

UNIVERSITY OF GEORGIA

College of Agricultural & Environmental Sciences

Animal Breeding and Genetics Group

How to validate genomic predictions?

Comparing genomic and non-genomic models

Daniela Lourenco BLUPF90 TEAM – 08/2024 **INIAV Course 2024**

Daniela Lourenco Fernando Bussiman

Georgia How to validate genomic predictions?

• We should look at accuracy!!!

Prediction (validation) Accuracy

Accuracy

Reliability

Prediction Accuracy

Prediction Reliability

Predictive Ability

(predictability)

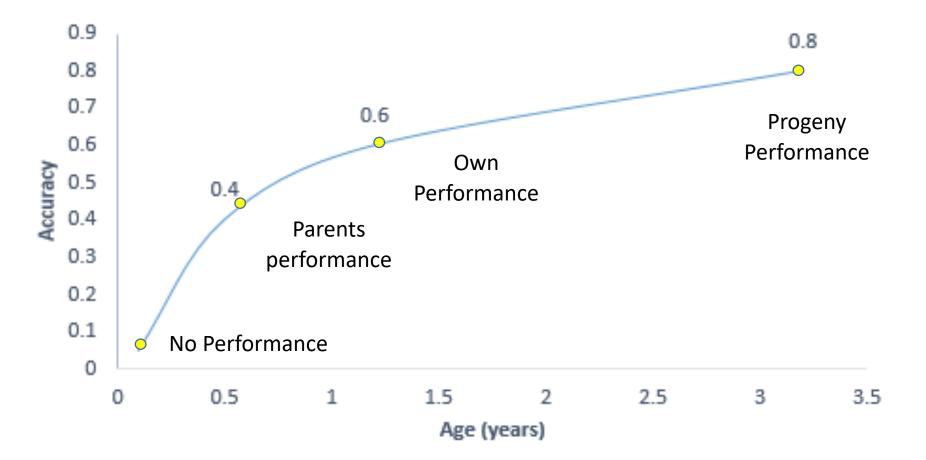
Theoretical Accuracy

Accuracy	
Reliabilit	Σ γ
	BIF Accuracy

Understanding accuracy

- Theoretical Accuracy
 - Precision or stability of EBV
 - How much EBV changes when more data is added (risk)
 - SE of EBV

•
$$Acc = \sqrt{1 - \frac{PEV}{\sigma_u^2}}$$


•
$$Acc_{inb} = \sqrt{1 - \frac{PEV}{\sigma_u^2(1+F)}}$$

- Individual
- Model-based

- Prediction Accuracy
 - $\rho = COR(u, \hat{u})$
 - $\Delta G = i \rho \sigma_u / L$ (response to selection)
 - Potential ΔG of a breeding scheme
 - Very popular after genomics
 - Cross-validation
 - Population

Theoretical Accuracy of EBV

Theoretical Accuracy Increases as an more information is added

Accuracy and possible EBV change

BW EBV of 1.8	ACC	Possible Change
Bull A	.05	2.49
Bull B	.80	.53

Possible change = interval of 95% = $EBV \pm 1.96 \times SE$

Modified from: Dan Moser's GA talk - 2016

Accuracy and possible EPD change

<u>Bull A, Acc. = .05</u>

1.8 BW EBV ± 2.49

-0.69 to 4.29

Which EBV will change most?

Which Bull has more reliable EBV?

<u>Bull B, Acc. = .80</u>

1.8 BW EBV ± .53

1.27 to 2.33

Modified from: Dan Moser's GA talk - 2016

Variations of Theoretical Accuracy

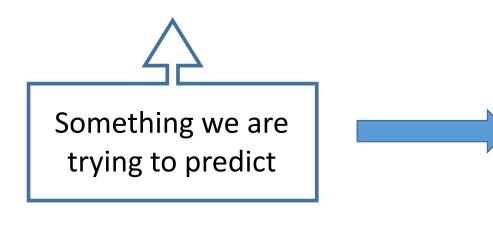
• Several:
$$Accuracy = \sqrt{1 - \frac{PEV}{\sigma_u^2(1+F)}}$$
 Henderson (1975)
Derivations under selection or not

• Beef cattle: BIF Accuracy =
$$1 - \sqrt{\frac{PEV}{\sigma_u^2(1+F)}}$$
 Lower Willham

Lower values Approaches 1 very slowly Willham (~1985)

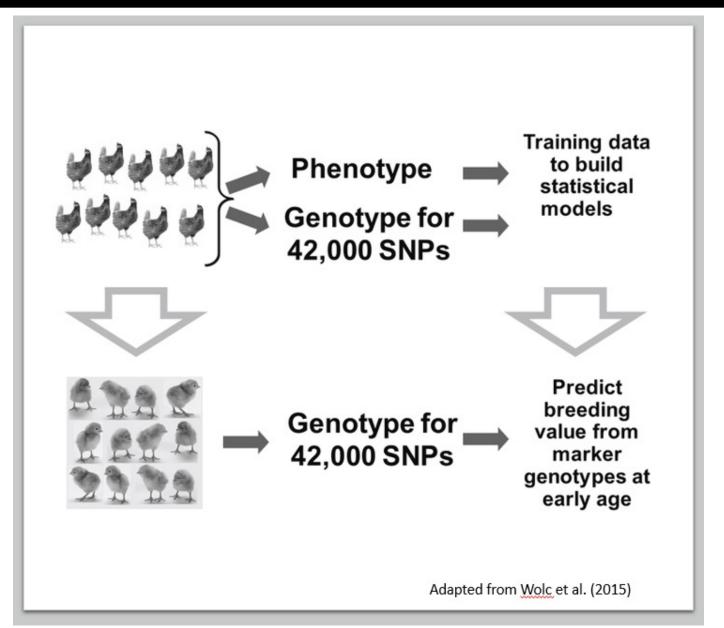
• Dairy cattle: reliability =
$$1 - \frac{PEV}{\sigma_u^2(1+F)}$$

Lower values Approaches 1 more slowly Fraction of σ_u^2 accounted for by EBV VanRaden et al. (~1989)



Variations of Theoretical Accuracy

GEORGIA How to validate: Prediction accuracy

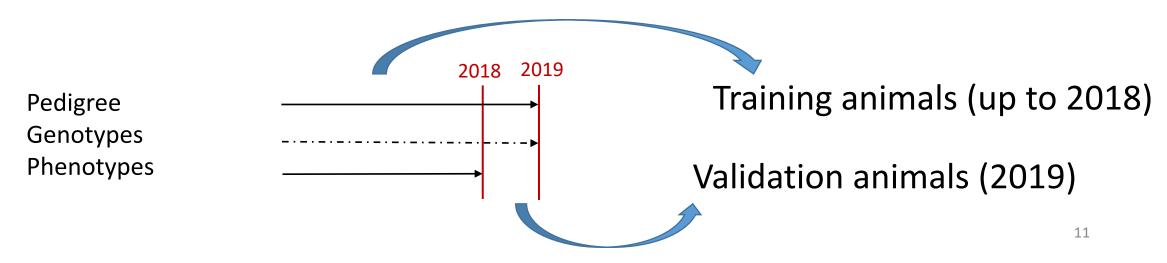

- Reflects the correlation between true and estimated breeding value
 - $accuracy = COR(u, \hat{u})$
- Do we have true breeding values in real populations?
 - $accuracy = COR(benchmark, \hat{u})$

Future performance (Progeny) yield deviation Deregressed EBV High accuracy EBV Future EBV

Prediction accuracy

Training

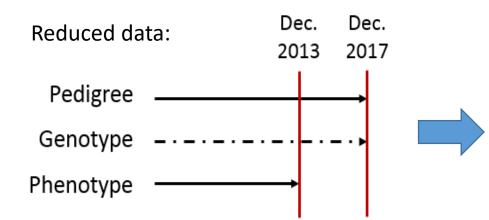
Validation



Prediction Accuracy

• Complete data (used to compute the benchmark)

• Reduced data (used to compute GEBV and EBV)


Which benchmark to use?

• $accuracy = COR(benchmark, \hat{u})$

Validation animals	Trait measured on	Benchmark
Dairy bulls	progeny	daughter yield deviation / deregressed proof

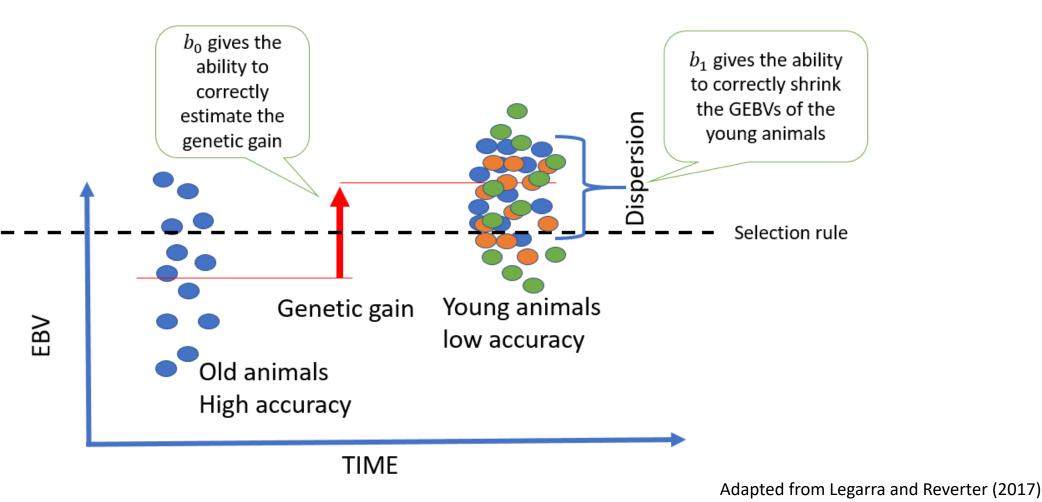
DYD or DEBV as benchmark

- Remove 4 to 5 years of data
 - Bulls with no daughter records in the reduced data
- Bulls have at least 10 daughters in the complete data
- At least 100 bulls
- Benchmark: Deregressed EBV (based on VanRaden et al., 2009)

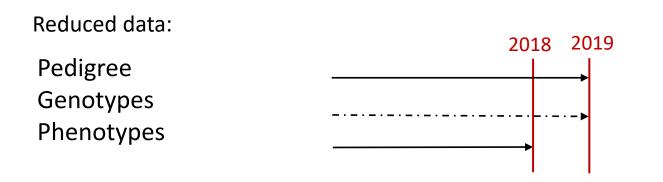
$$DEBV_{complete} = \frac{EBV_{complete} - PA_{complete}}{R_{complete}} + PA_{complete}$$

$$DEBV_{complete} = b_0 + b_1(G)EBV_{reduced}$$

$$R^2 = prediction reliability$$


$$b_0 = bias$$

$$b_1 = dispersion$$


DYD or DEBV as benchmark

• Are bias and dispersion also important?

14

GEORGIA Adjusted phenotypes as benchmark

- Remove 1 or 2 years of data
- Validation animals with own phenotypes in the complete data
- Phenotypes adjusted for fixed effects (complete data)

Predictivity or predictive ability of (G)EBV = $Cor(Y_{adj}, (G)EBV_{reduced})$

Accuracy =
$$\frac{\text{Predictivity}}{\text{sqrt}(h^2)}$$

 $Y_{adj} = b_0 + b_1(G)\text{EBV}_{reduced}$
 $b_0 = bias$
 $b_1 = dispersion$

A new validation method

- LR Method
 - Linear Regression metrics
 - Legarra & Reverter (2018; GSE)
- Reduced (partial) and Complete (whole) data
- Validation animals have phenotypes in the *complete data* but not in the *reduced data*
- Benchmark: complete (G)EBV
- Compares EBV with EBV and GEBV with GEBV
 - Same scale

LR validation

• Accuracy

$$Accuracy = \sqrt{\frac{cov(\hat{\boldsymbol{u}}_c, \hat{\boldsymbol{u}}_r)}{\left(1 + \bar{F} - 2\bar{f}\right)\sigma_{u,\infty}^2}} \quad \text{or} \quad Accuracy = \sqrt{\frac{cov(\hat{\boldsymbol{u}}_c, \hat{\boldsymbol{u}}_r)}{(1 - \bar{F})\sigma_u^2}}$$

• Dispersion
$$\widehat{u}_c = b_0 + b_1 \widehat{u}_r$$
 • Bias $\mu_{cr} = \overline{\widehat{u}_r} - \overline{\widehat{u}_c}$

- Consistency between subsequent evaluations $cor_{c,r} = cor(\hat{u}_c, \hat{u}_r)$
 - Estimator of the ratio of accuracies using the "reduced" or the "complete" data