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• Pre-2005: much is said about markers and QTL but little is done that has practical results.
– genotyping markers (microsatellites) is time-consuming and expensive. Technologies are 

refined thanks, in part, to the Human Genome Project and the like.
– Around this time: a  "cattle" consortium is created to join forces and create a common SNP 

chip.
• 2007: 

– VanRaden presents at Interbull the concepts of genomic relationship (intuited by many people 
but never well formalized until his presentation)

– at the QTLMAS meeting in Toulouse, EAAP and other sites, first genomic evaluation results are 
presented, still very experimental and with much reduced datasets

• 2008: 
– in April, USDA launches the first internal genomic evaluation and at the end of the year it is 

official.
– VanRaden publishes his paper, full of ideas, highly cited but little read. The same year, the 

official methodology is presented in detail (VanRaden et al 2009).
– It is quickly understood that the proposed methods cannot be applied in the case "some 

animals are not genotyped" -> need for SSGBLUP.
• 2009: 

– in January we (Legarra-Aguilar-Misztal) sent the SSGBLUP paper to the Journal of Dairy 
Science. The idea is well received.

– In August it is presented at Interbull. Ole Christensen (U of Aarhus) presents the same 
developments done in parallel (and in a more elegant way).

• 2010 - 2014
– Many skeptics but nobody finds something better

• 2014 - 
– Generally accepted. Refinements and computational strategies, but the basic concept remains 

the same. 3

MARKERS
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Data files
64546020 1980 6 17 15 13 4 1 2 0 0 0  1676.8800  
64546020 1981 7 18 16 12 5 1 2 0 0 0  1433.6090  
64546020 1982 8 17 15 14 5 1 2 0 0 0  769.2500  
64546020 1980 6 17 15 12 4 1 2 0 0 0  1466.4200  
64546020 1981 7 18 16 13 5 1 2 0 0 0  1474.4940  
64546020 1982 8 17 16 14 5 1 2 0 0 0  1523.0290  
64546020 1980 6 17 15 12 4 1 2 0 0 0  1601.2290  
64546020 1981 7 17 16 12 5 1 2 0 0 0  1205.8100  
64546020 1982 8 17 16 14 5 1 2 0 0 0  676.5150  
64546020 1980 5 17 15 13 3 1 2 0 0 0  2122.1930  
64546020 1981 6 17 15 12 4 1 2 0 0 0  2227.5940  
64546020 1982 7 17 16 14 5 1 2 0 0 0  1593.4090  
64546020 1980 5 17 16 11 3 1 2 0 0 0  2132.2250  
64546020 1981 6 17 16 13 4 1 2 0 0 0  2100.5200  
64546020 1982 7 17 16 12 5 1 2 0 0 0  1792.2250  
64546020 1983 8 17 15 12 5 1 2 0 0 0  1492.0900  
64546020 1984 9 17 15 11 5 1 2 0 0 0  1607.3500  
64546020 1985 10 17 15 12 5 1 2 0 0 0  1534.3350 
64546020 1986 11 18 17 15 6 1 2 0 0 0  958.1200 
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Pedigree files
00000700640031;00000000000000;00000700620012;1964;2
00000700640032;00000700620045;00000700600138;1964;2
00000700640033;00000700630065;00000700540069;1964;2
00000700640034;00000000000000;00000700580089;1964;2
00000700640035;00000000000000;00000700590106;1964;2
00000700640036;00000700630065;00000700550017;1964;2
00000700650001;00000700620047;00000700610007;1965;2
00000700650002;00000702630050;00000700560023;1965;2
00000700650003;00000700620047;00000700600125;1965;2
00000700650004;00000700620047;00000700620027;1965;2
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64000670990546 1201202021021112101222102000
45214790003 1211112021110102102222202001
45214790004 2211102011010212002222112110
45199680012 2101111020110112101222012110
45307160107 1212102020020222002222112110
45199690008 2202102020010222112222102111

64000249040705 1212002020010222101222012110
45189980105 1201102021011112200222002000

64000249030710 2211102011011122112222012221
45214790006 2212002020000212111222101011
45199680014 1222011011010122222221111110
45214780461 2212102011020222011222211111
45253180017 1101111020002022212222102222

64000311010387 1222002020010212101222012110
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Marker files?

What are SNPs

• SNPs: https://en.wikipedia.org/wiki/Single-
nucleotide_polymorphism

The upper DNA molecule differs from the lower 
DNA molecule at a single base-pair location (a 
C/A polymorphism)
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Chromosome 
from the dad

Chromosome 
from the mam

DNA strand

Complementary 
DNA strand



Genotype files

• SNP files come from some machines
• In some obscure format
• We need to understand the format to 

understand what we do later
• Some people deal with raw files, some people 

do not
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[Header]

GSGT Version    1.9.4
Processing Date 3/16/2012 9:11 AM

Content         OvineSNP50_B.bpm

Num SNPs        54241

Total SNPs      54241

Num Samples     36

Total Samples   36
[Data]

Sample ID       Sample Name     SNP Name        Allele1 - Top   Allele2 - Top   GC Score

ES140000270478  PLACA_CIC_12_96 250506CS3900065000002_1238.1    G       G       0.8932

ES140000270478  PLACA_CIC_12_96 250506CS3900140500001_312.1     A       G       0.7341

ES140000270478  PLACA_CIC_12_96 250506CS3900176800001_906.1     A       G       0.7532

ES140000270478  PLACA_CIC_12_96 250506CS3900211600001_1041.1    A       A       0.9674
ES140000270478  PLACA_CIC_12_96 250506CS3900218700001_1294.1    G       G       0.8178

ES140000270478  PLACA_CIC_12_96 250506CS3900283200001_442.1     C       C       0.6684

ES140000270478  PLACA_CIC_12_96 250506CS3900371000001_1255.1    G       G       0.4565

ES140000270478  PLACA_CIC_12_96 250506CS3900386000001_696.1     A       A       0.4258

ES140000270478  PLACA_CIC_12_96 250506CS3900414400001_1178.1    G       G       0.8690

ES140000270478  PLACA_CIC_12_96 250506CS3900435700001_1658.1    A       A       0.5153

ES140000270478  PLACA_CIC_12_96 250506CS3900464100001_519.1     A       G       0.8116
ES140000270478  PLACA_CIC_12_96 250506CS3900487100001_1521.1    A       G       0.7448

ES140000270478  PLACA_CIC_12_96 250506CS3900539000001_471.1     G       G       0.5248

ES140000270478  PLACA_CIC_12_96 250506CS3901012300001_913.1     A       A       0.7413

ES140000270478  PLACA_CIC_12_96 250506CS3901300500001_1084.1    G       G       0.7990

ES140000270478  PLACA_CIC_12_96 CL635241_413.1  A       A       0.8176

ES140000270478  PLACA_CIC_12_96 CL635750_128.1  A       G       0.7978
ES140000270478  PLACA_CIC_12_96 CL635944_160.1  A       G       0.7283

Animal SNP name Genotype in 
nucleotides
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ES140000270478  PLACA_CIC_12_96 250506CS3900487100001_1521.1    A       G       0.7448 
ES140000270478  PLACA_CIC_12_96 250506CS3900539000001_471.1     G       G       0.5248 
ES140000270478  PLACA_CIC_12_96 250506CS3901012300001_913.1     A       A       0.7413 
ES140000270478  PLACA_CIC_12_96 250506CS3901300500001_1084.1    G       G       0.7990 
ES140000270478  PLACA_CIC_12_96 CL635241_413.1  A       A       0.8176 
ES140000270478  PLACA_CIC_12_96 CL635750_128.1  A       G       0.7978 
ES140000270478  PLACA_CIC_12_96 CL635944_160.1  A       G       0.7283 

 
This data contains genotypes for one animal: ES140000270478 for the SNPs that are listed in SNP 
Name. The columns Allele1 and Allele2 contain the readings in nucleotide form (Adenine, 
Guanine, Citosyne and Thymine – A,G,C,T). For instance in SNP Name 
250506CS3900065000002_1238.1, this animal is homozygous G/G, but for CL635750_128.1  . the 
animal is heterozygote A/G. The Allele1/ Allele2 notation is, for our purposes, arbitrary: we 
do not know which one came from the sire and which one came from the dam. 
 
Now, you can see that the same animal ES140000270478 is repeated over and over; there is one 
line per marker. The file is constituted by a header, and one line per individual and per 
marker. At some point we arrive to the next animal: 
 
ES140000270478  PLACA_CIC_12_96 s76040.1        G       G       0.6173 
ES140000270478  PLACA_CIC_12_96 s76043.1        A       A       0.7965 
ES150010016299  PLACA_CIC_10_02 250506CS3900065000002_1238.1    G       G       0.8932 
ES150010016299  PLACA_CIC_10_02 250506CS3900140500001_312.1     A       G       0.7341 
ES150010016299  PLACA_CIC_10_02 250506CS3900176800001_906.1     A       G       0.7668 

 
And so on. There is thus a lot of redundancy here.  
 
Another type of files has the final_report format with  
 
[Header] 
GSGT Version 1.9.4 
Processing Date 01/01/2018 10:11 AM 
Content  BovineSNP50_v2_C.bpm 
Num SNPs 54609 
Total SNPs 54609 
Num Samples 1 
Total Samples 1 
[Data] 
SNP Name Sample ID Allele1 - Forward Allele2 - Forward Allele1 - Top Allele2 - Top Allele1 - AB
 Allele2 - AB GC Score X Y 
ARS-BFGL-BAC-10172 USA201811 G G G G B B 0.9506 0.012 1.036 
ARS-BFGL-BAC-1020 USA201811 G G G G B B 0.9673 0.005 0.652 
ARS-BFGL-BAC-10245 USA201811 C C G G B B 0.7579 0.092 1.417 
ARS-BFGL-BAC-10345 USA201811 A A A A A A 0.9276 1.143 0.008 
ARS-BFGL-BAC-10365 USA201811 G G C C B B 0.5335 0.004 0.862 
ARS-BFGL-BAC-10375 USA201811 A G A G A B 0.9567 0.478 0.581 
ARS-BFGL-BAC-10591 USA201811 A G A G A B 0.9003 0.386 0.473 
ARS-BFGL-BAC-10867 USA201811 G G C C A A 0.9434 0.776 0.004 
ARS-BFGL-BAC-10919 USA201811 A A A A A A 0.8526 1.232 0.036 
ARS-BFGL-BAC-10951 USA201811 T T A A A A 0.5140 0.539 0.017 
ARS-BFGL-BAC-10952 USA201811 A A A A A A 0.9512 0.987 0.030 
ARS-BFGL-BAC-10960 USA201811 G G G G B B 0.9528 0.018 0.826 
ARS-BFGL-BAC-10972 USA201811 G C C G A B 0.8759 0.917 0.743 
ARS-BFGL-BAC-10975 USA201811 A G A G A B 0.8142 0.979 0.739 
ARS-BFGL-BAC-10986 USA201811 G G C C B B 0.9309 0.055 0.731 
ARS-BFGL-BAC-10993 USA201811 C C G G B B 0.9014 0.023 1.094 
ARS-BFGL-BAC-11000 USA201811 T T A A A A 0.9686 0.561 0.013 
ARS-BFGL-BAC-11003 USA201811 T T A A A A 0.9215 1.171 0.040 
ARS-BFGL-BAC-11007 USA201811 T C A G A B 0.9454 0.884 0.675 
ARS-BFGL-BAC-11025 USA201811 G G C C B B 0.9082 0.015 0.740 
ARS-BFGL-BAC-11028 USA201811 A G A G A B 0.9678 0.182 0.288 
ARS-BFGL-BAC-11034 USA201811 T C A G A B 0.9509 0.566 0.592 
ARS-BFGL-BAC-11039 USA201811 C C G G B B 0.9658 0.000 0.889 
ARS-BFGL-BAC-11042 USA201811 A G A G A B 0.8506 0.947 0.786 
ARS-BFGL-BAC-11044 USA201811 T C A G A B 0.9654 0.726 0.689 
ARS-BFGL-BAC-11047 USA201811 T T A A A A 0.9465 0.973 0.015 

 
This format is apparently more confusing but it is explained here: 
https://www.illumina.com/documents/products/technotes/technote_topbot.pdf . In short, what 
we need to look at is the A/B ‘s in the columns. For one marker, A and B may “mean” A and 
T whereas in another locus they may “mean” T and A. However, the A/B notation is less 

Animal
SNP name

Genotype in 
A/B format
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Map file

index,Nom,OAR,Num,Pos
1,250506CS3900065000002_1238.1,15,95,5825554
2,250506CS3900140500001_312.1,23,471,26446680
3,250506CS3900176800001_906.1,7,1828,81627347
4,250506CS3900211600001_1041.1,16,919,41632053
5,250506CS3900218700001_1294.1,2,3311,149375044
6,250506CS3900283200001_442.1,1,4056,188745186
7,250506CS3900371000001_1255.1,11,657,35486157
8,250506CS3900386000001_696.1,16,1391,62983985
9,250506CS3900414400001_1178.1,1,2238,103373031
10,250506CS3900435700001_1658.1,12,976,44985453
11,250506CS3900464100001_519.1,1,1859,85681719
12,250506CS3900487100001_1521.1,14,21,1046097
13,250506CS3900539000001_471.1,27,1189,101575221
14,250506CS3901012300001_913.1,2,2240,100935467
15,250506CS3901300500001_1084.1,7,2015,89446225
16,CL635241_413.1,3,4089,181937734
17,CL635750_128.1,3,5009,223456572
18,CL635944_160.1,6,2374,107677235
19,Contig35697_5761.1,6,397,18930545
20,CR_594.1,27,597,51062613
21,CR_816.1,27,595,51062391
22,CytB_1406.1,3,4592,204780199
23,CytB_1505.1,3,4593,204780298

SNP name Chromosome 
number

Position in base 
pairs
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[Header]

GSGT Version    1.9.4
Processing Date 3/16/2012 9:11 AM

Content         OvineSNP50_B.bpm

Num SNPs        54241

Total SNPs      54241

Num Samples     36

Total Samples   36
[Data]

Sample ID       Sample Name     SNP Name        Allele1 - Top   Allele2 - Top   GC Score

ES140000270478  PLACA_CIC_12_96 250506CS3900065000002_1238.1    G       G       0.8932

ES140000270478  PLACA_CIC_12_96 250506CS3900140500001_312.1     A       G       0.7341

ES140000270478  PLACA_CIC_12_96 250506CS3900176800001_906.1     A       G       0.7532

ES140000270478  PLACA_CIC_12_96 250506CS3900211600001_1041.1    A       A       0.9674
ES140000270478  PLACA_CIC_12_96 250506CS3900218700001_1294.1    G       G       0.8178

ES140000270478  PLACA_CIC_12_96 250506CS3900283200001_442.1     C       C       0.6684

ES140000270478  PLACA_CIC_12_96 250506CS3900371000001_1255.1    G       G       0.4565

ES140000270478  PLACA_CIC_12_96 250506CS3900386000001_696.1     A       A       0.4258

ES140000270478  PLACA_CIC_12_96 250506CS3900414400001_1178.1    G       G       0.8690

ES140000270478  PLACA_CIC_12_96 250506CS3900435700001_1658.1    A       A       0.5153

ES140000270478  PLACA_CIC_12_96 250506CS3900464100001_519.1     A       G       0.8116
ES140000270478  PLACA_CIC_12_96 250506CS3900487100001_1521.1    A       G       0.7448

ES140000270478  PLACA_CIC_12_96 250506CS3900539000001_471.1     G       G       0.5248

ES140000270478  PLACA_CIC_12_96 250506CS3901012300001_913.1     A       A       0.7413

ES140000270478  PLACA_CIC_12_96 250506CS3901300500001_1084.1    G       G       0.7990

ES140000270478  PLACA_CIC_12_96 CL635241_413.1  A       A       0.8176

ES140000270478  PLACA_CIC_12_96 CL635750_128.1  A       G       0.7978
ES140000270478  PLACA_CIC_12_96 CL635944_160.1  A       G       0.7283
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This format is very uncomfortable
It is easier to have 1 line/animal

• 1 line/animal
ES1400NAB40571 G G G G A A A C . . A G
ES1400NAB40573 G G G G G G A C G G A G
ES1400NAB40574 A G G G A G A C G G A A
ES1400NAB40159 G G G G A G A C G G A A
ES1400NAB40528 A G A G A G C C A G A A
ES1500VI492705 G G A G G G A C G G A G
ES1500SSA40533 A G G G A G C C G G A A

14

Marker 1 Marker 2



• Animal breeders and computers don’t like 
text, prefer numbers

• At each marker locus, there are only two 
possible alleles, for instance: 
– For marker 1 this could be A / C
– For marker 2 this could be A / G

• Then we choose one of those markers as the 
reference one

15

Gene content

• For instance if there are two nucleotides (A/C) and C is the 
reference: 

• 0 means AA
• 1 means AC or CA
• 2 CC
• 5 missing

• For another loci, the reference allele might be something else
• This way of coding is known as “gene content”
• One column (and not 2) per marker

16



Gene content

• For instance if there are two nucleotides (A/C) and A is the 
reference: 

• 2 means AA
• 1 means AC or CA
• 0 CC
• 5 missing

• For another loci, the reference allele might be something else
• This way of coding is known as “gene content”
• One column (and not 2) per marker

17

The reference allele can vary across loci. For 
instance, consider the same animal 

ES1400NAB40571 G G G G A A A C . . A G

And consider that the reference alleles for each of 
the 6 markers are (G,G,A,C,G,A). Using these 
reference alleles would give

ES1400NAB40571 222151 

18

Missing !!

Missing !!



Final genotype file
64000670990546 1201202021021112101222102000

45214790003 1211112021110102102222202001
45214790004 2211102011010212002222112110
45199680012 2101111020110112101222012110
45307160107 1212102020020222002222112110
45199690008 2202102020010222112222102111

64000249040705 1212002020010222101222012110
45189980105 1201102021011112200222002000

64000249030710 2211102011011122112222012221
45214790006 2212002020000212111222101011
45199680014 1222011011010122222221111110
45214780461 2212102011020222011222211111
45253180017 1101111020002022212222102222

64000311010387 1222002020010212101222012110
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Animal Long “row” with thousands of 
markers

Final genotype file
64000670990546 1201202021021112101222102000

45214790003 1211112021110102102222202001
45214790004 2211102011010212002222112110
45199680012 2101111020110112101222012110
45307160107 1212102020020222002222112110
45199690008 2202102020010222112222102111

64000249040705 1212002020010222101222012110
45189980105 1201102021011112200222002000

64000249030710 2211102011011122112222012221
45214790006 2212002020000212111222101011
45199680014 1222011011010122222221111110
45214780461 2212102011020222011222211111
45253180017 1101111020002022212222102222

64000311010387 1222002020010212101222012110
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How can I read this?



How do we edit these files?

SNP chips:
• PLINK ! but you are limited by what plink can 

do
• Often you need extra editing
• Efficient: Fortran, awk, bash scripts
• Less efficient (usually usable): Python, R
• Learn some programming

21

Fortran:
read(1,’(a14,1x,60000i1)’) id,genotype(:)

Awk:

split($2,genotype,””)

Python:

for line in fhand:

idd , genotype = line.split()

for j,m in enumerate(genotype):

22



Keep track

• If you do these manipulations, you need to 
keep track of:

• SNP names
• Reference alleles at each locus

• If you mix files make sure that you’re working 
with the same markers  and reference alleles!!

23

• What you see in genotype files
• Minimum quality control

24



What you find in genotype files

• « call rate » is the percentage of observed 
genotypes: 
– per animal (per row)
– per marker (per column)

• In other words, the number of “5”s
• If call rate animal <95% the genotype of the 

animal is rejected (delete line)
• If call rate marker <95% the column of the 

marker is deleted

25

Allele frequency
• The allele frequency 𝑝 is simply the frequency of the reference 

allele. For instance consider

ES1400NAB40571 G G
ES1400NAB40573 G G
ES1400NAB40574 A G
ES1400NAB40159 G G 
ES1400NAB40528 A G
ES1500VI492705 G G 
ES1500SSA40533 A A

• If the reference allele is G, we have 10G against 4A: 𝑝 = !"
!#
≈ 0.71, 

and the frequence of allele A is 𝑞 = 1 − 𝑝 ≈ 0.29.

26



Allele frequency
• When we use integer codes, it is very easy

ES1400NAB40571 2
ES1400NAB40573 2
ES1400NAB40574 1
ES1400NAB40159 2 
ES1400NAB40528 1
ES1500VI492705 2 
ES1500SSA40533 0

• p is obtained summing the : 𝑝 = !"
$×&

≈ 0.71, and 𝑞 = 1 − 𝑝 ≈
0.29.
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Minor allele frequency

• MAF is the lowest of the two allele 
frequencies. For instance if the two alleles are 
A/G

• 𝑝 = 𝑓𝑟𝑒𝑞 𝐴 ; 𝑞 = 1 − 𝑝 = 𝑓𝑟𝑒𝑞 𝐺
• 𝑀𝐴𝐹 = 𝑚𝑖𝑛(𝑝, 𝑞)
• Why is MAF important?

28



Minor allele frequency

• 𝑀𝐴𝐹 = 𝑚𝑖𝑛(𝑝, 𝑞)
• Why is this important?
• A fixed marker (𝑝 = 0 or 𝑝 = 1) gives no information
• An almost-fixed marker (𝑝 = 0.0001 or 𝑝 = 0.9999) gives 

almost no information
• Some applications use 1/𝑝
• But !

"."""""!
= 10$, may lead to overflow !!

• So, people delete markers with MAF<0.01 or <0.05
• For prediction and GWAS it does not make much difference
• For sequence analysis with de novo variants it makes a 

difference

29

How do we compute these things?

Assume that genotypes are stored as 0/1/2 in 
matrix Z
• cr_animal(i)=sum(Z(i,:)/=5)/nsnp
• cr_marker(i)=sum(Z(:,i)/=5)/nsnp

Assume no missing values
• p(i)=sum(Z(:,i))/(2*nanim)

• maf(i)=minval((/p(i),1-p(i)/))

30



Hardy-Weinberg Equilibrium

• If animals reproduce at random we expect to 
find HW proportions of genotypes:

𝑝!, 2𝑝𝑞, 𝑞!

• We can use a Chi-2 test to test this, but
– Does HWE equilibrium this hold?
– Only approximately
– At each generation 𝑝 changes a little bit, so it does 

not hold across all generations
– Also, animals do not mate at random

31

Hardy-Weinberg Equilibrium

Rule of thumb used by AIPL (Wiggans 2011):
• Number of heterozygotes should not deviate too 

much

• Delete marker if ! "# $%&%'"()*"&%+
!

− 2𝑝𝑞 > 0.15

32



Crosses

• In crosses you don’t expect to have HWE
• Imagine F1 sows from Landrace boars (with 

allele frequency 𝑝") and Yorkshire sows (with 
allele frequency 𝑝#)

• Then the genotype proportions are 
(𝑝#𝑝" , 𝑝#𝑞" + 𝑞#𝑝" , 𝑞#𝑞")

• (Why ?)

33

Sex chromosomes 1

• XX  (females, mammals) or ZZ (males, birds)
• Two alleles (one from the mam, one from the 

dad)

34

A C



Sex chromosomes 2

• XY  (males, mammals) or ZW (females, birds)
• One allele (from the mam in mammals, from 

the dad in birds)
• This is weird and often we don’t use these 

chromosomes

35

A

Sex chromosomes 3

• Use of sex chromosomes in prediction is 
complicated (US dairy does, though)
– VanRaden et al.. J Dairy Sci. 2009;92:16–24.
– Druet & Legarra. (2020) Gen Sel Evol , 52(1), 1-17.

• in the course we assume all are autosomes
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Un mapped markers

• Markers reside in chromosomes
• The position of some markers is still unknown !
• This is reported as “chromosome 0”
• It is better to abandon these markers
• For instance 

http://www.livestockgenomics.csiro.au/sheep/
oar3.1.php :
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##gff-version3

nohit SNP50 SNP . . . . .
ID=CytB_131;Note=OARv3.1::::pastOARv1.0position:Chr0:0;Alias=CytB_131.1

nohit SNP50 SNP . . . . .
ID=CytB_1406;Note=OARv3.1::::pastOARv1.0position:Chr0:0;Alias=CytB_1406.1

nohit SNP50 SNP . . . . .
ID=CytB_1505;Note=OARv3.1::::pastOARv1.0position:Chr0:0;Alias=CytB_1505.1

nohit SNP50 SNP . . . . .
ID=CytB_1745;Note=OARv3.1::::pastOARv1.0position:Chr0:0;Alias=CytB_1745.1

nohit SNP50 SNP . . . . .
ID=DU287575_503;Note=OARv3.1::::pastOARv1.0position:Chr2:31209299;Alias=DU287575_503.1

nohit SNP50 SNP . . . . .
ID=DU369175_467;Note=OARv3.1::::pastOARv1.0position:Chr4:78053478;Alias=DU369175_467.1

nohit SNP50 SNP . . . . .
ID=DU407749_370;Note=OARv3.1::::pastOARv1.0position:Chr5:80350180;Alias=DU407749_370.1

nohit SNP50 SNP . . . . .
ID=DU415336_399;Note=OARv3.1::::pastOARv1.0position:Chr8:96150336;Alias=DU415336_399.1

nohit SNP50 SNP . . . . .
ID=DU420655_308;Note=OARv3.1::::pastOARv1.0position:Chr12:57781103;Alias=DU420655_308.1

nohit SNP50 SNP . . . . .
ID=DU428219_359;Note=OARv3.1::::pastOARv1.0position:Chr6:113162488;Alias=DU428219_359.1

nohit SNP50 SNP . . . . .
ID=DU439696_403;Note=OARv3.1::::pastOARv1.0position:ChrX:37790463;Alias=DU439696_403.1
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Mendelian conflicts

• In absence of mutation (which is rare) this 
kind of things cannot happen:
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AA

GG

AA AA

AG

Mendelian conflicts

• If a marker is seen in many Mendelian conflicts,
– possibly the genotyping of the marker is wrong and 

the marker is deleted

• If an animal is seen in many Mendelian conflicts,
– Possibly there is a misidentification in animal or in 

pedigree

• You may try to find this animals’ parent:
– Seekparent.f90
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Duplicate genotypes

• Two animals should not have identical SNPs 
unless they are clones or monozygotic twins

• This is unusual…
• If not clones, duplicated genotypes come from 

mislabeling: the DNA sample of the same 
animal has been given two different names

41

Two markers !!

• (or one marker and one QTL)

42
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Linkage disequilibrium

• « Gametic phase disequilibrium »
Statistical association between alleles at two loci in the 

same chromosome
– Loci : places 
– Alleles: alternative forms of a gene (A,B,0)
– Phase: notion of being in the same chromosome (of a pair) 

or coming from same origin (sire or dam)

44

Biallelic case

• Assume we genotype 5 individuals, thus 10 
chromosomes (and that we know the 
phase)

• Now we compute allelic frequencies

AB
AB
ab
aB
ab
ab
Ab
AB
Ab
AB
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Biallelic case

p(A)=0.6

p(B)=0.5
if independent, p(AB)=0.3,p(ab)=0.2

The expected proportions are:

   A a

   B   0.3  0.2

   b   0.3  0.2
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Biallelic case
p(A)=0.6
p(B)=0.5
in reality:
  A a
   B   0.4  0.2
   b   0.1  0.3

vs. expected

  A a

   B   0.3  0.2
   b   0.3  0.2

More AB & ab than expected !!
This is linkage disequilibrium
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Linkage disequilibrium 

• Is a statistical concept
• Describes not-random association of two loci

– Nothing more, so, why is it useful?

• Two loci in LD most often are (very) close
– This is because LD breaks down with recombination

• Linkage disequilibrium of two loci decays on average 
with the distance

• Hence it serves to map genes 

48

Where does it come from?

• Because chromosomes are transmitted together
– Within known families (« linkage analysis »)
– Within the history of a population (« populational linkage 

disequilibrium » or « linkage disequilibrium » in short)

• This distinction is rather artificial 
– Remember: a population is a very old, large family
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Populational linkage disequilibrium

• Assume we mix two populations (say Churra 
and Merino)

• Or, that Adam was 
– and Eve

– The first generation is an F1
– Then animals are mixed at random

• What do we get after many generations?

50

Populational linkage disequilibrium

• The chromosomes become a fine-grained mosaic of grey 
and black 

• Called LD blocks, segments

• However, complete mixture is 
difficult to attain

• The blocks are « fuzzy » blocks



• Human

51

• Apple
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Populational linkage disequilibrium
•Some people distinguish LD and 
pedigree relationships
•It’s pretty much the same thing

An stretch (=chromosomal 
segment) is conserved because it 
comes from the same ancestor 

(co-ancestry). 

•The value of LD (e.g. r2) observed at large distances is a function of 
recent relationships
•… at short distances is a function of distant relationships

The « existence » of only a few 
conserved stretches at the same 

place creates LD.
LD is therefore: 

an over-representation of segments 
from a few gametes

that existed in the population some 
time ago.

54

Within-family linkage disequilibrium

• Consider this male who has 8 progeny
A

a

B

b

Recombination fraction: 0.50

A b

A B

a B

a b

A b

A B

a B

a b

We found linkage 
equilibrium in one 
generation

These are the chromosomes in the sons
(i.e. the gametes the male transmitted)
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Within-family linkage disequilibrium

• Consider this male who has 8 progeny
A

a

B

b

Recombination fraction: 0.25

A b

A B

a B

a b

A B

a b

Due to non-recombination
linkage disequilibrium has 
been generated

A B

a b A      a
   B   0.375  0.175
   b   0.175  0.375
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Within-family linkage disequilibrium

• Assume now there are two males
A

a

B

b

A b

A B

a B

a b

A B

a b

A B

a b

A

a

b

B

A B

A b

a b

a B

A b

a B

A b

a B
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Within-family linkage disequilibrium

• Assume now there are two males
A

a

B

b

A b

A B

a B

a b

A B

a b

A B

a b

A

a

b

A

A B

A b

a b

a B

A b

a B

A b

a B

A      a
   B   0.375  0.175
   b   0.175  0.375

Within-family linkage 
disequilibrium

A      a
   B   0.175  0.375
   b   0.375  0.175
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Within-family linkage disequilibrium

• Assume now there are two males
A

a

B

b

A b

A B

a B

a b

A B

a b

A B

a b

A

a

b

A

A B

A b

a b

a B

A b

a B

A b

a B

A      a
   B   0.5  0.5
   b   0.5  0.5

No overall linkage 
disequilibrium
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Within-family linkage analysis

• There is a QTL 25cM from A with alleles Q/q
A

a

Q

q

Recombination fraction: 0.25

A q

A Q

a Q

a q

A Q

a q

1. Due to non-recombination
linkage disequilibrium has been 
generated

A Q

a q A      a
   Q   0.375  0.175
   q   0.175  0.375
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Within-family linkage analysis

• Imagine that Q=+10 kg and q=-10 kg
• The « apparent » effect of A is +5kg
• But in the other family this is reversed !

A -10

A +10

a +10

a -10

A

a -10

A +10

a -10

+10
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Across the two families

• Marker A has no apparent effect
A

a

+10

-10

A -10

A +10

a +10

a -10

A +10

a -10

A +10

a -10

A

a

-10

+10

A +10

A -10

a -10

a +10

A -10

a +10

A -10

a +10

Some consequences

• Markers that have “apparent” positive effect in 
one families may have “apparent” negative effect 
in other families

• These “apparent” associations break with 
distance

• The closest the marker and the QTL, the stronger 
and more stable the association

• Thus, we need many markers for associations to 
be stable

• Breeds are “big” families, so predicting across 
breeds is difficult
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if we use « gene content »
« A » = 1, « a »=0
« B » = 1, « b »=0
 r is the correlation between two loci

• Not free from problems but can be understood by statisticians 
(and breeders)

• The sample size needed to achieve a given power is proportional 
to 1/𝑟$ (Pritchard Przeworski  2001 Am J Hum Genet 69:1)

• Everybody uses it to describe things in genomic selection. 

63

Measures of LD: r2

( )
( ) ( )1 1
f AB pq

r
p p q q

-
=

- - ( ) ( )1 1
Dr

p p q q
=

- -

Properties of gene content
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Data files
64546020 1980 6 17 15 13 4 1 2 0 0 0  1676.8800  
64546020 1981 7 18 16 12 5 1 2 0 0 0  1433.6090  
64546020 1982 8 17 15 14 5 1 2 0 0 0  769.2500  
64546020 1980 6 17 15 12 4 1 2 0 0 0  1466.4200  
64546020 1981 7 18 16 13 5 1 2 0 0 0  1474.4940  
64546020 1982 8 17 16 14 5 1 2 0 0 0  1523.0290  
64546020 1980 6 17 15 12 4 1 2 0 0 0  1601.2290  
64546020 1981 7 17 16 12 5 1 2 0 0 0  1205.8100  
64546020 1982 8 17 16 14 5 1 2 0 0 0  676.5150  
64546020 1980 5 17 15 13 3 1 2 0 0 0  2122.1930  
64546020 1981 6 17 15 12 4 1 2 0 0 0  2227.5940  
64546020 1982 7 17 16 14 5 1 2 0 0 0  1593.4090  
64546020 1980 5 17 16 11 3 1 2 0 0 0  2132.2250  
64546020 1981 6 17 16 13 4 1 2 0 0 0  2100.5200  
64546020 1982 7 17 16 12 5 1 2 0 0 0  1792.2250  
64546020 1983 8 17 15 12 5 1 2 0 0 0  1492.0900  
64546020 1984 9 17 15 11 5 1 2 0 0 0  1607.3500  
64546020 1985 10 17 15 12 5 1 2 0 0 0  1534.3350 
64546020 1986 11 18 17 15 6 1 2 0 0 0  958.1200 
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Pedigree files
00000700640031;00000000000000;00000700620012;1964;2
00000700640032;00000700620045;00000700600138;1964;2
00000700640033;00000700630065;00000700540069;1964;2
00000700640034;00000000000000;00000700580089;1964;2
00000700640035;00000000000000;00000700590106;1964;2
00000700640036;00000700630065;00000700550017;1964;2
00000700650001;00000700620047;00000700610007;1965;2
00000700650002;00000702630050;00000700560023;1965;2
00000700650003;00000700620047;00000700600125;1965;2
00000700650004;00000700620047;00000700620027;1965;2
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Another data file
64000670990546 1
45214790003 1
45214790004 2
45199680012 2
45307160107 1
45199690008 2
64000249040705 1
45189980105 1
64000249030710 2
45214790006 2
45199680014 1
45214780461 2
45253180017 1
64000311010387 1
45253180018 1
45075980006 2
64000779010288 1
45315380096 2
45075980007 1
64000779010289 0
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Animal

???

Another data file
64000670990546 AG
45214790003 AG
45214790004 AA
45199680012 AA
45307160107 AG
45199690008 AA
64000249040705 AG
45189980105 AG
64000249030710 AA
45214790006 AA
45199680014 AG
45214780461 AA
45253180017 AG
64000311010387 AG
45253180018 AG
45075980006 AA
64000779010288 AG
45315380096 AA
45075980007 AG
64000779010289 GG
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Animal

Gene content !!



Gene content of marker 3
64000670990546 1201202021021112101222102000

45214790003 1211112021110102102222202001
45214790004 2211102011010212002222112110
45199680012 2101111020110112101222012110
45307160107 1212102020020222002222112110
45199690008 2202102020010222112222102111

64000249040705 1212002020010222101222012110
45189980105 1201102021011112200222002000

64000249030710 2211102011011122112222012221
45214790006 2212002020000212111222101011
45199680014 1222011011010122222221111110
45214780461 2212102011020222011222211111
45253180017 1101111020002022212222102222

64000311010387 1222002020010212101222012110
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Gene content 

• Gene content (GC) is the number of copies of the 
reference allele (for instance “A”)

• We call gene content z in this notes and slides

• 𝑧 = #
0
1
2

for genotypes '
”𝑛𝑜 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑎𝑙𝑙𝑒𝑙𝑒”
1 “𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑎𝑙𝑙𝑒𝑙𝑒”
2 “𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑎𝑙𝑙𝑒𝑙𝑒”

• What properties does gene content have, as a 
“trait”?
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Gene content mean and variance

• ̅𝑧 = 2𝑝
• 𝜎$! = 𝐸 𝑧! − 𝐸 𝑧 ! = 2𝑝𝑞 if there is HWE
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Heritability of gene content

• If the genotype is accurate, the trait z is observed with 
no error 

• z is transmitted from parents to offspring and there is 
no external influences

• z is additive (by definition)
• Heritability of z is 1 (!!!)
We can model gene content as a quantitative trait:
• 𝐶𝑜𝑣 𝑧,, 𝑧- = 𝐴,-2𝑝𝑞 (Cockerham - explain)
• 𝒛 = 𝟏𝜇 + 𝒖 = 𝟏 2𝑝 + 𝒖
• V𝑎𝑟 𝑢 = 𝑨𝜎./ = 𝑨𝜎(/ = 𝑨2𝑝𝑞
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Gene content as a quantitative trait

• We can estimate heritability of gene content
– Extract one marker from the genotype file and 

treat it as data
– Estimate heritability by REML
– It should give *ℎ/ ≈ 0.99 or similar
– p-value of *ℎ/ ≠ 1 using LRT
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Quality control using heritability of 
gene content

Real pig (imputed) data, 
Forneris et al 2015

74
mixed-model equations are the same for a value of heritability
in all markers. Thus, dramatic costs savings can be realized
when factorizations and traces are precomputed for several
values of heritability. If the purpose of QC is to select SNPs with,
say, h2 . 0.98, only three sets of such matrices would be re-
quired, e.g., at h2 = 0.99, 0.98, and 0.97.

Our procedure cannot identify pedigree errors (i.e., mis-
labeling of DNA samples). In this case, errors are across
markers in one individual instead of being across individuals
for one marker. Parent-offspring discordances can flag such
an error if many markers do not follow Mendelian rules for
a given parent-offspring pair. There are procedures to assign
parents (Wiggans et al. 2009; Hayes 2011; VanRaden et al.
2013). However, a general procedure to identify and correct
pedigree errors does not exist yet. A practical procedure is to
compare genomic relationships (VanRaden 2008) and pedigree
relationships and inspect the differences, which depend on the
relationship itself and the genome architecture. A thorough de-
scription of such differences can be found inWang et al. (2014).

A particular case is the use of genotypes from different chips
or panels, possibly with different chemistry, e.g., the 50K and
3K panels in cattle (Wiggans et al., 2012). These authors found
that some markers were correctly read using one panel but not
the other. In our method, this would be observed because
heritability estimated including genotypes from the faulty chip,
either alone or combined with the other panel, would decrease.
This also applies to samples genotyped in batches; e.g., if there
is a (large) batch of individual samples with poor DNA condi-
tions, the addition of genotypes from the sample will decrease
heritability estimates.

In our experience, this procedure is most useful when
dealing with new complete data sets, in particular, from
experimental studies. Regular genetic evaluations, as in dairy
cattle, keep a better track of DNA samples, and because of the
abundance of parent-offspring couples and trios, poor-quality
markers are easily found (Wiggans et al. 2009, 2012).

Conclusion

We have introduced a practical QC procedure to identify
SNPs with low quality across many individuals. The proposed
filter is in essence an estimate of heritability of gene content
at the SNPs, where any deviation from 1 is suspicious, and the
P-value is for testing the null hypothesis of “no error in geno-
typing.” This QC procedure can jointly consider all geno-
typed individuals and their pedigree and uses standard
hypothesis-testing procedures. It should be used as a comple-
ment to standard QC procedures and possibly after them.
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Figure 2 Real PIC data results. (A) Estimates of heritability
of gene content in the original data set with half the
genotypes permuted or with all genotypes permuted. (B)
Estimates of heritability of gene content in the original
data set vs. P-values from the likelihood-ratio test.

680 N. S. Forneris et al.

Good markers

Bad markers

8% rejected markers (p<0.01)
Why do we have bad markers?
Probably due to poor imputation

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lacaune sheep data

No rejected markers based on LRT
Why do we have good markers?
Good pedigree recording, DNA 
sampling, and imputation



Quality control using heritability of 
gene content

• No one checks ℎ! of gene content by default, 
but it is very useful to detect horrible mistakes

• In small data sets (<5000 animals with 
genotypes), it takes minutes in preGSf90

• qcf90 does it in a few hours for large data sets

Imputation

• What do we mean by imputation?
• “Guess” the missing marker 
• Why is this useful

(1) For software that don’t admit missing values at 
genotypes: fill-in the small holes like

– 01211022121150100511112000
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Missing !!



Imputation

(2) to use “cheap chips”
• We may have big holes

– 055525555515555515550
– Low density chips: impute from 6K to 50K
– Very high density chips: impute from 50K to 700K
– Very low density chips: impute from 1000 to 50K
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Missing !!

Crude imputations

Not recommended
• Draw genotype from HW distribution:
– {AA,AG,GG} with probabilities 𝑝/, 2𝑝𝑞, 𝑞/

– Will lead to parent/offspring incompatibilities

• Use heterozygotes
– Will lead to too many heterozygotes
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Strategies for imputation

• Family based 
We compare chromosome chunks transmitted 

from parents to offspring and fill-in the holes
• Population based

We (roughly) make a library of existing 
haplotypes and compare to our incomplete haplotype 
• Imputation is based on looking at neighboring 

markers 
• We need a map of the genome !!
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Finding an IBD segment
A GG A G GA

AA G A G G G

Sire

A ?G A G G?

?G ? A A G A

Progeny

J Van der Werf



A GG A G GA

AG G A G G G

Sire

A ?G A G G?

?G ? A A G A

Progeny
IBD segment

J Van der Werf

A GG A G GA

AG G A G G G

Sire

A GG A G GA

?G ? A A G A

Progeny

J Van der Werf



Population based imputation

 

 

 

Reference 
population

Target 
population

Marchini J, Howie B. Genotype imputation for genome-wide association studies.   Nat Rev Genet. 2010 11:499-511.

Typical outputs from imputation

• Accuracy = correlation of real and 
imputed genotypes

• Concordance = percentage (%) of 
genotypes called correctly

• Concordance is a bad metrics because 
genotypes will be imputed correctly just by 
chance
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Typical pitfalls from imputation
• Several horror stories linked to imputation

– Very small SNP chips (<6K) typically impute very poorly
– Pedigrees and DNA sample identification need to be perfect
– To impute correctly, the reference population (a set of individuals 

fully genotyped at >50K) needs to cover the entire genetic 
variation. I can’t impute Scottish Angus from Angus.

• Errors in imputation may go undetected, but then they 
create contradictory informations for ssGBLUP

• Imputation tends to create too many heterozygotes
• LD chips + imputation is not a substitute for 50K 

genotyping
• You better test what you’re doing
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Non genotyped animals

• If animals do not have any genotype for any 
marker, what can we do?

• A few of them can be “imputed” classically 
– if they have large offsprings genotyped, e.g. 5 

offspring for an embryo transfer dam

• In most cases this is impossible
• We still can use “linear” imputation
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Linear imputation
• Gengler et al. (2007) conceived an algebraic way to obtain regression-

based point estimates of genotypes (== to McPeek et al. 2004)
• Christensen & Lund (2010) showed how to take the variation into

account

• Genotype of descendants = half their parents + Mendelian sampling

Aa

??

AA

E(Genotype) = !" "𝐴" +
#
" "𝑎“

AA with probability ½
Aa with probability ½ 
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Extending to all the pedigree…

Genotype prediction using BLUP for 
gene content (Gengler’s method)

• Assuming ℎ/ ≈ 0.99, use BLUP !!
• 𝒛 = 𝟏𝜇 +𝑾𝒖 + 𝒆

𝑿5𝑿 𝑿5𝑾
𝑾5𝒁 𝑾5𝑾+𝑨6𝟏𝝀

<𝝁
<𝒖

= 𝑿5𝒛
𝑾5𝒛

• On exit, 𝟏>𝜇 + <𝒖 are estimates of gene content for all 
animals

• And 89
/

is an estimate of 𝑝 in the base generation
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Example
• Pig data

89

0

1

2

Animals with genotype Relatives(ancestors) ungenotyped

Observed genotypes 
(correctly as 0/1/2)

Estimated 
genotypes 

(fractional !!)

Why is linear imputation bad?

• It is very little accurate
• Far animals tend all to be identical to 2 ;𝑝
• Uncertainty in linear imputation is ignored

• But it sets the stage for SSGBLUP
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1

Marker-based models for Genomic
selection

• Single QTL 

• Whole-genome (multiple marker) genomic
selection

2

Single QTL

Assume that we know a large effect QTL (a 
major gene)
• the halothane gene (HAL)

• the 𝛼𝑠−1 caseine in dairy goats

• DGAT1

• SOCS2

• BMP15

• IFG-2

• GHR



3

4

Single QTL

Put the QTL as a fixed effect and estimate it

• yi= QTL effect in animal i + e

We can include an additional polygenic genetic value of 
animal i

• yi= polygenic effect of animal i + QTL effect in animal 
i + e

How do we do this in practice? Using linear regression



Multiallelic QTL

assume that we have a 

four-allele 𝐴, 𝐵, 𝐶, 𝐷 locus 

and three individuals with genotypes 
{𝐵𝐶
, 𝐴𝐴,
𝐵𝐷}

5

6

Base model

• Genotypes are
{𝐵𝐶
, 𝐴𝐴,
𝐵𝐷}

• Data is

3 individuals, 1 marker with 4 alleles



Single QTL regression

this gives

𝒚 = 𝑿𝒃+ 𝒁𝒂 + 𝒆

• Can be solved by least squares

7

Single QTL regression with polygenic 
based on pedigree

𝒚 = 𝑿𝒃 + 𝒁𝒂 +𝑾𝒖 + 𝒆

• 𝑉𝑎𝑟 𝒖 = 𝑨𝜎𝑢
2

• Can be solved by BLUP

8



9

Goddard, M. E. (2003). Animal breeding in the (post-) 
genomic era. Animal Science, 76(3), 353-365.

1. Although it is possible to use genetic markers linked to genes of 
economic importance, tests for the genes themselves will be much
more successful. 

2. Finding these genes, that have relatively small effects, is more difficult
than finding genes for a classical Mendellian trait but, as the genomic
tools become more powerful, it is becoming feasible and some
successes have already occurred

3. Tools such as genomic sequence, EST collections and comparative maps
make this approach feasible. Candidate genes can be selected based on 
functional data such as gene expression

4. in the future, with many QTL identified and inexpensive genotyping
combined with decreased generation intervals, large gains are possible.

• Wait, we still don’t know where genes are?

• Don’t we use GWAS to find them?
– GWAS is too complicated and can find just a few 

genes

– in the Notes you have long explanations

– the fact is, most causal genes for most traits for 
most species are just unknown

• Meuwissen et al. 2001 proposed to use 
marker effects directly

10



Basic principle of genomic selection

• every marker has an effect on the character
(even if it doesn't look like it !).

• Markers are not QTLs but

• when there are many markers, 

• for each animal, "the sum of the effects of the 
markers" is a good predictor of "the sum of 
the effects of the QTLs".

• you can be a good predictor without being
« real » (e.g. herd is a proxy for farmer)

11

Basic principle of genomic selection

• Suppose the true model is. 

• 𝑢 = ∑𝑧𝑖
𝑄 ො𝑎𝑖

𝑄, sum of effects in the QTL.
• We use an approximate model
• 𝑢 ≈ ∑𝑧𝑖

𝑀 ො𝑎𝑖
𝑀 , "sum of effects in the markers."

• It works (although nobody quite understands how) it
was a gamble☺ and it worked.

• Other models (linkage, haplotypes,...) can be thought
and used, but the model with markers is simple and 
analytically and computationally very grateful.

12



n marker regression

We estimate the effect of markers by regression

𝒚 = 𝑿𝒃+ 𝒁𝟏𝒂𝟏 +𝒁𝟐𝒂𝟐 +⋯𝒆

13
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2-locus multiallelic marker additive model

three individuals with genotypes 

{𝐵𝐶 𝐸𝐸
, 𝐴𝐴 𝐸𝐹
, 𝐵𝐷 𝐹𝐹}

But SNPs are biallelic
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2-locus biallelic marker additive model

three individuals with genotypes 

{𝐵𝐴 𝐸𝐸
, 𝐴𝐴 𝐸𝐹
, 𝐵𝐵 𝐹𝐹}

This looks 
redundant

if we reduce the effects to one effect per marker, we get

𝒁𝒂 =
1 ⋮ 2
2 ⋮ 1
0 ⋮ 0

𝑎𝐴
⋯
𝑎𝐸

but could be 𝒁𝒂 =
1 ⋮ 0
0 ⋮ 1
2 ⋮ 2

𝑎𝐵
⋯
𝑎𝐹

16

4-locus biallelic marker additive model

three individuals with genotypes 

{𝐵𝐴 𝐸𝐸 𝐻𝐺 𝑂𝑃
, 𝐴𝐴 𝐸𝐹 𝐺𝐺 𝑂𝑂
, 𝐵𝐵 𝐹𝐹 𝐻𝐻 𝑃𝑃}



20-loci

1  1  2  2  1  0  0  1  0  0  2  0  0  2  0  2  2  0  1  1

0  1  2  1  2  1  0  1  2  2  2  2  0  2  1  0  1  0  0  1

2  0  2  0  0  2  1  0  0  0  1  1  0  2  2  1  0  0  0  1
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50000 loci

=Za y

n

m



As many loci as you want

Fortunately we have matrix algebra
𝒚 = 𝑿𝒃+ 𝒁𝒂…

• 𝒁: as many columns as markers

• 𝒁: as many rows as individuals

19

Prediction equations

What’s all this about?

• I want to select the best dairy sheep rams, at 
their birth

• Predict breeding values based on a “reference 
population” with data and…

– Pre-genomic: pedigree

– Genomic: markers

20



In the reference population:

Get pedigree (𝑨)
Get phenotypes (𝒚)

Estimate Breeding Values𝒖 in 
the reference population from

𝒚 = 𝟏𝜇 + 𝒖𝒓 + 𝒆 , 

In the candidates: estimate Breeding
Values from relationships in 𝑨 and 

estimates in the reference:
ො𝑢𝑐 = 𝑨𝑐𝑟𝑨𝑟𝑟

−1ෝ𝒖𝒓
or (for progeny with no other data)

ො𝑢𝑐= ො𝑢𝑑/2 + ො𝑢𝑠/2

Idealized process of pedigree prediction

21

In the reference population:

Get markers’ genotypes (𝒁𝑟)
Get phenotypes (𝒚)

Estimate markers effects 𝒂 from
𝒚 = 𝟏𝜇 + 𝒁𝑟𝒂 + 𝒆 , 

In the candidates :

Get markers’ genotypes (𝒁𝑐)
Take estimatesෝ𝒂 from above
Estimate breeding values as 

ෝ𝒖𝑐 = 𝒁𝑐ෝ𝒂

Idealized process of genomic prediction

22



New animal

• I know from the reference population that SNP effects are 

estimated as 

• I genotype the animal and is 

• Its breeding value is 

23

From marker effects to breeding 
values

• Once we have estimates of marker effects, ෝ𝒂

• For any animal (young or old, with or without 

data) the GEBV is ෝ𝒖 = ∑𝑧𝑖 ෝ𝑎𝑖 = 𝒛ෝ𝒂

• Note that Z must always be encoded in the 

same way....

• (Why is this a GEBV)?



From marker effects to breeding 
values

• At one locus, a ram has a certain genotype, say GT, which is coded 
as 𝑧 (e.g. 𝑧 = 1)

• It is going to pass to its offspring, ½ of the times "T" and ½ of the 

times "G", so the offspring will receive on average 
𝑧

2

• If the 𝑎 effect of the marker is conserved in the progeny, then on 

average the offspring will have 
𝑧

2
𝑎 from the ram, so the ram's EPD 

will be 
𝑧

2
ො𝑎 and its EBV=2*EPD will be 𝑧 ො𝑎.

• That is, using the "additive" coding {0,1,2} (± a constant) of the 
genotypes leads naturally to obtain (G)EBVs. 

• This is not a property of other “relationships”, (e.g. kernel matrices 
with Euclidean distances)

• How do we estimate marker effects?

• By the time-honored technique of Regression

26



Least Squares estimate of marker effects

𝒁′𝒁ෝ𝒂 = 𝒁′𝒚
do i=1,nanim

read(1,’(a14,1x,60000i1)’) y(i),Z(i,:) 

enddo

ZpZ=matmul(transpose(Z),Z) 

Zpy=matmul(transpose(Z),y) 

ZpZ=ginv(ZpZ) 

a=matmul(ZpZ,Zy) 

end

27

Read Z and y

Build Z’Z and Z’y

Solve ො𝑎 = 𝑍′𝑍 −1𝑍′𝑦

Really?

28

Estimating SNP effects

• The simultaneous estimates of many markers by 
least squares are very poor, if we have more SNPs than
individuals

• Even if we had many individuals, there is a missing
piece of information:
– most SNPs should not have a large effect
– this is a « prior » information

• Can we do something?
• We should use the theory of « Best Prediction » or 

« Bayesian Regressions »



Bayesian regressions

𝒚 = 𝑿𝒃 + 𝒁𝒂 +⋯+ 𝒆
• Everyone assumes 𝑝(𝒆)~𝑵 𝟎,𝑹
• what do we assume for marker effects: 𝑝 𝒂
• Do we want very strong marker effects?

– No: 𝑝(𝒂)~𝑵 𝟎, 𝑰𝜎𝑎
2 SNP-BLUP == Ridge Regression 

== rrBLUP
– Yes: Bayesian Alphabet (Bayes A, B, C, R, S… Bayesian 

Lasso…)
• see Notes for all these methods
• usually they don’t improve predictions
• “effect of prior vanishes with more data”

29

• Effect sizes are misleading

• It is quite difficult to know if genes are there

• Markers around capture the effect of the gene 
anyway

30



why methods (don’t) matter

31

4651

INTRODUCTION

Andersson et al. (2012) discovered a major gene 

affecting locomotion in horses. A stop mutation in 

DMRT3 is strongly associated with ambling gaits, 

which are very comfortable gaits that some breeds nat-

urally have or are easily able to learn due to a genetic 

predisposition, in addition to the usual gaits (walk, trot, 

and canter). This mutation is caused by a single base 

change: the wild-type allele C is replaced by the mutant 

allele A. Promerová et al. (2014) found that the mu-

tated allele was also fixed in many breeds dedicated to 

trot races but missing in breeds selected for gallop rac-

es. A feature of trot races is that horses that break stride 

are disqualified, and so trotters have been selected on 

their ability to trot easily at high speed. The mutated 

allele was proven to have a positive effect on racing 

performances in Swedish standardbred trotters and is 

fixed in American standardbred trotters. Nevertheless, 

Should we use the single nucleotide polymorphism  

linked to DMRT3 in genomic evaluation of French trotter?1

S. Brard*†‡2 and A. Ricard§#
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ABSTRACT: An A/C mutation responsible for the 

ability to pace in horses was recently discovered in the 

DMRT3 gene. It has also been proven that allele C has 

a negative effect on trotters’ performances. However, 

in French trotters (FT), the frequency of allele A is 

only 77% due to an unexpected positive effect of allele 

C in late-career FT performances. Here we set out to 

ascertain whether the genotype at SNP BIEC2-620109 

(linked to DMRT3) should be used to compute EBV 

for FT. We used the genotypes of 630 horses, with 

41,711 SNP retained. The pedigree comprised 5,699 

horses. Qualification status (trotters need to complete 

a 2,000-m race within a limited time to begin their 

career) and earnings at different ages were precor-

rected for fixed effects and evaluated with a multitrait 

model. Estimated breeding values were computed 

with and without the genotype at SNP BIEC2-620109 

as a fixed effect in the model. The analyses were per-

formed using pedigree only via BLUP and using the 

genotypes via genomic BLUP (GBLUP). The geno-

type at SNP BIEC2-620109 was removed from the 

file of genotypes when already taken into account as 

a fix

e

d effect. Alternatively, 3 groups of 100 candi-

dates were used for validation. Validations were also 

performed on 50 random-clustered groups of 126 

candidates and compared against the results of the 3 

disjoint sets. For performances on which DMRT3 has 

a minor effect, the coefficients of correlation were not 

improved when the genotype at SNP BIEC2-620109 

was a fixed effect in the model (earnings at 3 and 4 yr). 

However, for traits proven strongly related to DMRT3, 

the accuracy of evaluation was improved, increasing 

+0.17 for earnings at 2 yr, +0.04 for earnings at 5 yr 

and older, and +0.09 for qualification status (with the 

GBLUP method). For all traits, the bias was reduced 

when the SNP linked to DMRT3 was a fixed effect in 

the model. This work finds a clear rationale for using 

the genotype at DMRT3 for this multitrait evaluation. 

Genomic selection seemed to achieve better results 

than classic selection.

Key words: DMRT3, genomic selection, horse, major gene, single nucleotide polymorphism, trotter
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Effect estimated by SNP-BLUP

32



Effects estimated by BayesCPi

33

Effect estimated by separate Single 
marker regressions

34



-log10(P-values) from the separate 
Single marker regressions 
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Finally we rediscover the true causal gene !!

Remember the SOCS2 gene?

• “In the absence of chip data, [including the major gene as a covariate], compared 
to pedigree-based BLUP, efficiently accounted for […] genotyping information on 
SOCS2 as accuracy was increased by 6.25%” 

• “Adding the SOCS2 SNP to ssGBLUP methods led to an average gain of 0.26%.” 

• In fact, SOCS2 strong effect is well captured by neighboring SNPs – even in 
ssGBLUP (which is like SNP-BLUP)

• fitting SOCS2 explicitly to “extract” its large effect does not improve anything

36
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SNP-BLUP

• After 10 years of experimentation, normality of marker 
effects is a good assumption

• This assumption of normality is called in different
contexts
– BLUP

– genomic BLUP

– SNP-BLUP 

– GBLUP

– ridge regression

– Random RegressionBLUP

• I will keep GBLUP for the use of the genomic relationship
matrix

• and SNP-BLUP for the direct estimation of SNP effects

38

Mixed model equations for SNP-BLUP

• Z’Z is not diagonal

• Prior information: variance of SNP effects

• usually assumed 𝑉𝑎𝑟 𝒂 = 𝑫 = 𝑰𝜎𝑎
2

1 1 1

1 1 1 1

ˆ

ˆ

− − −

− − − −

      
=    

  +    
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Z R X Z R Z D Z R ya

2 2

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

a a 

 
 
 = =
 
 
 
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SNP-BLUP is flexible 

• In theory
– Multiple trait models

– REML

– Threshold models

– Maternal effects, random regression, social 
effects…

• But:
– Little software around

– Multiple trait models will involve huge matrices

39

Coding

Coding: How do we fill Z based on genotypes

• This is a frequent source of confusion even for 
experienced people

• It is mixed with shifting the mean and variance of EBV

• The main message is that “it does not matter” if you 
are coherent through all the steps in your research
– (for SNP-BLUP and GBLUP; not for ssGBLUP)

• The notes (should) contain all the gory details

• most details are in Strandén & Christensen (GSE 2011)

40



Coding

• Reference allele -> sign of marker effects

• “centering” -> shift of the overall mean

• “scaling” -> shift of the implicit genetic 
variance

41

• Assume that we use SNP-BLUP equations

• Importantly, we keep 𝜎𝑎0
2 fixed across the 

different codings

42

let’s
check this

now
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Coding: reference allele
three individuals with genotypes 

{𝐵𝐴 𝐸𝐸
, 𝐴𝐴 𝐸𝐹
, 𝐵𝐵 𝐹𝐹} 𝒁𝒂 =

1 ⋮ 2
2 ⋮ 1
0 ⋮ 0

𝑎𝐴
⋯
𝑎𝐸

but could equally be

𝒁∗𝒂∗ =
1 ⋮ 0
0 ⋮ 1
2 ⋮ 2

𝑎𝐵
⋯
𝑎𝐹

This depends on the “reference allele”. It doesn’t matter which one we take

If the other allele is used as reference, then the numbers in 𝒁 are reversed. 

In fact 𝒁∗ = 2𝟏𝟏′ − 𝐙, as a result ෢𝒂∗ = −ෝ𝒂 (because of properties of 
[Mixed Models, Bayesian] regression models)

Hence, ෝ𝒖∗ = 𝒁∗෢𝒂∗ = 2𝟏𝟏′ − 𝒁 ෞ−𝒂 = 𝟏𝜇 + 𝒁ෝ𝒂 = 𝒁ෝ𝒂 = ෝ𝒖
with 𝜇 = 2∑ ො𝑎𝑖 = 0 (because of properties of [Mixed Models, Bayesian] 
regression models)

Coding: reference allele: New animal

• Do NOT make the mistake of coding in the opposite (or just a 
different) way new batches of animals

• In the reference population SNP effects were estimated as 

ෝ𝒂 =
0.1
−2

and the reference allele were {A,E}

• I genotype a new animal and is 𝐵𝐴 𝐹𝐹 ⟹ 𝒛 = 1 0

➢ Its breeding value is ොu = 1 0
0.1
−2

= 0.1

• if we (wrongly) take reference alleles {B,F} then 

➢ ොu = 1 2
0.1
−2

= 3.9…wrong !!

44
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Coding: « centering »
Genotype 101 Coding 012 Coding Centered

coding
aa −𝑎𝑖 0 −2𝑝𝑖𝑎𝑖

Aa 0 𝑎𝑖 (1 − 2𝑝𝑖)𝑎𝑖

AA 𝑎𝑖 2𝑎𝑖 2 − 2𝑝𝑖 𝑎𝑖

In all cases 𝒁∗ = 𝐙𝟎𝟏𝟐− 𝟐𝐩∗′where 𝐩∗ has all possibilities:
• 0 (« 012 Coding »)
• 0.5 (« 101 Coding ») , 
• observed allele frequencies (« Centered coding ») 
• base population allele frequencies (VanRaden 2008)
• or something else

By an argument similar to the previous one, estimates of ෝ𝒂 are 
identical across all possible « centerings », but EBVs are shifted by 
a constant which is a function of (𝐩∗(𝟏) − 𝐩∗(𝟐))′ෝ𝒂.

46

Coding: « centering »
Genotype 101 Coding 012 Coding Centered

coding
aa −𝑎𝑖 0 −2𝑝𝑖𝑎𝑖

Aa 0 𝑎𝑖 (1 − 2𝑝𝑖)𝑎𝑖

AA 𝑎𝑖 2𝑎𝑖 2 − 2𝑝𝑖 𝑎𝑖

To obtain correct results, *again*, one should be coherent and 
use the same coding𝒁∗ = 𝐙𝟎𝟏𝟐− 𝟐𝐩∗′ in all steps

For instance if you do SNP-BLUP with 10,000 animalsand e.g. use 
observed allele frequencies (« centered coding ») then you MUST 
use the same frequencies for 100 newly genotyped animals, and 
not computing frequencies again

Unfortunately many packages (including blupf90) « center » by 
default without the user knowing exactly what happens. Do Read 
the output on screen and the manual.
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Coding: « centering »

How do animal breeders work?

- run a SNP-BLUP periodically (say 3/year), 
- store reference alleles, 
- define and store 𝐩∗, 
- build𝒁∗ = 𝐙𝟎𝟏𝟐− 𝟐𝐩∗

- obtainෝ𝒂
- compute 𝒁∗ෝ𝒂 -> GEBVs

- In between SNP-BLUPs: do Indirect Predictions as 
- read reference alleles, 
- read 𝐩∗, 
- read ෝ𝒂
- build𝒁∗ = 𝐙𝟎𝟏𝟐− 𝟐𝐩∗

- compute𝒁∗ෝ𝒂 -> GBEVs

48

Coding: « centering »
How do animal breeders using blupf90 suite work (using defaults)?
- run a (ss)GBLUP periodically (say 3/year), 

- blupf90:
- reference alleles are handled by the user (file is read as 012), 
- compute observed 𝐩∗, 
- build𝒁∗ = 𝐙𝟎𝟏𝟐− 𝟐𝐩∗

- use the equivalent model ssGBLUP and obtain GEBVs ෝ𝒖
- postGSf90: 

- backsolve for marker effects ෝ𝒂 = 𝒇 𝒁∗, ෝ𝒖
- store ෝ𝒂
- store 𝐩∗

- In between SNP-BLUPs: do Indirect Predictions
- predf90

- reference alleles are handled by the user (file is read as 012), 
- read 𝐩∗, 
- read ෝ𝒂
- build𝒁∗ = 𝐙𝟎𝟏𝟐− 𝟐𝐩∗

- compute𝒁∗ෝ𝒂 -> GBEVs



Theoretical individual Reliabilities from 
SNP-BLUP

Reliability= 𝑟2(𝑢𝑖 , ො𝑢𝑖) = 1 −
𝑉𝑎𝑟 ෝ𝑢𝑖

𝑉𝑎𝑟 𝑢𝑖
= 1 −

𝑉𝑎𝑟 𝑢𝑖|𝒚

𝑉𝑎𝑟 𝑢𝑖
ො𝑢𝑖 = 𝒛𝑖ෝ𝒂𝒊 ; see details in the notes

• 𝑅𝑒𝑙𝑖 = 1−
𝑉𝑎𝑟 ෝ𝑢𝑖

𝑉𝑎𝑟 𝑢𝑖
= 1 −

𝑉𝑎𝑟 ෝ𝑢𝑖

𝒛𝑖𝒛𝑖
′𝜎𝑎0

2 = 1 −
𝒛𝑖𝑪

𝑎𝑎𝒛𝑖
′

𝒛𝑖𝒛𝑖
′𝜎𝑎

2

• 𝑪𝑎𝑎= chunk of the SNP part of the 𝑀𝑀𝐸−1 describing the 
Prediction Error Variance of marker estimates

• This says that an individual is accurately predicted if its 𝒛𝑖 carries 
more weight (1-2 rather than 0) in the markers that are better 
predicted

• which shows that animals need to be well connected to the 
reference population

49

Individual reliabilities from SNP-BLUP

– 𝑉𝑎𝑟 ො𝑢𝑖 can be obtained by sampling (Gibbs) or inversion

– ො𝑢𝑖 and 𝑉𝑎𝑟 ො𝑢𝑖 are invariant to coding but… 

– 𝒛𝑖𝒛𝑖
′𝜎𝑎

2 is not invariant to coding

• Reliabilities depend on coding !!
– Solution: define a contrast from some “base” population 

(Tier et al., 2018 WCGALP; Bermann et al., 2022 WCGALP) 
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Coding: « scaling »

Another method « centers and scales » , i.e. for each marker

𝒛∗ =
(𝒛𝟎𝟏𝟐−𝑚𝑒𝑎𝑛 𝒛𝟎𝟏𝟐 )

𝑠𝑑 𝒛𝟎𝟏𝟐
=

(𝒛𝟎𝟏𝟐−2𝑝
∗)

2𝑝∗(1 − 𝑝∗)
because 

𝑝∗= observed frequency = half mean of 𝒛∗ = 𝟏′𝒛∗/2𝑛
𝑠𝑑 𝒛𝟎𝟏𝟐 = 2𝑝∗(1 − 𝑝∗)

doing this is complicated because 
• for very small 𝑝∗ we obtain very large 𝒛∗

• the 𝑝∗ and 𝒛∗ changes from run to run and we have shifts of mean
• heritabilities implicitly change! (we may see this later)

• I generally DO NOT recommend using « centered and scaled »

SNP-BLUP parameters

52

let’s
check this

now
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SNP-BLUP parameters
How do we get the variance of SNP effects, 𝜎𝑎0

2 ?

• You can estimate it (Bayes C, REML)

• Few software available (GenSel, GS3, probably BGLR)

• (again) Strandén and Christensen (2011) proved that the estimate of 𝜎𝑎0
2

in a « SNP-REML » or « Bayes C » is invariant to « choice of reference
alleles » of Z and to « shifting » Z 
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SNP-BLUP parameters
How do we get the variance of SNP effects, 𝜎𝑎0

2 ?

• You can « guess » from the genetic variance 𝜎𝑢
2

• Assume that you estimated (with pedigree and records, by REML) a 
genetic variance 𝜎𝑢

2 . This variance refers to the pedigree base population 
(usually old one)

• How much genetic variation does each marker contribute? Assuming
Hardy-Weinberg

– SNP 1 contributes 2𝑝1𝑞1𝑎1
2 to the genetic variance

– SNP 2 contributes 2𝑝2𝑞2𝑎2
2 to the genetic variance

– …

– 𝜎𝑢
2 = 2 ∑ 𝑝𝑖𝑞𝑖𝑎𝑖

2 ≈ 2 ∑ 𝑝𝑖𝑞𝑖 × 𝑎𝑖
2 ≈ 2 ∑ 𝑝𝑖𝑞𝑖 𝜎𝑎0

2

– the last step assumes independent 𝑎𝑖 and 𝑝𝑖 and uses 𝑉𝑎𝑟 𝑥𝑦 = 𝑉𝑎𝑟 𝑥 𝑉𝑎𝑟(𝑦), 
Bohrnstedt, G. W., & Goldberger, A. S. (1969). JASA, 64(328), 1439-1442

– the assumptions works quite well
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SNP-BLUP parameters

• Reversing the expression 𝜎𝑢
2 ≈ 2 ∑𝑝𝑖𝑞𝑖 𝜎𝑎0

2 gives

❖ 𝜎𝑎0
2 ≈

𝜎𝑢
2

2 ∑ 𝑝𝑖𝑞𝑖

• So, from « old » estimates of genetic variance and allele frequencies we have a 
figure for 𝜎𝑎0

2

• Because 𝜎𝑢
2 is the variance in the base population, then 𝑝𝑖 should ideally be the 

allelic frequency base population – which are usually NOT genotyped. This is a 
continuous source of misunderstanding.

• Experience shows that the error made using observed (current) 𝑝𝑖 instead of base 
population 𝑝𝑖 is not too high
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SNP-BLUP parameters

It is tempting to use estimated SNP effects ො𝑎𝑖 to estimate the genetic 
variance as 2∑𝑝𝑖𝑞𝑖 ො𝑎𝑖

2, but it doesn’t work:

– 𝜎𝑢
2 ≪ 2∑𝑝𝑖𝑞𝑖 ො𝑎𝑖

2

Estimated SNP effects are shrunken towards the mean and the figure 

2∑ 𝑝𝑖𝑞𝑖 ො𝑎𝑖
2 is much smaller than 𝜎𝑢

2

If this worked, we wouldn’t need REML ☺. We’d just run BLUP and compute 
crossproducts of EBVs
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Not all p’s are equal !!
Note that we have used 𝑝 in two places

define and store 𝐩∗, 
build𝒁∗ = 𝐙𝟎𝟏𝟐− 𝟐𝐩∗

𝜎𝑎0
2 ≈

𝜎𝑢
2

2 ∑𝑝𝑖𝑞𝑖

Here we can 
use anything

in 𝐩∗ !!

Here we have to use 𝑝𝑖 as close 
as possible to allele frequencies
in the base population for which

𝜎𝑢
2 was estimated

The two 𝐩∗ and 
𝑝𝑖 don’t need to 

match !! 

• All this is not much used

• But it prepares the terrain for GBLUP and 
ssGBLUP
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GBLUP and G matrices

1

• GBLUP from SNP-BLUP

• GBLUP and genomic relationships

2



GBLUP from SNP-BLUP

• We have defined breeding values as sum of SNP effects: 𝒖 = 𝒁𝒂

• To refer breeding values to an average value of 0, we center using −2𝑝𝑖. We can 
use:
• allele frequencies 𝑝𝑖 in the pedigree base population: then breeding values refer to the 

pedigree base population and we use the same scale as “regular” BLUP with A

• (observed) allele frequencies 𝑝𝑖 in the genotyped population: then breeding values refer to 
the genotyped population and we use a different scale as “regular” BLUP with A (BV are 
shifted)

• this is another source of confusion 

3

Genotype 101 
Coding

012 
Coding

Centered
coding

aa −𝑎𝑖 0 −2𝑝𝑖𝑎𝑖

Aa 0 𝑎𝑖 (1 − 2𝑝𝑖)𝑎𝑖

AA 𝑎𝑖 2𝑎𝑖 2 − 2𝑝𝑖 𝑎𝑖

GBLUP from SNP-BLUP

• We have defined breeding values as sum of SNP effects:
𝒖 = 𝒁𝒂

• Because 𝑉𝑎𝑟 𝒂 = 𝑰𝜎𝑎
2, then 

𝑉𝑎𝑟 𝒖 = 𝒁 𝑰𝜎𝑎
2 𝒁′ = 𝒁𝒁′𝜎𝑎0

2

• But before, we found out that 𝜎𝑎
2 =

𝜎𝑢
2

2 σ 𝑝𝑖𝑞𝑖
• where 𝜎𝑢

2 and 𝑝𝑖 refer to the same population (usually the pedigree base population). 

• Substituting:

𝑉𝑎𝑟 𝒖 =
𝒁𝒁′

2 σ 𝑝𝑖𝑞𝑖
𝜎𝑢

2

• Finally, we factorize 𝜎𝑢
2

4



VanRaden’s “first G”

5

VanRaden’s “first G”
Shifted to refer to the 

average of a population 
with allele frequencies p’Genotypes {0,1,2}

Scaled to refer to the 
genetic variance of a 
population with allele 

frequencies p

6

They don’t need to be
the same allele

frequencies !! (but they
usually are)



VanRaden’s “first G”

Shifted to refer to the 
average of a population 

with allele frequencies p’Genotypes {0,1,2}

Scaled to refer to the 
genetic variance of a 
population with allele 

frequencies p

7

- If I want to use « old » 𝜎𝑢
2 from pedigree 

analyses then the denominator should be
« base population allele frequencies »

- If I use observed allele frequencies, then the 
denominator is « too small »

- In practice the difference is small

- If I want my EBVs to be in the same scale as 
pedigree analyses the numerator should 
contain « base population allele frequencies »

- If I use observed allele frequencies, then the 
EBVs will be shifted by negative constant (= to 
the genetic progress)

- The difference can be large for selected traits

8

GBLUP

𝒚 = 𝑿𝒃 + 𝑾𝒖 + 𝒆

• when we started showing this circa 2009 people made analogies 
with “A-BLUP”

• is there anyone still using “A-BLUP”?
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GBLUP

• We obtain animal, not SNP, solutions

• Immediate application to maternal effects model, random 
regression, competition effect models, multiple trait, etc.

• All genotyped individuals can be included, either with phenotype or 
not..

• Regular software (blupf90, asreml, wombat…) works

• Therefore, GREML and G-Gibbs are simple extensions.

Multiple trait GBLUP

𝑮0 is the matrix of genetic covariance across traits

usually 𝑹 = 𝑰⨂𝑹0, where 𝑹0 is residual covariances.

10



Reliabilities

Nominal reliabilities (NOT cross-validation reliabilities) can be obtained 
from the Mixed Model equations, as:

where 𝐶 𝑖𝑖 is the 𝑖, 𝑖 element of the inverse of the mixed model equations

Again, 

• 𝑅𝑒𝑙𝑖 is NOT invariant to the allele frequencies used in 𝐙 = 𝑴 − 𝟐𝒑∗′

• A solution is to define a contrast

11

12

GREML, G-Gibbs…
Use of G to estimate variance components (heritability)…
It can be done with blupf90+, gibbsf90+, AsReml, TM…

The result will refer to an ideal population with whatever allelic frequencies

we introduced in the denominator of 𝑮 =
𝒁′𝒁

2σ𝑝𝑖𝑞𝑖
. 

If you put observed allele frequencies then you refer the estimate of 
variance components to the « observed » population
If you put base allele frequencies you refer to the « old » population

In livestock with large and good data bases the difference is small
For a method to compare genetic variances across different G’s, A, etc etc
relationships, check Legarra, TPB 2016
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GBLUP == SNPBLUP

• Both give the same solutions 
• (up to the small detail of “tuning” and”blending” so that actually 𝑮∗∗ ⟸ 1 −∝ 𝑎 + 𝑏𝐆 +∝

𝑨22; this is taken care of in blupf90)

• We can jump from SNP-BLUP to GBLUP
ෝ𝒖 = 𝒁ෝ𝒂

• We can jump from GBLUP to SNP-BLUP

ෝ𝒂 =
1

2σ𝑝𝑖𝑞𝑖

𝒁′𝑮−𝟏 ො𝒖

More gory stuff

• « Blending » -> making G invertible & accounting for genetic variance 
unexplained by markers

• « Tuning » -> making G similar to A

14



Tuning

• Having “base population allele frequencies” to get (on one hand) 
2σ𝑝𝑖𝑞𝑖 and (on the other hand) 𝐙 = 𝑴 − 𝟐𝒑∗′ is “tout bénef” (all 
good)
• Your genetic variance is on the right scale

• Your EBVs are on the right scale

• In other words, 𝑮 and 𝑨22 are ”comparable”

• USDA/CDCB have, for dairy, DNA samples from 1970’s and can get 
base allele frequencies…

• most people don’t

• …dozens of papers on “compatibility”

15

Tuning

• When base allele frequencies are not available there are 3 manners of “making 
compatible” 𝑮 and 𝑨22

• Fix statistics of 𝑮 so that they resemble those of 𝑨22 -> “tuning” G: Vitezica et al., 
2011; Christensen et al., 2012
• fixes both mean and variances 
• difficult to extend to several base population

• Add an intercept to account for the difference -> Fernando et al., 2014 “J factors”
• fixes only means 
• can be extended to several base populations
• only works in ssGBLUP

• Define a “new” base population with 𝒑 = 𝟎. 𝟓 and “complete” pedigree 
relationships in 𝑨 : “metafounders” (Christensen 2012; Legarra et al., 2014)
• fixes both means and variances 
• can be extended to several base populations 

16



Tuning: Mean

• Fix statistics of 𝑮 so that they resemble those of 𝑨22

• First, referring BV “from 𝑮” to the same base as BVs “from 𝑨22”
• In fact we introduce a random mean which compensates for 𝒑∗ − 𝒑𝑏𝑎𝑠𝑒

• because the mean is random, we can just add it, as a constant, to 𝑮

• 𝑽𝒂𝒓 𝟏𝜇 + 𝒖 = 𝟏𝟏′𝑉𝑎𝑟 𝜇 + 𝑮 = 𝑎 + 𝑮 ⇒ 𝑮∗

• It can be worked out that 𝑎 = 𝑉𝑎𝑟 𝜇 = 𝑚𝑒𝑎𝑛 𝑨22 − 𝑚𝑒𝑎𝑛(𝐆)

• If 𝑮 is constructed with observed allele frequencies 𝑎 = 𝑚𝑒𝑎𝑛 𝑨22 ≈ 2 ത𝐹𝑝

for ത𝐹𝑝average pedigree inbreeding
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Tuning: Variance

• Fix statistics of 𝑮 so that they resemble those of 𝑨22

• Second, referring BV “from 𝑮” to the same genetic variance as BVs “from 
𝑨22”
• In fact we introduce a scaling factor 𝑏 which compensates for 2σ𝑝𝑖𝑞𝑖 − 2σ𝑝𝑖

∗𝑞𝑖
∗

which is the loss of heterozygosity from the base population to the one with 𝑝𝑖
∗

• using expectation theory 𝑏 =
1+𝐹𝑝−ഥ𝐀22

1+𝐹𝑔 −ഥ𝐆

• 𝑏𝑮 ⇒ 𝑮∗

• If 𝑮 is constructed with observed allele frequencies 𝑏 = 1 + ഥ𝐹𝑝 − ഥ𝐀22 ≈ 1 − ഥ𝐹𝑝 for 
ത𝐹𝑝 average pedigree inbreeding

• This corresponds exactly with the theory: the reduction in genetic variation is 1 − ഥ𝐹𝑝

18



Tuning: Mean and Variance

• 𝑮∗ ⟸ 𝑎 + 𝑏𝐆, 𝑎 and 𝑏 from previous slides

• Equivalently, you can get both numbers using two equations
𝑚𝑒𝑎𝑛 𝑑𝑖𝑎𝑔 𝑮 𝑏 + 𝑎 = 𝑚𝑒𝑎𝑛 𝑑𝑖𝑎𝑔 𝑨22

𝑎 + 𝑏ഥ𝑮 = 𝑨22

• This is the strategy of Christensen et al. 2012

• Concepts are the same, and in practice it results in the same results
as before

• This is the default in blupf90

19

Tuning: Mean and Variance

• Note

• All this works because adding a positive constant to a matrix keeps its 
“positive-definiteness”

• In practice, it means that if G is to be tuned, one needs to use in 

• allele frequencies that result in 𝑎 and 𝑏 being positive, otherwise the 
final 𝑮 may not be invertible

• The right choice is observed frequencies or « close to base » 
(estimates of) allele frequencies

20



Blending

• G is often no invertible (clones, « centering », more individuals than
markers)
• However G is semi-positive definite.

• We want invertible G to use in the MME

• A practical solution is to « blend » G with a positive definite matrix to yield a 
modified invertible 𝑮∗

• Blend with identity: 𝑮∗ = 1 − 𝛼 𝑮 + 𝛼𝑰 for 𝛼 a small number, e.g. 
0.01

• Blend with pedigree relationships: 𝑮∗ = 1 − 𝛼 𝑮 + 𝛼𝑨22

21

Blending

• This has an extra interpretation

• Blend with pedigree relationships: 𝑮∗ = 1 − 𝛼 𝑮 + 𝛼𝑨22

• In theory you can estimate 𝛼 by REML

• In practice people use defaults (0.05 in blupf90) or do some cross-
validation to find « the best 𝛼 » (I think this is a bad idea)

22

Fraction of genetic
variation explained by 

markers

Fraction of genetic
variation explained by 

pedigree



Blending & Tuning: yet one slide

• We should mix only things that can be properly compared

• The right manner to work is

1. Tuning: I adjust 𝑮 =
𝒁𝒁′

2σ𝑝𝑖𝑞𝑖
to be similar to 𝑨22 : 𝑮∗ ⟸ 𝑎 + 𝑏𝐆

2. Blending: I « blend » with 𝑨22 to make 𝑮∗ invertible: 𝑮∗∗ ⟸ 1 −∝ 𝑮∗ +∝
𝑨22

• Blupf90 did in the opposite order until ~2021 but this has been fixed
now
• There are no major consequences (but it’s better to have everything right, 

you never know)
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Single Metafounder

• Define a “new” base population with 𝒑 = 𝟎. 𝟓 and “complete” 
pedigree relationships in 𝑨 : “metafounders” (Christensen 2012; 
Legarra et al., 2014)
• fixes both means and variances 

• can be extended to several base populations 

24



Single Metafounder

• Christensen (2012) suggests fitting A to G instead of the opposite
• A depends on pedigree completion

• Pedigrees are never complete !! 

• Ancestral relationships that can be seen in G go undetected in A

• Christensen analitically integrates out 𝑝𝑖 (=allele frequencies) in a 
model that

• uses as reference in ALL loci and builds

• uses a relationship matrix 𝐀𝛾 with related founders

• The parameter 𝛾 is the relationship across founders such that we see
“current” genomic relationships

25

Single Metafounder

Classically we assume for founders

𝑨 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

• Christensen changes this into:

We proved that the same can be achieved definig an ancestor (a metafounder) 

that represents the base population and its average relationship (as referred to a 
population where all markers had 𝑝 = 0.5) is 𝛾

26



A SINGLE 
METAFOUNDER

Across founders within the population

RELATIONSHIPS

It has self-relationship A11= 𝛾 so F = 𝛾-1.
If 𝛾 = 0 then we have regular relationships.
All A and A-1 methods work.

Pedigree
1 0 0 
2 1 1 

3 1 1 
4 1 1 
5 1 1 
6 1 1 
7 2 3 

8 3 4 
9 5 6 
10 7 8 
11 4 6 
12 7 4 

13 10 11 
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INTRODUCTION      METHODS       RESULTS      FINAL COMMENTS

Metafounder relationships

Single Metafounder

• Interestingly , if we knew base population frequencies 𝑝𝑖
𝛾 = σ 2𝑝𝑖 − 0.5 2

• which is the same as 𝑮05 with fractional genotypes

• For a single base population, the estimation of 𝛾 can be done by
Maximum Likelihood comparing 𝑮05 and 𝑨22

• The “reference” genetic variance has changed – we need to scale

genetic variances by

• The method can be extended to more populations – see later.
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But what are genomic 
(additive) relationships?

29

Interpretation of G

Kinship

It obviously comes from Latin “parentes”
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So what is kinship?

• Socially it has a “pedigree” interpretation
• e.g. ”all royal families are related” 

• However pedigrees “go back forever”

• We need a more rigorous definition

31

True relationships

• Two individuals are genetically identical (for a trait) if they carry the 
same genotype at the causal QTLs or genes
• This is a biological fact

• The genetics of one locus for two diploid individuals can be described 
using Gillois’ identity coefficients

32



Relationships

• Relationships were conceived as standardized covariances (Fisher, Wright)  
• 𝐶𝑜𝑣 𝑢𝑖, 𝑢𝑗 = 𝑅𝑖𝑗𝜎𝑢

2

• 𝑅𝑖𝑗 “some” relationship
• 𝜎𝑢

2 genetic variance

• Genetic relationships are due to shared (Identical By State) alleles at causal 
genes

• if I share the blood group 00 with somebody I am “like” his twin
• These genes are unknown (and many will likely remain so)
• Use proxies

• Pedigree relationships
• Marker relationships

33

Garcia-Cortes Gen Sel Evol 2015
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Pedigree relationships: A

• Systematic “tabular” rules to compute any 𝐴𝑖𝑗 (Emik & Terrill 1947)

• The whole array of 𝐴𝑖𝑗 is disposed in a matrix 𝑨.

• 𝑨−1 is very sparse and easy to create and manipulate (Henderson 
1976)
• Extraordinary development of whole-pedigree methods in livestock genetics

• E.g. computing inbreeding for 15 generations including 106 sheep takes
minutes
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Early use of markers used them to infer A

• In conservation genetics, molecular markers have often been used to 
estimate pedigree relationships

• Gather markers, then reconstruct pedigrees, then construct A
• Either estimates of Axy , or estimates of « the most likely relation » (son-

daughter, cousins, whatever)

• Li and Horvitz 1953, Cockerham 1969, Ritland 1996, Caballero & Toro 2002, 
and many others

• With abundant marker data we can do better than this

36
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Realized relationships

• Identical By Descent Relationships based on pedigree are average relationships
which assume infinite loci.

• « Real » IBD relationships 𝑅 are a bit different due to finite genome size (Hill and 
Weir, 2010)

• Therefore A is the expectation of realized relationhips 𝑅

• A is false, and is « very » false for small values of A

• SNPs more informative than A.
• Two full sibs might have a correlation of 0.4 or 0.6

• You need many markers to get these « fine relationships »

Comparison of expected and observed 

variances – relationship/sharing 

4401 full sib pairs 

400-800 markers 

Expected 

Mean 0.5 

SD 0.039 

 

Observed 

Mean 0.0498 

SD 0.036 

Range 0.37 - 0.63 

 

Source: Visscher et al. 
  

Slide from WG Hill

0.498
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Interbull annual meeting 2007 (39) VanRaden
2007

Traditional Pedigree

Sire of Sire

Sire

Dam of Sire

Animal

Sire of Dam

Dam

Dam of Dam

Interbull annual meeting 2007 (40) VanRaden
2007

Genomic Pedigree



Interbull annual meeting 2007 (41) VanRaden
2007

Haplotype Pedigree
atagatcgatcg

ctgtagcttagg

agggcgcgcagt

cgatctagatcg

cggtagatcagt

agagatcgatct

atggcgcgaacg

ctatcgctcagg

ctgtagcgatcg

agatctagatcg

agagatcgcagt

atgtcgctcacg

ctgtctagatcg

atgtcgcgcagt

Interbull annual meeting 2007 (42) VanRaden
2007

Genotype Pedigree
Count number of second allele

121101011110

111211120200

101121101111

122221121111

101101111102

011111012011

121120011010

0 = homozygous for first allele (alphabetically)

1 = heterozygous

2 = homozygous for second allele (alphabetically)



Covariance of gene content (seen as a trait)

• Consider gene content coding {𝐴𝐴, 𝐴𝑎, 𝑎𝑎} as 
𝑚 = {01,2}

• Cockerham, 1969:
• For two individuals, the covariance of their gene contents is 

𝐶𝑜𝑣 𝑚𝑖 , 𝑚𝑗 = 𝑅𝑖𝑗2𝑝𝑞

• In other words, two related individuals will show similar genotypes at the markers

• Backsolve ෠𝑅𝑖𝑗 = 𝐶𝑜𝑣 𝑚𝑖, 𝑚𝑗 /2𝑝𝑞. 

• If we have centered z = 𝑚 − 2𝑝 then ෠𝑅𝑖𝑗 =
𝑧𝑖𝑧𝑗

2𝑝𝑞

• Extended to many loci 
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VanRaden’s “first G”

Genotypes {0,1,2}

If base allelic frequencies 
are used, G is an unbiased 
an efficient estimator of IBD 
realized relationships

44

If observed allelic 
frequencies are used, G is a 
biased (but accurate !!) 
estimator of IBD realized 
relationships
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Some properties of G

• If p are computed from the sample

• In HWE & Linkage Equilibrium
• Average of Diag(G) = 1

• Average (G) =0

• With average inbreeding F 
• Average of Diag(G) = 1+F

AA Aa aa

freq q2 + pqF 2pq(1-F) p2 + pqF
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Some intriguing properties of G

• If p are computed from the data
• This implies that E(Breeding Values)=0

• Positive and negative inbreeding
• Some individuals are more heterozygous than the average of 

the population (OK, no biological problem)

• Positive and negative genomic relationships
• This implies that individuals i and j are more distinct than an 

average pair of individuals in the data

• Fixing negative estimates of relationships to 0 is wrong praxis
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• 9 real French bulls among 1827 genotyped, ~50000 
SNPs

• Very complex pedigree, simplified graph:

Real results (AMASGEN)

1 2

2 3 4 5 7 8 9
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Pedigree-based relationship

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 1.00 0.51 0.57 0.51 0.26 0.15 0.15 0.14 0.14

[2,] 0.51 1.01 0.30 0.33 0.17 0.17 0.12 0.11 0.11

[3,] 0.57 0.30 1.07 0.30 0.20 0.12 0.18 0.11 0.12

[4,] 0.51 0.33 0.30 1.01 0.17 0.18 0.11 0.11 0.11

[5,] 0.26 0.17 0.20 0.17 1.00 0.56 0.51 0.52 0.53

[6,] 0.15 0.17 0.12 0.18 0.56 1.06 0.31 0.32 0.32

[7,] 0.15 0.12 0.18 0.11 0.51 0.31 1.01 0.30 0.29

[8,] 0.14 0.11 0.11 0.11 0.52 0.32 0.30 1.02 0.30

[9,] 0.14 0.11 0.12 0.11 0.53 0.32 0.29 0.30 1.03

Cousin relationships ~0.125

Little inbreeding



[,1]  [,2]  [,3]  [,4] [,5]  [,6]  [,7]  [,8] [,9]

[1,] 0.82  0.40  0.43  0.38 0.12  0.04  0.04  0.01 0.10

[2,] 0.40  0.91  0.18  0.24 0.02  0.05 -0.04 -0.04 0.04

[3,] 0.43  0.18  0.88  0.19 0.07  0.00  0.07 -0.02 0.05

[4,] 0.38  0.24  0.19  0.86 0.02 -0.01 -0.02  0.01 0.03

[5,] 0.12  0.02  0.07  0.02 0.73  0.34  0.30  0.31 0.35

[6,] 0.04  0.05  0.00 -0.01 0.34  0.85  0.15  0.14 0.18

[7,] 0.04 -0.04  0.07 -0.02 0.30  0.15  0.80  0.14 0.17

[8,] 0.01 -0.04 -0.02  0.01 0.31  0.14  0.14  0.80 0.17

[9,] 0.10  0.04  0.05  0.03 0.35  0.18  0.17  0.17 0.85
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“first G” genomic relationship

Relationships among cousins are ~0

Less than 1 in the diagonal Negative coefficients

( )/ 2 1i i

all SNPs

p p= -G ZZ

IBS relationships at the markers

• 𝑮𝐼𝐵𝑆 is a genomic relationship matrix based on Identity By State at 
the markers

• The terms in 𝐆𝐼𝐵𝑆 are usually described in terms of identities or 
countings:

,

• where 𝐼𝑘𝑙 measures the identity across all 4 combinations of alleles
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IBS and IBD

• IBS at markers (𝐺𝐼𝐵𝑆𝑖𝑗) is a frequently used estimator of realized IBD (𝑅𝑖𝑗)

• Individuals can be identical by IBD or by IBS at the founders:

𝐺𝐼𝐵𝑆𝑖𝑗 = 𝑅𝑖𝑗 + 2 − 𝑅𝑖𝑗 𝑝2 + 𝑞2

• Thus, IBS is biased upwards with respect to IBD. 

• This has originated a bunch of estimators, with a common problem: where 
to get p from.

• For a detailed account, see Toro et al (2011 Gen Sel Evol)
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GBLUP == GBLUP with IBS

• 𝑮𝑰𝑩𝑺 =
1

2
𝑮𝟎.𝟓 + 𝟏𝟏′ where 𝑮𝟎.𝟓 is built pretending that 𝑝 = 0.5

• The implicit denominator in 𝑮𝑰𝑩𝑺 is “too big” 

• Note that e.g.  2 1
1 2

0.5 =
1 0.5

0.5 1
1 , 

• in other words, what matter is the product 𝑮𝟎.𝟓 σ𝑢”0.5”
2

• we can scale the genetic variance appropriately as (𝑛 = number of 
markers)

σ𝑢”0.5”
2 ⟸ σ𝑢

2
𝑛

2σ𝑝𝑖𝑞𝑖

• Then we get the same GEBVs as with « normal G »
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OK, so what allele frequencies should I use?

• If you “know” and want to use the variance components:
• Try to use base allele frequencies

• If not, use a “tuned” G or metafounders theory

• If you “don’t know” variance components and you estimate them
• If using REML or Bayesian methods you get the variance components just right

• However, inferring variance components and ℎ2 gets tricky, 

• because they refer to the population with the allele frequencies in the 
denominator of G

• See Legarra 2016, Theor Pop Biol
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OK, so what should I use?

• For SSGBLUP it is essential to have “compatible” genomic and pedigree 
relationships

• Populations evolve with time, but genotypes came years after
pedigree started

• Genomic Predictions are shifted from Pedigree Predictions

• Compatibility is achieved if both relationships refer to the same
genetic base:
• Same average BV at the base

• Same genetic variance at the base

• Will be presented at SSGBLUP



GWAS

• brief history of QTL detection

• GWAS from single marker regression or GWAS from GBLUP

• what GWAS signals mean
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Brief history

• Geneticists always want to find genes, but it is a very difficult task

• 1989: Lander & Botstein propose a systematic scan using linkage and 
microsatellites

• These methods were based on following putative different alleles
using microsatellites -> within-family linkage

• explossion of « QTL » studies in human, plant and livestock
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Methods: from (ss)GBLUP

• The use of high-density SNP chips shifted the methods towards
marker-based regressions

• the hope is that the marker close(st) to the QTL is in linkage 
disequilibrium
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Uruguayan Holstein

DGAT1

1000 Lacaune sheep
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Methods: Single-marker regression

• Single-marker regression (« one marker at a time ») with accounting
for relationships

𝒚 = 𝑿𝒃 + 𝒛𝛽 + 𝑾𝒖 + 𝒆
𝑉𝑎𝑟 𝒖 = 𝑮𝜎𝑢

2

• 𝛽 effect of the marker; 𝒛 incidence vector as we have seen

• test: 
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Methods: from (ss)GBLUP



Methods: from (ss)GBLUP

• It can be proved (see lengthy details in the Notes) that if 

• and we
1. backsolve SNP effects using ෝ𝒂|ෝ𝒖 =

1

2𝛴𝑝𝑖𝑞𝑖
𝒁′𝑮−1 ෝ𝒖

2. compute s. e. ො𝑎

• Then

• This makes our life easier: we just need to run a GBLUP and backsolve
• implemented on blupf90+ , postGSf90

• The same can be obtained directly using SNP-BLUP
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Details on GWAS

• the purpose of GWAS is (or should be) to inform on the etiology of 
diseases or causal mechanisms of traits

• It is better to find 2 very good hits than 50 small ones !!

• Choice of an indicator
• I strongly recommend using p-values

• If you want to detect a gene you need to be sure. 
• p-values are there to control how many mistakes (false positives) you will made 
• if you don’t like thresholds, use FDR

• effect sizes are VERY misleading: 
• more polymorphic markers have larger effects
• small studies will have large effect just by chance
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Details on GWAS: QQ plots

• If the model is correct, Qqplots should align properly. if not, they may not 

• If you can’t fix the model, then you can use ”genomic control” (Devlin and Roeder, 
1999, 2004) which is a hack that basically scales the p-values
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1

Plan

• Biological vs. statistical effects
• Why statistical effects matter

• New models accounting for non-additive effects
• GBLUP, GDBLUP, and its extensions
• Inbreeding depression

• Is this any useful?
• Extra accuracy in predictions
• Variance components
• Mate allocation

• Conclusions
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Biological vs. statistical effects

3

Biological effects

Example of epistasis: dominance-by-dominance 
two-locus epistasis 

Genotypes 
at locus 1

Genotypes at locus 2

BB Bb bb

AA 🐴 🐴 🐴

Aa 🐴 🐴 🐴

aa 🐴 🐴 🐴

4

The terms ‘dominance/epistasis’ describe apparent distortions of
mendelian segregation ratios that were due to one gene masking the
effects of another

Example of dominance



Biological effects

• Unfortunately we don’t know all gene actions & pathways
• For many purposes, we need to make educated guesses
• Guesses include: 

• predicting phenotype of progeny (Genetic evaluation)
• Is this genome region interesting? (GWAS)
• What happened in this genome region? (selection footprints)

• For these practical purposes, we use statistical models

5

Statistical effects

• Fisher’s described dominance and epistasis as deviations from 
additivity in a linear statistical model
• Statistical effects (dominance & epistasis) are a population phenomenon
• Genetic model

Additive (or breeding) value Dominance deviation

Phenotype
Epistatic deviation

𝑃 = 𝐴 + 𝐷 + 𝐼 + 𝐸

6



Statistical effects

• Dominance deviations are essentially residuals

• Dominance deviations are the difference for a genotype (in red) between the 
genotypic value and its prediction from 2 alleles. 

7

Fisher (1918) explained that the 
substitution effect of one allele 
is the regression of phenotype 
on genotype
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Statistical effects

• Why is 𝛼 relevant & how does it take care 
of non-additive gene action?

• The statistical definition doesn’t care how 𝛼
“works”

• By definition, 𝛼 potentially includes biological 
dominance and epistasis

• Because individuals pass on gametes (and not 
complete genotypes) to offspring: 

• 𝛼 describes how much you gain by selecting an 
allele (in either natural or artificial selection)

26

G
en

ot
yp

ic
 V

al
ue

N = # Copies of Allele 20 1 2

G11

G21

G22

µ + 2!1

µ + !1 + !2

µ + 2!2

"12

"11

"22

Slope = ! = !2 - !1 

1

!

11 21 22Genotypes

This decomposition is a regression of G

Walsh B., 2013

8



Example pairwise epistasis

9
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Which is the relationship among the ‘functional’ and the breeding effects ?

BB Bb bb
AA y1=m+ aA + aB + i y4=m + aA + dB+ j y7 = m + aA – aB – i
Aa y2=m + dA +aB+ l y5=m + dA + dB+ k y8= m + dA – aB – l
aa y3=m – aA + aB – i y6= m – aA +  dB – j y9 =m – aA – aB + i
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Toro, 2017

𝛼! =
𝑎"

+ 1 − 2𝑝! 𝑑"
+ 𝑝# − 𝑞# 𝑖
+(2𝑝#𝑞#)𝑗

+ 1 − 2𝑝! 𝑝# − 𝑞# 𝑙
+2𝑝#𝑞# 1 − 2𝑝! 𝑘

Biological

Additive
Dominant
Additive x additive
Additive x dominant
Dominant x additive
Dominant x dominant

Statistical & biological effects

Being a “Big” horse is determined by 
biological dominance-by-dominance 
two-locus epistasis

Genotypes 
at locus 1

Genotypes at locus 2

BB Bb bb

AA 🐴 🐴 🐴

Aa 🐴 🐴 🐴

aa 🐴 🐴 🐴

Genotypes at 
locus 1

Genotypes at locus 2

BB Bb bb

AA 𝜇 𝜇 𝜇
Aa 𝜇 𝜇 + 𝑑𝑑 +, 𝜇
aa 𝜇 𝜇 𝜇

10

𝛼! = 2𝑝#𝑞# 1 − 2𝑝! (🐴-🐴)



Statistical & biological effects

• In the classical 𝑉" + 𝑉$ + 𝑉% partition, 
• Additive biological gene actions contribute only to 𝑉-, while 
• Both biological dominant and biological epistatic gene actions contribute to 

multiple variance components

• There is no correspondence between the kind of biological gene action and 
the variance component

(Fig 2a). The classical VA + VD + VI partition obviously does not possess this property, despite
it being an orthogonal partition (uncorrelated variance components) and having suggestive
names, i.e., additive genetic variance for VA, dominance genetic variance for VD, and epistatic
genetic variance for VI (Fig 2b). Notably, except for additive gene actions, which contribute
only to VA, both dominant and epistatic gene actions contribute to multiple variance compo-
nents (Figs 1 and 2b). The specific amount of genetic variation each type of gene action con-
tributes depends on the genetic architecture or may even be unmeasurable because different
types of gene actions may not be independent from each other. Nonetheless, it is clear that this
classical VA + VD + VI partition is a poor indicator of the underlying genetic architecture;

Fig 2. Relationship between gene actions and variance components. (a) Ideally, the variance generated by each
type of gene actions is mutually exclusive therefore variance components provide a measure of relative importance of
gene actions. (b) In the classical VA + VD + VI variance partition, additive genetic variance VA has contribution from all of
additive, dominant, and epistatic gene actions in most circumstances. With the alternative parameterizations, all types of
gene actions contribute to V 0

D
(c) and V 00

AA
(d) in most circumstances.

doi:10.1371/journal.pgen.1006421.g002

Variance Partitioning for Quantitative Traits

PLOS Genetics | DOI:10.1371/journal.pgen.1006421 November 3, 2016 4 / 15

Huang & Mackay, 2016
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What to do with all these math?

• In absence of knowing true action genes, this gives tools
• 𝛼 (statistical additive effect) says 

• how much do you improve if you select me
• Big 𝛼 = interesting locus

• 𝑑&∗ (statistical dominance effect) says
• For whatever reason, the heterozygote here is interesting
• Perhaps we can mate these two animals here and maximize it

• 𝛼𝛼 &( (statistical epistatic effect) says
• Somehow the fates of these two loci are bound together

12



What to do with all these math?

• 𝛼 (statistical additive effect) is the ONLY component involved in selection, 
because only individual alleles are transmitted from parents to 
descendants
• 𝑑&∗ (statistical dominance effect) and 𝛼𝛼 &( (statistical epistatic effect) also contribute 

to the total genetic value and to the expected phenotype of the 
crosses/hybrid, but not to selection, because the allele/gene 
combinations are not transmitted to the descendants

13

New models accounting for non-additive effects
GBLUP, GDBLUP, and its extensions
Inbreeding depression

14



“Mixed model” based prediction

• We use quantitative genetic theory to build relationship matrices 
• Then we fit them into mixed model

15

Genomic prediction with non-additive effects

1. We need to construct a linear model based on SNP genotypes
2. Write orthogonal incidence matrices for additive, dominant, additive x additive, 

additive x dominant… SNP effects
1. This yields SNP-BLUP or RR-BLUP kind of models but they are cumbersome for epistasis 

3. Equivalently, define relationship matrices
1. High order matrices are products of low order matrices 
2. The whole theory stems from 

1. VanRaden 2008 (A), 
2. Vitezica et al., 2013 (A+D) 
3. Vitezica et al., 2017 (A+D+AxA + any epistatic interactions)
4. González-Diéguez et al. (2021) (A+D+AxA + any epistatic interactions in hybrid crops)

4. Use a Mixed Model with relationship matrices
This is doable if all individuals are genotyped

• There is no Single Step GBLUP for dominance or epistasis

16



Genomic prediction with non-additive effects

• Recipe:
1. Define incidence matrices Z for 𝛼 and W for 𝑑∗ , e.g.

𝑍"# = %
2 − 2𝑝
1 − 2𝑝
0 − 2𝑝

and 𝑊"# = ,
−2𝑞$
2𝑝𝑞
−2𝑝$

for genotypes %
𝐴𝐴
𝐴𝑎
𝑎𝑎

2. Relationship matrices are:

• 𝑮𝑨 =
𝒁𝒁!

,∑1"2"
for individual additive effects (GEBVs)

• 𝑫 = 𝑮3 =
𝑾𝑾!

5∑ 1"2" #
for dominance deviations

17

Use in Mixed Model: GD-BLUP 

Genomic prediction with non-additive effects

• Recipe:
2. Relationship matrices are:

• 𝑮𝑨 = 𝒁𝒁"/2∑𝑝#𝑞# for individual additive effects (GEBVs)
• 𝑫 = 𝑮$ = 𝑾𝑾"/4∑ 𝑝#𝑞# % for dominance deviations

• 𝑮𝑨𝑨 = 𝑮𝑨⊙𝑮𝑨/mean(diag 𝑮𝑨⊙𝑮𝑨 ) for additive x additive
• 𝑮𝑨𝑫 = 𝑮𝑨⊙𝑮𝑫/mean(diag 𝑮𝑨⊙𝑮𝑫 ) for additive x dominant
• …
• … e.g. 𝑮𝑨𝑨𝑫 = 𝑮𝑨⊙𝑮𝑨⊙𝑮𝑫/mean(diag 𝑮𝑨⊙𝑮𝑨⊙𝑮𝑫 )

18



Genomic prediction with non-additive effects

• Recipe:
2. Relationship matrices are:

• 𝑮𝑨𝑫 = 𝑮𝑨⊙𝑮𝑫/mean(diag 𝑮𝑨⊙𝑮𝑫 ) for additive x dominant

19

𝑮-3 =
𝑮-⊙𝑮3

𝑡𝑟 𝑮-⊙𝑮3 /𝑛

A standardization based on the trace of the relationship matrices is needed.

Genomic additive 
relationship matrix

Genomic dominant
relationship matrix

Use in Mixed Model: GDI-BLUP 

Genomic prediction with non-additive effects

• Recipe:
• Then use these matrices in (G)(D)(I)BLUP / REML

𝒚 = 𝑿𝒃 + 𝒈% + 𝒈& + 𝒈%% + 𝒈%& + 𝒈&& +⋯ +𝒑𝒆 …+ 𝒆

𝑉𝑎𝑟 𝒈% = 𝑮%𝜎%$; 𝑉𝑎𝑟 𝒈& = 𝑫𝜎&$; 𝑉𝑎𝑟 𝒈%% = 𝑮%%𝜎%%$

• 𝒑𝒆 is the permanent environmental effect 
• captures remaining genetic effects (e.g. AxAxAxA…) in repeated records (such as 

analysis of milk yield)
• The matrices of higher orders 𝑮!!, 𝑮!!!, 𝑮!!!! are increasingly less 

informative and at some point they’re not worth fitting.
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Genomic prediction with non-additive effects 
– crosses in hybrid crops
• In hybrid crops like maize, the cultivated plant is usually an F1 hybrid 

which is the cross of two homozygote lines, each from a different 
population (“heterotic group”)
• Parental homozygote lines are homozygous at all loci 
• This generates a particular partition of additive, dominance and 

epistasis across and within heterotic groups

21
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Abstract

We revisited, in a genomic context, the theory of hybrid genetic evaluation models of hybrid crosses of pure lines, as the current practice is
largely based on infinitesimal model assumptions. Expressions for covariances between hybrids due to additive substitution effects and
dominance and epistatic deviations were analytically derived. Using dense markers in a GBLUP analysis, it is possible to split specific com-
bining ability into dominance and across-groups epistatic deviations, and to split general combining ability (GCA) into within-line additive
effects and within-line additive by additive (and higher order) epistatic deviations. We analyzed a publicly available maize data set of Dent
! Flint hybrids using our new model (called GCA-model) up to additive by additive epistasis. To model higher order interactions within
GCAs, we also fitted “residual genetic” line effects. Our new GCA-model was compared with another genomic model which assumes
a uniquely defined effect of genes across origins. Most variation in hybrids is accounted by GCA. Variances due to dominance and
epistasis have similar magnitudes. Models based on defining effects either differently or identically across heterotic groups resulted in simi-
lar predictive abilities for hybrids. The currently used model inflates the estimated additive genetic variance. This is not important for hybrid
predictions but has consequences for the breeding scheme—e.g. overestimation of the genetic gain within heterotic group. Therefore,
we recommend using GCA-model, which is appropriate for genomic prediction and variance component estimation in hybrid crops using
genomic data, and whose results can be practically interpreted and used for breeding purposes.

Keywords: dominance; epistasis; genetic variance; heterosis; genomic models; genomic prediction; GenPred; shared data resources

Introduction
Many plant species are presently cultivated in the form of single-
cross hybrid varieties, especially when a strong heterosis effect is ob-
served for yield-related traits (e.g. maize, sunflower, sugarbeet, etc.).
These hybrids are generally obtained by crossing inbred lines origi-
nated from two complementary populations, called heterotic
groups. Breeders’ objective is therefore to identify (i) the best single-
cross hybrids among all possible crosses between existing inbred
lines from the two groups and (ii) create new lines within heterotic
group, from crosses of existing lines, which will improve the perfor-
mance of candidate hybrids at a next generation. Models for genetic
improvement of hybrid crops (e.g. maize) across two heterotic groups
are typically based on the notions of general combining ability (GCA)
and specific combining ability (SCA) (Griffing 1962; Stuber and
Cockerham 1966; Bernardo 2010). The genotypic value Gij of the
cross of lines i and j, as a function of uniting gametes from i and j,
can be written as follows:

Gij ¼ lþ GCAi þ GCAj þ SCAij (1)

where GCA of line i is the average effect of a gamete
when ideally crossed to all gametes from the reciprocal

heterotic group. SCA of the combination of line i and j is the
remainder.

It is important to notice, for readers not familiar with hybrid
crops, that in many hybrid crops such as maize, parents are pure
homozygous individuals (inbred lines). Thus, all gametes pro-
duced by i (and j) are identical, and all F1 descendants of i and j
are identical. This is different from crosses of other species such
as animals (pigs for instance) where full-sibs show genetic varia-
tion. As a result, GCA contains single locus (additive, in the statis-
tical sense) and multiple loci (additive by additive and higher
additive interactions) effects. This is because the whole genotype
(gamete) of the pure line is transmitted to the F1 descendants,
including any possible epistatic combination, and regardless of
whether loci in interaction are in the same or in different chro-
mosomes. In this, GCA is different from the concept of Breeding
Value in Animal Genetics, which captures the part of functional
epistatic effects that is contained in the additive substitution
effects, but it does not contain epistatic deviations as they are
broken down by meiosis.

Informally, the GCAs within group 1 (group 2) are the sum
of additive, additive x additive, additive x additive x additive. . .

deviations within group 1 (group 2), whereas SCA are the sum of
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Abstract

We revisited, in a genomic context, the theory of hybrid genetic evaluation models of hybrid crosses of pure lines, as the current practice is
largely based on infinitesimal model assumptions. Expressions for covariances between hybrids due to additive substitution effects and
dominance and epistatic deviations were analytically derived. Using dense markers in a GBLUP analysis, it is possible to split specific com-
bining ability into dominance and across-groups epistatic deviations, and to split general combining ability (GCA) into within-line additive
effects and within-line additive by additive (and higher order) epistatic deviations. We analyzed a publicly available maize data set of Dent
! Flint hybrids using our new model (called GCA-model) up to additive by additive epistasis. To model higher order interactions within
GCAs, we also fitted “residual genetic” line effects. Our new GCA-model was compared with another genomic model which assumes
a uniquely defined effect of genes across origins. Most variation in hybrids is accounted by GCA. Variances due to dominance and
epistasis have similar magnitudes. Models based on defining effects either differently or identically across heterotic groups resulted in simi-
lar predictive abilities for hybrids. The currently used model inflates the estimated additive genetic variance. This is not important for hybrid
predictions but has consequences for the breeding scheme—e.g. overestimation of the genetic gain within heterotic group. Therefore,
we recommend using GCA-model, which is appropriate for genomic prediction and variance component estimation in hybrid crops using
genomic data, and whose results can be practically interpreted and used for breeding purposes.

Keywords: dominance; epistasis; genetic variance; heterosis; genomic models; genomic prediction; GenPred; shared data resources

Introduction
Many plant species are presently cultivated in the form of single-
cross hybrid varieties, especially when a strong heterosis effect is ob-
served for yield-related traits (e.g. maize, sunflower, sugarbeet, etc.).
These hybrids are generally obtained by crossing inbred lines origi-
nated from two complementary populations, called heterotic
groups. Breeders’ objective is therefore to identify (i) the best single-
cross hybrids among all possible crosses between existing inbred
lines from the two groups and (ii) create new lines within heterotic
group, from crosses of existing lines, which will improve the perfor-
mance of candidate hybrids at a next generation. Models for genetic
improvement of hybrid crops (e.g. maize) across two heterotic groups
are typically based on the notions of general combining ability (GCA)
and specific combining ability (SCA) (Griffing 1962; Stuber and
Cockerham 1966; Bernardo 2010). The genotypic value Gij of the
cross of lines i and j, as a function of uniting gametes from i and j,
can be written as follows:

Gij ¼ lþ GCAi þ GCAj þ SCAij (1)

where GCA of line i is the average effect of a gamete
when ideally crossed to all gametes from the reciprocal

heterotic group. SCA of the combination of line i and j is the
remainder.

It is important to notice, for readers not familiar with hybrid
crops, that in many hybrid crops such as maize, parents are pure
homozygous individuals (inbred lines). Thus, all gametes pro-
duced by i (and j) are identical, and all F1 descendants of i and j
are identical. This is different from crosses of other species such
as animals (pigs for instance) where full-sibs show genetic varia-
tion. As a result, GCA contains single locus (additive, in the statis-
tical sense) and multiple loci (additive by additive and higher
additive interactions) effects. This is because the whole genotype
(gamete) of the pure line is transmitted to the F1 descendants,
including any possible epistatic combination, and regardless of
whether loci in interaction are in the same or in different chro-
mosomes. In this, GCA is different from the concept of Breeding
Value in Animal Genetics, which captures the part of functional
epistatic effects that is contained in the additive substitution
effects, but it does not contain epistatic deviations as they are
broken down by meiosis.

Informally, the GCAs within group 1 (group 2) are the sum
of additive, additive x additive, additive x additive x additive. . .

deviations within group 1 (group 2), whereas SCA are the sum of
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Genomic prediction in hybrid crops 
• Hybrid crops from pure lines

• E.g. maize: population 1 is “Dent” and population 2 is “Flint”
• The effects (GCA and SCA) are defined “according to parental 

origin” 
• We define Z-matrices within each heterotic groups
• W-matrix is defined in the hybrid

22

Hybrids

Population (2)
e.g. Heterotic group Flint

Population (1)
e.g. Heterotic group Dent

David González-Diéguez



• Recipe:
1. For each locus, 
define incidence matrices Z1 for 𝛼' (pop 1), Z2 for 𝛼$ (pop 2) and W for 𝑑∗ (in hybrids)

𝑍$!" = 7 1 − 𝑝$−𝑝$
for genotypes 7𝐵$𝐵$𝑏$𝑏$

, 𝑍%!" = 7 1 − 𝑝%−𝑝%
for genotypes   7𝐵%𝐵%𝑏%𝑏%

and

𝑊&' =

−2𝑞$𝑞%
2𝑞$𝑝%
2𝑝$𝑞%
−2𝑝$𝑝%

for genotypes

𝐵$𝐵%
𝐵$𝑏%
𝑏$𝐵%
𝑏$𝑏%

23

Genomic prediction in hybrid crops 

New models accounting for non-additive effects
GBLUP, GDBLUP, and its extensions
Inbreeding depression

24



Inbreeding / heterosis

• Inbreeding depression is the decline in biological fitness (viability, 
fertility, …) as a consequence of inbreeding

• This phenomenon may be explained by directional dominance.
• Directional dominance, e.g. the heterozygote is usually “better”

(Lynch & Walsh, 1998)

252 INBREEDING AND CROSSBREEDING: I [Chap. 14

linear with respect to F, and this might be taken as evidence that

epistatic interaction between loci is not of great importance. There
are, however, several practical difficulties that stand in the way of

drawing firm conclusions from observations of the rate of inbreeding

depression. One is that as inbreeding proceeds and reproductive

capacity deteriorates, it soon becomes impossible to avoid the loss of

Fig. 14. i. Examples of inbreeding depression affecting fertility.

(a) Litter-size in mice (original data). Mean number born alive in

1 st litters, plotted against the coefficient of inbreeding of the litters.

The first generation was by double-first-cousin mating; thereafter

by full-sib mating. No selection was practised, (b) Fertility in

Drosophila subobscura. Mean number of adult progeny per pair per
day, plotted against the inbreeding coefficient of the parents.

Consecutive full-sib matings. (Redrawn from Hollingsworth &
Smith, I955-)

some lines. The survivors are then a selected group to which the

theoretical expectations no longer apply. Thus precise measurement
of the rate of inbreeding depression can generally be made only over

the early stages, before the inbreeding coefficient reaches high levels.

Another difficulty, met with particularly in the study of mammals,
arises from maternal effects. Maternal qualities are among the most
sensitive characters to inbreeding depression. The effect of inbreed-

ing on another character that is influenced by maternal effects is

therefore two-fold: part being attributable to the inbreeding of the

individuals measured and part to the inbreeding in the mothers. So
the relationship between the character measured and the coefficient

of inbreeding cannot be depicted in any simple manner. In conse-

(Falconer, 1981)

25

Inbreeding/ heterosis

• If heterosis or inbreeding depression, 𝐸 𝒅 = 𝟏𝜇$ with 𝜇$ > 0
• Statistically this translates into a regression on a measure F of 

homozygosity (𝒚 = 𝑿𝜷 + 𝑭𝑏 + 𝒈" + 𝒈$ +⋯+ 𝒆)
• Across individual markers: “genomic inbreeding” (Silio et al 2013; Xiang et al 

2016)
• In blocks: ROHs (long ROHs are better because inbreeding has not been 

purged)

• Ignoring inbreeding/heterosis may inflate estimates of dominance 
variance
• Including inbreeding/heterosis allows finer estimates of EBV

26



Results?

OK, so we have this nice theory, what now?
• Is this any useful?

• Extra accuracy in predictions
• Variance components
• Mate allocation

27

28

Example in pigs

A A+D A+D+AA A+D+AA+AD A+D+AA+AD+DD

G
en

et
ic 

va
ria

nc
e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Var.A
Var.D
Var.AA
Var.AD
Var.DD

𝒚 = 𝑿𝜷 + 𝑭𝑏 + 𝒈' + 𝒈$ + 𝒈'' + 𝒈$' + 𝒈$$ + 𝒑𝒆 + 𝒆

• Small variances for non-additive effects
• The model is empirically orthogonal: variance component estimates do not change by adding an 

extra term
• Inclusion of dominance/epistasis did not increase the accuracy of prediction of breeding values

Litter size
12.7 ± 3.1

Vitezica et al., 2018.

Genus plc (Hendersonville, TN, USA)
3,619 genotyped sows 13,369 records
38,779 SNPs

From Genus



Without including inbreeding 
depression in the model, dominance 
variance was overestimated

 20 

Figure 3. Estimates (boxplots of posterior distributions) of additive, dominance and epistatic 414 

genetic variances for A+D+AA+AD+DD evaluation model including (GDIF) or not (GDI) 415 

genomic inbreeding.  The A+D+AA+AD+DD model involves additive, dominance, additive-416 

by-additive, additive-by-dominance, and dominance-by-dominance effects.  417 
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This has long been known for pedigree 
analysis (e.g. DeBoer and Hoeschele, 1993). 

Posterior distributions of additive and dominance  genetic variances for 
model including (GDIF) or not (GDI) genomic inbreeding

29

Example in pigs

Vitezica et al., 2018.

From Genus
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Cov(u,v) = 0 under orthogonality (Vitezica et  al., 2013). 
Xiang et  al. (2016) proved analytically that, in the presence 
of directional dominance, inclusion of genomic inbreeding 
as a covariate in the model is necessary to obtain correct 
estimates of dominance variance. This has long been known 
for pedigree analysis (e.g., De Boer and Hoeschele, 1993; Miller 
and Goddard, 1998).

An exploratory analysis of the data set showed that among 
all dams, 15,579 (80% of dams) had only 1 offspring, leading to 
an average of 1.10 offspring per cow. Consequently, maternal 
effects were completely confounded and were not included in 
BW and WW analysis.

The additive genomic relationship matrix G was calculated 
according to VanRaden (2008) as follows:

G =
MM′

2
∑m

k=1 pkqk
,

where M is a matrix with dimensions of number of animals (n) 
by the number of SNPs (m), with elements equal to (2 − 2pk), 
(1 − 2pk), and (−2pk), for genotypes AA, Aa, and aa, respectively; 
pk is the frequency for allele A of SNP k and qk = 1 − pk.

The dominance deviation genomic relationship matrix D 
was built as in Vitezica et al. (2013):

D =
WW′

∑m
k=1 (2pkqk)

2 ,

where W has the same dimension as in M, with elements equal 
to (−2q2k), (2pkqk), and (−2p2k) for AA, Aa, and aa, respectively; pk
is frequency for allele A of SNP k and qk = 1 − pk. Matrices M 
and W, their cross-products, and the inverses of G and D were 
built using own programs. Parallel programming in Fortran 
using OpenMP and BLAS-MKL libraries was used. Matrices 
G and D were blended in order to make them full rank as 
G∗ = 0.95G + 0.05I, and D∗ = 0.95D + 0.05I, and then inverted.

Variance Component Estimation and Model 
Comparison
Estimation of variance components was performed by 
Bayesian methods using Gibbs sampling and also by REML 
using the software GIBBS2F90 and REMLF90 (available at 
http://nce.ads.uga.edu/wiki/), respectively (Misztal et  al., 
2014). A  total of 200,000 iterations were run for each trait 
under the Bayesian approach, with burn-in of 10,000 initial 
iterations and sample interval of 10. Posterior means and 
posterior SD were calculated based on a "nal chain of 19,000 
samples. Convergence to the "nal distribution was checked 
by visual inspection of the chains and its variability. Initial 

parameters for REML were obtained from the Gibbs sampling 
estimates.

The maximum likelihood ratio test was performed from 
REML results to assess goodness of "t and to compare MG and 
MGD models. The Akaike information criterion (AIC) was also 
considered for those purposes. The superiority of an alternative 
model MGD over model MG was evaluated using a likelihood 
ratio test. The χ2 was calculated as χ2 = −2 log LMG + 2 log LMGD, 
the "rst term involved the MG likelihood and the second one 
took into account the MGD likelihood. P-values of the chi-square 
tests were obtained from a mixture of chi-square distributions 
with 1 and 0 degrees of freedom (Visscher, 2006).

GBLUP, using the software BLUPF90 (Misztal et  al., 2014), 
was used to obtain estimated genetic values (u,v) by "xing the 
variance components that were estimated. Conventional cross-
validation was conducted to compare the 2 models. Two data 
sets were used for this purpose: 1)  the “complete” data set as 
described above (Table 1) and 2) the “reduced” data set in which 
young animals had no own or progeny information. Those 
animals born in 2014 were considered the “young” males for BW 
and WW, but as they did not have records for PWG, a different 
“young” group of animals born in 2013 was considered for this 
trait. The predictive ability of phenotypes of “young” males 
for the 2 models was assessed as the cor(y∗, ŷ) (Legarra et  al., 
2008) where y∗ is the corrected phenotype from the “complete” 
data set, calculated as y∗ = y − Xβ̂ − f b̂ and ŷ is the predicted 
corrected phenotype from the “reduced” data set, equal to the 
estimated additive genetic effects (u) for MG model, or the sum 
of estimated additive and dominant genetic effects (u + v)for 
MGD model.

Results
Table 2 shows the variance component estimates for each trait 
using both MG and MGD models. For all traits, additive variance 
estimates were not affected by the inclusion of dominance 
effect in the model. Additive genetic variance did not differ 
between MG and MGD models, which empirically shows the 
orthogonality in the partition of the genetic variance. The model 
used in the analysis in terms of breeding values and dominance 
deviations (Vitezica et al., 2013) enables an orthogonal partition 
of the genetic variance in HWE and linkage equilibrium. HWE 
holds in this dataset, however linkage disequilibrium (LD) 
exists. Note that a tight linkage is needed to yield substantial LD 
in outbred populations (Hill and Mäki-Tanila, 2015). Likewise, no 
changes in h2

A were observed when including dominance in the 
model (going from MG to MGD).

Means of the diagonal and off-diagonal elements of matrices 
G and D were calculated. The average of the diagonal elements 

Table 2. Estimates of additive, dominance deviation, and residual variance components (σ2
A, σ2

D, σ2
e) and heritability for growth traits using MG 

and MGD models

Trait1 Model2 σ2
A σ2

D h2
A h2

D (σ2
D/σ2

A) σ2
e

BW MG 6.27 (0.33) — 0.25 — — 18.82 (0.24)
MGD 6.28 (0.33) 0.18 (0.15) 0.25 0.01 0.03 18.65 (0.28)

WW MG 222.75 (14.61) — 0.16 — — 1186.28 (14.26)
MGD 223.55 (14.82) 10.02 (4.98) 0.16 0.01 0.04 1176.88 (14.86)

PWG MG 270.76 (20.42) — 0.16 — — 1388.81 (19.87)
MGD 270.30 (21.94) 21.68 (10.95) 0.16 0.01 0.08 1369.01 (26.00)

1BW, birth weight; WW, weaning weight; PWG, postweaning gain.
2MG, model including only additive effects; MGD, model including both additive and dominant effects.
The results are given as estimate (in parenthesis SE); h2

A = σ2
A/σ2

P and h2
D = σ2

D/σ2
P, where σ2

P is the phenotypic variance.

D
ow

nloaded from
 https://academ

ic.oup.com
/jas/article-abstract/98/1/skz384/5684892 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 16 M

arch 2020

Journal of Animal Science, 2020, 1–7

doi:10.1093/jas/skz384
Advance Access publication December 23, 2019
Received: 29 August 2019 and Accepted: 19 December 2019
Animal Genetics and Genomics

Copyedited by: SU

1

© The Author(s) 2019. Published by Oxford University Press on behalf of the American Society of Animal Science.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 
For commercial re-use, please contact journals.permissions@oup.com

Animal Genetics and Genomics

Estimating dominance genetic variances for 
growth traits in American Angus males using 
genomic models
Carolina A. Garcia-Baccino,*,1 Daniela A. L. Lourenco,† Stephen Miller,‡ 
Rodolfo J. C. Cantet,*,§ and Zulma G. Vitezica#

*Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, C1417DSQ Buenos Aires, 
Argentina, †Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, ‡Angus Genetics Inc., St. 
Joseph, MO 64506, §INPA, UBA-CONICET, C1427CWO Buenos Aires, Argentina, #INP ENSAT, UMR 1388 GenPhySE, 31326 
Castanet-Tolosan, France

1Corresponding author: bcagarci@agro.uba.ar

ORCiD number: 0000-0002-1465-5708 (C. A. Garcia-Baccino); 0000-0003-3140-1002 (D. A. L. Lourenco); 0000-0001-6282-146X (R. J. C. Cantel); 0000-0002-
3162-7258 (Z. G. Vitezica).

Abstract
Estimates of dominance variance for growth traits in beef cattle based on pedigree data vary considerably across studies, 
and the proportion of genetic variance explained by dominance deviations remains largely unknown. The potential 
bene/ts of including nonadditive genetic effects in the genomic model combined with the increasing availability of large 
genomic data sets have recently renewed the interest in including nonadditive genetic effects in genomic evaluation 
models. The availability of genomic information enables the computation of covariance matrices of dominant genomic 
relationships among animals, similar to matrices of additive genomic relationships, and in a more straightforward 
manner than the pedigree-based dominance relationship matrix. Data from 19,357 genotyped American Angus males 
were used to estimate additive and dominant variance components for 3 growth traits: birth weight, weaning weight, and 
postweaning gain, and to evaluate the bene/t of including dominance effects in beef cattle genomic evaluations. Variance 
components were estimated using 2 models: the /rst one included only additive effects (MG) and the second one included 
both additive and dominance effects (MGD). The dominance deviation variance ranged from 3% to 8% of the additive 
variance for all 3 traits. Gibbs sampling and REML estimates showed good concordance. Goodness of /t of the models was 
assessed by a likelihood ratio test. For all traits, MG /tted the data as well as MGD as assessed either by the likelihood 
ratio test or by the Akaike information criterion. Predictive ability of both models was assessed by cross-validation and did 
not improve when including dominance effects in the model. There was little evidence of nonadditive genetic variation 
for growth traits in the American Angus male population as only a small proportion of genetic variation was explained 
by nonadditive effects. A genomic model including the dominance effect did not improve the model /t. Consequently, 
including nonadditive effects in the genomic evaluation model is not bene/cial for growth traits in the American Angus 
male population.

Key words: Angus beef cattle, dominance genetic variance, genomic selection, growth traits
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Example in beef cattle

American Angus Association
19,375 genotyped males
39,245 SNPs

Small variances for non additive effects
Inclusion of dominance in the model did not increase the accuracy of prediction of breeding values 

From AAA



2,111 Australian Brahman (BB) cows and bulls 
Genotyped with 770,000 SNPs
Body yearling weight 

Raidan et al., 2018 31

Example in beef cattle

Small variances for non additive effects
Without including inbreeding depression in the model, dominance variance was overestimated

From ABBA

Results

• Inclusion of dominance/epistasis 
• does not increase the accuracy of prediction of breeding values (Ertl et al., 2014; 

Xiang et al, 2016; Esfandyari et al., 2016; Moghaddar and van der Werf, 2017, González-Diéguez et al., 
2019, Garcia-Baccino et al., 2020 – Pégard et al., 2020, González-Diéguez et al., 2021 ) 

• with the exception of Aliloo et al. (2016) (for fat yield in Holstein)

• Inclusion of inbreeding depression/heterosis effect 
• does increase predictive ability (Xiang et al., 2016) in pigs
• and in maize (Roth et al., 2022)

• Fitting non-orthogonal models or non fitting inbreeding 
• Biases in variance component estimation (Vitezica et al. 2013; 2018)
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Results?

OK, so we have this nice theory, what now?
• Is this any useful?

• Extra accuracy in predictions
• Variance components
• Mate allocation

33

Mate allocation: theory

• What happens if I mate i and j so that the product has an extraordinarily good 
phenotype (=dominance deviation)?

34
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Example in pigs (within breed)

David González-Diéguez 

France Genetic Porc
Age at 100 kg (AGE), Backfat depth (BD), Average piglet weight at birth (APWL)
39,353 SNPs 

Trait Boars Sows Genotyped animals Number of records Mean (SD)

AGE (days) 789 2179 2968 2968 149.03 (9.36)

BD (mm) 1007 2675 3682 3682 11.20 (1.68)

APWL (g) 1446 1226 2672 3297 1321.73 (213)

Landrace français

Ø Model GD : additive + dominance + genomic inbreeding

Estimation of variance components: 𝜎-, 𝜎3,

𝒚 = 𝑿𝜷 + 𝑭𝑏 + 𝒁𝒖 + 𝒁𝒗 + 𝒆

𝑭 is a vector of genomic inbreeding coefficients
𝑏 is the inbreeding depression parameter

𝒖~𝑁 𝟎,𝑮𝜎!" , 𝑮 built as in VanRaden (2008)
𝒗~𝑁 𝟎,𝑫𝜎#" , 𝑫 built as in Vitezica et al. (2013)

Ø Model G : only additive + genomic inbreeding

remlf90 software (Misztal et al. 2012)

Estimation of additive and dominant SNP effects: G𝑎 and I𝑑
Ø BLUP-SNP model including dominance and genomic inbreeding
GS3 software (Legarra et al. 2011)

Example in pigs (within breed)

Within breed

PB performance



• Prediction of the total genetic values (𝑔#() of the mating

• Prediction of the breeding values (𝑢#() of the progeny

Prediction of expected progeny values (Toro and Varona 2010):

@𝑔&' =B
(

𝑃&'( 𝐶𝐶 @𝑎( + 𝑃&'( 𝐶𝑇 H𝑑( + 𝑃&'( 𝑇𝑇 (−@𝑎()

@𝑢&' =B
(

𝑃&'( 𝐶𝐶 (2 − 2𝑝() @𝛼(+𝑃&'( 𝐶𝑇 (1 − 2𝑝() @𝛼(+𝑃&'( 𝑇𝑇 (−2𝑝() @𝛼(

G𝛼) = G𝑎)+ I𝑑) 𝑞) − 𝑝)

Future progeny

i-th boar j-th sow

mateij−th

Example in pigs (within breed)

Allocation of matings
e.g. AGE 

2,179 females TopGEBV 120

Potential matings

e.g. 261,480 

i-th boar j-th sow

:𝑔$% , :𝑢$%
mateij−th

Future progeny

Optimization by linear programming
R package lpsolve (Berkelaar et al., 2004)
Two constraints: 

(1) each boar could be mated to up to 15 sows
(2) each sow could not be mated to more than one boar

Two mate allocation strategies:
(1) 600 matings selected on O𝒖𝒊𝒋 → 𝒇𝒐𝒑𝒕𝒊𝒎 O𝒖𝒊𝒋
(2) 600 matings selected on O𝒈𝒊𝒋 → 𝒇𝒐𝒑𝒕𝒊𝒎 O𝒈𝒊𝒋

Evaluation of expected genetic gains:
Additive genetic gain (∆𝑢):

§ ∆𝑢 = 𝑚𝑒𝑎𝑛 :𝑢&'' −𝑚𝑒𝑎𝑛 :𝑢())_+(,$-./

Total genetic superiority (∆𝑔):
§ ∆𝑔 = 𝑚𝑒𝑎𝑛 :𝑔&'' −𝑚𝑒𝑎𝑛 :𝑔())_+(,$-./

Example in pigs (within breed)



Is it possible to boost CB performance by implementing mate allocation in a 
two-way pig crossbreeding scheme in the long term?

Purebred 1 Purebred 2

Crossbred 
progeny

i-th boar j-th sow

mateij−th

Mate allocation to produce 
two-way crossbreds

CB performance

Example in pigs (across breeds)

David González-Diéguez 

Simulation study (QMSim + Fortran program)
Maternal trait: litter size
Genome: 18 Chr 120 cM each

Sargolzaei and Schenkel, 2009

Genetic improvement in pigs

• It uses selection and crossbreeding
• The breeding goal is to improve crossbred (CB) performance, while 

selection takes place in purebred (PB) animals based on PB 
performances
• Selection depends on the correlation between PB and CB 

performance (rPC)

40

Selection may be suboptimal (GxE)
rPC < 1  (~0.7)

Comercial crossbred pigs

.031

LeƐ méƚhŽdeƐ d͛améliŽƌaƚiŽŶ géŶéƚiƋƵe ͗ 
Utilisation du croisement

Porc charcutier = croisement entre plusieurs lignées 
Croisement majoritaire en France : 

X

X
Piétrain

Large White

Truie croisée

Porc charcutier

Landrace

Crossbred female 



Simulation of heterosis and QTL effects

• Maternal trait: “e.g. Litter size” controlled by additive and dominant QTL action (2,500 QTLs)

• Inbreeding depression was assumed to be -1 piglet per 10% increase in genomic inbreeding in P1, P2 and CB

• Additive and dominance QTL effects were sampled from a MVN distribution with correlation between the 
three populations to account for GxE and GxG. Landrace and Yorkshire genetic variances were taken from 
Xiang et al. (2016)

𝑟012!",!$

P1 P2

CB

𝑟012!$,%&𝑟012!",%&

Correlation between QTLs (𝑟012):
𝑟012!",%& = 𝑟012!",!$ = 𝑟012!$,%& = 0.5

Example in pigs (across breeds)

Two-way crossbreeding scheme

204 12Gen 0

2,448 descendants 

~416~2032

Litter size =12
RM = Random mating

*Same boars than used in purebred lines

2,448 descendants 

~416~2032Gen 1

204 12

2,448 descendants 

~416~2032

Best 3%

Gen 2
2,448 descendants 

~416~2032

Best 10%

P 1

E
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12204

12204
Founders sampled 

from generation 2030

Mate allocation 
strategies

Gen 10

12* 204

Crossbreds
2448

12* 204

Crossbreds
2448

2nd Best
females

RM

P 2

RM RM

RM
RM

Example in pigs (across breeds)



Mate allocation: results

43

• Mate allocation has a small added benefit within-breed and no 
benefit across-breed 
• Selecting PB animals for CB performance using PB and CB data is a 

good strategy to exploit heterosis and improve crossbred 
performance, especially if the 𝑟TU is low

Some conclusions

• We have a comprehensive theory
• We know how to properly define/estimate non-additive statistical 

effects
• Inbreeding/heterosis should be fit in the genetic evaluation model
• Fitting dominance and epistatic effects is interesting to correctly 

appraise genetic variances

44



Some conclusions

• Dominance and epistasis is not difficult with markers provided all 
animals J (plants J ) are genotyped
• In our experience, computational complexity is not an issue (models 

fit into computers), but convergence and accuracy are an issue (many 
parameters, little information)

45
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In the last decade, genomic selection has become a standard in the genetic evaluation

of livestock populations. However, most procedures for the implementation of genomic

selection only consider the additive effects associated with SNP (Single Nucleotide

Polymorphism) markers used to calculate the prediction of the breeding values of

candidates for selection. Nevertheless, the availability of estimates of non-additive

effects is of interest because: (i) they contribute to an increase in the accuracy of the

prediction of breeding values and the genetic response; (ii) they allow the definition

of mate allocation procedures between candidates for selection; and (iii) they can be

used to enhance non-additive genetic variation through the definition of appropriate

crossbreeding or purebred breeding schemes. This study presents a review of methods

for the incorporation of non-additive genetic effects into genomic selection procedures

and their potential applications in the prediction of future performance, mate allocation,

crossbreeding, and purebred selection. The work concludes with a brief outline of some

ideas for future lines of that may help the standard inclusion of non-additive effects in

genomic selection.

Keywords: genomic selection, dominance, epistasis, crossbreeding, genetic evaluation

INTRODUCTION

Through his experiments on pea plants, Gregor Mendel (1866) realized that some traits are
dominant over others (for example “round peas” were dominant over “wrinkled peas”). InMendel’s
own words: “As a rule, hybrids do not represent the form exactly intermediate between the parental
strains. . . Those traits that pass into hybrid association entirely or almost entirely unchanged,
thus themselves representing the traits of the hybrid, are termed “dominating,” and those that
become latent in the association, “recessive””. Shortly after the rediscovery of Mendel’s rules, it
was observed that, in some cases, the addition of the individual action of genes could not explain
the mode of inheritance, and Bateson (1909) coined the term “epistasis” to describe the cases in
which the actions of two or more genes interact. A distinction must be drawn between biological
(functional) genetic effects that correspond to theMendelian definition (i.e., dominance means that
the heterozygote value is higher or lower than the mean of homozygous genotypes) and statistical
(population or weighted) effects which depend on allelic frequencies. In the latter, the relevant issue
is the contribution of non-additive effects to genetic variance. Some authors argue that non-additive
genetic effects may be a general phenomenon whose understanding is important for gaining more
knowledge on the nature of quantitative traits, but whose contribution to variance is negligible
(Crow, 2010).

Complex Trait 
Prediction

Nourollah Ahmadi
Jérôme Bartholomé 
Editors

Methods and Protocols

Methods in 
Molecular Biology   2467

Chapter 8

Genomic Prediction Methods Accounting for Nonadditive
Genetic Effects

Luis Varona, Andred Legarra, Miguel A. Toro, and Zulma G. Vitezica

Abstract

The use of genomic information for prediction of future phenotypes or breeding values for the candidates
to selection has become a standard over the last decade. However, most procedures for genomic prediction
only consider the additive (or substitution) effects associated with polymorphic markers. Nevertheless, the
implementation of models that consider nonadditive genetic variation may be interesting because they
(1) may increase the ability of prediction, (2) can be used to define mate allocation procedures in plant and
animal breeding schemes, and (3) can be used to benefit from nonadditive genetic variation in cross-
breeding or purebred breeding schemes. This study reviews the available methods for incorporating
nonadditive effects into genomic prediction procedures and their potential applications in predicting future
phenotypic performance, mate allocation, and crossbred and purebred selection. Finally, a brief outline of
some future research lines is also proposed.

Key words Genomic prediction, Dominance, Epistasis, Crossbreeding, Genetic evaluation, Genomic
selection

1 Introduction

Nonadditive genetic variation is caused by interaction between the
effects of alleles either at the same locus (dominance) or between
the alleles of different loci (epistasis). The term “dominance” was
introduced by Gregor Mendel [1] when he realized that some traits
dominate others (in his case, “round peas” were dominant over
“wrinkled peas”). He noted that “hybrids do not represent the
form exactly intermediate between the parental strains . . . .” Some
years after the rediscovery ofMendel’s rules, at the beginning of the
twentieth century, Bateson [2] introduced the term “epistasis” to
describe those situations where two or more genes interact, and
when the individual action of genes does not explain the mode of
inheritance.

Nourollah Ahmadi and Jérôme Bartholomé (eds.), Genomic Prediction of Complex Traits: Methods and Protocols,
Methods in Molecular Biology, vol. 2467, https://doi.org/10.1007/978-1-0716-2205-6_8,
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2022
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Matrix H and Single Step 

GBLUP

1

Multiple-step Genomic evaluation

Records ‘Y”
BLUP

Pseudo observations

De-regressed EBVs

BayesC
GBLUP

etc

GEBV

SNPs

Pedigree

EBV
Not all animals 
are genotyped 

2



Genomic evaluation

• Estimate effect of all SNPs in the genome:

𝒚 = 𝒁𝒂 + 𝒆

Genotypes Marker
effects

Records

BayesA, BayesB, 
BLUP-SNP, etc

3

Genomic evaluation

• What about records?
𝒚 = 𝒁𝒂 + 𝒆

Genotypes
Marker
effectsRecords

4



Genomic evaluation

• What about records?
• We genotype key animals (breeding males and maybe

females)
– They may not have phenotype on their own
– They also have progenies who could have phenotype but

could not have genotype

• “Project” family phenotypes on genotyped animals
– Deregressed Proofs, DYD, etc.
– Let’s call this “DP”

• More easy said than done

5

What about records ?
• Typical in dairy cattle: the male is “assigned” the

performance of the daughters
• Similar to a sire model

8

Percy

9 6.810.2

𝐷𝑃𝑃𝑒𝑟𝑐𝑦 = ത𝑦 = 8.5

• But to achieve more accuracy and to avoid selection bias, we need to 
correct for the dams’ EBV and for the fixed effects

• This is what we do in DEREGRESSION

• And corrections contain errors which pass on to deregressed proofs

𝒚

6



• Assume that Daisy EBV is overestimated as 6.4 (true BV is 4)

John

8

Daisy

𝐷𝑃𝑃𝑒𝑟𝑐𝑦 = 10 − 3.2 = 6.8

𝐷𝑃𝐽𝑜ℎ𝑛 = 8 − 3.2 = 4.8

• Now both Percy and John are biased downwards !!

• Sometimes Daisy will be biased upwards and sometimes downwards

• Thus, the deregressed proofs of Percy and John will have a residual 
covariance

• This covariance is always ignored in practice

• The same problem exists when we correct by effects such as herd

Percy

10

7

What about records ?

Creeping bias

• BLUP can’t consider selection that is not in the records

• thus, BLUP evaluations underestimate genomic selection
trends

8

Mäntysaari, et al. (2020). 

JDS 103(6), 5314-5326.



Single-Step Genomic Evaluation

Records ‘Y”

BLUP

GEBV

Pedigree SNPs

Aguilar et al., 2010

Expand information

• We can do ONE evaluation if we “augment” 
information generating either

– genotypes for all animals (SNP-BLUP)

– G matrix for all animals (GBLUP)

– genotypes of all animals will take lots of space (~100 
M cows in US dairy cattle evaluation)

– G matrix of all animals will be very cumbersome too

• ???

10



Expand information

• We can do ONE evaluation if we “augment” 
information generating either
– genotypes for all animals (SNP-BLUP)
– G matrix for all animals (GBLUP)

• Imputing algorithms (Beagle, Fimpute, AlphaImpute, 
etc.) are conceived to impute from low to high
density

• For non-genotyped animals, we may “obtain” a point
estimate of the genotype

• Why is this bad?

11

Problem with point estimates of genotypes

• Imagine a major gene

??
y=1

Aa
y=6

??
y=10

Aa
y=5

• Point estimate of genotype of the
descendants: “Aa”

• Clearly, based on 𝒚 there is Mendelian
segregation where one descendant received
“AA” and the other “aa”

• There is variation of true genotype around
the point estimate of the genotype

• If we do not consider this variation we
consider the offspring as identical twins

12



• Remember « genotype seen as a trait »?

13

Heritability of gene content

• If the genotype is accurate, “genotype seen as a trait” z
is observed with no error 

• z is transmitted from parents to offspring and there is 
no external influences

• z is additive (by definition)

• Heritability of z is 1 (!!!)

We can model gene content as a quantitative trait:

• 𝐶𝑜𝑣 𝑧𝑖 , 𝑧𝑗 = 𝐴𝑖𝑗2𝑝𝑞

• 𝒛 = 𝟏𝜇 + 𝒖 = 𝟏 2𝑝 + 𝒖

• V𝑎𝑟 𝑢 = 𝑨𝜎𝑢
2 = 𝑨𝜎𝑧

2 = 𝑨2𝑝𝑞

14



Genotype prediction using BLUP for 
gene content (Gengler’s method)

• Assuming ℎ2 ≈ 0.99, use BLUP !!
– 𝒛 = 𝟏𝜇 + 𝑾𝒖+ 𝒆

𝑿′𝑿 𝑿′𝑾
𝑾′𝒁 𝑾′𝑾+𝑨−𝟏𝝀

ෝ𝝁
ෝ𝒖

= 𝑿′𝒛
𝑾′𝒛

– On exit, 𝟏ො𝜇 + ෝ𝒖 are estimates of gene content for all animals

• Using Selection Index (which is BLUP without fixed 
effects)
– if z has been centered using 𝑝 in the base generation, then 𝜇 =
0 and ෝ𝒖2 = 𝒖2 = 𝒛2 for genotyped animales, and 

– ො𝒛1 = ෝ𝒖1 = 𝐀12𝐀22
−1𝐮2 = 𝐀12𝐀22

−1𝐳2 is the prediction for non-
genotyped animals

15

Example

• Pig data

16

0

1

2

Animals with genotype

Relatives(ancestors) ungenotyped
Observed genotypes 
(correctly as 0/1/2)

Estimated 
genotypes 

(fractional !!)

The prediction is not very good:

- it is fractional

- it has large error



Augmenting genotypes

• Gengler et al. (2007) conceived an algebraic way to deal with these
point estimates

• Christensen & Lund (2010) showed how to take the error into account

• Genotype of descendants = half their parents + Mendelian sampling

Aa

??

AA

Prediction of Genotype = 
3

2
"𝐴"+

1

2
"𝑎“

Variance(Genotype)=
1

4
"A" +

1

4
"𝑎"

AA with probability ½
Aa with probability ½ 

17
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Missing data in « classic » 

contexts

Fill-in missing data: « data augmentation »
• Augmenting = adding genotypes

• But we need to account for the fact that these

are « guesses »

• Expectation-Maximization, « data 

augmentation », « missing data theory »
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Missing data in « fancy » 

contexts
Fill-in missing data: « imputation »
• « Hot deck imputation is a method for handling missing data in 

which each missing value is replaced with an observed 

response from a "similar" unit. ”

• Multiple imputation is a general approach to the problem of 

missing data that is available in several commonly used 

statistical packages. It aims to allow for the uncertainty about the 

missing data by creating several different plausible imputed data 

sets and appropriately combining results obtained from each of them

• What Expectation-Maximization or « missing data theory » does is

an analytical »multiple hot deck imputation »

20

Single Step as a missing data 

problem

• We can see genotype as a missing data problem
(Christensen & Lund, 2010)

• Use the prediction and the distribution of the prediction

(if not the procedure does not work)

11 12

21 22

=
 
 
 

A A
A

A A
Let

genotyped

non genotyped
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Inferring genotypes

• There is Gengler’s gene content prediction J. Dairy Sci. 

91:1652

• Linear approximation to the imputation problem

– This method can be applied to any member of a pedigree

• Using centered gene content:

෠𝐙1 = 𝐀12𝐀22
−1𝐙2

• Christensen and Lund realized that

𝑉𝑎𝑟( ෡𝒁1 𝒁2 = (𝑨11−𝑨12𝑨22
−1𝑨21)𝑽

where 𝑽 contains (base population) 2𝑝𝑘𝑞𝑘 in the diagonal

22

Inferring genotypes

• Instead of working with individual SNP effects, 

we will define

– u=Za

– i.e., the genetic value is the sum of SNP effects

– We’re not really interested in a themselves but in u
(we know from GBLUP that we can jump from one to the other)

– Moreover, we’re interested in the distribution of u’s, 

so that we can compute their covariances and put 

them into the MME



23

𝒖 =
𝒖2

𝒖1
=

𝒁2
𝒁1

𝒂

Var 𝒖 =
𝒁2
෡𝒁1

𝑉𝑎𝑟 𝒂 𝒁2
′ ෡𝒁1 +

𝟎 𝟎
𝟎 𝑉𝑎𝑟 ෡𝒁1

𝑉𝑎𝑟 𝒂

1/2Σ𝑝𝑖𝑞𝑖

Breeding values SNP effects Re-create GBLUP…

Chistensen & Lund use 𝑉𝑎𝑟 𝐴 = 𝐸 𝑉𝑎𝑟 𝐴|𝐵 + 𝑉𝑎𝑟 𝐸 𝐴|𝐵 to 

consider the prediction of the genotype and its variance

𝐸 𝒁1 𝒁2 𝑉𝑎𝑟 𝒁1 𝒁2

Resulting in:

1= « non genotyped »

2= « genotyped » 

Christensen & Lund key idea:

Using Gengler’s resultsUsing Gengler’s results

24

1 11 12

2 21 22

1 1 1 1

11 12 22 21 12 22 22 21 12 22

1

22 21

=Var

− − − −

−

   
= =   

   

 − +
 
 

u H H
H

u H H

A A A A A A GA A A A G

GA A G

non genotyped

genotyped

Covariances of all animals
Legarra et al. 2009; Aguilar et al., 2010; Christensen & Lund, 2010

11 12

21 22

=
 
 
 

A A
A

A A
Let

non genotyped
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1 11 12

2 21 22

1 1 1 1

11 12 22 21 12 22 22 21 12 22

1

22 21

=Var

− − − −

−

   
= =   

   

 − +
 
  

u H H
H

u H H

A A A A A A GA A A A G

GA A G

Covariances of all animals

G comes from genotypes

This is the variance of prediction

of genotypes from genotyped to

non-genotyped

This is the error in the 

prediction

The prediction « generates » a 

covariance
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• Incredibly: H-1 is very simple:

1 11 12

2 21 22

1 1 1 1

11 12 22 21 12 22 22 21 12 22

1

22 21

=Var

− − − −

−

   
= =   

   

 − +
 
 

u H H
H

u H H

A A A A A A GA A A A G

GA A G

Inverse of the regular pedigree 

relationship matrix 
Correcting for genomic 

relationships… 

…and avoiding « double 

counting » 

which after matrix algebra…
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• Things would be simple if we had

genomic relationships for everyone

(Legarra et al., 2009)

• Things would be simple if we could add

genotypes for all animals (Christensen et 

al., 2010)

28

Overall modification

• Look at A as a « prior » relationship and to 

G as an « observed » relationship

– G is observed for some individuals only, 

whose « a priori » relationship matrix was A22

• Try to construct a « posterior » relationship

matrix
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Joint distributions

( ) ( )2 , andp N=u 0 G

( ) ( ) ( )1 2 2 1 2,p p p=u u u u u

Unconditional distribution of genetic values of Genotyped individuals

Conditional distribution of Non-Genotyped individuals

( ) ( )1 1

1 2 12 22 2 11 12 22 21,p N − −= −u u Α A u Α Α A Α

Joint distribution

After seeing their genotypes !

Because they have no 

genotypes, this depends

only on pedigree
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Joint distributions

1 2 1 2 2

1 2 2

1 11 1 1
1 12 22 2 1 12 22 2 2 2

11 11 1
112 22

1 2 1 11 1 1 11 1
222 21 22 21 12 22

( , ) ( , | ) ( )

( | ) ( )

exp[ 0.5( ) ( )]exp[ 0.5 ]

exp 0.5

exp 0.5

p p p

p p

− − −

−

− − − −

=

=

  − − − −

  −   
 = −        − +    

= −

u u u u u

u u u

u A A u A u A A u u G u

uA A A A
u u

uA A A G A A A A A

11 12
1

1 2 21 1 22 1
222

.
− −

    
       + −    

uA A
u u

uA G A A

…for those inclined to algebra

"Genomic"
relationships

prediction of non genotyped
from genotyped
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Joint distributions

( ) ( )2 ,p N=u 0 G

( ) ( )1 1

1 2 12 22 2 11 12 22 21,p N − −= −u u Α A u Α Α A Α
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Joint distributions

( ) ( )2 ,p N=u 0 G

( ) ( )1 1

1 2 12 22 2 11 12 22 21,p N − −= −u u Α A u Α Α A Α

( )2Var =u G
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Joint distributions

( ) ( )2 ,p N=u 0 G

( ) ( )1 1

1 2 12 22 2 11 12 22 21,p N − −= −u u Α A u Α Α A Α

( )2Var =u G

( ) 1 1 1

1 11 12 22 21 12 22 22 21Var − − −= − +u Α Α A Α Α A GA Α

because Var(Xt) = XVar(t)X’
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Joint distributions

( ) ( )2 ,p N=u 0 G

( ) ( )1 1

1 2 12 22 2 11 12 22 21,p N − −= −u u Α A u Α Α A Α

( )2Var =u G

( ) 1

1 2 12 22,Cov −=u u Α A G

because Cov(Xt,t) = XVar(t)
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1 11 12

2 21 22

1 1 1 1

11 12 22 21 12 22 22 21 12 22

1

22 21

=Var

− − − −

−

   
= =   

   

 − +
 
 

u H H
H

u H H

A A A A A A GA A A A G

GA A G

non genotyped

genotyped

Covariances of all animals
Legarra et al. 2009; Aguilar et al., 2010; Christensen & Lund, 2010
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• Incredibly: H-1 is very simple:

1 11 12

2 21 22

1 1 1 1

11 12 22 21 12 22 22 21 12 22

1

22 21

=Var

− − − −

−

   
= =   

   

 − +
 
 

u H H
H

u H H

A A A A A A GA A A A G

GA A G

Inverse of the regular pedigree 

relationship matrix 
Correcting for genomic 

relationships… 

…and avoiding « double 

counting » 



Understanding H matrix

• It is a projection of G matrix on the rest of individuals “so that” G matrix makes sense

– e.g. parents of two animals related in G should be related in A

• It is a Bayesian updating of the pedigree relationship matrix based on new information

from genotypes

• The approximation of multivariate normality is good because we have many markers

• Typically

– A-1 in the millions but extremely sparse

– G and A22 in the thousands

– Leads to a very efficient method of genomic evaluation: 

• Single Step GBLUP

37

Understanding H matrix

• Still H it’s an approximation: animals DO NOT have fractional genotypes

– An optimal method would consider Mendelian inheritance, transmission and linkage

disequilibrium

– Which computationally and analytically is just too complicated

• My personal opinion is that H is good as far as we cover well key individuals at each

generation

• For instance, if all AI males are genotyped

• But genotyping the last 2 years of animals and including the preceding 30 years of

pedigreed animals in H might not be a good idea

•

38



Examples on H matrix

39

• Consider 4 full-sibs with one progeny each

• With pedigree, sibs are related by

0.5 

• their offspring are cousins with a 

relationship of 0.125

• The 0.5 assumes infinite unlinked loci, with actual genomes
relationship varies: 0.5 ± 0.05

40



G=

1.0  0.7  0.3  0.3

0.7  1.0  0.3  0.3

0.3  0.3  1.0  0.7

0.3  0.3  0.7  1.0

More related than

average

More related than

average

Less related than

average

How is this included in A?
41

• Pedigree; grey is genotyped

Classical A (pedigree)

1.00 0.00 0.50 0.50 0.50  0.50  0.25  0.25  0.25  0.25

0.00 1.00 0.50 0.50 0.50  0.50  0.25  0.25  0.25  0.25

0.50 0.50 1.00 0.50 0.50  0.50  0.50  0.25  0.25  0.25

0.50 0.50 0.50 1.00 0.50  0.50  0.25  0.50  0.25  0.25

0.50 0.50 0.50 0.50 1.00  0.50  0.25  0.25  0.50  0.25

0.50 0.50 0.50 0.50 0.50  1.00  0.25  0.25  0.25  0.50

0.25 0.25 0.50 0.25 0.25  0.25  1.00  0.12  0.12  0.12

0.25 0.25 0.25 0.50 0.25  0.25  0.12  1.00  0.12  0.12

0.25 0.25 0.25 0.25 0.50  0.25  0.12  0.12  1.00  0.12

0.25 0.25 0.25 0.25 0.25  0.50  0.12  0.12  0.12  1.00

Full-sibs is 0.50

Cousins is 0.125

Uncle-nephew is 0.25
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H (pedigree + markers)

1.00 0.00 0.50 0.50 0.50  0.50  0.25  0.25  0.25  0.25

0.00 1.00 0.50 0.50 0.50  0.50  0.25  0.25  0.25  0.25

0.50 0.50 1.00 0.70 0.30  0.30  0.50  0.35  0.15  0.15

0.50 0.50 0.70 1.00 0.30  0.30  0.35  0.50  0.15  0.15

0.50 0.50 0.30 0.30 1.00  0.70  0.15  0.15  0.50  0.35

0.50 0.50 0.30 0.30 0.70  1.00  0.15  0.15  0.35  0.50

0.25 0.25 0.50 0.35 0.15  0.15  1.00  0.17  0.07  0.07

0.25 0.25 0.35 0.50 0.15  0.15  0.17  1.00  0.07  0.07

0.25 0.25 0.15 0.15 0.50  0.35  0.07  0.07  1.00  0.17

0.25 0.25 0.15 0.15 0.35  0.50  0.07  0.07  0.17  1.00

Full-sibs is 0.70 – 0.30

Cousins is 0.17 - 0.07

Uncle-nephew is 0.35-0.15

We have extended genomic relationships to all the pedigree
43

More complex example

• Pedigree; grey is genotyped

Percy

Lola

Daisy

Matt

Bucket Hogget

Millet

John

44



More complex example

• Before genotyping

Percy

Lola

Daisy

Matt

Bucket Hogget

Millet

John

45

A22=

1.00 0    0    0.25

0    1    0    0.25

0    0    1    0.50

0.25 0.25 0.50 1.00

More complex example

• After genotyping

Percy

Lola

Daisy

Matt

Bucket Hogget

Millet

John
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G=

1.13 0.08 0.04 0.45

0.08 0.91 0.14 0.32

0.04 0.14 1.12 0.62

0.45 0.32 0.62 1.10



Classical A (pedigree)

1.00 0.00 0.00 0.50 0.50 0.50  0.5 0.25 0.25  0.25  0.25  0.38  0.38  0.38

0.00 1.00 0.00 0.50 0.50 0.50  0.5 0.25 0.25  0.25  0.25  0.38  0.38  0.38

0.00 0.00 1.00 0.00 0.00 0.00  0.0 0.50 0.50  0.50  0.50  0.25  0.25  0.25

0.50 0.50 0.00 1.00 0.50 0.50  0.5 0.25 0.25  0.25  0.25  0.62  0.62  0.62

0.50 0.50 0.00 0.50 1.00 0.50  0.5 0.25 0.25  0.25  0.25  0.38  0.38  0.38

0.50 0.50 0.00 0.50 0.50 1.00  0.5 0.25 0.25  0.25  0.25  0.38  0.38  0.38

0.50 0.50 0.00 0.50 0.50 0.50  1.0 0.50 0.50  0.50  0.50  0.50  0.50  0.50

0.25 0.25 0.50 0.25 0.25 0.25  0.5 1.00 0.50  0.50  0.50  0.62  0.62  0.62

0.25 0.25 0.50 0.25 0.25 0.25  0.5 0.50 1.00  0.50  0.50  0.38  0.38  0.38

0.25 0.25 0.50 0.25 0.25 0.25  0.5 0.50 0.50  1.00  0.50  0.38  0.38  0.38

0.25 0.25 0.50 0.25 0.25 0.25  0.5 0.50 0.50  0.50  1.00  0.38  0.38  0.38

0.38 0.38 0.25 0.62 0.38 0.38  0.5 0.62 0.38  0.38  0.38  1.12  0.62  0.62

0.38 0.38 0.25 0.62 0.38 0.38  0.5 0.62 0.38  0.38  0.38  0.62  1.12  0.62

0.38 0.38 0.25 0.62 0.38 0.38  0.5 0.62 0.38  0.38  0.38  0.62  0.62  1.12

Full-sibs is 0.50

Unrelated is 0

Uncle-nephew is 0.38
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H (pedigree + markers)

1.13 0.08 0.04 0.60 0.60 0.60 0.65 0.45 0.34  0.34  0.34  0.52  0.52  0.52

0.08 0.91 0.14 0.50 0.50 0.50 0.50 0.32 0.32  0.32  0.32  0.41  0.41  0.41

0.04 0.14 1.12 0.09 0.09 0.09 0.09 0.62 0.61  0.61  0.61  0.35  0.35  0.35

0.60 0.50 0.09 1.05 0.55 0.55 0.58 0.38 0.33  0.33  0.33  0.72  0.72  0.72

0.60 0.50 0.09 0.55 1.05 0.55 0.58 0.38 0.33  0.33  0.33  0.47  0.47  0.47

0.60 0.50 0.09 0.55 0.55 1.05 0.58 0.38 0.33  0.33  0.33  0.47  0.47  0.47

0.65 0.50 0.09 0.58 0.58 0.58 1.09 0.62 0.59  0.59  0.59  0.60  0.60  0.60

0.45 0.32 0.62 0.38 0.38 0.38 0.62 1.10 0.62  0.62  0.62  0.74  0.74  0.74

0.34 0.32 0.61 0.33 0.33 0.33 0.59 0.62 1.10  0.60  0.60  0.48  0.48  0.48

0.34 0.32 0.61 0.33 0.33 0.33 0.59 0.62 0.60  1.10  0.60  0.48  0.48  0.48

0.34 0.32 0.61 0.33 0.33 0.33 0.59 0.62 0.60  0.60  1.10  0.48  0.48  0.48

0.52 0.41 0.35 0.72 0.47 0.47 0.60 0.74 0.48  0.48  0.48  1.23  0.73  0.73

0.52 0.41 0.35 0.72 0.47 0.47 0.60 0.74 0.48  0.48  0.48  0.73  1.23  0.73

0.52 0.41 0.35 0.72 0.47 0.47 0.60 0.74 0.48  0.48  0.48  0.73  0.73  1.23

Full-sibs is 0.55

“Unrelated” is 0.14

Uncle-nephew is 0.48

Because pedigree founders are related in G
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Some properties of H

• Semi-positive definite always

• Positive definite & invertible if & only if G is

invertible

• If everyone is genotyped, Single Step is GBLUP

• If no one is genotyped, Single Step is BLUP

• In practice, if G is too different from A22, this

gives lots of numerical problems

– (wrong pedigree or genotyping)

– very poor « compatibility »

49

H matrix

• H is then a relationship matrix constructed 

with markers and pedigree

• But Henderson taught us how to use 

relationship matrices of any kind

50



1 1 1

1 1 1 2 1

ˆ

ˆu

− − −

− − − − −

       
=    

+     

X R X X R W X R yb

WR X WR W H WR yu
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Single step GBLUP

1 1

1 1

22

− −

− −

= +  
 

− 

H A 0 0

0 G A

W: incidence matrix of 

animals on data

A: pedigree 
relationship matrix

G

This G could be any matrix describing
« genomic » covariances of breeding
values; 

it does not restrict to VanRaden’s (2008) 
GBLUP

A22: pedigree matrix among

genotyped individuals

Single Step = Your regular BLUP with small modifications

Single step GBLUP

• So the Single Step GBLUP is like regular

BLUP changing one small submatrix !!!

• It is almost too simple to be true…
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Single Step GBLUP

• Easy modification to a general purpose BLUP software
– Only changes: addition of 𝑮−1 and 𝑨22

−1

– Matrices 𝑮−1 and 𝑨22
−1 can be computed with external tools

• Can fit any model (probit, GxE,…)

• Simple extraction of SNP effects for indirect prediction or
(multimarker) GWAS:

• Avoids selection bias due to genomic preselection
(Patry & Ducrocq, 2011)
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Single Step GBLUP

• What models have we fit so far in SSGBLUP?
– Multiple traits ( up to 18 so far)

– Multiple trait + correlated genetic maternal effects 
(beef cattle)

– Random regressions (lactation curves)

– Threshold (probit) models

– Horse rankings (Thurstonian model)

• Anything that was fit in BLUP can be fit in 
SSGBLUP, changing A to H
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Details in ssGBLUP

1

2

Details in SSGBLUP
• Storage
• Inbreeding
• G is not invertible (« blending »)
• G might not explain all genetic variance (« blending »)
• Compatibility of G and A22

• Assumption p(u2)=N(0,G)
• If there is selection, mean is not 0 (« tuning » solves it: see Vitezica later)

• Same genetic variance in genotyped and ungenotyped animals

• Large data
• Unknown parent groups

• Need to modify H to include them (Misztal et al., 2013)
• Metafounders

• Crosses

• Computation
• APY
• Sherman-Woodbury
• « hybrid » model



3

Details in SSGBLUP
• Storage
• Inbreeding
• G is not invertible (« blending »)

• G might not explain all genetic variance (« blending »)
• Compatibility of G and A22

• Assumption p(u2)=N(0,G)
• If there is selection, mean is not 0 (« tuning » solves it: see Vitezica later)

• Same genetic variance in genotyped and ungenotyped animals

• Unknown parent groups
• Need to modify H to include them (Misztal et al., 2013)
• Metafounders

• Crosses

• Computation
• APY
• Sherman-Woodbury
• « hybrid » model

Storage
𝑯!𝟏 = 𝑨!𝟏 + 𝟎 𝟎

𝟎 𝑮!𝟏 − 𝑨##!$

𝑨!𝟏 is very sparse (9 elements /animal)
𝑮!𝟏 − 𝑨##!$ is very dense (number of genotyped animals2)
Efficient storage and handling using hash/ija/yams
When 𝑮!𝟏 − 𝑨##!$ is very big, use APY or similar methods

Manech Tete Rouse sheep: 
3000 animals (rams) genotyped 
500,000 animals pedigree.
𝑨!𝟏 ~ 36 Mb RAM
𝑯!𝟏 ~ 108 Mb 

Angus beef cattle: 
500,000 animals genotyped 
11M animals pedigree.
𝑨!𝟏 ~ 800 Mb RAM
𝑯!𝟏 has 350 ×10#elements ~ 2800 Gb !

4
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Details in SSGBLUP
• Storage

• Inbreeding
• G is not invertible (« blending »)

• G might not explain all genetic variance (« blending »)
• Compatibility of G and A22

• Assumption p(u2)=N(0,G)
• If there is selection, mean is not 0 (« tuning » solves it: see Vitezica later)

• Same genetic variance in genotyped and ungenotyped animals

• Unknown parent groups
• Need to modify H to include them (Misztal et al., 2013)
• Metafounders

• Crosses

• Computation
• APY
• Sherman-Woodbury
• « hybrid » model

Inbreeding

• Inbreeding 𝐹% is useful to:
• Monitor genetic diversity

• Obtain accuracies as 𝑎𝑐𝑐$ = 1 − %&'!
()*!

• Obtaining inbreeding in 𝑨 is easy 𝑭𝑨% = 𝑨%% − 1 (e.g. Meuwissen and 
Luo 1992)

• Obtaining inbreeding in 𝑮 is easy 𝑭𝑮% = 𝑮%% − 1 =
𝒛!𝒛!

"

𝟐∑+#,#
− 1

• Obtaining inbreeding in 𝑯 is very complicated !!
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Computing H inbreeding

𝐇 = 𝐀!! + 𝐀!"𝐀""#! 𝐆 − 𝐀"" 𝐀""#!𝐀"! 𝐀!"𝐀""#! 𝐆
𝐆𝐀""#!𝐀"! 𝐆

• We only need for individual i :

ℎ%% = 𝑎%% + 𝒂%,#𝐀##!$ 𝐆 − 𝐀## 𝐀##!$𝒂#,% = 𝑎%% + 𝒂#,%. 𝐌𝒂#,%
Or 

𝐹/! = 𝐹0! + 𝒂#,%
. 𝐌𝒂#,% = 𝐹0! + 𝑐%

• 𝒂#,% : relationships of i with all the genotyped individuals
• All the difficulty is computing correction 𝑐%

7

Inbreeding

• 3 methods (all rather technical)

• Not doing things well leads to unexpected results, i.e. negative 
accuracies

J. Dairy Sci. 103
https://doi.org/10.3168/jds.2019-17750
© American Dairy Science Association®, 2020.

ABSTRACT

The genomic measure of inbreeding is closer to the 
actual inbreeding than the pedigree-based measure. 
However, it cannot be computed for ungenotyped ani-
mals. An estimate of genomic inbreeding comes from the 
diagonal of matrix H used in single-step methods. This 
matrix projects genomic relationships to all ungeno-
typed members of the pedigree. The diagonal element 
of H−1 gives an estimate of the genomic inbreeding 
coefficient. However, so far no computational methods 
are available to compute the diagonal of H. Here we 
propose 3 exact methods to compute this diagonal. The 
first uses an already-existing algorithm to compute, for 
each ungenotyped individual, products of the form Hx 
to obtain the corresponding diagonal element of H. 
The second method computes, for each ungenotyped 
individual, a term that can be written as a quadratic 
form involving pedigree and genomic relationships. For 
both methods, the computational burden is linear in 
the number of ungenotyped animals. The last method 
reorders the computations of the second method so 
that they become linear in the number of genotyped 
animals, which is usually much smaller. We tested the 
methods in 3 small data sets (with ~2,000 genotyped 
animals and 30,000–500,000 animals in pedigree) and in 
a large simulated population (with 1,220,000 animals in 
pedigree and 36,000 genotyped animals). Tests resulted 
in satisfactory computing times (<10 min in the largest 
example using 10 parallel threads). Computing times 
were much shorter for the third method, as expected. 
Using these methods, estimates of genomic inbreeding 
in ungenotyped animals can be obtained on a regular 
basis.

Key words: single step, inbreeding, genetic variability, 
genomic selection

Short Communication

Wright (1922) conceived the inbreeding coefficient 
to measure the degree of inbreeding per individual. 
In pedigree-based analysis of populations, inbreeding 
coefficients or their summaries (i.e., averages per year 
of birth) are typically used (1) to describe the evolu-
tion of genetic diversity in populations (Falconer and 
Mackay, 1996), (2) as a covariate to model inbreeding 
depression (de Boer and Hoeschele, 1993), and (3) to 
derive individual accuracies from genetic evaluations 
(Van Vleck, 1993).

Because the genome is of finite size, pedigree-based 
inbreeding coefficients are only expectations of the real-
ized inbreeding coefficients (VanRaden, 2008; Hill and 
Weir, 2011). Information from genotypes allows more 
accurate genomic estimates of realized inbreeding coef-
ficients (VanRaden, 2007, 2008). For genotyped animal 
i, genomic inbreeding is obtained as FGi = Gii − 1, 
where G is the genomic relationship matrix (VanRaden, 
2008). The inbreeding coefficient describes deviations 
from Hardy-Weinberg, and therefore values of FG <0 
are interpreted as an individual more heterozygous 
than the average of the population. If base allele fre-
quencies are used in the computation of G, FG is an 
estimate of inbreeding relative to the base population 
(VanRaden, 2008). If arbitrary frequencies of 0.5 are 
used, then FG is related to molecular self-coancestry fM 
(or homozygosity, or identity by state at the markers) 

as 2 1
2
1 1f FM G= +( )+  (Garcia-Baccino et al., 2017).

When animals are not genotyped, a linear projection 
of genomic relationships (G) via pedigree relationships 
(A) is achieved in the single-step matrix H (Legarra et 
al., 2009; Christensen and Lund, 2010). With subscripts 
1 and 2 pertaining to ungenotyped and genotyped indi-
viduals, respectively, this matrix has the form

Short communication: Methods to compute genomic 
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1 |  INTRODUCTION

The purpose of genetic evaluations is to predict, with some 
uncertainty, the breeding value of animals. Model-based ac-
curacy (or its square, reliability) is used as a measure of risk 
in choosing parents of the next generation, and it condenses 
in a single number the uncertainty related to its breeding 
value. The measure of accuracy from BLUP theory is reg-
ularly used and reported in breeding evaluations (Misztal 
& Wiggans, 1988). The advent of genomic selection needs 

methods to ascertain individual accuracies (Edel, Pimentel, 
Erbe, Emmerling, & Götz, 2019), and the increasing se-
lection for complex traits (e.g. feed efficiency or methane 
emissions (Pryce et al., 2015)) needs measures of individ-
uals accuracies in small to medium size data sets. For his-
torical reasons of simplicity, inbreeding is often ignored in 
computations of accuracy from prediction error variance 
(PEV). Furthermore, often, pedigree inbreeding is also ig-
nored in the computation of the inverse relationship matrix 
(A-inverse) using Henderson’s (1976) rules, which results in 
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Abstract
Model-based accuracy, defined as the theoretical correlation between true and esti-
mated breeding value, can be obtained for each individual as a function of its pre-
diction error variance (PEV) and inbreeding coefficient F, in BLUP, GBLUP and 
SSGBLUP genetic evaluations. However, for computational convenience, inbreed-
ing is often ignored in two places. First, in the computation of reliability = 1-PEV/
(1 + F). Second, in the set-up, using Henderson's rules, of the inverse of the pedi-
gree-based relationship matrix A. Both approximations have an effect in the com-
putation of model-based accuracy and result in wrong values. In this work, first we 
present a reminder of the theory and extend it to SSGBLUP. Second, we quantify 
the error of ignoring inbreeding with real data in three scenarios: BLUP evaluation 
and SSGBLUP in Uruguayan dairy cattle, and BLUP evaluations in a line of rabbit 
closed for >40 generations with steady increase of inbreeding up to an average of 
0.30. We show that ignoring inbreeding in the set-up of the A-inverse is equivalent 
to assume that non-inbred animals are actually inbred. This results in an increase of 
apparent PEV that is negligible for dairy cattle but considerable for rabbit. Ignoring 
inbreeding in reliability = 1-PEV/(1 + F) leads to underestimation of reliability for 
BLUP evaluations, and this underestimation is very large for rabbit. For SSGBLUP 
in dairy cattle, it leads to both underestimation and overestimation of reliability, both 
for genotyped and non-genotyped animals. We strongly recommend to include in-
breeding both in the set-up of A-inverse and in the computation of reliability from 
PEVs.
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“implied wrong” inbreeding (as in Figure 2 for some animals 
with zero inbreeding), there is an extra increase of 0.5% in 
PEV. Figure 3 shows (correct) PEV  versus. (incorrect) PEV∗

. There is actually quite good agreement and little dispersion. 
Correlation for PEV  and PEV∗ is greater than 0.99, and there 
is no observable bias (i.e. PEV∗ is on average neither larger 
nor smaller than PEV) and the regression of PEV  on PEV∗ is 
very close to 1.

3.2 | Dairy cattle: Effect of ignoring 
inbreeding in the computation of the reliability

In Figure 4, we present the results comparing the (worse pos-
sible) expression of repeatability, rel∗=1−

PEV∗

!2
u

 with the (cor-

rect) rel=1−
PEV

(1+Fi)!2
u

. We choose not to present intermediate 

cases, for example with incorrect numerator but correct de-
nominator as this makes presentation cumbersome. In the first 
case, inbreeding is ignored both in the construction of A−1 and 
H

−1 (and therefore in the MME) and in the computation of 
reliability from PEV, which is the default option of many soft-
ware such as BLUPF90 or PEST. The second case is the theo-
retically sound option. It can be seen that ignoring inbreeding 
systematically underestimates reliability in BLUP while in 
SSGBLUP there is over and underestimation of reliability.

Another issue with ignoring Fi is that some animals will 
obtain a PEV* greater than !2

u
 having thus a negative reliabil-

ity. This will also mean that for highly inbred animals with 
little information (and therefore large PEV*), accuracy will 
not be computed since the square root of rel∗=1−

PEV∗

!2
u

 is not 

a real number for rel∗<0.

3.3 | Rabbit

The effect of ignoring inbreeding in the relationship matrices 
is dramatic and shown in Figure 5. In fact, the assumed 

F I G U R E  4  Correct reliability dividing PEV by inbreeding (X-axis) or not (Y-axis) for Uruguayan dairy cattle. Colours indicate candidates to 
selection, cows and bulls

F I G U R E  5  True self-relationships (Aii) versus. implied self-
relationships (A∗

ii
) (using Henderson's rules and ignoring inbreeding) in 

the “A” rabbit line

Correct reliability

Incorrect reliability
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Throughout this paper, we assume that matrices G 
and A are compatible, either using base allele frequen-
cies in the computation of G (VanRaden, 2008) or, if 
these are not available, integrating over the unknown 
distribution of allele frequencies (Christensen, 2012) 
through the theory of metafounders (Legarra et al., 
2015; Garcia-Baccino et al., 2017). Such compatibility 
is needed for correct estimates, although the algorithms 
below do not assume such compatibility.

It is generally accepted that relationships across all 
individuals are better described by H than by A (Meu-
wissen et al., 2016). Thus, inbreeding can be estimated 
as FHi = Hii − 1 (i.e., through the diagonal of H). For 
genotyped individuals, FHi = FGi = Gii – 1 [i.e., Van-
Raden’s (2008) estimator of inbreeding]. For ungeno-
typed individuals, the estimator is obtained as the di-
agonal of section H A A A G A A A11 11 12 22

1
22 22

1
21= + −( )− −  

minus 1. It is of interest to obtain these elements (i.e., 
FHi = Hii − 1 for ungenotyped individuals) first, to use 
comparable statistics of inbreeding for both genotyped 
and ungenotyped animals, and second, to extract the 
maximum information from the data (e.g., ungenotyped 
offspring from genomically related mates should be in-
bred).

Computational evaluation procedures of single-step 
genomic BLUP use the inverse of H, so that the diago-
nal elements of H are not explicitly obtained. Recently, 
for computing evaluation accuracies, Xiang et al. (2017) 
computed the diagonal of H11 based on the sparse in-
verse (Takahashi et al., 1973) of the sparse matrix H−1. 
This procedure is too time and memory consuming for 
large data sets. For management of genomic variability 
in populations with partial genotyping (optimizing con-
tributions of candidates for breeding), Colleau et al. 
(2017) presented a fast method to compute an opera-
tional section of H vector-wise, where the diagonal ele-
ments of this section are by-products. This method was 
an extension of Colleau’s (2002) indirect method con-
cerning matrix A (the pedigree relationship matrix) 
and involved the calculation of vector products Gx and 
A x22
1− , where x vectors are working vectors. However, 

Colleau et al.’s (2017) method might be time consum-
ing if the objective were to compute FHi for every 
ungenotyped individual in large populations. Thus, a 
fast method for computing the genomic inbreeding of 
ungenotyped individuals in large populations is needed.

Here we present 3 exact methods to compute the 
diagonal of H. The first method is a straightforward 

application of Colleau et al. (2017). The second method 
computes the full algebraic expression of the diagonal 
term for every ungenotyped individual. The third 
method is a vector extension of the second method, 
considerably reducing computation time. Three ex-
amples are given from dairy goat, dairy sheep, and a 
simulated dairy cattle population.

Let us consider a population pedigree of size n, where 
n1 individuals are ungenotyped and n2 individuals are 
genotyped. Computing the estimated genomic inbreed-
ing coefficients of the ungenotyped individuals requires 
computing the diagonal of section H11 of the full ge-
nomic relationship matrix H. This section is equal to 
section A11 of relationship matrix A plus the correction 
matrix A A G A A A12 22

1
22 22

1
21

− −−( ) .
We will talk in the following about procedures. These 

can be seen as subroutines or functions, programmed 
efficiently. Procedure Ax involves the computation of 
product Ax with an appropriate algorithm (Colleau, 
2002). Procedures Gt and A t22

1−  are used for the compu-
tation of 2 matrix products, Gt and A t22

1− , where vectors 
t are working vectors of size n2. These products can be 
computed using various numerical methods (Colleau et 
al., 2017). Finally, procedure Hx uses the 3 preceding 
procedures to compute the product Hx (Colleau et al., 
2017).

Method 1

Consider vector ′ = 

x x x1 2

' '  of size n = n1 + n2. 
Vector x contains 0 values except for a single 1 for the 
ungenotyped individual considered. Then, method 1 
consists of computing y = Hx n1 times (one time for 
each ungenotyped individual) using procedure Hx and 
collecting each time the appropriate element of vector 
y, which is the corresponding element of the diagonal of 
H. Finally, products Ax, Gt, and A t22

1−  are used 2n1, n1, 
and 2n1 times, respectively.

Method 2

For ungenotyped animals, Hii = Aii + ci and FHi = 
FAi + ci, where FAi is the pedigree inbreeding coeffi-
cient. The correction term ci is equal to the quadratic 
ci i i i i i i= − =− − −a a a a a a, , , , , , ,2 22

1
22
1
2 2 22

1
2 2 2A GA A M'  where 

a ai i, ,  2 2
' =  (the ith column of matrix A21) is the vector 

of relationships between ungenotyped individual i with 
all the genotyped individuals and M A G A A= −( )− −

22
1

22 22
1.

As a result, procedure Ax, procedure Gt, and proce-
dure A t22

1−  are used n1 times, which almost halves the 
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Obtaining overall measures of diversity

• Optimal Contribution
• If you select bulls in list x and cows in list y, the expected future 

inbreeding is 𝒚.𝑯𝒙 = 𝒚.(𝑯𝒙)
• Optimal contribution methods optimize the lists to minimize 

inbreeding while keeping genetic progress (e.g. choosing two cousins 
instead of two sibs)
• For the pedigree information, obtaining 𝑨𝒙 is very easy using the 

algorithm by Colleau (2002)
• Modification of the algorithm to obtain 𝑯𝒙

9

Obtaining overall measures of diversity

• Global measures of diversity (e.g. average relationship of all young 
bulls) can be obtained as 𝒙.𝑯𝒙 = 𝒙.(𝑯𝒙)
• Obtaining 𝑨𝒙 is very easy using the algorithm by Colleau
• Modification of the algorithm to obtain 𝑯𝒙

Colleau et al. Genet Sel Evol  (2017) 49:87 
https://doi.org/10.1186/s12711-017-0363-9

RESEARCH ARTICLE

A fast indirect method to compute 
functions of genomic relationships 
concerning genotyped and ungenotyped 
individuals, for diversity management
Jean-Jacques Colleau1, Isabelle Palhière2, Silvia T. Rodríguez-Ramilo2 and Andres Legarra2* 

Abstract 
Background: Pedigree-based management of genetic diversity in populations, e.g., using optimal contributions, 
involves computation of the Ax type yielding elements (relationships) or functions (usually averages) of relationship 
matrices. For pedigree-based relationships A, a very efficient method exists. When all the individuals of interest are 
genotyped, genomic management can be addressed using the genomic relationship matrix G; however, to date, the 
computational problem of efficiently computing Gx has not been well studied. When some individuals of interest 
are not genotyped, genomic management should consider the relationship matrix H that combines genotyped and 
ungenotyped individuals; however, direct computation of Hx is computationally very demanding, because construc-
tion of a possibly huge matrix is required. Our work presents efficient ways of computing Gx and Hx, with applications 
on real data from dairy sheep and dairy goat breeding schemes.

Results: For genomic relationships, an efficient indirect computation with quadratic instead of cubic cost is 
x = Z

(
Z′x

)
/k, where Z is a matrix relating animals to genotypes. For the relationship matrix H, we propose an indirect 

method based on the difference between vectors Hx − Ax, which involves computation of Ax and of products such 
as Gw and A−1

22
w, where w is a working vector derived from x. The latter computation is the most demanding but can 

be done using sparse Cholesky decompositions of matrix A−1, which allows handling very large genomic and pedi-
gree data files. Studies based on simulations reported in the literature show that the trends of average relationships 
in H and A differ as genomic selection proceeds. When selection is based on genomic relationships but management 
is based on pedigree data, the true genetic diversity is overestimated. However, our tests on real data from sheep and 
goat obtained before genomic selection started do not show this.

Conclusions: We present efficient methods to compute elements and statistics of the genomic relationships G and 
of matrix H that combines ungenotyped and genotyped individuals. These methods should be useful to monitor and 
handle genomic diversity.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Optimal contribution [1–3] is a method of choice for 
the management of genomic diversity. In this method, 
reproducers are chosen such that the expected genetic 
gain and expected increase in homozygosity are properly 

weighted. !e increase in homozygosity is estimated 
based on average relationships between selected indi-
viduals, and in livestock these relationships are usually 
pedigree-based. Such measures of diversity can be repre-
sented as x′Kx where K is a matrix of relationships and 
x a vector of contributions to the next generation. Opti-
mizing contributions in x is a non-linear problem that 
requires repeated computation of x′Kx, where the most 
difficult part is the computation of Kx. In the case of 
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estimation methods for parameter γ. !e metafounder 
approach extends easily to several breeds or origins (e.g. 
genetic groups) by considering !, a matrix extension of γ, 
and this also provides an elegant solution to the problem 
of computing relationships including unknown parent 
groups [17], a case for which relationship is not a well-
defined concept. As a result, we considered the meta-
founder approach to be adequate for the monitoring and 
management of genetic variability.

Direct computation of matrix product Hx
!e following algorithms to compute Hx use the pedi-
gree-based matrix A [24] and they are exactly the same 
when including metafounders in A[Γ ] [21].

Matrix H has the following components:

Let y = Hx =

(

y1
y2

)

=

(

H11 H12

H21 H22

)(

x1
x2

)

 be the 

product of matrix H by any vector x. !e matrix expres-
sion of y2 = H21x1 +H22x2 = GA−1

22 A21x1 +Gx2 
is fairly simple compared to the expression  
of y1 = H11x1 +H12x2 =

(

A11 + A12A
−1

22
(G− A22)A

−1

22
A21

)

x1 + A12A
−1

22
Gx2 due to the complexity of H11. If w 

denotes a working vector, intermediate computations 
such as Gw, Aw (indirect method) and A−1

22 w (iterative 
or exact solving) are involved. !e computation sequence 
that has to be carried out in order to obtain H11x1 is quite 
long. Fortunately, results can be obtained more efficiently 
by an indirect method as detailed below.

An indirect computation of matrix product Hx
!e computation method is indirect for two reasons. 
First, because it uses the difference d = y − z between 
y = Hx and z = Ax. Second, the method exploits the 
very simple expression of the inverse matrix H−1 [12, 25]:

so that 

H11 = A11 + A12A
−1
22 (G− A22)A

−1
22 A21,

H12 = A12A
−1
22 G,

H21 = GA−1
22 A21,

H22 = G.

H−1
= A−1

+

(

0 0

0 G−1
− A−1

22

)

,

AH
−1

=I+ A

(

0 0

0 G−1
− A

−1

22

)

= I+





0 A12

(

G−1
− A

−1

22

)

0 A22

(

G−1
− A

−1

22

)



.

To obtain d, note that x = H−1y. !en:

Consequently,

and

!en, we obtain d2 = y2 − z2.
From Eq. (1), we obtain z1 = y1 + A12

(

G−1
− A−1

22

)

y2 , 
whereas from Eq.  (2) we obtain 
(

G−1
− A−1

22

)

y2 = −A−1
22 d2, leading to:

Finally, y1 = z1 + d1. !en, computing y1 through the 
indirect method is as simple as for y2, in total contrast 
with the direct method.

To summarize, in order to compute y = Hx:

1. Compute z = Ax using [4],
2. Compute y2 = GA−1

22 z2 = G
(

A−1
22 z2

)

,
3. Compute d2 = y2 − z2,
4. Compute d1 = A12A

−1
22 d2,

5. Compute y1 = z1 + d1. !is is the final step.

Efficient solving
Product GA−1

22 z2 can be obtained as G times vector A−1
22 z2 , 

using the fast method for Gx described before. !e main 
numerical hurdle consists in solving linear equation sys-
tems that involve A22, a full matrix. Replacing these sys-
tems by others that involve matrix A11, a sparse matrix, is 
appropriate because A−1

22 = A22
− A21

(
A11

)
−1

A12. Fur-
thermore, it is less time-consuming to restrict this equa-
tion to the genotyped individuals and their ancestors [26, 
27]. If B denotes the relationship matrix corresponding to 
such a pedigree, then A−1

22 = B22
− B21

(
B11

)
−1

B12.
When programming, it can be handled as follows. For 

any working vector w, let function f (w) return A−1
22 w by 

extracting section  2 of vector B−1

(

−

(

B11
)

−1
B12w

w

)

 , 

where products by B−1 and B12 can be obtained by the 
indirect method, and the linear equations involving 
matrix B11 can be solved by sparse matrix techniques 
[26, 28, 29]. Finally, Eq.  (3) becomes y2 = Gf (z2) and 

(1)z = Ax = AH−1y = y +





0 A12

(

G−1
− A−1

22

)

0 A22

(

G−1
− A−1

22

)



y

(2)z2 = y2 + A22

(

G−1
− A−1

22

)

y2,

(3)y2 =
(

I+ A22

(

G−1
− A−1

22

))

−1
z2 = GA−1

22 z2.

(4)d1 = A12A
−1
22 d2.
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Details in SSGBLUP
• Storage
• Inbreeding

• G is not invertible (« blending »)
• G might not explain all genetic variance (« blending »)
• Compatibility of G and A22

• Assumption p(u2)=N(0,G)
• If there is selection, mean is not 0 (« tuning » solves it: see Vitezica later)

• Same genetic variance in genotyped and ungenotyped animals
• Unknown parent groups

• Need to modify H to include them (Misztal et al., 2013)
• Metafounders

• Crosses

• Computation
• APY
• Sherman-Woodbury
• « hybrid » model



Blending and compatibility

• These are two different things
• Many people don’t understand this
• “compatibility” or “tuning” tries to put G and A in the same scale
• “blending” :

• assigns part of the genetic variance to pedigree – not markers
• at the same time used to have an invertible G.

• we have seen this in the GBLUP part
• I will explain now why this might be important

13
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Details in SSGBLUP
• Storage
• Inbreeding
• G is not invertible (« blending »)
• G might not explain all genetic variance (« blending »)

• Compatibility of G and A22
• Assumption p(u2)=N(0,G)

• If there is selection, mean is not 0 (« tuning » solves it: see Vitezica later)
• Same genetic variance in genotyped and ungenotyped animals

• Unknown parent groups
• Need to modify H to include them (Misztal et al., 2013)
• Metafounders

• Crosses

• Computation
• APY
• Sherman-Woodbury
• « hybrid » model



Compatibility of marker and pedigree
relationships
• Populations evolve with time, but genotypes came years after

pedigree started
• Underlying hypothesis false: 

• Christensen & Lund (base allelic frequencies known) 
• Legarra et al. (average genetic value does not change) 

• Genomic Predictions may be shifted from Pedigree Predictions
• and make them not directly comparable

15

Wiggans, 2013RL meeting, Aug. 15 (16)

U.S. dairy population and milk yield

Pedigree 
start

Massive 
genotyping 
starts

Oldest bulls 
have been 
genotyped



60

80

100

120

140

160

180

200

220

60

80

100

120

140

160

180

200

220

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
20

00
20

01
20

02
20

03
20

04
20

05
20

06
20

07
20

08
20

09
20

10
20

11
20

12
20

13
20

14
20

15
20

16
20

17

La
it 

(li
tr

es
)
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2000 – 2017                            
DP /year : 4,9 litres         
DG /year: 2,7 litres 

Milk Yield Genetic and Herd-year trend

MANECH TETE NOIRE

Pedigree 
starts

genotyping 
starts

This Δ𝐺 from “pedigree start” 
to “genotype starts” needs to 
be considered

17

MY
Genetic trend

Herd-year trend

Compatibility of marker and pedigree
relationships
• The population for which average 𝒖 = 0 and for which the genetic

variance is defined is called the genetic base
• Founders of the pedigree in classical A
• Whole set of genotyped animals in most typical G

• Typically, genotyped animals come after pedigree starts
• e.g. Lacaune sheep pedigree go back to 1960 but genotypes start in 1995

• Drift (and selection) causes :
• Average genetic values “drift” (in particular in small populations)
• Genetic variance reduces

18



Reduction of genetic variance

Long-term selection experiments (Weber, 1996) 
Two populations of Drosophila selected for performance in a wind tunnel 
with effective sizes 500-1000 and selected proportion of 4.5%.  

Relaxation and competitive fitness test indicated minimal or no 
fitness cost in selected lines 

  

41 

254

19

Cut data

• For practical purposes, you only need a few years of data
• Simplest thing: cut old data and pedigree
• Then there is no problem of selection and 𝑝!"#$ ≈ 𝑝%&''$()
• Lourenco (2014) did this with good results
• Many breeds are reluctant because they feel that they loose 

information

20
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Force G to be similar to A

𝑝 𝒖" = 𝑁(𝟎, 𝑮𝜎$")

𝑝 𝒖 = 𝑁(𝟎, 𝑨𝜎$")

Setting both to 0 
does not make 

sense
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Vitezica et al. 2011 included the Δ𝐺 explicitely as un unknown 𝜇

• 𝜇 is random because 𝜇 = Δ𝐺 = 𝒖! =
"
#𝟏

$𝒖!
• 𝜇 has variance Var Δ𝐺 = 𝛼 = 𝑉𝑎𝑟 𝑢! = "

#!!
𝟏$𝑨!!𝟏 for typical G

• Fernando et al. (2014, 2016) method of J- coefficients consider 𝜇 as 
fixed

Force G to be similar to A

𝑝 𝒖" = 𝑁(𝟏𝜇, 𝑮𝜎$")

𝑝 𝒖 = 𝑁(𝟎, 𝑨𝜎$")

Setting both to 0 
does not make 

sense
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Force G to be similar to A

• You can include explicitly:

• Or implicitly (equivalent model)

Instead, we used a linear model assuming multivariate
normality.

In practice, the relevance of the criterion used de-
pends on the selection schemes. If the parents of the
next generation come from (and only from) geno-
typed selection candidates, then accuracy is the cri-
terion to maximize, because selection candidates
share a common mean (i.e. they belonged to the same
generation) and thus bias is not a concern.

If for different candidates there are different
amounts of information (e.g. comparing progeny-
tested males vs. newborn animals), PEV or MSE have
to be considered. For example, in the presence of bias,
genetic gain is over (or under) estimated. Thus, new-
borns are thought to be better than what they are. In
this case, MSE is possibly the criterion of choice, be-
cause it also includes bias. For instance, Roehe &
Kennedy (1993), who showed that a wrong model
resulted in an artificial overestimation of genetic
trend, which raised the estimated merit of young
selection candidates. Similarly, inflation (b<1, which
is included in PEV or MSE but not in accuracy) re-
sults in exaggeration (both over and under) of esti-
mated genetic merit of newborns with respect to
progeny-tested animals.

However, accuracy is currently used to assess
genomic prediction methods in cross-validation stu-
dies (e.g. VanRaden et al., 2009a), although bias is
becoming an increasing concern (e.g. Luan et al.,
2009; VanRaden et al., 2009b ; Mäntysaari et al.,
2010). Consideration of bias, accuracy and inflation,
possibly through MSE, is strongly recommended
for the comparison of future genomic selection stra-
tegies.

5. Conclusion

Overall, a single-step genomic prediction method with
corrected G (BLUPa or BLUPFST

) was unbiased,
similarly inflated and more accurate than other

procedures even in the presence of selection. The
corrected G is an appropriate methodological sol-
ution that takes into account the effect of non-random
genotyping (due to strong selection) on prediction.
The results clearly showed that a single-step genomic

prediction approach is promising for animal/plant
breeding.
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jects AMASGEN and SheepSNPQTL and POCTEFA
project Genomia (AL). The project also was partly sup-
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Appendix

Genetic group model for unbiased genomic predictions

From the model of unbiased genomic predictions
presented in section (i), we have that

p(u1jm)!N(A12A
x1
22 1m, (A11)x1s2

u+A12A
x1
22 GAx1

22 A21s
2
u);

p(u2|m)yN(1m, Gsu
2),

and p(u|m)yN(Qm, Hsu
2), where H is according to

eqn (1) and Q is Q= A12A
x1
22 1

1

! "
.

The setting is like a genetic group model (Quaas,
1988) and equivalent mixed-model equations, which
yields the same solutions for b and u, is derived as in
Quaas (1988) as

XkX XkZ 0
ZkX ZkZ+Hx1l xHx1Ql
0 xQkHx1l QkHx1Ql+ax1l

2

4

3

5

r
b
u
m

2
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3

5=
Xky
Zky
0

2

4

3

5:

The above expression is simplified by computing
the product QkHx1 as

Note that A21=xAx1
22 A21A

11 and A22=
Ax1

22 xA21A12A
x1
22 =Ax1

22 xAx1
22 A21A

12. We can see that
xQkHx1=x 0 1kGx1

# $
and the product

QkHx1Q=1kGx11, which is simply the sum of its
elements.

xQkHx1=x 1kAx1
22 A21 1

# $
A11 A12

A21 A22+Gx1xAx1
22

2

64

3

75

= x1kAx1
22 A21A

11x1A21 x1Ax1
22 A21A

12x 1 A22+Gx1xAx1
22

% &# $

= x1kAx1
22 A21A

11x1A21 x1 Ax1
22 A21A

12+A22xAx1
22

% &
x1Gx1# $

:
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G+11ka. The mixed model equations are

XkX XkZ
ZkX ZkZ+H#x1l

! "
b
u

! "
= Xky

Zky

! "
,

where

H#x1= A11 A12

A21 A22+(G+11ka)x1xAx1
22

! "
: (2)

An equivalent model for unbiased genomic predic-
tions based on a genetic group model (Quaas, 1988) is
shown in the appendix.

To determine why m can be presumed as a random
variable and obtain the value of a, traditional best-
linear unbiased prediction (BLUP) will be assumed to
be unbiased and able to account properly for selection
and drift (Sorensen & Kennedy, 1984). We suggest
that the mean value m of genetic effects of genotyped
individuals u2 can be expressed as m=1

n1ku2, where n is
the number of individuals. Since m is a function of
random variables, it is a random variable in itself. The
variable m can be estimated from either pedigree (mp)
or single-step (ms) procedures. If genetic prediction
based on pedigree (and phenotypic data) is unbiased
and accounts for selection and drift, the distribution
of mp accounts properly for bias, selection and drift as
well. The prior distributions for genetic values of u2
are u2pyN(0, A22su

2) and u2syN(0, (G+11ka)su2) ;
thus, the distribution of m is mp ! N 0, 1

n2 1kA221s
2
u

# $

and

ms ! N 0,
1

n2
1k(G+11ka)1s2

u

% &

=N 0,
1

n2
1k G+

a " " " a

..

. ..
.

a " " " a
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B@
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B@
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CA:

Since the 1k1 are simply summations,

var(mp)=s2
u

1

n2
g
i

g
j

A22(i, j) (3)

and

var(ms)=s2
u a+

1

n2
g
i

g
j

Gi, j

 !

: (4)

In order to construct a model with features similar to
pedigree-based BLUP, we equate the two variances in
eqns (3) and (4) and this gives

a=
1

n2
g
i

g
j

A22(i, j)xg
i

g
j

Gi, j

 !

: (5)

Thus, a is simply the difference between means for A22

and G. The a accounts for the fact that genotyped
animals in u2 are more related through pedigree

(in reference to the base population), which is cor-
rectly considered in A22. The genomic relationship
matrix G does not correctly reflect this fact, especially
if current allele frequencies are used, which sets the
genomic base as the genotyped individuals (Oliehoek
et al., 2006; Van Raden, 2008). For G to be correct,
base allele frequencies would be required. In practice,
current allele frequencies are used because base allele
frequencies are difficult to estimate. For a population
of unrelated individuals where A22=I, a=0.

From Wright’s FST, another interpretation of a is
also possible. The FST can be defined as the mean re-
lationship between gametes in a recent population
with respect to an older base population (Cockerham,
1969, 1973; Powell et al., 2010). Then A22 involves
relationships of genotyped individuals with reference
to the base population, and G corresponds to re-
lationships within the current population.
Consequently, a is equal to twice FST; the factor of
two is needed because FST is referred to as co-ances-
tries, which are half individual additive relationships.
The correction suggested by Powell et al. (2010) is
Fold=Fnew+(1xFnew) FST, which is equivalent to
Gx= 1x1

2a
# $

G+11ka and similar to our suggestion.

(ii) Simulations

To evaluate the effectiveness of the proposed ap-
proach for genomic prediction, two selection scenar-
ios with different heritabilities were simulated. The
simulator QMSim (Sargolzaei & Schenkel, 2009) was
used to generate historical (undergoing drift and mu-
tation) and recent (undergoing selection) population
structures. In total, 10 chromosomes of equal length
(100 cM) were simulated. Biallelic markers (10 000)
were distributed at random along the chromosomes
with equal frequency in the first generation of the
historical population. Potentially, 250 QTLs affect the
phenotype; QTLs allele effects were sampled from a
Gamma distribution with a shape parameter of 0.4.
The mutation rate of the markers (recurrent mutation
process) and QTL was assumed to be 2.5r10x5 per
locus per generation (Solberg et al., 2008).

First, a base population of 200 males and 2600 fe-
males was generated by mutation and drift over 100
generations (t) in a historical population with an ef-
fective population size of 100 (t=1–95) and gradually
expanded to 3000 offspring (t=100). Then, 10 gen-
erations (t=101–110) of selection for a sex-limited
trait with a phenotypic variance of 1 were simulated.
Three heritabilities (0.05, 0.30 and 0.50) were used to
examine the effect of heritability on genomic predic-
tions. In each generation, 200 males were mated to
2600 females to produce 2600 offspring following
random phenotype (PY) or positive assortative (mat-
ings among best males and females based on esti-
mated breeding values (EBVs) ; PEBV) designs. For the
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Force G to be similar to A

• The method has an interesting genetic interpretation
• Using 𝑮 ← 𝑮 + 𝟏𝟏9𝛼 forces G to yield same “average relationship” 

than 𝑨::

• But we forgot something…
• There is reduction in the genetic variance
• This reduction is contained in the inbreeding coefficients
• Thus, we should have diag 𝑮 ≈ 𝑑𝑖𝑎𝑔(𝑨::)
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Force G to be similar to A

• Vitezica et al. (2011) and Christensen et al. (2012) provided an
unbiased method that forces the same genetic base across G and A :

𝑮∗ = 𝑎 + 𝑏𝑮

• 𝑎 accounts for old relationships among non genotyped ancestors
• 𝑏 accounts for reduction in the genetic variance

𝑎 + 𝑏	.𝑮 = .𝑨??

𝑎 + 𝑏 𝑑𝑖𝑎𝑔(𝑮) = 𝑑𝑖𝑎𝑔 𝑨𝟐𝟐

25

Does actually G resemble A?

• If pedigree is good and genotyping is good, yes
• Usually

• 𝐶𝑜𝑟 𝐴??$A, 𝐺$A ≈ 0.8

• 𝐶𝑜𝑟 𝐹BCD$EFCC$, 𝐹ECGHI$J$ ≈ 0.5

• Useful for quality control
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Does actually G resemble A?
Table 2 Statistics for coefficient differences between genomic (G) and numerator (A) relationship matrices for genotyped chickens

Quality control level G – A coefficient measure Number of animal pairs Minimum Maximum Mean Standard deviation

None Diagonals 4940 !0.53 3.11 0.000 0.083

Off-diagonals 12 199 330 !0.58 1.15 0.000 0.036

Parent-progeny pairs 6115 !0.58 0.16 !0.040 0.094

Full-sib pairs 9970 !0.19 0.18 !0.016 0.050

Half-sib pairs 69 154 !0.18 0.16 !0.014 0.041

Weak1 Diagonals 4727 !0.52 0.88 0.000 0.062

Off-diagonals 11 169 901 !0.57 1.03 0.000 0.036

Parent-progeny pairs 5377 !0.32 0.17 !0.016 0.044

Full-sib pairs 9130 !0.19 0.18 !0.017 0.050

Half-sib pairs 59,930 !0.18 0.16 !0.015 0.040

Strong2 Diagonals 4667 !0.18 0.84 0.000 0.048

Off-diagonals 10 888 111 !0.57 1.02 0.000 0.037

Parent-progeny pairs 5259 !0.16 0.17 !0.011 0.034

Full-sib pairs 9126 !0.19 0.18 !0.017 0.050

Half-sib pairs 59 870 !0.18 0.16 !0.015 0.040

1Call rate of ≥ 0.7.
2call rate of ≥ 0.9.

Figure 1 Distribution of diagonal differences between genomic (G) and numerator (A) relationship matrices for genotyped chickens. Differences

(G ! A) in diagonal coefficients were examined under no quality control (None) for genotypic data, weak quality control (Weak, call rate of ≥ 0.7), and

strong quality control (Strong, call rate of ≥ 0.9). Frequencies (on y-axis) were in log scale to show bars with low counts.
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Summary

This work studied differences between expected (calculated from pedi-

gree) and realized (genomic, from markers) relationships in a real popula-

tion, the influence of quality control on these differences, and their fit to

current theory. Data included 4940 pure line chickens across five genera-

tions genotyped for 57 636 SNP. Pedigrees (5762 animals) were available

for the five generations, pedigree starting on the first one. Three levels of

quality control were used. With no quality control, mean difference

between realized and expected relationships for different type of relation-

ships was ≤ 0.04 with standard deviation ≤ 0.10. With strong quality con-

trol (call rate ≥ 0.9, parent-progeny conflicts, minor allele frequency and

use of only autosomal chromosomes), these numbers reduced to ≤ 0.02

and ≤ 0.04, respectively. While the maximum difference was 1.02 with

the complete data, it was only 0.18 with the latest three generations of

genotypes (but including all pedigrees). Variation of expected minus real-

ized relationships agreed with theoretical developments and suggests an

effective number of loci of 70 for this population. When the pedigree is

complete and as deep as the genotypes, the standard deviation of differ-

ence between the expected and realized relationships is around 0.04, all

categories confounded. Standard deviation of differences larger than 0.10

suggests bad quality control, mistakes in pedigree recording or genotype

labelling, or insufficient depth of pedigree.

Introduction

Pedigree-based relationships in the numerator

relationship matrix (A), are measures of expected

relationships (Wright 1934), and unrelated founders

are usually assumed. The value assigned to such rela-

tionships depends on the depth and completeness of

pedigree (Cole & Franke 2002; Cassell et al. 2003). For

animals that are not connected by pedigree, the rela-

tionship value is zero, although methods exist for the

case of incomplete pedigrees (VanRaden 1992;

Lutaaya et al. 1999).

Whereas pedigree-based relationships are expecta-

tions of genome sharing of two individuals, actual (or

realized) relationships in nature differ from that

expectation because genome size is finite and loci are

linked (VanRaden 2008; Hayes et al. 2009). These

deviations are in the core of increased accuracy of

genomic predictions (Hayes et al. 2009). For instance,

at a single locus, two full sibs may share none, one or

both alleles. The extent of deviations of realized from

expected pedigree-based relationships has been esti-

mated either considering linkage and pairs of individ-

uals (Hill & Weir 2011), or considering a general

© 2014 Blackwell Verlag GmbH • J. Anim. Breed. Genet. 131 (2014) 445–451 doi:10.1111/jbg.12109
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Force A to be similar to G

• Christensen (2012) suggests fitting A to G instead of the opposite
• A depends on pedigree completion
• Good for chicken, bad for the rest
• Ancestral relationships that can be seen in G go undetected in A

• Christensen analitically integrates out 𝑝; (=allele frequencies) in a 
model that
• uses 𝑝 = 0.5 as reference in ALL loci and builds 𝑮KL
• uses a relationship matrix 𝐀M with related founders
• The parameter 𝛾 is the relationship across founders such that we see

“current” genomic relationships
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Relationship across founders

Classically we assume

𝑨 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

• Christensen changes this into:

𝐀% =

1 +
𝛾
2

𝛾 𝛾 𝛾

𝛾 1 +
𝛾
2

𝛾 𝛾

𝛾 𝛾 1 +
𝛾
2

𝛾

𝛾 𝛾 𝛾 1 +
𝛾
2

we have seen this before. The 𝛾	can also be introduced using a single metafounder
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Big Data
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Big Data

• Angus beef cattle: 
• 500,000 animals genotyped 
• 11M animals pedigree.
• 𝑨!𝟏 ~ 800 Mb RAM
• 𝑯!𝟏 has 350 ×10#elements ~ 2800 Gb !

• Imagine that we have to deal only with 500,000 animals genotyped 
• 𝑮C𝟏 is a 500,000×500,000 matrix
• 𝑨𝟐𝟐C𝟏 is a 500,000×500,000 matrix

• SNP-BLUP 𝒁𝒁9C𝟏 is a 50,000×50,000

31

Big Data

• 𝑨𝟐𝟐C𝟏 can be computed efficiently using sparse matrices
𝑨::CE = 𝑨:: − 𝑨:E 𝑨EE CE𝑨E:

See details in Yutaka et al. 

◊

INTRODUCTION

Single-step genomic BLUP (ssGBLUP) is a uni-
¿HG� DSSURDFK� IRU� JHQRPLF� HYDOXDWLRQ� WR� FRPELQH�
SKHQRW\SHV�� SHGLJUHH�� DQG� JHQRW\SHV� �$JXLODU� HW� DO���
�������0L[HG�PRGHO�HTXDWLRQV��MME) in ssGBLUP 
UHTXLUH� WKH� LQYHUVH�RI�D�JHQRPLF� UHODWLRQVKLS�PDWUL[�
(Gí���9DQ5DGHQ��������DQG�WKH�LQYHUVH�RI�D�QXPHUD-
WRU� UHODWLRQVKLS�PDWUL[� � 1

22
-A �� IRU�JHQRW\SHG�DQLPDOV��

:KHQ� WKH� QXPEHU� RI� JHQRW\SHG� DQLPDOV� LV� OLPLWHG��

SRVVLEO\� OHVV� WKDQ� ��������� ERWK� LQYHUVHV� FDQ� EH� HI-
¿FLHQWO\� FDOFXODWHG� �9DQ5DGHQ�� ������$JXLODU� HW� DO���
������)UDJRPHQL�HW�DO����������:KHQ�PRUH�DQLPDOV�DUH�
JHQRW\SHG��Gí��FDQ�EH�REWDLQHG�HI¿FLHQWO\�XVLQJ�WKH�
³DOJRULWKP�IRU�SURYHQ�DQG�\RXQJ´��$3<��0LV]WDO�HW�DO���
������0LV]WDO���������ZKLFK�H[SORLWV�D�OLPLWHG�UDQN�RI�
G�GXH�WR�D�VPDOO�HIIHFWLYH�SRSXODWLRQ�VL]H��)DX[�DQG�
*HQJOHU��������GHYHORSHG�DQ�DOJRULWKP�WR�FUHDWH� 1

22
-A  

GLUHFWO\�IURP�D�SHGLJUHH��+RZHYHU��ZKHQ�WKH�QXPEHU�
RI�JHQHUDWLRQV�RU�WKH�QXPEHU�RI�DQFHVWRUV�LV�ODUJH��WKH�
PDWUL[�EHFRPHV�GHQVH��UHVXOWLQJ�LQ�H[SHQVLYH�FRPSX-
WDWLRQV�DQG�PRUH�PHPRU\�UHTXLUHPHQWV�

6WUDQGpQ� DQG� 0lQW\VDDUL� ������� VKRZHG� WKDW�
1
22
-A �FRXOG�EH�GHFRPSRVHG�LQWR�D�SURGXFW�RI�VHYHUDO�

VSDUVH�PDWULFHV��:KHQ�00(�DUH�VROYHG�ZLWK�WKH�SUH-
FRQGLWLRQHG�FRQMXJDWH�JUDGLHQW� �PCG��� WKH� H[SOLFLW�

1
22
-A �LV�QRW�QHHGHG�EHFDXVH�WKH�FRPSXWDWLRQV�UHTXLUH�

RQO\�D�SURGXFW�RI� 1
22
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Technical note: Avoiding the direct inversion of the numerator  
relationship matrix for genotyped animals in single-step genomic best  

linear unbiased prediction solved with the preconditioned conjugate gradient1

Y. Masuda,*2 I. Misztal,* A. Legarra,† S. Tsuruta,* D. A. L. Lourenco,* B. O. Fragomeni,* and I. Aguilar‡
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ABSTRACT:� 7KLV� SDSHU� HYDOXDWHV� DQ� HI¿FLHQW�
LPSOHPHQWDWLRQ�WR�PXOWLSO\�WKH�LQYHUVH�RI�D�QXPHUD-
WRU� UHODWLRQVKLS�PDWUL[� IRU� JHQRW\SHG� DQLPDOV� � 1

22

-A ) 
E\�D�YHFWRU��q���7KH�FRPSXWDWLRQ�LV�UHTXLUHG�IRU�VROY-
LQJ� PL[HG� PRGHO� HTXDWLRQV� LQ� VLQJOH�VWHS� JHQRPLF�
%/83��VV*%/83��ZLWK�WKH�SUHFRQGLWLRQHG�FRQMXJDWH�
JUDGLHQW��3&*���7KH�LQYHUVH�FDQ�EH�GHFRPSRVHG�LQWR�
VSDUVH�PDWULFHV�WKDW�DUH�EORFNV�RI�WKH�VSDUVH�LQYHUVH�
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Big Data

• If number of animals > number of SNPs 
• 𝑮 has at most rank “number of SNPs »  

• Indirect representations of G
• APY
• Sherman-Woodbury inversions

• 𝐺 = "
&
𝐼 + 𝑍𝑍′

• 𝐺'" = 𝑎𝐼 − 𝑎𝑍 "
&

"
&
𝐼 + 𝑍$𝑍

'"
𝑍$𝑎

Z’Z is smaller 
than ZZ’

33

WCGALP, New Zealand, 2018 © Natural Resources Institute Finland

Assume: 𝐆 = 𝐆𝟎 + 𝐂

where 𝐆0 = 𝐙𝐙′ and 𝐆ε = 𝐆0 + ε𝐈 Î 𝐆ε−1 =
1
ε
𝐈 − 𝐓ε′𝐓ε

where𝐓ε =
1
ε
𝐋ε−1𝐙′ and 𝐋ε𝐋ε′ =

1
ε
𝐙′𝐙 + 𝐈

𝐓ε has size n x m Î Number of computations is 2nm instead of n2

𝐓ε′
𝐓εn= number of

genotyped

m= number of markers/rank

Woodbury matrix identity

Reducing computations by ssGTBLUP

7/12

Size of 𝐓ε matrix is the same as the original marker matrix.

ssGTBLUP gives the same solutions as ssGBLUP with 𝐆ε−1 (e.g., Koivula et al. WCGALP 2018)

Stranden, WCGALP, 2018
34



APY

• Misztal showed that G matrix is redundant due to limited population 
size
• Some chromosomal segments are copies of others
• Then G is not full rank and has a small number of eigenvalues >0

35

How large-scale genomic 
evaluations are possible

Daniela Lourenco

05-24-2018
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Algorithm for Proven and Young (APY)

core

non-core

7 37

Algorithm for Proven and Young (APY)

è

G G-1

APY G

è

APY G-1

 

8

§ APY G-1 sparse
§ Efficient computation
§ Why does it work?

38



APY and dimension of G

# genotyped animals   >  # SNP 

G = ⍺G + (1-⍺)A22 VanRaden (2008)

G has a limited dimensionality

Dimension of G = min (#animals, # independent SNP, Me)

independent blocks

Dependent blocks

9 39

How many core animals in APY?
# largest eigenvalues of G explaining 98% ~ 99% variance

14k ~ 19k

11k ~ 16k

11k ~ 14k

4k ~ 6k

4k ~ 6k

16 40



APY and why some people don’t like it

• Works well but open questions: how to choose core? Is it an 
approximation? etc

• Dairy cattle breeders use “Indirect Predictions” a lot
• Estimate SNP effects every 3-4 months
• For young animals: GEBV= sum of SNP effects , every week

• Dairy cattle breeders may prefer to work with marker effects because 
they use marker effects weekly: SS-SNPBLUP

41

SS-SNPBLUP=SSGBLUP with marker effects

Legarra & Ducrocq 2012 described a SSGBLUP model on marker effects 𝒂 and BV 𝒖.

4632 LEGARRA AND DUCROCQ

Journal of Dairy Science Vol. 95 No. 8, 2012
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  [5]

These equations show that ĝ = DZ′G−1û2, which is 
the best linear predictor of marker effects g given u2 
(Henderson, 1973; Strandén and Garrick, 2009). Simi-
lar systems of equations are being used by some scien-
tists [P. M. VanRaden, US Department of Agriculture, 
Bethesda, MD, personal communication; D. L. John-
son, Livestock Improvement Corp. (LIC), Hamilton, 
New Zealand, personal communication; N. Gengler, 
Université de Liège (ULg), Gembloux, Belgium, per-
sonal communication]. A reduced, but possibly more 
cumbersome, system of equations including u1 and g 
(but not u2) is as follows:
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In contrast to the previous one, the left-hand side of 
these equations is positive definite and symmetric. Its 
derivation is presented in Appendix A.

Extended SSGBLUP MME Derived from  
an Equivalent Model

In model 1, one can decompose u into a strictly 
polygenic part u* and a deviation due to the genomic 
information that we will call d = u – u*:

 y = Xb + W (u* + d) + e.  [6]

Let us assume (or impose) that Var u
u
d

A 0
0 G A

*
.









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−




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σ2  

Although G is guaranteed to be semipositive definite 
and A is positive definite, G – A (although full rank) 
has no guarantees whatsoever; in fact, more often than 
not, the eigenvalues of G – A span negative and posi-
tive values. Thompson (1979) and Thompson and 
Meyer (1990) suggested including imaginary effects to 
deal with negative variances. These equivalent models 
were found to considerably reduce computing time for 
estimation of genetic parameters with a multivariate 
reduced animal model (Besbes et al., 1992). Developing 
this idea, in Appendix C (which we suggest reading 
after Appendix B) we show that mixed model equa-
tions are identical whether G – A is positive definite or 
not, as far as it is invertible.

Distinguishing between phenotypes of nongenotyped 
and genotyped animals, we can write Equation 1 as
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For nongenotyped animals, the deviation d1 due to 
the genomic information is modeled as a linear function 
of d2, obtained by regressing on genomic contribution 
d2 from genotyped individuals: d A A d1 12 22

1
2= − . There-

fore,
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From above, u2
* and d2 are assumed to be indepen-

dent cov , ,*u d 02 2( ) =




 var ,u G2

2( ) = σu  and 

var .d G A2 22
2( ) = −( )σu  Also, 

var .d A A G A A A1 12 22
1

22 22
1

21
2( ) = −( )− − σu

From this model, MME can be derived (details are 
provided in Appendix B), and are
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  [7]

Marker 
effects

Non 
genotyped 

animals Matrices ZW in this model get very complicated 
for complex models because they involve 
formidable products
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SS-SNPBLUP=SSGBLUP with marker effects

• The model was rediscovered by Fernando et al. 2016 with the name “super 
hybrid model” 

Marker 
effects

Non 
genotyped 

animals

Page 8 of 12Fernando et al. Genet Sel Evol  (2016) 48:80 

Following [26], the MME given in equation (19) can be aug-
mented to avoid the expression involving (Amm)−1 in Q. To 
do so, equation (19) is first rewritten to show the partitions 
for um and ugi. Note that the matrix Z has the following 
form:

where Zm relates ym to um and Zg relates yg to ug. !en, Wr 
can be partitioned as:

where Wgi = ZgS. Now the MME that show the partitions 
for um and ugi are:

Z =

[

Zm 0
0 Zg

]

,

Wr =

[

Zm 0
0 Zg

][

I 0
0 S

]

=

[

Zm 0
0 Wgi

]

,

where Wv = ZgR and Qv = R′Agm(Amm)−1AmgR.

Comparison to Apy-SSGBLUP
!e SSGBLUP method given in [23] requires computing 
the inverse of the matrix Ggg of genomic relationships and 
of the matrix Agg of additive relationships for the geno-
typed animals. At the time those papers were published, 
Ng was typically smaller than the number of markers so 
that Ggg was relatively small and of full rank. Since then 
Ng has greatly increased in most livestock applications. 
Computational effort in matrix manipulation is deter-
mined by the number of non-zero coefficients and these 
increase as Ng increases. To fully store a dense matrix of 
order one million in single precision requires about 4 TB. 
!erefore, it would be advantageous to have a sparse rep-
resentation of all the large matrices involved in the MME.

Furthermore, the matrix Ggg is singular when Ng > k 
and thus cannot be inverted when more animals than 
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where Xm and Xg are partitions of X corresponding to ym 
and yg. Consider now the following augmented MME:
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!ese equations do not have Q in them, and so they may be 
easier to construct. However, the left-hand-side is not posi-
tive definite and it has been reported that these equations 
are poorly conditioned [26]. Elimination of c from Eq. (21) 
results in equation (20), and thus, solutions for β̂ , ûm and 
for ûgi from Eq. (21) are identical to those from Eq. (20).

Strategy IV
!e model for SSGBLUP can also be formulated in terms 
of v as:

and the MME corresponding to model (22) are:

(22)
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the number of SNPs have been genotyped. !is suggests 
that there should be a sparse representation of Ggg. Sup-
pose Ggg has rank r and it is ordered such that the first 
r rows are linearly independent. !en, the sub-matrix of 
the first r rows and columns of Ggg denoted Gcc gives the 
genomic relationships among the r core animals of the 
Apy algorithm, and that sub-matrix is nonsingular. !e 
remaining n − r animals are referred to as noncore and 
their genomic relationship matrix is denoted Gnn. When 
the genomic relationship matrix has not been blended, a 
nonsingular matrix G∗ can be obtained by adding a small 
value to the diagonals of Ggg for the animals in the non-
core group, and in the inverse of G∗, the sub-matrix cor-
responding to Gnn will be diagonal. !is exact inverse of 

for same variance components, 
SSGBLUP=SS-SNP-BLUP

Matrices W in this model get very complicated for 
complex models because they involve formidable 
products

43

Big Data

• Large number of animals is a problem only for 1% of the users
• It is possible to fit enormous data sets with millions of genotyped 

animals
• The exact strategy may depend on the problem. Generality, elegance 

or efficiency?
• Maybe in 10 years all animals are genotyped, old data is forgotten J
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Details in SSGBLUP
• Storage
• Inbreeding
• G is not invertible (« blending »)
• G might not explain all genetic variance (« blending »)
• Compatibility of G and A22

• Assumption p(u2)=N(0,G)
• If there is selection, mean is not 0 (« tuning » solves it: see Vitezica later)

• Same genetic variance in genotyped and ungenotyped animals

• Unknown parent groups
• Need to modify H to include them (Misztal et al., 2013)
• Metafounders

• Crosses

• Computation
• APY
• Sherman-Woodbury
• « hybrid » model

Metafounders & Unknown Parent Groups

46



U.S. dairy population and milk yield

In the 70’s there was a massive export of US Holstein 
to “European Friesian”

Unknown Parent Groups

• US Holstein had no data in European countries
• But treating them as equal to European cows was unfair
• European Genetic evaluations included effect of “origin”
• This effect mutated to Unknown Parent Groups



Unknown Parent Groups

• (Thompson 1979, Quaas 1988):
• Regression on % of origin computed from pedigree

• E.g. one cow is 15% US, 80% European, 5% New Zealand
• Final EBV = portions of UPG + random part

• D𝒖 = 𝑸D𝒈 + G𝒖∗
• 𝑸 contains fractions
• 𝒈 is fixed
• 𝒈 has no quantitative genetics interpretation or ”a priori” distribution

• Use of unknown parent groups is essential to get unbiased estimates 
across origins (UY vs US) and years (2000 vs. 2008)

49

Unknown Parent Groups

Unknown Parent Groups are used extensively to model:
• Missing parentship, as in sheep (father is often unknown). Genetic 

Groups are often defined by year of birth to model genetic progress. 
• Importations, or introduction of foreign material (as in pig 

companies). Genetic Groups are often defined by country of origin.
• Crosses (e.g. Angus x Gelbvieh). Genetic Groups are often defined by 

breed.

50



Unknown Parent Groups in Single Step GBLUP

• Things get complicated 
𝑝 𝒖 = 𝑁 𝑸𝒈, 𝑨𝜎!"

𝑝 𝒖" = 𝑁 𝟎, 𝑮𝜎!"

• Contradictions
• Reports of problems in SSGBLUP with complex UPG structure
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Summary

In single-step genomic evaluation using best linear unbiased prediction

(ssGBLUP), genomic predictions are calculated with a relationship matrix

that combines pedigree and genomic information. For missing pedigrees,

unknown selection processes, or inclusion of several populations, a BLUP

model can include unknown-parent groups (UPG) in the animal effect.

For ssGBLUP, UPG equations also involve contributions from genomic

relationships. When those contributions are ignored, UPG solutions and

genetic predictions can be biased. Options to eliminate or reduce such bias

are presented. First, mixed model equations can be modified to include

contributions to UPG elements from genomic relationships (greater soft-

ware complexity). Second, UPG can be implemented as separate effects

(higher cost of computing and data processing). Third, contributions can

be ignored when they are relatively small, but they may be small only

after refinements to UPG definitions. Fourth, contributions may approxi-

mately cancel out when genomic and pedigree relationships are con-

structed for compatibility; however, different construction steps are

required for unknown parents from the same or different populations.

Finally, an additional polygenic effect that also includes UPG can be added

to the model.

Introduction

A genomic evaluation can be conducted with best

linear unbiased prediction (BLUP) using either multi-

step (VanRaden et al. 2009) or single-step methodol-

ogy (Aguilar et al. 2010; Christensen & Lund 2010).

Whereas a multi-step evaluation uses results of a reg-

ular pedigree BLUP for subsequent steps, a single-

step genomic BLUP (ssGBLUP) evaluation uses BLUP

with a relationship matrix that combines pedigree

and genomic information. An ssGBLUP evaluation is

potentially simpler and more accurate than a multi-

step genomic evaluation (Chen et al. 2011; Vitezica

et al. 2011), and it has the potential to avoid bias

from selection of animals based only on genomic

information (Patry & Ducrocq 2011; VanRaden

2012).

The ssGBLUP method has been used for several

large-scale analyses, including in dairy cattle (Tsuruta

et al. 2011; Harris et al. 2012), in pigs (Forni et al.

2011; Christensen et al. 2012) and in chickens (Chen

et al. 2011). Although ssGBLUP was accurate and

computationally efficient in most studies, problems

were reported when the model included unknown-

parent groups (UPGs). For commercial pig data, large

re-ranking was observed compared with traditional

BLUP, and the convergence rate deteriorated as the

number of traits increased (S. Forni, personal commu-

nication). In an analysis with multiple breeds of

sheep, A.A. Swan (personal communication) found
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ABSTRACT

Single-step genomic BLUP (ssGBLUP) is a method 
for genomic prediction that integrates matrices of pedi-
gree (A) and genomic (G) relationships into a single 
unified additive relationship matrix whose inverse is in-
corporated into a set of mixed model equations (MME) 
to compute genomic predictions. Pedigree information 
in dairy cattle is often incomplete. Missing pedigree 
potentially causes biases and inflation in genomic es-
timated breeding values (GEBV) obtained with ssG-
BLUP. Three major issues are associated with missing 
pedigree in ssGBLUP, namely biased predictions by 
selection, missing inbreeding in pedigree relationships, 
and incompatibility between G and A in level and 
scale. These issues can be solved using a proper model 
for unknown-parent groups (UPG). The theory behind 
the use of UPG is well established for pedigree BLUP, 
but not for ssGBLUP. This study reviews the develop-
ment of the UPG model in pedigree BLUP, the proper-
ties of UPG models in ssGBLUP, and the effect of UPG 
on genetic trends and genomic predictions. Similarities 
and differences between UPG and metafounder (MF) 
models, a generalized UPG model, are also reviewed. 
A UPG model (QP) derived using a transformation of 
the MME has a good convergence behavior. However, 
with insufficient data, the QP model may yield biased 
genetic trends and may underestimate UPG. The QP 
model can be altered by removing the genomic rela-
tionships linking GEBV and UPG effects from MME. 
This altered QP model exhibits less bias in genetic 
trends and less inflation in genomic predictions than 
the QP model, especially with large data sets. Recently, 
a new model, which encapsulates the UPG equations 
into the pedigree relationships for genotyped animals, 

was proposed in simulated purebred populations. The 
MF model is a comprehensive solution to the missing 
pedigree issue. This model can be a choice for multi-
breed or crossbred evaluations if the data set allows the 
estimation of a reasonable relationship matrix for MF. 
Missing pedigree influences genetic trends, but its ef-
fect on the predictability of genetic merit for genotyped 
animals should be negligible when many proven bulls 
are genotyped. The SNP effects can be back-solved us-
ing GEBV from older genotyped animals, and these 
predicted SNP effects can be used to calculate GEBV 
for young-genotyped animals with missing parents.
Key words: bias, genomic selection, pedigree, single-
step evaluation, relationship matrix

INTRODUCTION

Single-step genomic BLUP (ssGBLUP) is a ge-
nomic prediction method used to obtain genomic EBV 
(GEBV) for both genotyped and nongenotyped ani-
mals (Legarra et al., 2009; Misztal et al., 2009). The 
ssGBLUP is based on the inverse of a unified additive 
relationship matrix (H−1) that is a function of the nu-
merator relationship matrix (A) for pedigree animals 
(Henderson, 1976) and the genomic relationship matrix 
(G) for genotyped animals (VanRaden, 2008). The 
ssGBLUP is routinely used for genomic evaluations in 
various domestic animal species (Misztal et al., 2020). 
Several countries tested ssGBLUP using national-level 
dairy data sets (Koivula et al., 2018; Masuda et al., 
2018b; Oliveira et al., 2019), and a few countries imple-
mented this method officially (https: / / interbull .org/ ib/ 
nationalgenoforms). Legarra et al. (2014), Mäntysaari 
et al. (2020), and Misztal et al. (2020) reviewed the 
advantages of ssGBLUP over a “multi-step” method 
involving a sequence of statistical procedures.

There is another class of single-step methods predict-
ing SNP marker effects instead of breeding values for 
genotyped animals (Gengler et al., 2012; Fernando et 
al., 2014; Liu et al., 2014). We refer to this type of 
method as single-step marker effect model (ssMEM). 
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Unknown Parent Groups in Single Step GBLUP

• Still open problem
• Current options
• Simplify your model !!!
• Truncate pedigree and data

• Approximate UPGs 𝑯∗ = 𝑨∗ + 0 0
0 𝑮"# − 𝑨$$"#

• 𝑨∗ includes UPG using existing theory
• 𝑨"" is constructed “as if” UPG don’t exist, which is an approximation
• Default in blupf90

• Fitting UPG as covariates
• 𝒚 = 𝑿𝒃 + 𝑸𝒈 +𝑾𝒖+ 𝒆 with 𝑯#$ = 𝑨#$ + 0 0

0 𝑮#$ − 𝑨""#$
• Final EBVs 𝑸4𝒈 + 4𝒖

• Fitting “exact UPGs”
• Equivalent to Fitting UPG as covariates
• Still not quite perfect

• Fitting « UPGs in A not in G »
• See 

• The fancyest solution is « metafounders » 
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ABSTRACT

Single-step genomic BLUP (ssGBLUP) is a method 
for genomic prediction that integrates matrices of pedi-
gree (A) and genomic (G) relationships into a single 
unified additive relationship matrix whose inverse is in-
corporated into a set of mixed model equations (MME) 
to compute genomic predictions. Pedigree information 
in dairy cattle is often incomplete. Missing pedigree 
potentially causes biases and inflation in genomic es-
timated breeding values (GEBV) obtained with ssG-
BLUP. Three major issues are associated with missing 
pedigree in ssGBLUP, namely biased predictions by 
selection, missing inbreeding in pedigree relationships, 
and incompatibility between G and A in level and 
scale. These issues can be solved using a proper model 
for unknown-parent groups (UPG). The theory behind 
the use of UPG is well established for pedigree BLUP, 
but not for ssGBLUP. This study reviews the develop-
ment of the UPG model in pedigree BLUP, the proper-
ties of UPG models in ssGBLUP, and the effect of UPG 
on genetic trends and genomic predictions. Similarities 
and differences between UPG and metafounder (MF) 
models, a generalized UPG model, are also reviewed. 
A UPG model (QP) derived using a transformation of 
the MME has a good convergence behavior. However, 
with insufficient data, the QP model may yield biased 
genetic trends and may underestimate UPG. The QP 
model can be altered by removing the genomic rela-
tionships linking GEBV and UPG effects from MME. 
This altered QP model exhibits less bias in genetic 
trends and less inflation in genomic predictions than 
the QP model, especially with large data sets. Recently, 
a new model, which encapsulates the UPG equations 
into the pedigree relationships for genotyped animals, 

was proposed in simulated purebred populations. The 
MF model is a comprehensive solution to the missing 
pedigree issue. This model can be a choice for multi-
breed or crossbred evaluations if the data set allows the 
estimation of a reasonable relationship matrix for MF. 
Missing pedigree influences genetic trends, but its ef-
fect on the predictability of genetic merit for genotyped 
animals should be negligible when many proven bulls 
are genotyped. The SNP effects can be back-solved us-
ing GEBV from older genotyped animals, and these 
predicted SNP effects can be used to calculate GEBV 
for young-genotyped animals with missing parents.
Key words: bias, genomic selection, pedigree, single-
step evaluation, relationship matrix

INTRODUCTION

Single-step genomic BLUP (ssGBLUP) is a ge-
nomic prediction method used to obtain genomic EBV 
(GEBV) for both genotyped and nongenotyped ani-
mals (Legarra et al., 2009; Misztal et al., 2009). The 
ssGBLUP is based on the inverse of a unified additive 
relationship matrix (H−1) that is a function of the nu-
merator relationship matrix (A) for pedigree animals 
(Henderson, 1976) and the genomic relationship matrix 
(G) for genotyped animals (VanRaden, 2008). The 
ssGBLUP is routinely used for genomic evaluations in 
various domestic animal species (Misztal et al., 2020). 
Several countries tested ssGBLUP using national-level 
dairy data sets (Koivula et al., 2018; Masuda et al., 
2018b; Oliveira et al., 2019), and a few countries imple-
mented this method officially (https: / / interbull .org/ ib/ 
nationalgenoforms). Legarra et al. (2014), Mäntysaari 
et al. (2020), and Misztal et al. (2020) reviewed the 
advantages of ssGBLUP over a “multi-step” method 
involving a sequence of statistical procedures.

There is another class of single-step methods predict-
ing SNP marker effects instead of breeding values for 
genotyped animals (Gengler et al., 2012; Fernando et 
al., 2014; Liu et al., 2014). We refer to this type of 
method as single-step marker effect model (ssMEM). 
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• The G matrix 
• Is exact, independently of pedigree depth

• Breeds/UPGs were considered unrelated, but they ARE related if we 
look at markers
• We may need to adjust the UPG theory to match A to G instead of 

viceversa

53

Missing pedigree

• We needed A to be complete
• To my knowledge, the only complete livestock pedigrees are in rabbit
• Incompleteness depend on species

• Sometimes you know the pedigree but not the associated record, so 
pedigree is useless

54



Missing pedigree

• Dairy cattle
Complete for bulls and elite cows, 
incomplete for “cheap cows”

55

Missing pedigree

• Dairy sheep
30-80% complete
Females have (often) dam known and 
(sometimes) sire known
Males have both parent known

56



Missing pedigree

• Two breeds

If we could go back to 1700 …

57

Covariates to fit A to G and to fit UPGs

• Hsu et al. (2017) proposed to fit a J-covariate to fit the difference 
between pedigree and genetic bases
• It is the same as the Vitezica et al (2010) method but fixed instead of 

random
• In theory the method can be extended to several populations 

(breeds) 
• Covariates to account for different genetc bases at G-A across breeds
• Covariates for UPGs
• It gets quite complicated 

58



• I find this to be
• Complicated
• How do you define groups
• How do you ensure that all these groups are estimable
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RESEARCH ARTICLE

Single-step genomic BLUP with genetic 
groups and automatic adjustment for allele 
coding
Ismo Strandén1*  , Gert P. Aamand2 and Esa A. Mäntysaari1 

Abstract 
Background: Genomic estimated breeding values (GEBV) by single-step genomic BLUP (ssGBLUP) are affected by 
the centering of marker information used. The use of a fixed effect called J factor will lead to GEBV that are unaffected 
by the centering used. We extended the use of a single J factor to a group of J factors.

Results: J factor(s) are usually included in mixed model equations (MME) as regression effects but a transformation 
similar to that regularly used for genetic groups can be applied to obtain a simpler MME, which is sparser than the 
original MME and does not need computation of the J factors. When the J factor is based on the same structure as 
the genetic groups, then MME can be transformed such that coefficients for the genetic groups no longer include 
information from the genomic relationship matrix. We illustrate the use of J factors in the analysis of a Red dairy cattle 
data set for fertility.

Conclusions: The GEBV from these analyses confirmed the theoretical derivations that show that the resulting GEBV 
are allele coding independent when a J factor is used. Transformed MME led to faster computing time than the origi-
nal regression-based MME.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Single-step genomic BLUP (ssGBLUP) [1, 2] requires that 
the pedigree and genomic relationship matrices are com-
patible [3]. Two measures of similarity have been consid-
ered [4]: averages of diagonal and all elements. !ese two 
statistics are affected by the completeness of pedigree 
information. In pedigree-based animal model evalua-
tions, incomplete pedigree information is often modeled 
by genetic groups [5]. Elements of the genomic relation-
ship matrix are typically computed using centered and 
scaled marker genotypes [6]. Both centering and scaling 
often depend on allele frequencies and are affected by 
the available animal genotypes and, when pedigree infor-
mation is used in the allele frequency estimation, by the 

completeness of the pedigree. !us, incomplete informa-
tion can affect both the pedigree and the genomic rela-
tionship matrix.

Fernando et  al. [7] proposed a marker-based single-
step model using Bayesian regression. When all the vari-
ance components are known, this model, hereafter called 
ssSNPBLUP, is equivalent to ssGBLUP. In their ssSN-
PBLUP, the genomic estimated breeding values (GEBV) 
are made independent of the allele frequencies that are 
used for centering marker genotypes by a regression 
effect, hereafter called J factor, which adjusts the breed-
ing values to the appropriate level [8]. !is is similar to 
a simple genomic model without pedigree information, 
often called SNP-BLUP, where the marker effect solu-
tions are independent of allele coding but, for the GEBV 
to be independent of allele coding, their level needs to be 
adjusted by a general mean [9]. !us, in both ssGBLUP/
ssSNPBLUP and SNP-BLUP, estimating a fixed effect and 
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After solving the MME Eq. (2), the estimates of the 
breeding values are âd = Jĉ+Qĝ + â [7, 11]. !e QP 
transformation [3, 12] of MME Eq. (2) will provide MME 
where the breeding values âd are estimated explicitly. Let 

P =






I 0 0 0
0 I 0 0
0 0 I 0
0 J Q I




 , P−1 =






I 0 0 0
0 I 0 0
0 0 I 0
0 −J −Q I




 , and v̂ =






b̂
ĉ
ĝ
â




 . 

(2)






X′R−1X X′R−1WJ X′R−1WQ X′R−1W
J′W′R−1X J′W′R−1WJ J′W′R−1WQ J′W′R−1W
Q′W′R−1X Q′W′R−1WJ Q′W′R−1WQ + S−1 Q′W′R−1W
W′R−1X W′R−1WJ W′R−1WQ W′R−1W +H−1

σ
−2
a











b̂
ĉ
ĝ
â




 =






X′R−1y
J′W′R−1y
Q′W′R−1y
W′R−1y






!e solution vector of all unknowns is v̂d =






b̂
ĉ
ĝ
âd




 = Pv̂ , 

where the left-hand side has the breeding value estimates 
âd calculated as linear function of the J factor, genetic 
group and genetic effect solutions. Let C and r be the 
coefficient matrix and the right-hand side vector in MME 
Eq. (2), respectively. In the QP transformation, the MME 
are transformed to be 

(
P−1

)′
CP−1v̂d =

(
P−1

)′
r . MME of 

the QP transformed ssGBLUP are:

!e term H−1J in the MME Eq. (3) can be simplified. 
First, note that:

 because A12A
−1
22 = −

(
A11

)−1
A12 [7] and A−1

22
= A22−

A21
(
A11

)−1
A12A−1

22
= A22 − A21

(
A11

)−1
A12 . !en, 

(3)






X′R−1X 0 0 X′R−1W
0 J′H−1Jσ−2

a J′H−1Qσ
−2
a −J′H−1

σ
−2
a

0 Q′H−1Jσ−2
a Q′H−1Qσ

−2
a + S−1 −Q′H−1

σ
−2
a

W′R−1X −H−1Jσ−2
a −H−1Qσ

−2
a W′R−1W +H−1

σ
−2
a











b̂
ĉ
ĝ
âd




 =






X′R−1y
0
0

W′R−1y




.

A−1J =

[
A11 A12

A21 A22

][
−A12A

−1
22

−I

]
Qc

=

[
A11 A12

A21 A22

][ (
A11

)−1
A12

−I

]
Qc

=

[
0

A21
(
A11

)−1
A12 − A22

]
Qc

=

[
0

−A−1
22

]
Qc,

H−1J =

[
0

−A−1
22

]

Qc +

[
0

−
(
G−1 − A−1

22

)
]

Qc =

[
0

−G−1

]

Qc, and 

J′H−1J = J′

[
0

−G−1

]

Qc = Qc
′
[
− A−1

22 A21 −I
][ 0

−G−1

]

Qc = Qc
′G−1Qc.

!us, the MME Eq. (3) can be written as:

 where F =

[
0

−G−1

]
 and Q2 are the rows of matrix Q 

pertaining to the genotyped animals. !us, the coeffi-
cients to the regression effect ĉ involve only functions of 
Qc and G−1 , and no longer neither matrix J as in the 
MME Eqs. (2) and (3), nor the pedigree-based relation-
ship matrix as in the MME Eq. (3).

Assuming that Qc
′G−1Qc is non-singular, MME Eq. (4) 

can be further simplified by absorption of the c effect to 
the other effects. Let Cc,−c = −σ

−2
a

[
0 Qc

′G−1Q2 Qc
′F′

]
 , 

i.e., the rows in the MME Eq. (4) coefficient matrix 
for the J factor effect ĉ excluding columns hav-
ing coefficients for ĉ . !is can be rewritten as 
Cc,−c = −σ

−2
a Qc

′G−1
[
0 Q2 0 I

]
= −σ

−2
a Qc

′G−1KQ  , 
where KQ =

[
0 Q2 0 I

]
 has non-zero elements only 

at columns for the genetic groups ( Q2 ) and breed-
ing values of genotyped animals ( I ). Because the right-
hand side values in the MME Eq. (4) corresponding 
to ĉ are zero, the absorption changes only the coef-
ficient matrix. !e change due to the absorption is 
−σ 2

aCc,−c
′
(
Qc

′G−1Qc

)−1
Cc,−c = −σ

−2
a KQ

′G−1Qc
(
Qc

′G−1Qc

)−1
Qc

′G−1KQ = σ
−2
a KQ

′KcKQ, where Kc = −G−1 
Kc = −G−1Qc

(
Qc

′G−1Qc
)−1

Qc
′G−1 . Because matrix KQ 

operates only on the coefficients of the genotyped animals 

(4)





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0 Qc
′G−1Qcσ

−2
a −Qc
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After solving the MME Eq. (2), the estimates of the 
breeding values are âd = Jĉ+Qĝ + â [7, 11]. !e QP 
transformation [3, 12] of MME Eq. (2) will provide MME 
where the breeding values âd are estimated explicitly. Let 
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
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ĝ
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
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
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


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!e solution vector of all unknowns is v̂d =






b̂
ĉ
ĝ
âd




 = Pv̂ , 

where the left-hand side has the breeding value estimates 
âd calculated as linear function of the J factor, genetic 
group and genetic effect solutions. Let C and r be the 
coefficient matrix and the right-hand side vector in MME 
Eq. (2), respectively. In the QP transformation, the MME 
are transformed to be 

(
P−1

)′
CP−1v̂d =

(
P−1

)′
r . MME of 

the QP transformed ssGBLUP are:

!e term H−1J in the MME Eq. (3) can be simplified. 
First, note that:

 because A12A
−1
22 = −

(
A11

)−1
A12 [7] and A−1

22
= A22−

A21
(
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)−1
A12A−1

22
= A22 − A21

(
A11

)−1
A12 . !en, 

(3)
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=
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=
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=
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]
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′
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22 A21 −I
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]

Qc = Qc
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!us, the MME Eq. (3) can be written as:

 where F =

[
0

−G−1

]
 and Q2 are the rows of matrix Q 

pertaining to the genotyped animals. !us, the coeffi-
cients to the regression effect ĉ involve only functions of 
Qc and G−1 , and no longer neither matrix J as in the 
MME Eqs. (2) and (3), nor the pedigree-based relation-
ship matrix as in the MME Eq. (3).

Assuming that Qc
′G−1Qc is non-singular, MME Eq. (4) 

can be further simplified by absorption of the c effect to 
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−2
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[
0 Qc
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i.e., the rows in the MME Eq. (4) coefficient matrix 
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−2
a Qc
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[
0 Q2 0 I

]
= −σ

−2
a Qc
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where KQ =

[
0 Q2 0 I

]
 has non-zero elements only 

at columns for the genetic groups ( Q2 ) and breed-
ing values of genotyped animals ( I ). Because the right-
hand side values in the MME Eq. (4) corresponding 
to ĉ are zero, the absorption changes only the coef-
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−σ 2
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−2
a KQ
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(
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)−1
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′G−1 . Because matrix KQ 

operates only on the coefficients of the genotyped animals 
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a −H−1Qσ

−2
a W′R−1W +H−1

σ
−2
a









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
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


,

Eq for difference of 
bases in G and A

Eq for UPGs

Metafounders

• Define clusters of missing parents and call them “metafounders”
• Metafounders have relationships 𝛾;J: 𝜞
• The relationships 𝛤;J are the average relationships across missing 

parents of cluster i and j
• “relative  to a population of maximum heterozygosity” (= identical to 

the “making 𝑨 resemble 𝑮𝟎𝟓” of Christensen 2012)
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To condensate:

• Things are easier if we define pseudo-individuals (metafounders) that 
represent “pools” of founder individuals
• These pools have self-relationships and across-relationships 

contained in a matrix 𝚪.

• For instance 𝚪 𝐻𝑜𝑙𝑠𝑡𝑒𝑖𝑛
𝐽𝑒𝑟𝑠𝑒𝑦 = 0.55 0.48

0.48 0.77
• Holstein is more variable than, and related to, Jersey
• Build A from 𝚪 following tabular rules
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A SINGLE 
METAFOUNDER

Across founders within the population Across founders across the populations

RELATIONSHIPS

TWO OR MORE
METAFOUNDERS

It has self-relationship A11= 𝛾 so F = 𝛾-1.
If 𝛾 = 0 then we have regular relationships.
All A and A-1 methods work.

Pedigree
1 0 0 
2 1 1 
3 1 1 
4 1 1 
5 1 1 
6 1 1 
7 2 3 
8 3 4 
9 5 6 
10 7 8 
11 4 6 
12 7 4 
13 10 11 

Pedigree
1 0 0 
2 0 0
3 1 1 
4 1 1 
5 1 2 
6 2 2 
7 2 2 
8 3 4 
…

Algorithms change but they are still easy. 62
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Missing pedigree • We define a relationship 𝛾;J
across the two metafounders
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Missing pedigree
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Missing pedigree

• One breed

𝜞 =

𝛾EE 𝛾E: 𝛾EM 𝛾EN
𝛾:E 𝛾:: 𝛾:M 𝛾:N
𝛾ME 𝛾M: 𝛾MM 𝛾MN
𝛾NE 𝛾N: 𝛾NM 𝛾NN

65

A SINGLE 
METAFOUNDER

Across founders within the population Across founders across the populations

RELATIONSHIPS

TWO OR MORE
METAFOUNDERS

It has self-relationship A11= 𝛾 so F = 𝛾-1.
If 𝛾 = 0 then we have regular relationships.
All A and A-1 methods work.

Pedigree
1 0 0 
2 1 1 
3 1 1 
4 1 1 
5 1 1 
6 1 1 
7 2 3 
8 3 4 
9 5 6 
10 7 8 
11 4 6 
12 7 4 
13 10 11 

Pedigree
1 0 0 
2 0 0
3 1 1 
4 1 1 
5 1 2 
6 2 2 
7 2 2 
8 3 4 
…

Algorithms change but they are still easy.

INTRODUCTION      METHODS       RESULTS      FINAL COMMENTS
Metafounder relationships
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Inbreeding with metafounders

• Assume
• 𝛾!!"#$"%!!"#$" = 0.2
• 𝛾!!"#$&%!!"#$& = 0.1
• 𝛾!!"#$"%!!"#$& = 0.04

• Then 
• “Lucy” BB animal born in 2012 with unknown parents has F=0.1
• “Sean” BB animal born in 2014 with unknown parents has F=0.05
• Relationship of Sean and Lucy is 0.04

• “Paul” offspring of Sean and Lucy has inbreeding 0.02
• This shows that we compensate for missing pedigrees

Metafounders

• Metafounders have relationships 𝛾;J: 𝜞
• 𝛾;J = 8𝐶𝑜𝑣 𝑝; , 𝑝J = 8𝜎O$,O$" with p at each base opulation

• Related to Fst differentiation indices and to genetic and evolutionary 
distances

of the population tree, including historical branching as
well as population size variation, remains an alternative
solution to achieve a good compromise between advanced
genetic data acquisition and outlier analyses.

In this article, we describe an extension of the original
parametric LK test for biallelic markers that deals with
complex population trees through a statistic that takes
into account the kinship (or coancestry) matrix F
between populations, under pure drift with no migra-
tion. The statistics of the classical test (TLK) and its
extension (TF–LK) are expected to follow a chi-square
distribution with (n – 1) d.f., where n is the number of
populations studied. Through forward simulations of
neutral SNPs data under increasingly complex demogra-
phic histories, we obtained the empirical distribution of
both statistics and showed that they follow a chi-square
distribution provided the ancestral allele frequencies
are not too extreme. These results also emphasize the
robustness of these statistics to variation in demogra-
phic histories. Forward simulations of the same demogra-
phic models but including selection in one population
allowed us to evaluate the power of both statistics to
detect selection. We show that the extension of the LK
test is more powerful at detecting outliers than the
classical LK test for complex demographic histories.
A comparison with one of the MCMC methods for
multinomial-Dirichlet models (Foll and Gaggiotti
2008) also revealed substantial additional power. We
apply this new statistical test to a data set of SNP markers
in known genes of the pig genome, taking advantage of
the availability of microsatellite markers for the estima-
tion of the kinship matrix. This new parametric test can
help to screen large marker data sets and large numbers
of populations for outliers in a reasonable amount of
time, although we recommend to simulate the empiri-
cal distribution of the TF–LK statistics conditionally on
the estimated kinship matrix.

POPULATION MODEL AND NOTATIONS

We consider a set of n populations derived from a
common ancestor and the frequencies (p1, p2, . . . , pn) of

one allele at a neutral biallelic locus. We assume their
phylogeny is described by a tree (Figure 1), in which
each branch is characterized by some amount of drift.

The kinship matrix: Due to drift and coancestries,
frequencies pi’s are correlated, so that

Covðpi ; pjÞ¼ f ij p0ð1$ p0Þ ð1Þ

VarðpiÞ¼ f iip0ð1$ p0Þ; ð2Þ

where p0 is the frequency of the allele in the ancestor
population, fii is the mean expected inbreeding co-
efficient of the ith population, and fij the kinship
coefficient between populations i and j equal to the
inbreeding coefficient of the most recent ancestor
population common to i and j.

In Figure 1, for example, the calculations proceed as
follows. Let dUV be the fixation index corresponding to
the branch from U (an internal node or the root of the
tree) to V (an internal node or a leaf of the tree, i.e., one
of the n populations). If the branch UV corresponds to
t generations in a population of effective size N, dUV ’
1$ expð$t=2N Þ provided mutations are ignored. The
tree of Figure 1 includes the root (O), the internal node
(X), and the three populations 1, 2, and 3. Setting f00 ¼
0, we have

f 11 ¼ F 1 ¼ 1$ ð1$ dX 1Þð1$ d0X Þ ð3Þ

f 22 ¼ F 2 ¼ 1$ ð1$ dX 2Þð1$ d0X Þ ð4Þ

f 33 ¼ F 3 ¼ d03 ð5Þ

f 12 ¼ d0X ð6Þ

f 13 ¼ 0 ð7Þ

f 23 ¼ 0: ð8Þ

In the following,F stands for the matrix of the fij. For
simplicity, diagonal elements fii are simply denoted as Fi.
Under pure drift (without mutation) it can be demon-
strated that F is invertible and positive definite.

Estimation: Let us consider L biallelic loci indexed by
‘, whose first allele frequency in population i is pi,‘. A

Figure 1.—Example of tree-like evo-
lution: construction of the kinship ma-
trix.
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phylogeny is described by a tree (Figure 1), in which
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population, fii is the mean expected inbreeding co-
efficient of the ith population, and fij the kinship
coefficient between populations i and j equal to the
inbreeding coefficient of the most recent ancestor
population common to i and j.

In Figure 1, for example, the calculations proceed as
follows. Let dUV be the fixation index corresponding to
the branch from U (an internal node or the root of the
tree) to V (an internal node or a leaf of the tree, i.e., one
of the n populations). If the branch UV corresponds to
t generations in a population of effective size N, dUV ’
1$ expð$t=2N Þ provided mutations are ignored. The
tree of Figure 1 includes the root (O), the internal node
(X), and the three populations 1, 2, and 3. Setting f00 ¼
0, we have

f 11 ¼ F 1 ¼ 1$ ð1$ dX 1Þð1$ d0X Þ ð3Þ
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In the following,F stands for the matrix of the fij. For
simplicity, diagonal elements fii are simply denoted as Fi.
Under pure drift (without mutation) it can be demon-
strated that F is invertible and positive definite.
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ABSTRACT
Detecting genetic signatures of selection is of great interest for many research issues. Common

approaches to separate selective from neutral processes focus on the variance of FST across loci, as does the
original Lewontin and Krakauer (LK) test. Modern developments aim to minimize the false positive rate
and to increase the power, by accounting for complex demographic structures. Another stimulating goal
is to develop straightforward parametric and computationally tractable tests to deal with massive SNP data
sets. Here, we propose an extension of the original LK statistic (TLK), named TF–LK, that uses a phylogenetic
estimation of the population’s kinship (F) matrix, thus accounting for historical branching and het-
erogeneity of genetic drift. Using forward simulations of single-nucleotide polymorphisms (SNPs) data
under neutrality and selection, we confirm the relative robustness of the LK statistic (TLK) to complex
demographic history but we show that TF–LK is more powerful in most cases. This new statistic outperforms
also a multinomial-Dirichlet-based model [estimation with Markov chain Monte Carlo (MCMC)], when
historical branching occurs. Overall, TF–LK detects 15–35% more selected SNPs than TLK for low type I errors
(P , 0.001). Also, simulations show that TLK and TF–LK follow a chi-square distribution provided the
ancestral allele frequencies are not too extreme, suggesting the possible use of the chi-square distribution
for evaluating significance. The empirical distribution of TF–LK can be derived using simulations con-
ditioned on the estimated F matrix. We apply this new test to pig breeds SNP data and pinpoint outliers
using TF–LK, otherwise undetected using the less powerful TLK statistic. This new test represents one solution
for compromise between advanced SNP genetic data acquisition and outlier analyses.

THE development of methods aiming at detecting
molecular signatures of selection is one of the

major concerns of modern population genetics. Broadly,
such methods can be classified into four groups: meth-
ods focusing on (i) the interspecific comparison of gene
substitution patterns, (ii) the frequency spectrum and
models of selective sweeps, (iii) linkage disequilibrium
(LD) and haplotype structure, and (iv) patterns of ge-
netic differentiation among populations (for a review
see Nielsen 2005). Tests based on the comparison of
polymorphism and divergence at the species level inform
on mostly ancient selective processes. Population-based
approaches, however, are designed to pinpoint modern
processes of local adaptation and speciation occurring
among populations within a species. Such approaches
also become crucial in the fields of agronomical and

biomedical sciences, for instance, to pinpoint possible
interesting (QTL) regions and disease susceptibility
genes. Especially, human, livestock, and cultivated plants
genetics may benefit from such methods while whole-
genome single-nucleotide polymorphisms (SNPs) geno-
typing technologies are becoming routinely available
(e.g., Barreiro et al. 2008; Flori et al. 2009).

In the population genomic era (Luikart et al. 2003),
identifying genes under selection or neutral markers
influenced by nearby selected genes is a task in itself for
quantifying the role of selection in the evolutionary
history of species. Conversely, the accurate inference of
demographic parameters such as effective population
sizes, migration rates, and divergence times between
populations relies on the use of neutral marker data
sets. One approach of detecting loci under selection
(outliers) with population genetic data is based on the
genetic differentiation between loci influenced only by
neutral processes (genetic drift, mutation, migration)
and loci influenced by selection.

Lewontin and Krakauer’s (LK) test for the heteroge-
neity of the inbreeding coefficient (F) across loci was the

Supporting information is available online at http://www.genetics.org/
cgi/content/full/genetics.110.117275/DC1.

1Corresponding author: UMR444 Laboratoire de Génétique Cellulaire,
INRA Toulouse, BP52627, F-31326 Castanet Tolosan Cedex, France.
E-mail: magali.san-cristobal@toulouse.inra.fr

Genetics 186: 241–262 (September 2010)
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• Cockerham (1969) and Robertson (1975) interpret  4𝜎O$,O$" as the 
coancestry across two populations and Fariello et al. (2013) use 
𝜎O$,O$" to describe the divergence of populations. 

• There are several measures of genetic distance between populations 
(e.g. (Laval et al. 2002)), and most of them contain a term related, 
implicitly or explicitly, to 𝜎O$,O$" . 

• It is also related to Fst and Nei’s distance (see extra doc)
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Compatibility of G and A using metafounders
ü Extension of Christensen (2012)
ü Write as many metafounders as base populations
ü These metafounders are related by a matrix of additive

relationships 𝚪
ü Estimate 𝜞 using markers and pedigree (and maybe data)

ü Define 𝐆 as crossproduct 𝐆 = 𝑴!𝟐𝑷 𝑴!𝟐𝑷 "
#
$

with P containing 0.5

ü Then combine everything into one H matrix for all animals

𝐇𝚪%& = 𝐀𝚪%& +
𝟎 𝟎
𝟎 𝐆!( − 𝐀??𝚪

%&

• 𝐀𝚪%& : first invert 𝚪, then use Henderson’s rules
• This is the ”best” compatibility of G and A
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Re-analyses of exact same data as previous paper: 

◊

INTRODUCTION

Crossbreding is predominant and intensively used 
in meat production systems (Wei, 1992), especially in 

swine and chicken. In two-way crossbreding schemes, 
selection of purebreds for their crossbred performance 
is the ultimate goal (Wei, 1992; Bijma and Bastiaansen, 
2014). Because there exist genetic differences between 
breeds and genotype × environment interaction effects, 
additive genetic effects estimated based on purebred 
performance cannot be used to perfectly predict the 
crossbred performance (Lo et al., 1997). Ideally, com-
bined purebred and crossbred information is required 
to implement the genetic evaluation for crossbred per-
formance (Wei and van der Werf, 1994). However, due 
WR�WKH�GLI¿FXOW\�DQG�KLJK�FRVW�RI�FROOHFWLRQ�RI�GDWD�IURP�
crossbred animals (Dekkers, 2007), it is not common 
to have access to crossbred data.

Genomic selection has been successfully ap-
plied in purebreds based on data from purebred ani-
mals (Loberg and Dürr, 2009; Fulton, 2012), but it 
also offers opportunities for selecting purebreds for 

Application of single-step genomic evaluation for crossbred performance in pig1

T. Xiang,*†2 B. Nielsen,‡ G. Su,* A. Legarra,† and O. F. Christensen*

*Center for Quantitative Genetics and Genomics, Department of Molecular Biology  
and Genetics, Aarhus University, DK-8830 Tjele, Denmark; †INRA, UR1388 GenPhyse, CS-52627,  

F-31326 Castanet-Tolosan, France; and ‡SEGES, Pig Research Centre, DK-1609 Copenhagen, Denmark

ABSTRACT: Crossbreding is predominant and 
intensively used in commercial meat production 
systems, especially in poultry and swine. Genomic 
evaluation has been successfully applied for breed-
ing within purebreds but also offers opportunities of 
selecting purebreds for crossbred performance by 
combining information from purebreds with informa-
tion from crossbreds. However, it generally requires 
that all relevant animals are genotyped, which is costly 
and presently does not seem to be feasible in prac-
tice. Recently, a novel single-step BLUP method for 
genomic evaluation of both purebred and crossbred 
performance has been developed that can incorporate 
marker genotypes into a traditional animal model. This 
new method has not been validated in real data sets. In 
this study, we applied this single-step method to ana-
lyze data for the maternal trait of total number of piglets 

born in Danish Landrace, Yorkshire, and two-way 
crossbred pigs in different scenarios. The genetic cor-
relation between purebred and crossbred performances 
ZDV� LQYHVWLJDWHG�¿UVW��DQG� WKHQ� WKH� LPSDFW�RI� �FURVV-
bred) genomic information on prediction reliability for 
crossbred performance was explored. The results con-
¿UP� WKH� H[LVWHQFH�RI� D�PRGHUDWH�JHQHWLF� FRUUHODWLRQ��
and it was seen that the standard errors on the estimates 
were reduced when including genomic information. 
Models with marker information, especially crossbred 
genomic information, improved model-based reli-
abilities for crossbred performance of purebred boars 
and also improved the predictive ability for crossbred 
animals and, to some extent, reduced the bias of pre-
diction. We conclude that the new single-step BLUP 
method is a good tool in the genetic evaluation for 
crossbred performance in purebred animals.

Key words: crossbred performance, genetic correlation,  
genomic evaluation, pig, reliability, single-step method
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INTRODUCTION

Single-step genomic BLUP (ssGBLUP; Legarra 
et al., 2009; Christensen and Lund, 2010) has been 
successfully used in genomic evaluation to handle 
the situation where only a fraction of animals are 

genotyped. Christensen (2012) summarized 2 is-
sues with ssGBLUP. First, in theory, allelic frequen-
cies in the base population of the pedigree should be 
used in the genomic relationship matrix (VanRaden, 
2008), but these frequencies are rarely available. The 
second issue is how to make genomic and pedigree-
based relationship matrices compatible.

The compatibility of genomic and pedigree rela-
tionships across populations is difficult, as pedigree 
implies unrelatedness of base populations whereas 
markers “show” relatedness across base populations. 
In a series of papers, Christensen (2012), Christensen 
et al. (2015), and Legarra et al. (2015) present the 
following solution: genomic relationships should be 
constructed using 0.5 allelic frequencies, and pedigree 
relationships should refer to these allelic frequencies 
in the base populations; i.e., base populations must 
be assumed related and inbred using the concept of 
metafounders. Metafounders are thus a generalization 

Technical note: Genomic evaluation  
for crossbred performance in a single-step approach with metafounders1

T. Xiang,*†2 O. F. Christensen,* and A. Legarra†

*Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus  
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ABSTRACT: A single-step genomic BLUP method 
(ssGBLUP) has been successfully developed and 
applied for purebred and crossbred performance in 
pigs. However, it requires phasing the genotypes and 
inferring the breed origin of alleles in crossbred ani-
mals, which is somewhat inconvenient. Recently, a new 
concept of metafounders that considers the relationship 
within and across base populations was developed. 
With this concept of metafounders, regular methods to 
build and invert the pedigree relationships matrix can 
be used with only minor modifications and, moreover, 
genomic relationships and pedigree-based relation-
ships are automatically compatible in the ssGBLUP. In 
this study, data for the total number of piglets born in 
Danish Landrace, Yorkshire, and 2-way crossbred pigs 
and models for purebred and crossbred performance 

were revisited by use of ssGBLUP with 2 metafound-
ers. Genetic variances and genetic correlations between 
purebred and crossbred performances were first rees-
timated. Then, model-based reliabilities of purebred 
boars for their crossbred performance and predictive 
abilities for crossbred animals were compared in dif-
ferent scenarios. Results in this study were compared 
to those in a previous study with identical data but with 
models that required known breed origin of crossbred 
genotypes. Results show that relationships for base 
individuals within Landrace and within Yorkshire are 
similar and that the ancestor populations for Landrace 
and Yorkshire are related. In terms of model-based 
reliabilities and predictive abilities, ssGBLUP with 
metafounders performs at least as well as the single-
step method requiring phasing at a lower complexity.
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Landrace Yorkshire

F1
Some are genotyped 
(7700 L, 7700 Y, 5500 
F1)

TNB was recorded in 
293,339 LL, 
180,112 YY, and 
10,974 crossbred.

332,929 LL, 210,554
YY, and 10,974 
crossbreds were in 
the pedigree
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Landrace x Yorkshire = F1 (Tao Xiang)

• Single Step
• Genotypes and phenotypes in purebreds and crosses
• Old method: two SSGBLUPs separate for each origin (Xiang 2016 J 

Anim Sci)
• New method: metafounders
• Two populations Landrace and Yorkshire

𝚪 =
𝛾̀Q 𝛾̀Q,R
𝛾̀Q,R 𝛾̀R

= 0.756 0.259
0.259 0.730 estimated by GLS
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Landrace x Yorkshire = F1 (Tao Xiang)

• One H matrix for all animals (Landrace, Yorkshire, or F1)
𝐇𝚪%& =

𝟎 𝟎
𝟎 𝐆!( − 𝐀??𝚪

%& + 𝐀𝚪%& ,

• Three trait model (L,Y, F1) depending on which population the trait 
was recorded
• The three trait model accommodates interactions GxG and GxE.
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Landrace x Yorkshire = F1 (Tao Xiang)

• The results were as good as the more complex method in the 
previous paper
• But much easier
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Missing pedigree

• One breed

𝜞 =

𝛾EE 𝛾E: 𝛾EM 𝛾EN
𝛾:E 𝛾:: 𝛾:M 𝛾:N
𝛾ME 𝛾M: 𝛾MM 𝛾MN
𝛾NE 𝛾N: 𝛾NM 𝛾NN
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ABSTRACT

Bias in dairy genetic evaluations, when it exists, has 
to be understood and properly addressed. The origin of 
biases is not always clear. We analyzed 40 yr of records 
from the Lacaune dairy sheep breeding program to 
evaluate the extent of bias, assess possible corrections, 
and emit hypotheses on its origin. The data set included 
7 traits (milk yield, fat and protein contents, somatic 
cell score, teat angle, udder cleft, and udder depth) 
with records from 600,000 to 5 million depending on 
the trait, ~1,900,000 animals, and ~5,900 genotyped 
elite artificial insemination rams. For the ~8% animals 
with missing sire, we fit 25 unknown parent groups. We 
used the linear regression method to compare “partial” 
and “whole” predictions of young rams before and after 
progeny testing, with 7 cut-off points, and we obtained 
estimates of their bias, (over)dispersion, and accuracy 
in early proofs. We tried (1) several scenarios as follows: 
multiple or single trait, the “official” (routine) evalua-
tion, which is a mixture of both single and multiple 
trait, and “deletion” of data before 1990; and (2) sev-
eral models as follows: BLUP and single-step genomic 
(SSG)BLUP with fixed unknown parent groups or 
metafounders, where, for metafounders, their relation-
ship matrix gamma was estimated using either a model 
for inbreeding trend, or base allele frequencies esti-
mated by peeling. The estimate of gamma obtained by 
modeling the inbreeding trend resulted in an estimated 
increase of inbreeding, based on markers, faster than 
the pedigree-based one. The estimated genetic trends 
were similar for most models and scenarios across all 
traits, but were shrunken when gamma was estimated 
by peeling. This was due to shrinking of the estimates 
of metafounders in the latter case. Across scenarios, 
all traits showed bias, generally as an overestimate of 

genetic trend for milk yield and an underestimate for 
the other traits. As for the slope, it showed overdisper-
sion of estimated breeding values for all traits. Using 
multiple-trait models slightly reduced the overestimate 
of genetic trend and the overdispersion, as did including 
genomic information (i.e., SSGBLUP) when the gam-
ma matrix was estimated by the model for inbreeding 
trend. However, only deletion of historical data before 
1990 resulted in elimination of both kind of biases. The 
SSGBLUP resulted in more accurate early proofs than 
BLUP for all traits. We considered that a snowball ef-
fect of small errors in each genetic evaluation, combined 
with selection, may have resulted in biased evaluations. 
Improving statistical methods reduced some bias but 
not all, and a simple solution for this data set was to 
remove historical records.
Key words: genomic prediction, bias, accuracy, 
historical data, multiple trait

INTRODUCTION

Among producers of sheep milk, France has better-
established breeding programs. Lacaune is the most 
important breed in the French dairy sheep industry and 
has had a breeding program operating since the 1960s. 
Flocks involved in the Lacaune breeding program com-
prise ~170,000 females, and the selection scheme tested 
~450 rams per year until 2014 (Barillet, 2007). Since 
2015 and the implementation of genomic selection, 
rams are genomically preselected at birth, resulting in 
the use of 250 new genomically selected rams per year 
(Jean-Michel Astruc, Institut de l’Elevage, Toulouse; 
personal communication). Today, the genetic evalua-
tion includes the following 10 traits: milk yield (MY), 
fat and protein contents (FC and PC), fat and protein 
yields, SCS, and udder morphological traits including 
teat angle (TA), udder cleft (UC), udder depth (UD), 
and teat position.

Due to the relevance of the breed for the dairy sheep 
industry and its pioneering use of genomic selection, 

Removing data and using metafounders alleviates biases 
for all traits in Lacaune dairy sheep predictions
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accomplished, although an economic quantification of 
the losses was missing.

Some, but not all, bias was reduced using MT mod-
els. The source of these remaining biases was largely 
unknown, as the Lacaune breed has a well-organized 
performance recording and low level of missing pedi-
gree. We hypothesized that bias came from inherently 
imperfect statistical models, and that accumulation of 
small biases during many generations (more than 10 
since the 1970s) led to a snowball effect and observed 

existing bias. For instance, small noises in estimation of 
breeding values may lead the genetic evaluation system 
to infer that the average breeding value of the next 
generation is, say, 11% better instead of the true 10%. 
The 1-percentage-point difference enters into parent 
averages that, in turn, enter into prediction of genetic 
and environmental effects. The same effect would be 
achieved if, for the same trait, the genetic correlation 
across distant generations was not 1 (Tsuruta et al., 
2004), for instance, due to genotype by environment 

Macedo et al.: BIAS IN DAIRY SHEEP GENETIC EVALUATIONS

Figure 4. Estimates of unknown parent groups (UPG) and metafounders effect for milk yield for the official genetic evaluation scenario. 
Models: BLUP-UPGA, with fixed unknown parent groups; SSGBLUP-MF-trend, with a smooth trend to estimate Γ across metafounders (MF); 
SSGBLUP-MF-peeling, which uses peeling to estimate Γ; and SSGBLUP-UPGH with fixed unknown parent groups.

Figure 5. Estimated slope b̂p (regression of EBVw on EBVp) as function of year of birth of focal individuals. EBVw = EBV based on whole 
data; EBVp = EBV based on partial data. Genetic evaluation: BLUP-UPGA (with fixed unknown parent groups) in scenario with deletion of 
historical data.
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interactions. Thus, selection differentials at one genera-
tion are not fully reflected in the following generations. 
If we’re correct, this effect would explain the different 
genetic trend in Off and in Del. However, this hypoth-
esis has not been verified through this study and should 
be properly addressed elsewhere.

As for the means of correcting the bias, the most 
obvious (improving the model) is not always easy as 

linear models have their limitations, for instance, if 
important factors are unregistered or unaccounted for. 
Indeed, an outdated correcting factor (age − parity) 
introduced serious bias in US dairy evaluation (Powell 
and Wiggans, 1994). This particular factor (age − par-
ity) is taken into account in the Lacaune evaluation, 
but it still may remain inaccurate due to confounding 
(e.g., with herd-year-parity) as well as other factors. 

Macedo et al.: BIAS IN DAIRY SHEEP GENETIC EVALUATIONS

Table 4. Bias ∆̂p( ) expressed in genetic standard deviations

Evaluation1  Model2

Trait3

MY FC PC SCS TA UC UD

Official  BLUP-UPGA 0.17 −0.13 −0.25 −0.10 −0.04 −0.04 −0.07
Official  SSGBLUP-MF-trend 0.11 −0.09 −0.15 −0.08 0.06 −0.10 −0.06
Official  SSGBLUP-MF-peel 0.36 0.00 −0.05 −0.13 0.03 −0.05 −0.06
Official  SSGBLUP-UPGH 0.10 −0.10 −0.16 −0.08 0.06 −0.09 −0.06
Deletion  BLUP-UPGA −0.01 −0.14 −0.21 −0.05 −0.04 −0.03 −0.04
Deletion  SSGBLUP-MF-trend −0.02 −0.09 −0.11 −0.04 −0.05 −0.03 −0.03
Deletion  SSGBLUP-MF-peeling 0.05 −0.06 −0.09 −0.05 −0.05 −0.03 −0.03
Deletion  SSGBLUP-UPGH −0.02 −0.09 −0.11 −0.03 −0.04 −0.03 −0.03
ST  BLUP-UPGA     −0.06 −0.04 −0.07
ST  SSGBLUP-MF-trend     −0.06 −0.04 −0.08
ST  SSGBLUP-MF-peeling     −0.08 −0.05 −0.10
ST  SSGBLUP-UPGH     −0.06 −0.04 −0.08
MT  BLUP-UPGA 0.18 −0.05 −0.14 −0.06 0.07 −0.05 −0.14
MT  SSGBLUP-MF-trend 0.09 −0.03 −0.08 −0.04 0.05 −0.04 −0.12
MT  SSGBLUP-MF-peel 0.29 0.02 −0.02 −0.10 0.03 0.01 −0.13
MT  SSGBLUP-UPGH 0.07 −0.03 −0.09 −0.03 0.06 −0.04 −0.13
1Scenarios: Official = official evaluation; Deletion = deletion of historical data; ST = single-trait evaluation; MT = full multiple-trait evaluation.
2Models: BLUP-UPGA, with fixed unknown parent groups; single-step genomic (SSG)BLUP-MF-trend = uses a smooth trend to estimate Γ; 
SSGBLUP-MF-peeling, which uses peeling to estimate Γ; and SSGBLUP-UPGH with fixed unknown parent groups.
3MY = milk yield; FC = fat content; PC = protein content; TA = teat angle; UC = udder cleft; UD = udder depth. Standard errors between 
0.01 and 0.03.

Table 5. Slope b̂p( ) of the regression of EBVw (whole data set) on EBVp (partial data set)

Evaluation1  Model2

Trait3

MY FC PC SCS TA UC UD

Official  BLUP-UPGA 0.71 0.89 0.85 0.88 0.76 0.92 0.72
Official  SSGBLUP-MF-trend 0.86 0.93 0.91 0.87 0.83 0.79 0.72
Official  SSGBLUP-MF-peeling 0.75 0.89 0.88 0.82 0.78 0.74 0.68
Official  SSGBLUP-UPGH 0.59 0.87 0.78 0.87 0.83 0.79 0.73
Deletion  BLUP-UPGA 0.97 0.99 0.94 0.96 0.90 0.90 0.92
Deletion  SSGBLUP-MF-trend 0.99 0.99 0.98 0.98 0.89 0.89 0.91
Deletion  SSGBLUP-MF-peeling 0.94 0.97 0.95 0.96 0.87 0.87 0.90
Deletion  SSGBLUP-UPGH 0.98 0.99 0.97 0.98 0.89 0.88 0.91
ST  BLUP-UPGA 0.71 0.89 0.85 0.88 0.85 0.94 0.74
ST  SSGBLUP-MF-trend 0.86 0.93 0.92 0.87 1.30 1.44 1.29
ST  SSGBLUP-MF-peeling 0.75 0.89 0.88 0.82 1.17 1.24 1.09
ST  SSGBLUP-UPGH 0.59 0.87 0.78 0.87 1.06 1.12 1.01
MT  BLUP-UPGA 0.69 0.82 0.81 0.80 0.81 0.76 0.59
MT  SSGBLUP-MF-trend 0.83 0.88 0.87 0.81 0.81 0.76 0.65
MT  SSGBLUP-MF-peeling 0.73 0.84 0.83 0.75 0.76 0.70 0.60
MT  SSGBLUP-UPGH 0.60 0.84 0.77 0.81 0.80 0.76 0.65
1Scenarios: Official = official evaluation; Deletion = deletion of historical data; ST = single-trait evaluation; MT = full multiple-trait evaluation.
2Models: BLUP-UPGA, with fixed unknown parent groups; single-step genomic (SSG)BLUP-MF-trend = uses a smooth trend to estimate Γ; 
SSGBLUP-MF-peeling, which uses peeling to estimate Γ; and SSGBLUP-UPGH with fixed unknown parent groups.
3MY = milk yield; FC = fat content; PC = protein content; TA = teat angle; UC = udder cleft; UD = udder depth. Standard errors between 
0.01 and 0.02.

Use of UPG results in similar estimates than using MF
…but more biased evaluations (b_p <<1)

UPG or metafounders?

• UPG are “fixed effects”
• Metafounders are “random and related” effects

• There are equations to use UPG as fixed effects in SSGBLUP 
• but they’re more complex to implement than metafounders
• The compatibility of G and A using “J-coefficients” needs to be obtained separately

• Metafounders 
• does compatibility & estimation in one shot
• computationally very simple
• estimation of 𝜞 is tricky
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State of the art for Metafounders

• Right now there are a few papers using MF, in particular (to my knowledge) 
in pure & crossbred dairy cattle and sheep
• A complex issue is how to estimate (or assume) 𝛾#$ = 8𝐶𝑜𝑣 𝑝# , 𝑝$ =
8𝜎%',%'( with p at each base opulation
• It is similar, but not equal, to estimate a variance component
• in particular if MF are distant from genotypes
• We have now:

• A Maximum Likelihood estimate for a single 𝛾
• A method using increase of inbreeding for multivariate 𝚪 within breed (this is based 

in Macedo et al. 2021)
• See extra docs for details
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State of the art for Metafounders

• Single 𝛾
• Maximum Likelihood
• get 𝐆𝟎𝟓 = 𝐌𝐌/(𝑘/2)with M={-1,0,1} and k number of markers 
• get 𝑨𝟐𝟐
• compute 𝑎 = 𝟏′𝐀𝟐𝟐!(𝟏,	𝑏 = 𝑇𝑟(𝐀𝟐𝟐!(𝐆) and	𝑐 = 𝑇𝑟(𝐀𝟐𝟐!(𝟏𝟏′𝐀𝟐𝟐!(𝐆)
• the ML estimate of 𝛾 is the solution of a cubic equation
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Test with Lacaune AI rams (which have very complete pedigrees)

the value of T𝛾 ≈ 0.46 makes pedigree and genomic relationships 
“most compatible” 

State of the art for Metafounders
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• Multiple 𝛾, simple population
• We conceived a method based on average increase of relationship in the population

– Average relationships in t generations a population increase by 2𝛥𝐹

𝐀 !:#,!:# =

𝐴! 𝐴! 𝐴! …
𝐴! 𝐴% 𝐴% …
𝐴! 𝐴% 𝐴& …
… … … …

=

0 0 0 …
0 2𝛥𝐹 2𝛥𝐹 …
0 2𝛥𝐹 4𝛥𝐹 …
… … … …

= 2𝑘𝐓𝐓'𝛥𝐹; 𝐓 =

0 0 0 …
1 0 0 …
1 1 0 …
… … … …

'

– If missing parents are drawn from the general population at random, then their relationship 
is also described by 𝐀 (VanRaden 1992).

– Metafounders describe average relationships so we have:

𝚪 =

𝛤" 𝛤" 𝛤" …
𝛤" 𝛤"+ 2𝛥𝐹𝚪 𝛤"+ 2𝛥𝐹𝚪 …
𝛤" 𝛤"+ 2𝛥𝐹𝚪 𝛤"+ 4𝛥𝐹𝚪 …
… … … …

= 𝟏𝟏$𝛤"+ 2𝑘𝐓𝐓$𝛥𝐹(1 − 𝛤"/2)

– we got good results in Lacaune (good alignment of pedigree and genomic relationships”
• the remaining case is “breeds + crosses + missing pedigree” 🤔

• Kudinov et al., 10.3389/fgene.2022.1012205 ; Legarra et al. Gen Sel Evol (2024) 56:35
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Risks of forecasting in Animal Breeding

• Spelman et al:
• New Zealand Animal Evaluation Limited (NZAEL), […] first included genomic 

information in the national evaluation in 2009 […] 
• The first two crops of DNA-proven sires, used in 2008 and 2009 […] the initial GEBVs 

of these sires were found to be over-estimated […] as a gesture of appreciation to 
the early adopters of genomic evaluation, LIC credited the $5 premium that the 
farmers paid 

• (Similar report by Sargolzaei,  Chesnais…)

• We need tools to rank, understand and quantify the behavior of prediction 
models in an “animal breeding” context

• The need for these tools has dramatically increased with genomic 
selection, that takes riskier decisions
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Why do we need cross-validation?

• Classic statistical methods to compare models (AIC…) only inform 
about global fit and parsimony of ALL data

• (In Animal Breeding) we want our models to predict THE FUTURE 
offspring of selected animals

• We’re not interested in better finding out the effect that “lambing at 
18 months” had in 1998 – we want to know the best sheep NOW

3

Cross-validation in a nutshell

• Split data into “training” and “validation”, 

• using a model and data in “training” predict “data” in “validation”

• Measure quality of prediction
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Which kind of cross-validation should we use?

For selection: 

• Is my genetic evaluation leading me to maximization of genetic 
progress?

• We want the method that best predicts future performance

• Forward cross-validation (or retrospective analysis)
• (Interbull tests)

• Cut data at date t

• Could we have predicted at time t the data that was actually observed after t?

5

Which kind of cross-validation should we use?

• Random k-fold, leave-one-out, k-means cluster for crossvalidation:
• Predict contemporaries (and not offspring)
• It might be useful to predict performance of existing individuals in, say, other 

environments (plants)
• Results from these crossvalidations should not be taken as “reliabilities” in a 

selection theory sense

• Random k-fold: you may predict e.g. parents from offspring

• Leave-one-out: overfit 
• (it has been proven in Stat literature)
• there’s always a close sib with information
• and are we interested in predicting well one individual?
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Example: Forward cross-validation

Truth observed in 2012

Cutoff date: 2008

f()

8

Prediction with
information up to 2008

Metrics

• Theory of quantitative genetics suggest using Metrics from linear regression of 𝑢 (TBV) 
on ො𝑢 (EBV):

• Bias: 𝑏0 = 𝐸(𝑢 − ො𝑢) (it is NOT the intercept of the regression of 𝑢 on ො𝑢) 

• Slope: 𝑏1 =
𝐶𝑜𝑣 𝑢,ෝ𝑢

𝑉𝑎𝑟 ෝ𝑢
(slope of the regression of 𝑢 on ො𝑢)

• Accuracy: 𝑟 =
𝐶𝑜𝑣 𝑢,ෝ𝑢

𝑉𝑎𝑟 𝑢 𝑉𝑎𝑟 ෝ𝑢

In fact: 𝑀𝑆𝐸 = 𝑏0
2 + 𝜎𝑢

2 1 +
𝑟2

𝑏1
2 −

2𝑟2

𝑏1

• Why are these relevant? Genetic progress !!

9



True and estimated genetic progress

• When we select animals, we believe our Δ𝐺 =
1

𝑛
Σ 𝐺𝐸𝐵𝑉 = തො𝑢

• This only holds if bias 𝑏0 = 0, regression 𝑏1 = 1

• 𝑏0 < 0 or 𝑏1 < 1 (overdispersion) lead to overestimation of selected 
young animals

• So, in addition to accuracy 𝑟 we should check both 𝑏0 and 𝑏1

10

p. 11Titre de la présentation

Date / information / nom de l’auteur

Genetic gain: b0

Consider a Genetic Evaluation

Year of 
birth

EB
V

Old animals
Good accuracy

Young animals
Bad accuracy

True Genetic gain

Selection rule

If the EBVs are biased, all 
animals are now 

underestimated (for example)Young animals EBVs 
should lie around the 
true genetic mean of 

their generation

Bias

You don’t select as 
many young 

animals as you 
should

Ideal situation

If bias



p. 12Titre de la présentation

Date / information / nom de l’auteur

Dispersion: b1

Consider a Genetic Evaluation

Year of birth

EB
V

Old animals
Good accuracy

Young animals
Bad accuracy

Dispersion
Selection rule

Young animals EBVs 
should have the right 

dispersion
Correct mean after

selection

If we have too much 
dispersion…

The genetic gain 
after selection of 
young animals is 
overestimated

Good dispersion if 

reg(TBV~EBV)

Slope = 1

True Genetic gain

Ideal situation
If problems in 
dispersion 

How should we cross-evaluate?

• We can see ො𝑢 (EBVs), we can’t see 𝑢 (TBVs)

• “Predictivity”: compare predictions with observations (precorrected
phenotypes 𝑦∗ or deregressed proofs) :
• e.g. 𝑟 ≈ 𝑐𝑜𝑟(𝑦∗, ො𝑦)/ℎ (Legarra et al. 2008)

• But this ignores the covariance structure in precorrected 𝑦∗and leads to 
paradoxes:
• 𝑟 > 1 (observed in chicken)

• 𝑟𝑝𝑒𝑑𝑖𝑔𝑟𝑒𝑒 > 𝑟𝑔𝑒𝑛𝑜𝑚𝑖𝑐 (observed in dairy cattle for fertility)

• It also ignores that candidates to selection have reduced genetic variance

• [for this: see page 9 in Legarra-Reverter 2018]

13



Underestimation of accuracy using predictability 
due to reduction of genetic variance

• 𝑟 𝒚𝑛𝑒𝑤
∗ , ෝ𝒖𝑝 has expectation 

𝑎𝑐𝑐

ℎ
• only when animals are NOT selected

• often is not the case: for instance, prospective AI rams (jeunes
agneaux), their genetic variance 𝜎𝑢∗

2 is less than the “normal”  genetic 
variance 𝜎𝑢

2

• Using ෞ𝑎𝑐𝑐 ≈
𝜌𝑦,𝑝

ℎ
underestimates populational accuracy

14

Fictional example in dairy cattle

• Using the “dairy” example in [Bijma 2011] …

• assume observed 𝜌𝑦𝑐,𝑝 = 0.3, 

• this yields (biased) ෞ𝑎𝑐𝑐 ≈
𝜌𝑦,𝑝

ℎ
= 0.55 and 

• (correct)  ෞ𝑎𝑐𝑐 ≈
𝜌𝑦,𝑝

ℎ∞
= 0.67. 

• This value can, in turn, be translated as an “unselected accuracy” of 0.82

15



Overestimation of accuracy using predictability 
due to ignoring error in estimate of fixed effects

• We use 𝒚𝑛𝑒𝑤
∗ as it was “exact”

• For a balanced design with 𝑛𝑖 records per contemporary group

• a (relative) overestimation of the accuracy of 𝑎𝑐𝑐𝑝
1

𝑛𝑖

• Dairy sheep: 25 animals / contemporary group, overestimation of 
accuracy by 4%

• Beef cattle: 5 animals / contemporary group, overestimation of 
accuracy by 20%

16

How should we cross-evaluate?

• Dairy cattle breeders use DYDs (average performance of daughters 
after correction)
• In other species, DYDs are very little reliable (pigs!! but also sheep and goat)

• Analysis of DYDs assumes that they are “uncorrelated” across bulls, but this is 
false when the number of daughters is small or the trait is low heritable

• Use of genomic selection makes DYDs more and more biased

• “Deregressed Proofs” (Garrick et al.) suffer the same problems as 
“predictivity” unless large progenies
• (also: The method of Garrick is not quite correct, see Ricard-Legarra-Danvy

JAS 2013)

17



p. 18Titre de la présentation

Date / information / nom de l’auteur

Legarra & Reverter (2018) proposed a new method based on 
comparisons of EBV from partial (old) data vs whole (old+new) data. 

• Does not require “true” breeding values
• Does not require pre-corrected phenotypes
• Could be used for any kind of traits

Check of bias using successive evaluations

• Legarra, A., & Reverter, A. (2018). Semi-parametric estimates of population accuracy and bias of 
predictions of breeding values and future phenotypes using the LR method. Genetics Selection 
Evolution, 50(1), 1-18.

• Legarra, A., & Reverter, A. (2019). Correction to: Semi-parametric estimates of population accuracy 
and bias of predictions of breeding values and future phenotypes using the LR method. Genetics 
Selection Evolution, 51(1), 1-2.

• We proved (analytically) that in successive genetic evaluations there 
are useful statistical properties of the distributions of “early” and 
“late” EBVs

• We use these properties to get estimators of biases and accuracies

19



The proposed method LR

20

Pedigree(

+markers)

How does LR method works? 

RECORDS

…

2005

2010

2015

BLUP 
with
Partial
(old) data

BLUP with Whole
(old+new) data

ො𝑢𝑝 ෝ𝒖𝑤

EBVs (ෝ𝒖𝑝)  of 

“Focal group”
e.g. Young males 

without
daughters

EBVs (ෝ𝒖𝑤 )  of 
“Focal group”

e.g. Same males 
with daughters

…

vs =

Estimators of 

Bias
Slope

Accuracies



Practicalities: defining focal groups

• The properties of the method hold for a group of animals that are 
contemporaries and have 
• similar information at ”partial” (e.g. only Parent Average)
• and similar information at “whole” predictions (e.g. Parent Average + 

phenotype, or Parent Average + offspring, or…)

• we call this focal group

• we're interested in the group, not in each individual animal

• young born rams (bulls) can be a focal group. 

• 1st-lambing females can be a focal group, and 

• rams with first crop of daughters could be a focal group

22

Estimators of LR method: Bias and 
Slope

Old evaluations
New 

evaluations

Bias       ෡Δ𝑝 = ഥෝ𝒖𝑝 − ഥෝ𝒖𝑤
Expected value of 0 in absence of bias

Slope        ෠𝑏𝑝 =
𝑐𝑜𝑣(ෝ𝒖𝑝 ,ෝ𝒖𝑤)

𝑣𝑎𝑟(ෝ𝒖𝑝)

Expected value of 1 in unbiased genetic evaluations



p. 24Titre de la présentation

Date / information / nom de l’auteur

2018 2019

𝜇𝑤𝑝 =
999 + 849 + 831 + 953 + 764

5
−
973 + 833 + 904 + 963 + 807

5
= −16.8

24

EBV2018=c(999,849,831,953,764) 
EBV2019=c(973,833,904,963,807) 
delta_wp=mean(EBV2018)-mean(EBV2019) # -16.8
aa=lm(EBV2019~EBV2018) 
b_wp=aa$coefficients[2] # 0.71

෡Δ𝑤𝑝

෠𝑏𝑝

Estimators of LR method: Accuracies

Relative estimators

Ratio of accuracies 

ො𝜌𝑤,𝑝 =
𝐶𝑜𝑣(ෝ𝒖𝑝,ෝ𝒖𝑤)

𝑉𝑎𝑟 ෝ𝒖𝑝 𝑉𝑎𝑟 ෝ𝒖𝑤

with expected value 
𝑎𝑐𝑐𝑝

𝑎𝑐𝑐𝑤
(values close to 1 indicate that “partial evaluation” 

was “as accurate” as later evaluation, but both evaluations could be “little accurate”)

Relative increase in accuracy
1

ෝ𝜌𝑤,𝑝
− 1with expected value 

𝑎𝑐𝑐𝑤−𝑎𝑐𝑐𝑝

𝑎𝑐𝑐𝑝
(if  

𝑎𝑐𝑐𝑤−𝑎𝑐𝑐𝑝

𝑎𝑐𝑐𝑝
= 0.5 then genetic progress increases by 50%)

Ratio of reliabilities 

ො𝜌2𝑝,𝑤 =
𝐶𝑜𝑣(ෝ𝒖𝑝 ,ෝ𝒖𝑤)

𝑉𝑎𝑟 ෝ𝒖𝑤
with expected value 

𝑎𝑐𝑐𝑝
2

𝑎𝑐𝑐𝑤2
(ratio of reliabilities)



Estimators of LR method: Accuracies

Direct estimators
Selected reliability

ෞ𝑎𝑐𝑐2𝑝 =
𝐶𝑜𝑣(ෝ𝒖𝑝, ෝ𝒖𝑤)

𝜎𝑢∗
2

The denominator 𝜎𝑢∗
2 is the variance of animals in the focal group (and not the variance of the base 

generation).

When animals are pre-selected: for instance, prospective AI rams, their genetic variance 𝜎𝑢∗
2 is less than 

the “normal”  genetic variance 𝜎𝑢
2

- In MTR, 𝜎𝑢
2 ≈ 500 but 𝜎𝑢∗

2 ≈ 350 for young rams (milk yield) 

- This equation ෞ𝑎𝑐𝑐2𝑝 gives the “selected” reliability of Bijma (J. Anim. Breed. Genet. (2012) 1–14) 

and Dekkers (Anim Sci 1992)
- This reliability says the “ability” to rank within those animals (more difficult when they’re selected)

- 𝜎𝑢∗
2 can be estimated using e.g. Gibbs sampling (proven bulls is 𝜎𝑢∗

2 ≈ 𝑣𝑎𝑟(𝐸𝐵𝑉))

But we can’t use this accuracy for the whole population, and we can’t compare it with results in less 
selected animals, say, beef cattle

Estimators of LR method: Accuracies

Direct estimators

- Solution: correct using ratios of unselected and observed genetic variances of these animals ∶

Unselected reliability

෢𝑟𝑒𝑙𝑝 = 1−
𝜎𝑢∗
2

𝜎𝑢
2 1 − ෞ𝑎𝑐𝑐𝑝

2

- This matches what you should get from the inverse of the MME (Model-based reliabilities)
- The mathematical explanation of all this is quite boring but is detailed in the Appendix of Macedo et 

al. 2020 J Dairy Sci

- The computation of 𝜎𝑢∗
2 etc etc can be found in Macedo et al. 2020 GSE (Gibbs sampler, no problem 

for < 10 M animals).



Unselected 
reliability

Selected 
reliability

Ratio of 
reliabilities 

All of them agree in saying SSGBLUP >> BLUP

• The ”unselected reliability” is in the scale of Reliability
• The “ratio of reliabilities” is harder to interpret

Examples of estimation of accuracies (MTR)

Practicalities: defining focal groups

• In dairy sheep we take the data file and we work looking forward

• Take all rams born in 2014 that were used in AI in the breed MTR

• Few years later (say 2017) we find out which of these rams have 
daughters with milk yield

• This defines a focal group for “partial”=2014 and “whole”=2017

• We can do the same for 2014 vs. 2018, 2019, etc

• lots of work of data exploring but we have 

29



Practicalities: defining “whole” and “partial”

• You can do many “partials” and many “wholes” 

• for instance you can do “partial” at 2010, 2011,…

• and compare each of them vs. “whole” at 2014, 2015…

• it is important to do several comparisons !!

• this requires automatic handling of files and data editing, fortunately 
we have 

30

p. 31Titre de la présentation

Date / information / nom de l’auteur

Evaluations with data until 2005, until 2006 and so on until 2017. 

We compare

• EBVs at birth (EBVP) of a set of Artificial Insemination males (2005 – 2014) 

• EBVs of the same males in later evaluations (after having progeny) (EBVW) (until 2017). 

For example for males born in 2005, 11 pairs of evaluations were analysed, 

• 2005 vs 2007; 2005 vs 2008; ... and  2005 vs 2017

The same for males born in 2006, 2007 ... 2015

• 2006 vs 2008; ... and 2015 vs 2017

Total of 65 comparisons that we “average” using a linear model to account for unbalance
(details in the paper)

for instance: work in MTR



Practicalities: defining “whole” and “partial”

• Delete records (y) after cut-off date

• ideally, keep pedigree and markers only up to the cut-off date
• for instance if “partial”= March 2014 we should keep records, pedigree and 

markers up to March 2014 (because pedigree and markers were used to 
predict the young rams)

• in practice:
• we delete “records” (milk yield, etc etc) based on the year 

• for practicality, we keep ALL pedigree and ALL markers

• we don’t think this should give problems because pedigree does not 
contribute information to ssGBLUP, and genotypes very very little

32

Practicalities: referring to same genetic base

• In genetic evaluations with Unknown Parent Groups, the EBVs are not 
estimable functions

• So you need to refer all EBVs to a common genetic base in order to 
infer “bias” or not.

• Typically the genetic base is something like “average EBV of all 
females born in  2010” or something like that.

33



Practicalities: genomic vs pedigree

• Wait, how do know if I want to spend money in genotypes?

• In other words, how do I compare a “genomic” and a “non 
genomic” evaluation?

• Easy: 
• keep the same records (y) and pedigree (A) for two analyses:

• “non genomic” = ”partial” 

• “genomic” = “whole” (markers = more “data”)

• Alternatively: run “whole” and “partial” with “genomic” and 
“pedigree” (4 evaluations in total)

34

What do we do with several models?

• If the model is correct it should be “internally” coherent (no biases, 
𝑏0 = 0 and 𝑏1 = 1)
• Don’t use models that are obviously “internally” biased

• Can I compare two models?
• “partial” with one model and “whole” with another model

• We did for “partial” = “old data without markers (BLUP)” vs. “whole” 
=  “new data with markers (ssGBLUP)”
• Because ssGBLUP requires changing the model! ( a bit)

• We expect to see no biases 

35



Some results

• Dairy sheep improvement is a French specialty !

• This is not meat or wool sheep

• Very well structured “mini – dairy cattle style” 
breeding program

• AI, performance recording, etc etc
<2015: progeny-testing

>2015: genomic selection

36

Fernando Macedo PhD

p. 37

The breeds

Lacaune

Female population size: 890,000
Females in the breeding flocks: 174,472 (19%) 
Tested rams per year: 440 
Rams at AI Center: 1400
Individuals in the pedigree 1,868,975 
Number of records Milk Yield:        5,696,348
Missing pedigree: ≈9%

Traits:  Milk Yield and contents, SCS, Udder traits 

Manech Tête Rousse

Female population size: 274,000
Females in the breeding flocks: 80,260 (29%) 
Tested rams per year: 150 
Rams at AI Center: 600
Individuals in the pedigree 540,999 
Number of records Milk Yiedl:       1,842,295
Missing pedigree: ≈25%

Traits selected:  Milk Yield and contents

Background Does LR method works? The spin-off HighlightsBut, with real data? 



Genotyping in French dairy sheep

• Every year, new lambs enter the AI center

• They have undergone two steps of selection:
• 1st selection: based on “parent average” (½ mom + ½ dad) => retain so many 

(n) “best” lambs (say 1000) among all male lambs in the breed (say 50,000)

• Genotype the n “best” lambs with 15K chip; impute

• do genomic predictions for the n newly genotyped “best” lambs

• 2nd selection: based on genomic prediction, retain the n/5 “best best” lambs 
(say 200)

• These “best best” n/5 lambs enter the AI center

38
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Main results Manech Tête Rousse

Very small bias in Manech Tête Rousse!

slope ෠𝑏𝑝~1

small, positive bias ෡Δp (0.2 genetic s.d.)

lambs are over-predicted

Model ෡𝚫𝐩
෡𝒃𝒑

BLUP-MF 0.25 0.98

BLUP-UPGA 0.48 0.96

SSGBLUP-MF 0.23 0.97

SSGBLUP-UPGA 0.32 0.94

SSGBLUP-UPGH 0.48 0.88

EBVp

EBVw

SSGBLUP-UPGA SSGBLUP-UPGH SSGBLUP-MF

BLUP-MF 1.32 1.29 0.98

BLUP-UPGA 1.25 1.23 0.92

Across models 

slope ෡𝒃𝒑 : 

MF performs better 

Background Does LR method works? The spin-off HighlightsBut, with real data? 

Some models (UPGH…) are really biased
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Main results Manech Tête Rousse

BLUP-MF SSGBLUP-UPGH

Important variation between truncation points! 

Background Does LR method works? The spin-off HighlightsBut, with real data? 

2008 what happened?
2008 what happened?

p. 41

Unselected 
reliability

Selected 
reliability

Ratio of 
reliabilities 

All of them agree in saying SSGBLUP >> BLUP

The ”unselected reliability” is in the scale of Reliability that we 
are familiar with
The “ratio of reliabilities” is harder to interpret

Examples of estimation of accuracies (MTR)



SCENARIOS

Lacaune

Several scenarios: 
OFFICIAL – Production traits and SCS as single trait; udder morphology as 
multiple trait
SINGLETRAIT – All evaluationsare single trait
DELETION – Like “official” but deleting data (pedigree + records) since 1990
MULTIPLETRAIT – All traits in a multiple trait evaluation
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REMOVING DATA AND USING METAFOUNDERS ALLEVIATES 

BIASES FOR ALL TRAITS IN LACAUNE DAIRY SHEEP 

PREDICTIONS
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Main results Lacaune: BIAS 

Scenario Model

Traits

MY FC PC SCS TA UC UD

DELETION

BLUP-UPGA -0.02 -0.14 -0.22 -0.05 0.01 -0.06 -0.03

SSGBLUP-
MF1

-0.01 -0.09 -0.12 -0.03 0.01 -0.05 -0.02

SSGBLUP-
UPGH

-0.01 -0.09 -0.12 -0.03 0.01 -0.04 -0.03

OFFICIAL

BLUP-UPGA 0.15 -0.11 -0.20 -0.10 0.08 -0.12 -0.07

SSGBLUP-
MF1

0.11 -0.09 -0.14 -0.09 0.06 -0.10 -0.07

SSGBLUP-
UPGH

0.14 -0.08 -0.13 -0.08 0.07 -0.10 -0.06

Bias (overestimation of genetic trend) on “official” evaluations
Similar biases for SINGLETRAIT and MULTIPLETRAIT

The DELETION of historical data decreases the bias in almost all traits



Main results Lacaune: SLOPE 

Scenario Model

Traits

MY FC PC SCS TA UC UD

DELETION

BLUP-UPGA 0.96 1.01 0.96 0.96 0.99 0.97 0.92

SSGBLUP-
MF1

0.99 0.99 0.98 0.99 0.97 0.96 0.91

SSGBLUP-
UPGH

0.98 0.98 0.96 0.99 0.97 0.96 0.91

OFFICIAL

BLUP-UPGA 0.86 0.95 0.94 0.88 0.85 0.80 0.66

SSGBLUP-
MF1

0.87 0.93 0.91 0.87 0.83 0.79 0.73

SSGBLUP-
UPGH

0.80 0.94 0.92 0.87 0.83 0.79 0.73

DELETION improves the values of Slope

MF tend to perform better in Milk Yield OFFICIAL 

Main results Lacaune: ෡𝜌𝑝,𝑤

Scenario Model

Traits

MY FC PC SCS TA UC UD

OFFICIAL

BLUP-UPGA 0.45 0.57 0.59 0.52 0.69 0.75 0.61

SSGBLUP-
MF1

0.65 0.72 0.73 0.71 0.68 0.66 0.62

Almost all traits benefit from genomic prediction

Some do not – not clear why



Main conclusions of Dairy Sheep studies

• There is an important variation in estimates of bias across different
truncation points

• The deletion of historical data eliminates the bias in genetic evaluations
without affecting the ranking of individuals

• In both works, the use of metafounders to manage missing pedigree
performs better than (fixed) unknown parent groups

• The use of genomic information reduces bias and increases accuracy of the
EBVs at birth

What if my model is already wrong?

• The LR theory assumes that the model is correct !!

• Can we verify if a model is correct if the model is not correct?

• FM explored that

47
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Background Does LR method works? The spin-off HighlightsBut, with real data? 

By simulation 
• Software: QMsim, Blupf90 family and our own
• 20 replicates of a “dairy” population
• 10 generations 
• Two heritabilities (0.1 and 0.3)
• Three scenarios

Correct Model

Genetic evaluations 
performed with correct 
heritabilities and effects 

Wrong Heritability 

Using higher (+0.05) and lower 
(-0.05) heritabilities in the 

evaluation model

Environmental trend not (well) accounted for

Simulate a environmental trend. 
Fit contemporary groups either as fixed, or as 

random heavily shrunken to 0 . 

LR method
For generation 5 to 10{ 

Compare males’ EBVs at birth with the EBVs at “next” evaluation with daughter information.

Get bias, slope and accuracies. 

}

p. 49

Background Does LR method works? The spin-off HighlightsBut, with real data? 

Main Results: the correct model

There was no 
surprise with the 

right model.
Bias, slope, and 
accuracies were 
well estimated.
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Background Does LR method works? The spin-off HighlightsBut, with real data? 

Main Results: the wrong heritabilities

True bias was generated
LR method could estimate the good 

direction but not the magnitude

The slope was 
estimated but 

with low 
precision 

Accuracies were 
well estimated

p. 51

Background Does LR method works? The spin-off HighlightsBut, with real data? 

Main Results: the environmental trend

It was impossible to estimate the 
Bias, neither fitting CG as fixed nor 
as random effect.

The slope was poorly estimated. The 
estimation was better when CG 
were fit as fixed effects.

In general, accuracies were well 
estimated
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Background Does LR method works? The spin-off HighlightsBut, with real data? 

The LR method can estimate the Bias, Slope, 
and Accuracies when the genetic evaluation 

model is robust, even if not perfect.  

When the model is really wrong, the 
estimates from LR method are unreliable. 

Main conclusion

Take home messages

• In dairy sheep:
• modelling of unknown parent groups in SSGBLUP is tricky and our best 

solution is metafounders

• Lacaune has more bias than Manech Tete Rousse
• possibly because it has more years of data and modelling is complicated

• deleting old data is a very simple solution !!
• even when the models are wrong, deleting old data alleviates the problem
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Take home messages

• The LR methods gives a “very automatic” manner 
• of verifying that evaluations are correct

• and of assessing accuracies empirically

• The most difficult part is to define the “focal groups” and to 
manipulate the data
• you need to know the selection scheme and the data set

• an unguided PhD student can not do it correctly

• someone who doesn’t like scripting can not do it correctly

• It is very important to analyze multiple truncation points
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Technical details and relevant literature

• Legarra, A., & Reverter, A. (2017, July). Can we frame and understand cross-validation results 
in animal breeding. In Proceedings of the 22nd conference association for the advancement of 
animal breeding and genetics (pp. 2-5).

• Legarra, A., & Reverter, A. (2018). Semi-parametric estimates of population accuracy and bias 
of predictions of breeding values and future phenotypes using the LR method. Genetics 
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• Macedo, F. L., Reverter, A., & Legarra, A. (2020). Behavior of the Linear Regression method 
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of dairy science, 103(1), 529-544.

• Macedo, F. L., Christensen, O. F., Astruc, J. M., Aguilar, I., Masuda, Y., & Legarra, A. (2020). 
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• A tutorial: http://genoweb.toulouse.inra.fr/~alegarra/GSIP.pdf (chapter 15)
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Development and theory

Background

Simulation: it works

All the correct expressions 
+ testing on MTR

More development + 
testing on chicken
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