. DGV (direct genomic value) = −∑ j 6=i gi jû j

/
gii; see Lourenco et al. (2015).

5. PP (pedigree prediction) = −∑ j 6=i ai j
22û j

/
aii

22; see Lourenco et al. (2015).

• snp_pred = Used in the program to predict GEBV based on the SNP effects. A user doesn’t have
to know the exact format.

• Sft1e2.gnuplot and Sft1e2.R = Scripts to draw Manhattan plots with Gnuplot and R. Each
script reads chrsnp.

What we need in the next round is the 7th column in snp_sol. This column should be extracted
and saved in the file w (this file is updated with new values). Once w is updated, rerun BLUPF90 and
POSTGSF90. Repeat the process enough times. In this example, we just repeat 3 times.

This iterative process can be automated using a script. In Linux and macOS X, a bash shell script is
common to use. In Windows, a traditional batch-file is useful but some free software is needed to extract
the 7th column of the file. We don’t explain such techniques here. You can see bash scripts in the same
directory as the data files in the zip package. The scripts will tell you how to run the programs repeatedly.

After 3 rounds, we can draw the Manhattan plot with the script. Using R, you will see the following
figure. According to this graph, there is a large SNP effect on chromosome 1.

We arbitrarily decide to repeat the process 3 times here. Although 2 or 3 iterations can be good enough,
the optimal number of iterations for prediction should be different by data. In some cases, only the first
round (no iterations) may produce the best result. Please find a suitable method for your data by yourself.

Indirect prediction of GEBV based on SNP effects

Once you find the SNP effects, another program PREDF90 can calculate indirect GEBV from the SNP
effects based on the equation â = Zû. This program reads the marker file and snp_pred, generated with
POSTGSF90. Run the program, and see the following message.

name of genotype file?

Different from other software, it needs the name of the marker file. Type the name of genotype file in
here. The program immediately calculates the indirect GEBV for genotyped animals.

PREDF90 creates a file of SNP predictions. It has 3 columns.

1. Animal ID
2. Call rate
3. Indirect prediction of GEBV (based on â = Zû).

In other words, the prediction for an animal is the sum, according to its genotypes, of the estimated
SNP effects, as estimated in the overall ssGBLUP analyses. This approach is useful especially in a case
where there are many young genotyped animals but many of them shouldn’t be included in ssGBLUP
analysis because these are interim analysis between two full genomic evaluations or for other reasons.
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