

How to validate genomic predictions?

Comparison between genomic and non-genomic models

Daniela Lourenco
BLUPF90 TEAM – 11/2022

How to validate genomic predictions?

We should look at accuracy!!!

Prediction (validation) Accuracy

Accuracy

Reliability

Prediction Accuracy

Prediction Reliability

Predictive Ability

(predictability)

Theoretical Accuracy

Accuracy

Reliability

BIF Accuracy

Understanding accuracy

Theoretical Accuracy

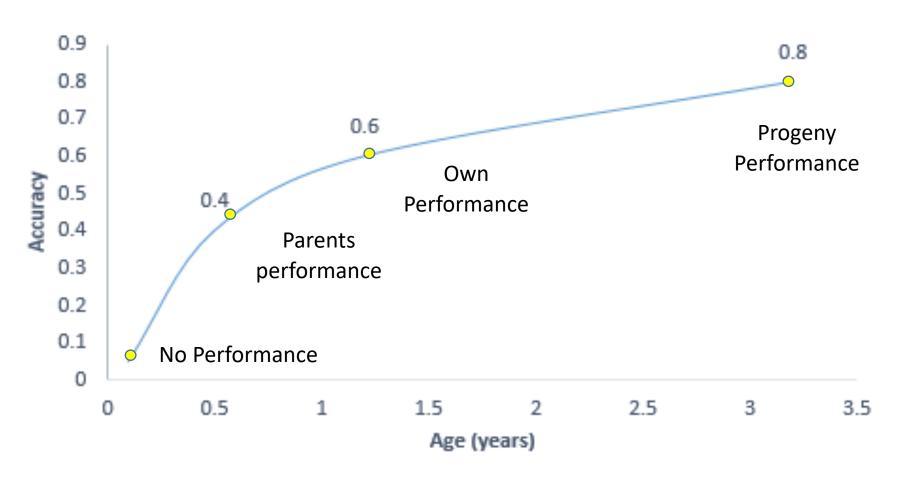
- Precision or stability of EBV
- How much EBV changes when more data is added (risk)
- SE of EBV

•
$$Acc = \sqrt{1 - \frac{PEV}{\sigma_u^2}}$$

•
$$Acc_inb = \sqrt{1 - \frac{PEV}{\sigma_u^2(1+F)}}$$

- Individual
- Model-based

Prediction Accuracy


•
$$\rho = COR(u, \hat{u})$$

- $\Delta G = i \rho \sigma_u / L$ (response to selection)
- Potential ΔG of a breeding scheme
- Very popular after genomics
- Cross-validation
- Population

Theoretical Accuracy of EBV

Theoretical Accuracy Increases as an more information is added

Accuracy and possible EBV change

BW EBV of 1.8	ACC	Possible Change
Bull A	.05	2.49
Bull B	.80	.53

Possible change = interval of $95\% = EBV \pm 1.96 \times SE$

Accuracy and possible EPD change

Bull A, Acc. = .05

1.8 BW EBV ± 2.49

-0.69 to 4.29

Bull B, Acc. = .80

1.8 BW EBV ± .53

1.27 to 2.33

Which EBV will change most?

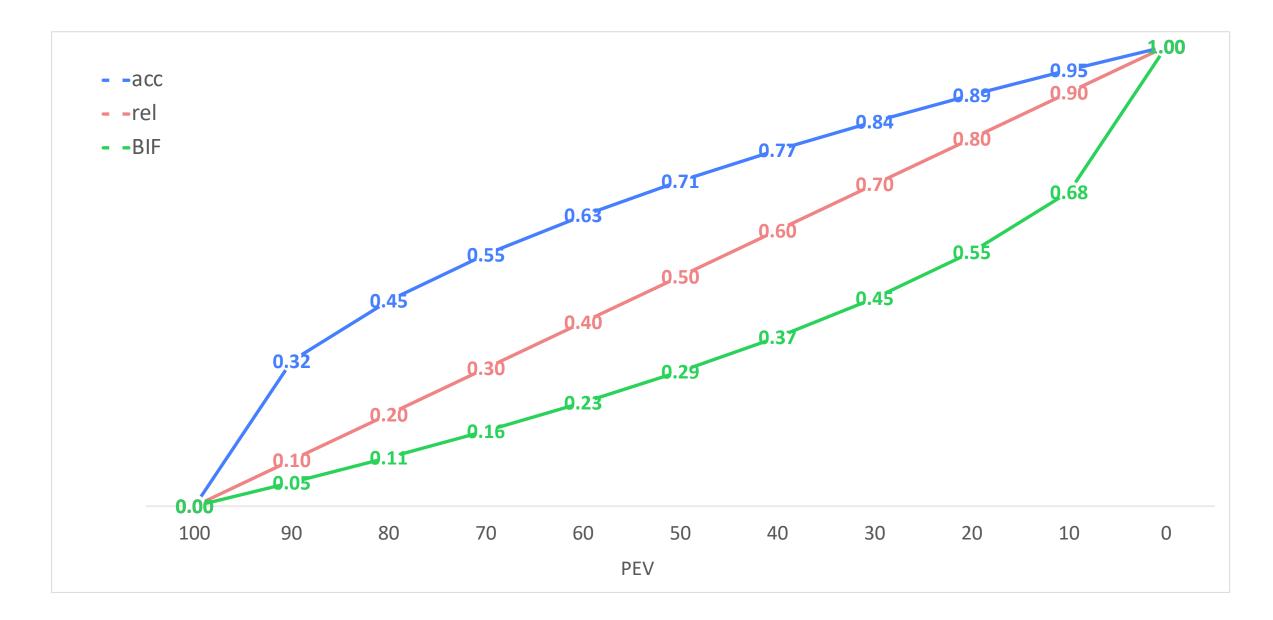
Which Bull has more reliable EBV?

Variations of Theoretical Accuracy

• Several:
$$Accuracy = \sqrt{1 - \frac{PEV}{\sigma_u^2(1+F)}}$$

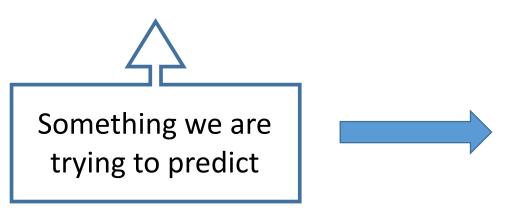
Henderson (1975)
Derivations under selection or not

• Beef cattle:
$$BIF\ Accuracy = 1 - \sqrt{\frac{PEV}{\sigma_u^2(1+F)}}$$

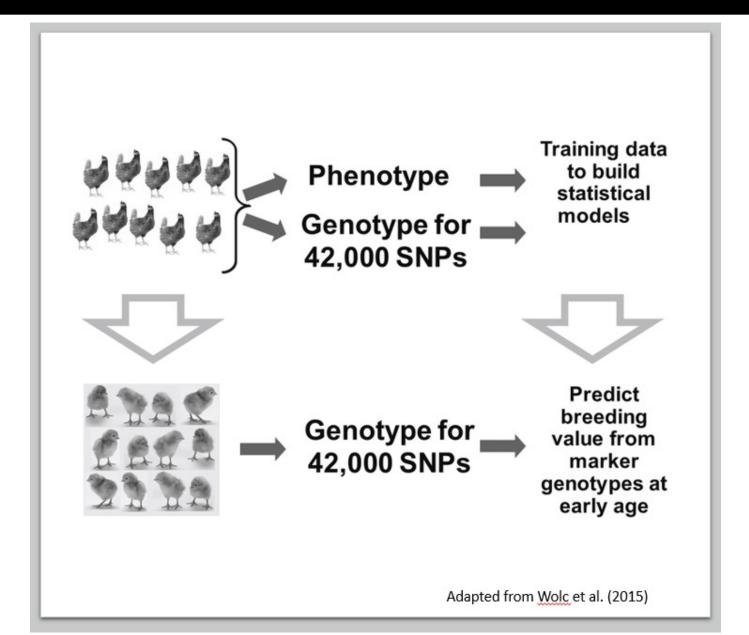

Lower values
Approaches 1 very slowly
Willham (~1985)

• Dairy cattle:
$$reliability = 1 - \frac{PEV}{\sigma_u^2(1+F)}$$

Lower values Approaches 1 more slowly Fraction of σ_u^2 accounted for by EBV VanRaden et al. (~1989)

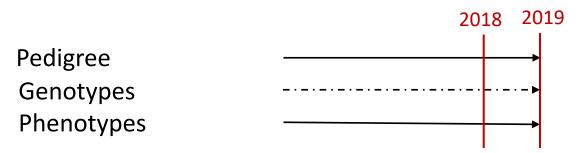

Variations of Theoretical Accuracy

How to validate: Prediction accuracy

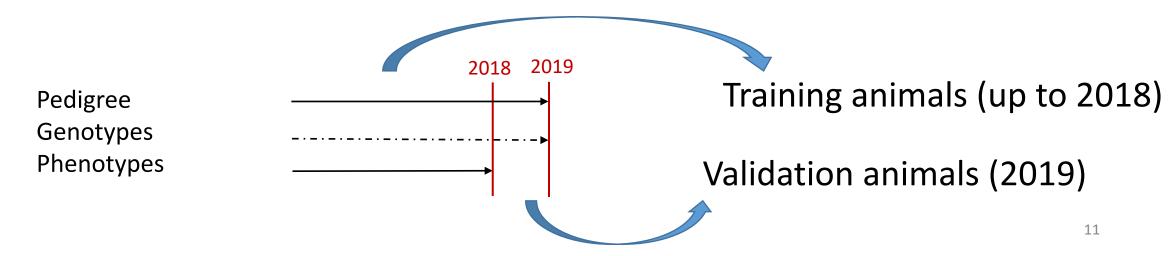

- Reflects the correlation between true and estimated breeding value
 - $accuracy = COR(u, \hat{u})$
- Do we have true breeding values in real populations?
 - $accuracy = COR(benchmark, \hat{u})$

Future performance (Progeny) yield deviation Deregressed EBV High accuracy EBV Future EBV

Prediction accuracy


Training

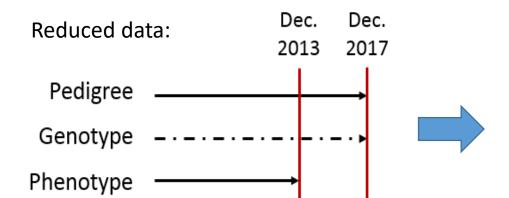
Validation



Prediction Accuracy

Complete data (used to compute the benchmark)

Reduced data (used to compute GEBV and EBV)


Which benchmark to use?

• $accuracy = COR(benchmark, \hat{u})$

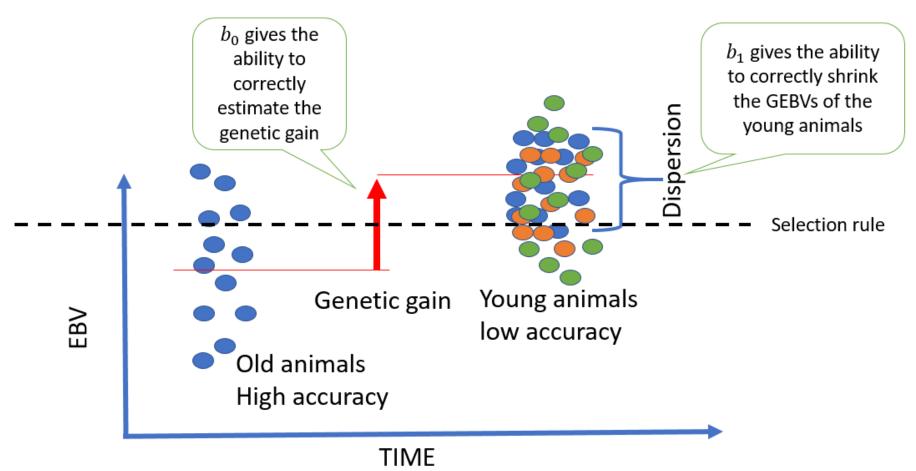
Validation animals	Trait measured on	Benchmark
Dairy bulls	progeny	daughter yield deviation / deregressed proof

DYD or DEBV as benchmark

- Remove 4 to 5 years of data
- Bulls with no daughter records in the reduced data
- Bulls have at least 10 daughters in the complete data
- At least 100 bulls

Benchmark: Deregressed EBV (based on VanRaden et al., 2009)

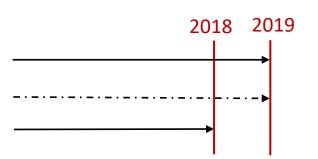
$$DEBV_{complete} = \frac{EBV_{complete} - PA_{complete}}{R_{complete}} + PA_{complete}$$


$$DEBV_{complete} = b_0 + b_1(G)EBV_{reduced}$$

$$R^2$$
 = prediction reliability
 b_0 = bias
 b_1 = dispersion

DYD or DEBV as benchmark

Are bias and dispersion also important?



Adjusted phenotypes as benchmark

Reduced data:

Pedigree Genotypes Phenotypes

- Remove 1 or 2 years of data
- Validation animals with own phenotypes in the complete data
- Phenotypes adjusted for fixed effects (complete data)

Predictivity or predictive ability of (G)EBV = $Cor(Y_{adj}, (G)EBV_{reduced})$

Accuracy =
$$\frac{\text{Predictivity}}{\text{sqrt}(h^2)}$$

$$Y_{adj} = b_0 + b_1(G)EBV_{reduced}$$
 $b_0 = bias$
 $b_1 = dispersion$

A new validation method

- LR Method
 - Linear Regression metrics
 - Legarra & Reverter (2018; GSE)
- Reduced (partial) and Complete (whole) data
- Validation animals have phenotypes in the complete data but not in the reduced data
- Benchmark: complete (G)EBV
- Compares EBV with EBV and GEBV with GEBV
 - Same scale

LR validation

Accuracy

$$Accuracy = \sqrt{\frac{cov(\widehat{\boldsymbol{u}}_c, \widehat{\boldsymbol{u}}_r)}{\left(1 + \overline{F} - 2\overline{f}\right)\sigma_{u,\infty}^2}}$$

or

$$Accuracy = \sqrt{\frac{cov(\widehat{\boldsymbol{u}}_c, \widehat{\boldsymbol{u}}_r)}{(1 - \overline{F})\sigma_u^2}}$$

Dispersion

$$\widehat{\boldsymbol{u}}_c = \mathbf{b}_0 + \mathbf{b}_1 \widehat{\boldsymbol{u}}_r$$

Bias

$$\mu_{cr} = \overline{\widehat{\boldsymbol{u}}_r} - \overline{\widehat{\boldsymbol{u}}_c}$$

Consistency between subsequent evaluations

$$cor_{c,r} = cor(\widehat{\boldsymbol{u}}_c, \widehat{\boldsymbol{u}}_r)$$

• Estimator of the ratio of accuracies using the "reduced" or the "complete" data