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Pre-2005: much is said about markers and QTL but little is done that has practical results.
— genotyping markers (microsatellites) is time-consuming and expensive. Technologies are
refined thanks, in part, to the Human Genome Project and the like.
— Around this time: a "cattle" consortium is created to join forces and create a common SNP
chip.
2007:
— VanRaden presents at Interbull the concepts of genomic relationship (intuited by many people
but never well formalized until his presentation)
— atthe QTLMAS meeting in Toulouse, EAAP and other sites, first genomic evaluation results are
presented, still very experimental and with much reduced datasets
2008:
— in April, USDA launches the first internal genomic evaluation and at the end of the year it is
official.
— VanRaden publishes his paper, full of ideas, highly cited but little read. The same year, the
official methodology is presented in detail (VanRaden et al 2009).
— Itis quickly understood that the proposed methods cannot be applied in the case "some
animals are not genotyped" -> need for SSGBLUP.
2009:
— inJanuary we (Legarra-Aguilar-Misztal) sent the SSGBLUP paper to the Journal of Dairy
Science. The idea is well received.
— In August it is presented at Interbull. Ole Christensen (U of Aarhus) presents the same
developments done in parallel (and in a more elegant way).

2010-2014
— Many skeptics but nobody finds something better
2014 -
— Generally accepted. Refinements and computational strategies, but the basic concept remains
the same. 3
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Data files

64546020 19806171513412000 1676.8800
64546020 19817181612512000 1433.6090
64546020 19828171514512000 769.2500
6454602019806 171512412000 1466.4200
64546020 19817181613512000 1474.4940
64546020 19828171614512000 1523.0290
64546020 19806171512412000 1601.2290
64546020 19817171612512000 1205.8100
64546020 19828171614512000 676.5150
64546020 19805171513312000 2122.1930
64546020 19816171512412000 2227.5940
64546020 19827171614512000 1593.4090
64546020 19805171611312000 2132.2250
64546020 19816171613412000 2100.5200
64546020 19827171612512000 1792.2250
64546020 1983 8171512512000 1492.0900
64546020 19849171511512000 1607.3500
64546020 198510171512512000 1534.3350
64546020 198611181715612000 958.1200

Pedigree files

00000700640031;00000000000000;,00000700620012;1964,2
00000700640032;00000700620045,00000700600138;1964;2
00000700640033,00000700630065,00000700540069;1964;2
00000700640034,00000000000000,00000700580089;1964;2
00000700640035,00000000000000,00000700590106,1964;2
00000700640036;00000700630065;00000700550017;1964;2
00000700650001;00000700620047;00000700610007;1965;2
00000700650002;00000702630050;,00000700560023;1965;2
00000700650003;00000700620047,00000700600125;1965;2
00000700650004,00000700620047,00000700620027;1965;2




Marker files?

64000670990546 1201202021021112101222102000
45214790003 1211112021110102102222202001
45214790004 2211102011010212002222112110
45199680012 2101111020110112101222012110
45307160107 1212102020020222002222112110
45199690008 2202102020010222112222102111

64000249040705 1212002020010222101222012110
45189980105 1201102021011112200222002000

64000249030710 2211102011011122112222012221
45214790006 2212002020000212111222101011
45199680014 1222011011010122222221111110
45214780461 2212102011020222011222211111
45253180017 1101111020002022212222102222

64000311010387 1222002020010212101222012110

What are SNPs

* SNPs: https://en.wikipedia.org/wiki/Single-
nucleotide polymorphism

DNA strand
[ | Chromosome

from the dad

Complementary
DNA strand

Chromosome
from the mam

The upper DNA molecule differs from the lower
DNA molecule at a single base-pair location (a
C/A polymorphism)




Genotype files

* SNP files come from some machines
* |n some obscure format

e \We need to understand the format to
understand what we do later

* Some people deal with raw files, some people
do not

[Header]
GSGT Version 1.9.4
Processing Date 3/16/2012 9:11 AM

Genotype in

Animal SNP name

nucleotides

Sample ID Sample Name SNP Name Allelel - Top Allele2 - Top GC Score
ES140000270478 PLACA _CIC_12 96 250506CS3900065000002_1238.1 G G 0.8932
ES140000270478 PLACA CIC_12 96 250506CS3900140500001_312.1 A G 0.7341
ES140000270478 PLACA CIC 12 96 250506CS3900176800001 906.1 A G 0.7532
ES140000270478 PLACA CIC_12 96 250506CS3900211600001_1041.1 A A 0.9674
ES140000270478 PLACA_CIC_12_ 96 250506CS3900218700001_1294.1 G G 0.8178
ES140000270478 PLACA CIC 12 96 250506CS3900283200001 442.1 C C 0.6684
ES140000270478 PLACA_CIC_12 96 250506CS3900371000001_1255.1 G G 0.4565
ES140000270478 PLACA CIC 12 96 250506CS3900386000001 696.1 A A 0.4258
ES140000270478 PLACA CIC_12 96 250506CS3900414400001_1178.1 G G 0.8690
ES140000270478 PLACA CIC_12 96 250506CS3900435700001_1658.1 A A 0.5153
ES140000270478 PLACA CIC_12 96 250506CS3900464100001_519.1 A G 0.8116
ES140000270478 PLACA CIC_12 96 250506CS3900487100001_1521.1 A G 0.7448
ES140000270478 PLACA CIC_ 12 96 250506CS3900539000001_471.1 G G 0.5248
ES140000270478 PLACA CIC_12 96 250506CS3901012300001_913.1 A A 0.7413
ES140000270478 PLACA_CIC_12_ 96 250506CS3901300500001_1084.1 G G 0.7990
ES140000270478 PLACA CIC_12 96 CL635241_413.1 A A 0.8176

ES140000270478 PLACA CIC 12 96 CL635750 128.1 A G 0.7978

ES140000270478 PLACA CIC_12 96 CL635944 160.1 A G 0.7283
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Genotype in

10:11 AM
0_v2_C.bpm

A/B format

ample IDAllelel - Fo Allele2 - Forward Allelel - Top Allele2 - Top Allelel - AB

Allele2 - AB X Y
ARS-BFGL-BAC-10172 USA201811G G G G B B 0.9506 0.012 1.036
ARS-BFGL-BAC-1020 USA201811G G G G B B 0.9673 0.005 0.652
ARS-BFGL-BAC-10245 USA201811C c G G B B 0.7579 0.092 1.417
ARS-BFGL-BAC-10345 USA201811A A A A A A 0.9276 1.143 0.008
ARS-BFGL-BAC-10365 USA201811G G c ¢ B B 0.5335 0.004 0.862
ARS-BFGL-BAC-10375 USA201811A G A G A B 0.9567 0.478 0.581
ARS-BFGL-BAC-10591 USA201811A G A G A B 0.9003 0.386 0.473
ARS-BFGL-BAC-10867 USA201811G G C c A A 0.9434 0.776 0.004
ARS-BFGL-BAC-10919 USA201811A A A A A A 0.8526 1.232 0.036
ARS-BFGL-BAC-10951 USA201811T T A A A A 0.5140 0.539 0.017
ARS-BFGL-BAC-10952 USA201811A A A A A A 0.9512 0.987 0.030
ARS-BFGL-BAC-10960 USA201811G G G G B B 0.9528 0.018 0.826
ARS-BFGL-BAC-10972 USA201811G c c G A B 0.8759 0.917 0.743
ARS-BFGL-BAC-10975 USA201811A G A G A B 0.8142 0.979 0.739
ARS-BFGL-BAC-10986 USA201811G G c ¢ B B 0.9309 0.055 0.731
ARS-BFGL-BAC-10993 USA201811C c G G B B 0.9014 0.023 1.094
ARS-BFGL-BAC-11000 USA201811T T A A A A 0.9686 0.561 0.013
ARS-BFGL-BAC-11003 USA201811T T A A A A 0.9215 1.171 0.040
ARS-BFGL-BAC-11007 USA201811T c A G A B 0.9454 0.884 0.675
ARS-BFGL-BAC-11025 USA201811G G C (o} B B 0.9082 0.015 0.740
ARS-BFGL-BAC-11028 USA201811A G A G A B 0.9678 0.182 0.288
ARS-BFGL-BAC-11034 USA201811T c A G A B 0.9509 0.566 0.592
ARS-BFGL-BAC-11039 USA201811C c G G B B 0.9658 0.000 0.889
ARS-BFGL-BAC-11042 USA201811A G A G A B 0.8506 0.947 0.786
ARS-BFGL-BAC-11044 USA201811T c A G A B 0.9654 0.726 0.689
ARS-BFGL-BAC-11047 USA201811T T A A A A 0.9465 0.973 0.015

11

Chromosome
number

SNP name

index, Nom, OAR, Num, Pos POSition in base

1,250506C$3900065000002 1238.1,15, 95, 5825554
2,250506C$3900140500001 312.1,23,471,26446680 F)Eﬂilﬂs
3,250506CS3900176800001_906.1,7,1828,81627347

4,250506C$3900211600001 1041.1,16,919,41632053
5,250506CS3900218700001 1294.1,2,3311,149375044
6,250506C53900283200001_442.1,1,4056,188745186
7,250506CS3900371000001_1255.1,11, 657, 35486157
8,250506CS3900386000001_696.1,16,1391, 62983985
9,250506C53900414400001_1178.1,1,2238,103373031
10,250506CS3900435700001 1658.1,12, 976, 44985453
11,250506C53900464100001 519.1,1,1859,85681719
12,250506C$3900487100001 1521.1,14,21,1046097
13,250506CS$3900539000001 471.1,27,1189,101575221
14,250506C53901012300001 913.1,2,2240,100935467
15,250506C53901300500001 1084.1,7,2015, 89446225
16,CL635241 413.1,3,4089, 181937734
17,CL635750_128.1,3,5009, 223456572
18,CL635944_160.1,6,2374,107677235
19,Contig35697 5761.1,6,397,18930545 .
20,CR_594.1,27,597,51062613 Map flle
21,CR_816.1,27,595,51062391

22,CytB 1406.1,3,4592,204780199

23,CytB 1505.1,3,4593,204780298

12




[Head

This format is very uncomfortable

GSGT

Proced

conterf |t js @@sier to have 1 line/animal
Num S

Total SNPs 54241

Num Samples 36

Total Samples 36

[Data]

Sample ID
ES140000270478
ES140000270478
ES140000270478
ES140000270478
ES140000270478
ES140000270478
ES140000270478
ES140000270478
ES140000270478
ES140000270478
ES140000270478
ES140000270478
ES140000270478
ES140000270478
ES140000270478
ES140000270478
ES140000270478
ES140000270478

Sample Name

PLACA CIC_12 96
PLACA CIC_12 96
PLACA CIC 12 96
PLACA CIC 12 96
PLACA CIC_ 12 96
PLACA CIC_12 96
PLACA CIC_12 96
PLACA CIC 12 96
PLACA CIC 12 96
PLACA CIC 12 96
PLACA CIC_12_96
PLACA CIC 12 96
PLACA CIC 12 96
PLACA CIC 12 96
PLACA CIC_12 96
PLACA CIC_ 12 96
PLACA CIC 12 96
PLACA CIC 12 96

SNP Name

250506CS390006
250506CS390014
250506CS390017
250506CS390021
250506CS390021
250506CS390028
250506CS390037
250506CS390038
250506CS390041
250506CS390043
250506CS5390046
250506CS390048
250506CS390053
250506CS390101
250506CS390130
CL635241 413.1
CL635750 128.1
CL635944_160.1

Allelel - Top
5000002_1238.1
0500001_312.1
6800001 _906.1
1600001_1041.1
8700001_1294.1
3200001_442.1
1000001_1255.1
6000001_696.1
4400001_1178.1
5700001_1658.1
4100001_519.1
7100001 1521.1
9000001_471.1
2300001_913.1
0500001_1084.1

A A

A G

A G

Allele2 - Top
G G
A G
A G
A A
G G
C C
G G
A A
G G
A A
A G
A G
G G
A A
G G
0.8176
0.7978
0.7283

GC Score
.8932
L7341
L7532
.9674
.8178
. 6684
. 4565
.4258
.8690
.5153
.8116
L7448
.5248
L7413
.7990

O O O OO0 O O O O O OO O O O
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* 1 line/animal

ES1400NAB40571
ES1400NAB40573
ES1400NAB40574
ES1400NAB40159
ES1400NAB40528
ES1500VI492705
ES1500SSA40533

=D B = O I S D))
M O a6 - n
(D I = = R CD B D B D B ¢!
Q0000 nn
D D
Q000 n
Q@ Q@ r rp P
QO 0 000
QX oo

al

Marker 1

LYJ

Marker 2

G & ( (Y (Y
e e o
I 2 O
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Animal breeders and computers don’t like
text, prefer numbers

At each marker locus, there are only two
possible alleles, for instance:

— For marker 1 this could be A/ C

— For marker 2 this could be A/ G

Then we choose one of those markers as the
reference one

Gene content

For instance if there are two nucleotides (A/C) and C is the

reference:

0 means AA

1 meansACorCA
2 CC

5 missing

For another loci, the reference allele might be something else

This way of coding is known as “gene content”

One column (and not 2) per marker




Gene content

* Forinstance if there are two nucleotides (A/C) and A is the
reference:

* 2 meansAA
1 meansACorCA

* 0 CC
5 missing

* For another loci, the reference allele might be something else

* This way of coding is known as “gene content”
* One column (and not 2) per marker

17

The reference allele can vary across loci. For
instance, consider the same animal

ES1400NAB40571GGGGAAAC..AG

And consider that the reference alleles for each of
the 6 markers are (G,G,A,C,G,A). Using these
reference alleles would give

ES1400NAB40571 222151

m 18




Final genotype file

64000670990546 1201202021021112101222102000
45214790003 1211112021110102102222202001
45214790004 2211102011010212002222112110
45199680012 2101111020110112101222012110
45307160107 1212102020020222002222112110
45199690008 2202102020010222112222102111

64000249040705 1212002020010222101222012110
45189980105 1201102021011112200222002000

64000249030710 2211102011011122112222012221

45214790006 2212002020000212111222101011

45139680014 1222011011010122222221111110

452 804601 2212102011020222011222211

017 1101 e o

387 1222 Long “row” with thousands of
markers

Final genotype file

640006 How can | read this?
452
452 wrm wm : 0
45199680012 210111102011 01222012110

45307160107 1212102020020222002222112110
45199690008 2202102020010222112222102111
64000249040705 1212002020010222101222012110
45189980105 1201102021011112200222002000
64000249030710 2211102011011122112222012221
45214790006 2212002020000212111222101011
45199680014 1222011011010122222221111110
45214780461 2212102011020222011222211111
45253180017 1101111020002022212222102222
64000311010387 1222002020010212101222012110

20




How do we edit these files?

SNP chips:

e PLINK ! but you are limited by what plink can
do

Often you need extra editing

Efficient: Fortran, awk, bash scripts

Less efficient (usually usable): Python, R

Learn some programming

Fortran:
read(1l,’ (al4,1x,60000i1)") id,genotype(:)

Awk:
split ($2,genotype,””)

Python:
for line in fhand:
idd , genotype = line.split ()

for j,m in enumerate (genotype) :




Keep track

If you do these manipulations, you need to
keep track of:

SNP names

Reference alleles at each locus

If you mix files make sure that you’re working
with the same markers and reference alleles!!

 What you see in genotype files
 Minimum quality control




What you find in genotype files

e « call rate » is the percentage of observed
genotypes:

— per animal (per row)
— per marker (per column)
* |[n other words, the number of “5”s

* If call rate animal <95% the genotype of the
animal is rejected (delete line)

e |f call rate marker <95% the column of the
marker is deleted

Allele frequency

* The allele frequency p is simply the frequency of the reference
allele. For instance consider

ES1400NAB40571 G G
ES1400NAB40573 G G
ES1400NAB40574 A G
ES1400NAB40159 G G
ES1400NAB40528 A G
ES1500VI492705 G G
ES1500SSA40533 A A

* If the reference allele is G, we have 10G against 4A: p = g ~ 0.71,

and the frequence of allele Aisg =1 —p = 0.29.




Allele frequency

* When we use integer codes, it is very easy

ES1400NAB40571
ES1400NAB40573
ES1400NAB40574
ES1400NAB40159
ES1400NAB40528
ES1500VI492705
ES1500SSA40533

O NEDNDEDNDDN

* pisobtained summingthe:p = ELEN 0.71,andg=1—-p =

0.29. 27

Minor allele frequency

MATF is the lowest of the two allele
frequencies. For instance if the two alleles are
A/G

p=freq(d);q=1—p = freq(G)
MAF = min(p, q)
Why is MAF important?




Minor allele frequency

* MAF = min(p,q)
* Why is this important?
* A fixed marker (p = 0 or p = 1) gives no information

* An almost-fixed marker (p = 0.0001 or p = 0.9999) gives
almost no information

* Some applications use 1/p

1
* But = 10°, may lead to overflow !!
0.000001

* So, people delete markers with MAF<0.01 or <0.05

* For prediction and GWAS it does not make much difference

* For sequence analysis with de novo variants it makes a
difference

How do we compute these things?

Assume that genotypes are stored as 0/1/2 in
matrix Z

* cr animal (i)=sum(Z (i, :)/=5)/nsnp

* cr marker (i)=sum(Z(:,1)/=5)/nsnp

Assume no missing values

e p(i)=sum(Z(:,1i))/ (2*nanim)

* maf (i)=minval ((/p(i),1-p(i)/))




Hardy-Weinberg Equilibrium

* |f animals reproduce at random we expect to
find HW proportions of genotypes:

p? 2pq,q°
* We can use a Chi-2 test to test this, but
— Does HWE equilibrium this hold?
— Only approximately

— At each generation p changes a little bit, so it does
not hold across all generations

— Also, animals do not mate at random

Hardy-Weinberg Equilibrium

Rule of thumb used by AIPL (Wiggans 2011):

* Number of heterozygotes should not deviate too
much

nof heterozygotes

e Delete marker if — 2pq| > 0.15

n




Crosses

In crosses you don’t expect to have HWE

Imagine F1 sows from Landrace boars (with
allele frequency p*) and Yorkshire sows (with
allele frequency p¥)

Then the genotype proportions are
@' .p"q" +q"p". q"q")
(Why ?)

33

Sex chromosomes 1

XX (females, mammals) or ZZ (males, birds)

* Two alleles (one from the mam, one from the
dad)

0.2 — 20pm
0.2 — 20pm

34




Sex chromosomes 2

XY (males, mammals) or ZW (females, birds)

* One allele (from the mam in mammals, from
the dad in birds)

e This is weird and often we don’t use these
chromosomes

0.2 — 20pm

35

Sex chromosomes 3

* Use of sex chromosomes in prediction is
complicated (US dairy does, though)
— VanRaden et al.. J Dairy Sci. 2009;92:16-24.
— Druet & Legarra. (2020) Gen Sel Evol , 52(1), 1-17.

* in the course we assume all are autosomes

36




Un mapped markers

* Markers reside in chromosomes

* The position of some markers is still unknown |
* This is reported as “chromosome 0”

* It is better to abandon these markers

* For instance
http://www.livestockgenomics.csiro.au/sheep/
oar3.1.php:

37

##gff-version3 '
SNP50 SNP

nohit . . . .
ID=CytB_131;Note=0ARv3.1::::pastOARv1.0position:Chr0:0;Alias=CytB_131.1

nohit SNP50 SNP . . . . .
ID=CytB_1406;Note=0ARv3.1::::pastOARv1.0position:Chr0:0;Alias=CytB_1406.1
nohit SNP50 SNP . . . . .
ID=CytB_1505;Note=0ARv3.1::::pastOARv1.0position:Chr0:0;Alias=CytB_1505.1
nohit SNP50 SNP . . . . .
ID=CytB_1745;Note=0OARv3.1::::pastOARv1.0position:Chr0:0;Alias=CytB_1745.1
nohit SNP50 SNP

ID=DU287575_503; Note=OARv3.1::::past.OAva.Oposit.ion:Chr2:31269299;A|ia$=D.U287575_503.1

nohit SNP50 SNP . . . . .
ID=DU369175_467;Note=0ARv3.1::::pastOARv1.0position:Chr4:78053478;Alias=DU369175_467.1

nohit SNP50 SNP . . . . .
ID=DU407749_370;Note=0ARv3.1::::pastOARv1.0position:Chr5:80350180;Alias=DU407749_370.1
nohit SNP50 SNP

ID=DU415336_399;Note=0OARv3.1::::pastOARv1.0position:Chr8:96150336;Alias=DU415336_399.1
nohit SNP50 SNP . . . . .
ID=DU420655_308;Note=OARv3.1::::pastOARv1.0position:Chr12:57781103;Alias=DU420655_308.1
nohit SNP50 SNP . . . . .
ID=DU428219_359;Note=0ARv3.1::::pastOARv1.0position:Chr6:113162488;Alias=DU428219_359.1
nohit SNP50 SNP . . . . .
ID=DU439696_403;Note=0ARv3.1::::pastOARv1.0position:ChrX:37790463;Alias=DU439696_403.1

38




Mendelian conflicts

* |In absence of mutation (which is rare) this
kind of things cannot happen:

39

Mendelian conflicts

* If a marker is seen in many Mendelian conflicts,

— possibly the genotyping of the marker is wrong and
the marker is deleted

* If an animal is seen in many Mendelian conflicts,

— Possibly there is a misidentification in animal or in
pedigree

* You may try to find this animals’ parent:
— Seekparent.f90

40




Duplicate genotypes

* Two animals should not have identical SNPs
unless they are clones or monozygotic twins

* This is unusual...
* If not clones, duplicated genotypes come from

mislabeling: the DNA sample of the same
animal has been given two different names

Two markers !!

* (or one marker and one QTL)




Linkage disequilibrium

* « Gametic phase disequilibrium »

Statistical association between alleles at two loci in the

same chromosome
— Loci : places
— Alleles: alternative forms of a gene (A,B,0)

— Phase: notion of being in the same chromosome (of a pair)

or coming from same origin (sire or dam)

43

Biallelic case

* Assume we genotype 5 individuals, thus 10
chromosomes (and that we know the
phase)

* Now we compute allelic frequencies

AB
AB
ab
aB
ab

Ab
AB
Ab
AB

44




Biallelic case

p(A)=0.6
p(B)=0.5
if independent, p(AB)=0.3,p(ab)=0.2
The expected proportions are:
A a
B 0.3 0.2
b 0.3 0.2

45

Biallelic case

p(A)=0.6
p(B)=0.5
in reality:

A a

B 0.4 0.2
b 0.1 0.3

vs. expected

A a

B 0.3 0.2
b 0.3 0.2

More AB & ab than expected !!
This is linkage disequilibrium

46




Linkage disequilibrium

* |Is a statistical concept

* Describes not-random association of two loci
— Nothing more, so, why is it useful?

* Two loci in LD most often are (very) close
— This is because LD breaks down with recombination

* Linkage disequilibrium of two loci decays on average
with the distance

* Hence it serves to map genes

47

Where does it come from?

* Because chromosomes are transmitted together

— Within known families (« linkage analysis »)

— Within the history of a population (« populational linkage
disequilibrium » or « linkage disequilibrium » in short)

* This distinction is rather artificial

— Remember: a population is a very old, large family

48




Populational linkage disequilibrium

e Assume we mix two populations (say Churra
and Merino)

e Or, that Adam was
—and Eve

— The first generation is an F1
— Then animals are mixed at random

 What do we get after many generations?

49

Populational linkage disequilibrium

* The chromosomes become a fine-grained mosaic of grey
and black
e Called LD blocks, segments

e However, complete mixture is

difficult to attain

e The blocks are « fuzzy » blocks

N D
N NN

]
BSSNIERNN N DN AN
INNERSSNS N NN NN
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* Human

51

* Apple »,

LD estimate (r?)

o
o

04

Inter-SNP Distance (kb)

LD estimate (r°)

Inter-SNP Distance (bp)
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Populational linkage disequilibrium
Some people distinguish LD and
m pedigree relationships
*It's pretty much the same thing

*The value of LD (e.g. r?) observed at large distances is a function of

recent relationships
-... at short distances is a function of distant relationships 53

Within-family linkage disequilibrium

* Consider this male who has 8 progeny

A <_B’—Recombination fraction: 0.50
a b
A B A B These are the chromosomes in the sons
—— S — (i.e. the gametes the male transmitted)
A b A b
A A We found linkage
Shes——— —— equilibrium in one
a b a b generation

b b




Within-family linkage disequilibrium

* Consider this male who has 8 progeny

A « B Recombination fraction: 0.25
- ee——
a b Due to non-recombination
A B A B linkage disequilibrium has
—— S —— been generated
A b A B
—ES | e ——
a B b A a
#m“"-/dmmnlm B 0.375 0.175
] . . X b 0.175 0.375
/ A s
55

Within-family linkage disequilibrium

 Assume now there are two males

A B A b

a b a B

A B A B A b A b
A b A B A B A b
a B a a b a
pe—— [ s S . &
a b a b a B a B




Within-family linkage disequilibrium

Within-family linkage
e Assume nq disequilibrium

A a A a
B 0.375 0.175 B 0.175 0.375
b 0.175 0.375 b 0.375 0.175
A B A B A b A b
A b A B A B A b
a B a b 5
:x#sxxs# ' b ES#ESS*E f B
a b a b a B a B
57
Within-family | A aDrium
B 0.5 0.5
b 0.5 0.5
 Assume now there
A B A b
m No overall linkage M
a disequilibrium A
A B A B A b A b
A b A B A B A b
a B a a b -




Within-family linkage analysis

* There is a QTL 25cM from A with alleles Q/q

A <2 Recombination fraction: 0.25

S

a 7. Due to non-recombination
A Q A Q linkage disequilibrium has been
A q A Q
*Sss*ss ﬁ
a Q A a
S —_— /mm?m 0O 0.375 0.175
. . . . g 0.175 0.375
ﬁm@ wm
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Within-family linkage analysis

Imagine that Q=+10 kg and g=-10 kg
The « apparent » effect of A is +5kg

But in the other family this is reversed |

A +10 A +10
A -10 A +10

a +10

f d -10

a -10 a -10
/ i b
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Across the two families

 Marker A has no apparent effect

A +10 A -10
a 10 a +10
A +10 A +10 A 10 A 10
A 10 A +10 A +10 A 10
a +10 a -10 a -10 d +10
a -10 a 10 / a +10 a +10
61

Some consequences

* Markers that have “apparent” positive effect in
one families may have “apparent” negative effect
in other families

* These “apparent” associations break with
distance

* The closest the marker and the QTL, the stronger
and more stable the association

* Thus, we need many markers for associations to
be stable

* Breeds are “big” families, so predicting across
breeds is difficult
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Measures of LD: r?

if we use « gene content »

«A»=1,«a»=0

«B»=1,«b»=0

r is the correlation between two loci
f(AB)—pq D

=

r:\/p(l—p)q(l—q) Jr(1-p)a(1-q)

* Not free from problems but can be understood by statisticians
(and breeders)
* The sample size needed to achieve a given power is proportional

to 1/7"2 (Pritchard Przeworski 2001 Am J Hum Genet 69:1)
* Everybody uses it to describe things in genomic selection.
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Properties of gene content




Data files

64546020 19806171513412000 1676.8800
64546020 19817181612512000 1433.6090
64546020 19828171514512000 769.2500
6454602019806 171512412000 1466.4200
64546020 19817181613512000 1474.4940
64546020 19828171614512000 1523.0290
64546020 19806171512412000 1601.2290
64546020 19817171612512000 1205.8100
64546020 19828171614512000 676.5150
64546020 19805171513312000 2122.1930
64546020 19816171512412000 2227.5940
64546020 19827171614512000 1593.4090
64546020 19805171611312000 2132.2250
64546020 19816171613412000 2100.5200
64546020 19827171612512000 1792.2250
64546020 1983 8171512512000 1492.0900
64546020 19849171511512000 1607.3500
64546020 198510171512512000 1534.3350
64546020 198611181715612000 958.1200

Pedigree files

00000700640031;00000000000000;,00000700620012;1964,2
00000700640032;00000700620045,00000700600138;1964;2
00000700640033,00000700630065,00000700540069;1964;2
00000700640034,00000000000000,00000700580089;1964;2
00000700640035,00000000000000,00000700590106,1964;2
00000700640036;00000700630065;00000700550017;1964;2
00000700650001;00000700620047;00000700610007;1965;2
00000700650002;00000702630050;,00000700560023;1965;2
00000700650003;00000700620047,00000700600125;1965;2
00000700650004,00000700620047,00000700620027;1965;2




64000670990546
45214790003 1
45214790004 2
45199680012 2
45307160107 1
45199690008 2
64000249040705
45189980105 1
64000249030710
45214790006 2
45199680014 1
45214780461 2
45253180017 1
64000311010387
45253180018 1
45075980006 2
64000779010288
45315380096 2
45075980007 1
64000779010289

Another data file

277
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64000670990546
45214790003 AG
45214790004 AA
45199680012 AA
45307160107 AG
45199690008 AA
64000249040705
45189980105 AG
64000249030710
45214790006 AA
45199680014 AG
45214780461 AA
45253180017 AG
64000311010387
45253180018 AG
45075980006 AA
64000779010288
45315380096 AA
45075980007 AG
64000779010289

Gene content !!
G
A
G
G
G

Another data file
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Gene content of marker 3

64000670990546
45214790003
45214790004
45199680012
45307160107
45199690008

64000249040705
45189980105

64000249030710
45214790006
45199680014
45214780461
45253180017

64000311010387

1201202021021112101222102000
1211112021110102102222202001
2211102011010212002222112110
2101111020110112101222012110
1212102020020222002222112110
2202102020010222112222102111
1212002020010222101222012110
1201102021011112200222002000
2211102011011122112222012221
2212002020000212111222101011
1222011011010122222221111110
2212102011020222011222211111
1101111020002022212222102222
1222002020010212101222012110
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Gene content

Gene content (GC) is the number of copies of the
reference allele (for instance “A”)

We call gene content z in this notes and slides

0 "no reference allele”
z = {1 for genotypes < 1 “reference allele”
2 2 “reference allele”

What properties does gene content have, as a

“trait”?

70




Gene content mean and variance

e Z=12p
e 02 =E(z%) — E(2)? = 2pq if there is HWE

71

Heritability of gene content

* If the genotype is accurate, the trait z is observed with
no error

e zis transmitted from parents to offspring and there is
no external influences

* zis additive (by definition)

e Heritability of zis 1 (!!!)

We can model gene content as a quantitative trait:
. Cov(zi,zj) = A;j2pq (Cockerham - explain)

e z=1u+u=12p) +u

« Var(u) = Ac? = Ac? = A2pq
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Gene content as a quantitative trait

* We can estimate heritability of gene content

— Extract one marker from the genotype file and
treat it as data

— Estimate heritability by REML
— It should give A2 ~ 0.99 or similar
— p-value of h% # 1 using LRT

73

Quality control using heritability of
gene content

A > _|
=T T
=

0.8 1.0
1.0

0.6
0.6

Estimated heritability

04

8 N
o o
8

e
O m— o

N
[}

Lacaune sheep data

Real pig (imputed) data,
Forneris et al 2015

e
S}

No rejected markers based on LRT
8% rejected markers (p<0.01) Why do w.e have good. markers?
Why do we have bad markers? Good pedigree recording, DNA

Probably due to poor imputation sampling, and imputation
74




Quality control using heritability of
gene content

» No one checks h? of gene content by default,
but it is very useful to detect horrible mistakes

* |n small data sets (<5000 animals with
genotypes), it takes minutes in preGSf90

* gcf90 does it in a few hours for large data sets

Imputation

* What do we mean by imputation?
e “Guess” the missing marker

* Why is this useful

(1) For software that don’t admit missing values at
genotypes: fill-in the small holes like

—01211022121150100511112000
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Imputation

(2) to use “cheap chips”
* We may have big holes
-055525555515555515550

— Low density chips: impute from 6K to 50K
— Very high density chips: impute from 50K to 700K
— Very low density chips: impute from 1000 to 50K

77

Crude imputations

Not recommended
* Draw genotype from HW distribution:
— {AA,AG,GG} with probabilities {p?, 2pq, g}
— Will lead to parent/offspring incompatibilities
* Use heterozygotes
— Will lead to too many heterozygotes

78




Strategies for imputation

* Family based

We compare chromosome chunks transmitted
from parents to offspring and fill-in the holes

* Population based

We (roughly) make a library of existing
haplotypes and compare to our incomplete haplotype

* Imputation is based on looking at neighboring
markers

* We need a map of the genome !!
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Finding an IBD segment
G G A G A G

J Van der Werf
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Population based imputation

Reference
population

1111111001001110
1111101001000101

0010111001111110
1110110011101110
0010111001111110
1111101001000101
11110010011101110)]

Target
population

1110010011101110

(B2 20020177170
1???1?1?022??2?0<|l???‘1?1?011??1?0|>ﬁl111121002

0??22%?22022222%?20 of010222002
1?22222220217°%2?2? 1111222002
17%?22%717212272 22%217?1°7 2712 1120221012
?29?22121?2°?2¢%? 21222212012
11110121012

1?2%?222¢% 11121212002

2?22?2217 ? ?7? 21221111012
122202 ? .(7"’? y P07 a3 d]? » e 0 71220020022
m???o’?a?lll??l?:l

Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nat Rev Genet. 2010 11:499-511.

Typical outputs from imputation

« Accuracy = correlation of real and
imputed genotypes

« Concordance = percentage (%) of
genotypes called correctly

e Concordance is a bad metrics because
genotypes will be imputed correctly just by
chance
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Typical pitfalls from imputation

Several horror stories linked to imputation
— Very small SNP chips (<6K) typically impute very poorly
— Pedigrees and DNA sample identification need to be perfect

— To impute correctly, the reference population (a set of individuals
fully genotyped at >50K) needs to cover the entire genetic
variation. I can’t impute Scottish Angus from Angus.

Errors in imputation may go undetected, but then they
create contradictory informations for ssGBLUP

Imputation tends to create too many heterozygotes
LD chips + imputation is not a substitute for 50K

genotyping
You better test what you’re doing

Non genotyped animals

If animals do not have any genotype for any
marker, what can we do?

A few of them can be “imputed” classically

— if they have large offsprings genotyped, e.g. 5
offspring for an embryo transfer dam

In most cases this is impossible
We still can use “linear” imputation
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Linear imputation

- Gengler et al. (2007) conceived an algebraic way to obtain regression-
based point estimates of genotypes (== to McPeek et al. 2004)

- Christensen & Lund (2010) showed how to take the variation into
account

- Genotype of descendants = half their parents + Mendelian sampling

AA with probability 72
» Aa with probablllty Va
E(Genotype) = = A +— a“

Extending to all the pedigree...

Genotype prediction using BLUP for
gene content (Gengler’s method)

e Assuming h? = 0.99, use BLUP !!
cz=1py+Wu+e

Gz ww a2 @)= G2)

* On exit, 11 + U are estimates of gene content for all
animals

e And % is an estimate of p in the base generation
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Example

* Pigdata
Animals with genotype Relatives(ancestors) ungenotyped

Observed genotypes
(correctly as 0/1/2)

Estimated
genotypes
(fractional !!)
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Why is linear imputation bad?

* Itis very little accurate
* Far animals tend all to be identical to 2p
* Uncertainty in linear imputation is ignored

e But it sets the stage for SSGBLUP
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Marker-based models for Genomic
selection
» Single QTL

* Whole-genome (multiple marker) genomic
selection

Single QTL

Assume that we know a large effect QTL (a
major gene)

* the halothane gene (HAL)

* the a,_; caseine in dairy goats

* DGAT1

* SOCS2

* BMP15

* |FG-2

* GHR
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Single QTL

Put the QTL as a fixed effect and estimate it
= QTL effect in animal i+ e

We can include an additional polygenic genetic value of
animal i

* y.=polygenic effect of animal i + QTL effect in animal
i+e

How do we do this in practice? Using linear regression




Multiallelic QTL

assume that we have a
four-allele {4, B, C, D} locus
and three individuals with genotypes

{BC
, A4,
BD}
Base model
* Genotypes are 3 individuals, 1 marker with 4 alleles
(BC
,AA, a,
BD} 0O 1 1 O ap
Za=|2 0 0 O
22 010 1/\°
* Data isy=<35> ap
6




Single QTL regression

this gives
y=Xb+Za+e
Ay
12 1 0 1 1 0\/4 €1
(35>=<1>u+<2 0 0 0) ai +<ez>
6 1 0 1 0 1/\, €3
D

e Can be solved by least squares

Single QTL regression with polygenic
based on pedigree

y=Xb+Za+Wu+e

a
12 1 0 1 1 0 ag Uq €1
35]=11)u+|2 0 0 O ac +Uz2 |+ | €2
6 1 0 1 0 1 us €3

« Var(u) = Ac?
* Can be solved by BLUP




Goddard, M. E. (2003). Animal breeding in the (post-)
genomic era. Animal Science, 76(3), 353-365.

1.  Althoughitis possible to use genetic markers linked to genes of
economic importance, tests for the genes themselves will be much
more successful.

2. Finding these genes, that have relatively small effects, is more difficult
than finding genes for a classical Mendellian trait but, as the genomic
tools become more powerful, it is becoming feasible and some
successes have already occurred

3.  Tools such as genomic sequence, EST collections and comparative maps
make this approach feasible. Candidate genes can be selected based on
functional data such as gene expression

4, in the future, with many QTL identified and inexpensive genotyping
combined with decreased generation intervals, large gains are possible.

* Wait, we still don’t know where genes are?

e Don’t we use GWAS to find them?

— GWAS is too complicated and can find just a few
genes

— in the Notes you have long explanations

— the fact is, most causal genes for most traits for
most species are just unknown

* Meuwissen et al. 2001 proposed to use
marker effects directly




Basic principle of genomic selection

every marker has an effect on the character
(even if it doesn't look like it !).

Markers are not QTLs but
when there are many markers,

for each animal, "the sum of the effects of the
markers" is a good predictor of "the sum of
the effects of the QTLs".

you can be a good predictor without being
« real » (e.g. herd is a proxy for farmer)

Basic principle of genomic selection

Suppose the true model is.

u= ZziQ d?, sum of effects in the QTL.

We use an approximate model

u =~ yzMa¥ , "sum of effects in the markers."

It works (although nobody quite understands how) it
was a gamble © and it worked.

Other models (linkage, haplotypes,...) can be thought
and used, but the model with markers is simple and
analytically and computationally very grateful.




n marker regression

We estimate the effect of markers by regression

y=Xb+Z,a,+Z,a,+ e

2-locus multiallelic marker additive model

three individuals with genotypes

{BC EE
,AAEF
,BD FF} a,
ap
01 1 0 : 2 0\] 4
Za=(2 0 0 0 : 1 1> ap
01 0 1 : 0 2

ag
ar

But SNPs are biallelic




2-locus biallelic marker additive model

three individuals with genotypes This looks
{BAEE redundant
LAAEF
,BB FF}

27

1 1 : 2 0\|[@as

Za = (2 0 : 1 1)
0 2 : 0 2/\ag

ar

if we reduce the effects to one effect per marker, we get

1 : 2\ /% 1 : 0\ /@B
Za=<2 : 1)("')butcould beZa=<0 : 1)()
0 : 0/ \ag 2 i 2/ \af

15

4-locus biallelic marker additive model

three individuals with genotypes
{BA EE HG OP
,AA EF GG 00
,BB FF HH PP}

1 : 2+ 1 & 1\|@
Za=<2 s : : 2)
0: 0 : 0 : 0/|%

[EnN
N

16




20-loci
(11221001002002022011
01212101222202101001
202002100011 02210001

17

50000 loci
I [

4 4

23— || =Y

3
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As many loci as you want

Fortunately we have matrix algebra
y=Xb+Za..

e Z:as many columns as markers
e Z:as manyrows as individuals

Prediction equations

What'’s all this about?

* | wantto select the best dairy sheep rams, at
their birth

e Predict breeding values based on a “reference
population” with data and...
— Pre-genomic: pedigree
— Genomic: markers




Idealized process of pedigree prediction

In the reference population:

Get pedigree (4)
Get phenotypes (y)

=2

Estimate Breeding Valuesu in
the reference population from
y=1u+u, +e,

¥

In the candidates: estimate Breeding
Values from relationshipsin 4 and
estimates in the reference:

U, = Aer Ay Uy
or (for progeny with no other data)
Uo=Ug/2 + Ug/2

21

Idealized process of genomic prediction

In the reference population:

Get markers’ genotypes (Z,)
Get phenotypes (y)

<

Estimate markers effects a from
y=1u+Z,a+e,

In the candidates:

Get markers’ genotypes (Z.)
Take estimates a from above
Estimate breeding values as
u.=27z.a

22




New animal

| know from the reference population that SNP effects are

0.1
estimatedasa = | 1.1

-2

" N
| genotype the animal and is (GC) = 1)

AG 1

0.1
Its breeding valueisi=(2 1 1) (1.1) =—0.7
-2

23

From marker effects to breeding
values
Once we have estimates of marker effects, a
For any animal (young or old, with or without
data) the GEBV is U = ), z;a; = zd
Note that Z must always be encoded in the

same way....

(Why is this a GEBV)?




From marker effects to breeding
values

At one locus, a ram has a certain genotype, say GT, which is coded
asz (eg.z=1)

It is going to pass to its offspring, ¥ of the times "T" and % of the
times "G", so the offspring will receive on average %

If the a effect of the marker is conserved in the progeny, then on
average the offspring will have g a from the ram, so the ram's EPD

will be g d and its EBV=2*EPD will be zd.
That is, using the "additive" coding {0,1,2} (+ a constant) of the
genotypes leads naturally to obtain (G)EBVs.

This is not a property of other “relationships”, (e.g. kernel matrices
with Euclidean distances)

How do we estimate marker effects?
By the time-honored technique of Regression




Least Squares estimate of marker effects

ZZa=127'y

Read Z andy

do i=1,nanim

read(1,(a14,1x,60000i1)") y(i),Z(i,:)
enddo
ZpZ=matmul(transpose(Z),Z) Build Z’Z and Z'y
Zpy=matmul(transpose(Z),y)
ZpZ=ginv(ZpZ)
a=matmul(ZpZz,2y)
end

Solved = (Z'2)"1Z'y

Estimating SNP effects

* The simultaneous estimates of many markers by

least squares are very poor, if we have more SNPs than
individuals

e Even if we had many individuals, there is a missing
piece of information:

— most SNPs should not have a large effect
— thisis a « prior » information
e Can we do something?

* We should use the theory of « Best Prediction » or
« Bayesian Regressions »




Bayesian regressions

y=Xb+Za+--+e
* Everyone assumes p(e)~N(0, R)
» what do we assume for marker effects: p(a)

* Do we want very strong marker effects?
— No: p(a)~N(0,Ic?) SNP-BLUP == Ridge Regression
== rrBLUP
— Yes: Bayesian Alphabet (Bayes A, B, C, R, S... Bayesian
Lasso...)
* see Notes for all these methods
* usually they don’t improve predictions
» “effect of prior vanishes with more data”

» Effect sizes are misleading
* |tis quite difficult to know if genes are there

* Markers around capture the effect of the gene
anyway




why methods (don’t) matter

Should we use the single nucleotide polymorphism
linked to DMRT3 in genomic evaluation of French trotter?!

S. Brard*+1% and A. Ricard§#

Does heterozygosity at the DMRT3 gene make
French trotters better racers?

Abstract

Background: Recently, a mutation was discovered in the DMRT3 gene that controls pacing in horses. The mutant
allele A is fixed in the American Standardbred trotter breed, while in the French trotter breed, the frequency of the
wild-type allele C is still 24%. This study aimed at measuring the effect of DMRT3 genotypes on the performance of
French trotters and explaining why the polymorphism still occurs in this breed. Using a mixed animal model,

Effect estimated by SNP-BLUP
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Effects estimated by BayesCPi
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Effect estimated by separate Single
marker regressions
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-log10(P-values) from the separate
Single marker regressions

Finally we rediscover the true causal gene !! '
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Remember the SOCS2 gene?

Alternative methods improve the accuracy
of genomic prediction using information
from a causal point mutation in a dairy
sheep model

Claire Oget''®, Marc Teissier', Jean-Michel Astruc?, Gwenola Tosser-Klopp'" and Rachel Rupp'

“In the absence of chip data, [includingthe major gene as a covariate], compared
to pedigree-based BLUP, efficiently accounted for [...] genotypinginformation on
SOCS2 as accuracy was increased by 6.25%”

“Adding the SOCS2 SNP to ssGBLUP methodsled to an average gain of 0.26%.”

In fact, SOCS2 strong effect is well captured by neighboring SNPs —even in
ssGBLUP (which is like SNP-BLUP)

fitting SOCS2 explicitly to “extract” its large effect does not improve anything
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SNP-BLUP

After 10 years of experimentation, normality of marker
effects is a good assumption

This assumption of normality is called in different
contexts

— BLUP

— genomic BLUP

— SNP-BLUP

— GBLUP

— ridge regression

— Random RegressionBLUP

| will keep GBLUP for the use of the genomic relationship
matrix

and SNP-BLUP for the direct estimation of SNP effects

37

Mixed model equations for SNP-BLUP

XR'X  XR'Z |b| [XRY
ZR'X ZR'z+D'|la| |ZRY

o O O -
o O — O
o »r O O
O O O

e Z'Zis not diagonal
* Prior information: variance of SNP effects
e usually assumed Var(a) = D = I¢
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SNP-BLUP is flexible

* In theory
— Multiple trait models
— REML
— Threshold models

— Maternal effects, random regression, social
effects...

* But:
— Little software around
— Multiple trait models will involve huge matrices

Coding

Coding: How do we fill Z based on genotypes

* This is a frequent source of confusion even for
experienced people

* Itis mixed with shifting the mean and variance of EBV

* The main message is that “it does not matter” if you
are coherent through all the steps in your research

— (for SNP-BLUP and GBLUP; not for ssGBLUP)
* The notes (should) contain all the gory details
* most details are in Strandén & Christensen (GSE 2011)




Coding

» Reference allele -> sign of marker effects
e “centering” -> shift of the overall mean

* “scaling” -> shift of the implicit genetic
variance

41

e Assume that we use SNP-BLUP equations

* Importantly, we keep o, fixed across the
different codings

(X’R—lx X'R™1Z )(B)_ X'Rly
ZR'X Z'R'Z+10;2)\a) ~ \zRr 1y

let’s

check this
now
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Coding: reference allele

three individuals with genotypes

{BAEE

,AAEF 1 ¢ 2\ /%
,BB FF} » Za=(2 : 1)()
0 : 0/ \ag

but could equally be

1 : 0\ /%
Z'a*=(0 : 1|
2 i1 2/ \afp

This depends on the “reference allele”. It doesn’t matter which one we take

If the other allele is used as reference, then the numbers in Z are reversed.
Infact Z* = 211’ — Z, as a result a* = —a (because of properties of
[Mixed Models, Bayesian] regression models)

Hence, i* = Z*a* = (211" — Z)~a=1u+Za=Za =11
with u = 2, @; = 0 (because of properties of [Mixed Models, Bayesian]
regression models) 43

Coding: reference allele: New animal

Do NOT make the mistake of coding in the opposite (or just a
different) way new batches of animals

In the reference population SNP effects were estimated as

a= (Oé) and the reference allele were {A,E}

| genotype a new animalandis (BA FF)=z=(1 0)
» Its breeding valueis i = (1 0) (S) = 0.1

if we (wrongly) take reference alleles {B,F} then

>li=01 2) ((1%) = 3.9 ..wrong !!




Coding: « centering »

Genotype 101Coding 012 Coding Centered

coding
aa —a; 0 —2p;a;
Aa 0 a; (1-2p))a;
AA a; Zai (2 - Zpl-)al-

In all cases Z* = Zg12 — 2p*’ where p* has all possibilities:
* 0(« 012 Coding »)

* 0.5(« 101 Coding»),

* observed allele frequencies (« Centered coding »)

* base population allele frequencies (VanRaden 2008)

* orsomethingelse

By an argument similar to the previous one, estimates of @ are
identical across all possible « centerings », but EBVs are shifted by
a constant which is a function of (p*® — p*®)ya.
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Coding: « centering »

Genotype 101Coding 012 Coding Centered

coding
aa —-a; 0 —2p;q;
Aa 0 a; (1-2p))a;
AA a; Zai (2 - Zpl-)ai

To obtain correct results, *again*, one should be coherentand
use the same coding Z* = Zg12 — 2p*’ in all steps

For instance if you do SNP-BLUP with 10,000 animalsand e.g. use
observed allele frequencies (« centered coding ») then you MUST
use the same frequencies for 100 newly genotyped animals, and
not computing frequencies again

Unfortunately many packages (including blupf90) « center » by
default without the user knowing exactly what happens. Do Read
the output on screen and the manual.
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Coding: « centering »

How do animal breeders work?

- run a SNP-BLUP periodically (say 3/year),
- store reference alleles,
- define and store p*,
- buildZ* = ZOIZ - Zp*
- obtaind
- compute Z*d-> GEBVs

- In between SNP-BLUPs: do Indirect Predictions as
- read reference alleles,
- read p*,
- readd
- buildZ* = Z012 - Zp*
- compute Z*a -> GBEVs

47

Coding: « centering »

How do animal breeders using blupf90 suite work (using defaults)?
- runa (ss)GBLUP periodically (say 3/year),
- blupf90:
- reference alleles are handled by the user (file is read as 012),
- compute observed p*,
- buildZ* = Z012 — Zp*
- use the equivalent model ssGBLUP and obtain GEBVs U
- postGSf90:
- backsolve for marker effects @ = f(Z*,u)
- stored
- storep”
- In between SNP-BLUPs: do Indirect Predictions
- predf90
- reference alleles are handled by the user (file is read as 012),
- read p%,
- readd
- buildZ* = 2012 — Zp*
- compute Z*a -> GBEVs
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Theoretical individual Reliabilities from
SNP-BLUP

il 20 B — 1 Var(i;) _ Var(u;ly)
Reliability=r°(u;, ;) = 1 Vartu Varta)
1l; = z;a; ; see details in the notes

!
i

Var(i;) Var(@;) 1 z;C%%z

= —
Var(u;) 2i2,05,

o Reli =1-— ZiZQO'é
*  C%=chunk of the SNP part of the MME~? describing the
Prediction Error Variance of marker estimates

* This says that an individual is accurately predicted if its z; carries
more weight (1-2 rather than 0) in the markers that are better
predicted

* which shows that animals need to be well connected to the
reference population

Individual reliabilities from SNP-BLUP

Var(i;) ziCaazf
T2 — )

ziz;og ZiZ;04

— Var(d;) can be obtained by sampling (Gibbs) or inversion

— 1l; and Var(4;) are invariant to coding but...

— z;Z;0} is not invariant to coding

hd Reli=1—

* Reliabilities depend on coding !!
— Solution: define a contrast from some “base” population
(Tier et al., 2018 WCGALP; Bermann et al., 2022 WCGALP)




Coding: « scaling »

Another method « centers and scales », i.e. for each marker

. _ (Zorz—mean(Zo12)) _ (Zo12—2p")

sd(zo12) V2 (1 —p*)

p*=observed frequency = halfmean of z* = 1’2" /2n
sd(zg12)=2p" (1 —p")

because

doing this is complicated because

» for very small p* we obtainvery large z*

* the p* and z* changes from run to run and we have shifts of mean
* heritabilitiesimplicitly change! (we may see this later)

* | generally DO NOT recommend using « centered and scaled »

SNP-BLUP parameters

(X’R—lx X'R™1Z )(B)_ X'Rly
ZRIX Z'RZ+10;2)\a) ~ \zRrly

let’s

check this
now




SNP-BLUP parameters

How do we get the variance of SNP effects, 62, ?

You can estimate it (Bayes C, REML)
Few software available (GenSel, GS3, probably BGLR)

(again) Strandén and Christensen (2011) proved that the estimate of 050
in a « SNP-REML » or « Bayes C » is invariant to « choice of reference
alleles » of Z and to « shifting » Z

53

SNP-BLUP parameters

How do we get the variance of SNP effects, 62, ?

You can « guess » from the genetic variance o2

Assume that you estimated (with pedigree and records, by REML) a
genetic variance ;2 . This variance refers to the pedigree base population
(usually old one)

How much genetic variation does each marker contribute? Assuming
Hardy-Weinberg

— SNP 1 contributes 2p;q4 al2 to the genetic variance

— SNP 2 contributes 2p2q2a§ to the genetic variance

- of =23 pqial = 2(Tpiq) x (a?) = 2(T pigd o,
— the last step assumes independent a; and p; and uses Var(xy) = Var(x)Var(y),
Bohrnstedt, G. W., & Goldberger, A.S. (1969). JASA, 64(328), 1439-1442

— the assumptions works quite well
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SNP-BLUP parameters

Reversing the expression 62 ~ 2(X p;q;) 02, gives
B3 2 zigi
< 9a0 ¥ 3T piap

So, from « old » estimates of genetic variance and allele frequencies we have a

: 2
figure for oz,

Because ;2 is the variance in the base population, then p; should ideally be the

allelicfrequency base population —which are usually NOT genotyped. Thisis a
continuoussource of misunderstanding.

Experience shows that the error made using observed (current) p; instead of base
population p; is not too high
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SNP-BLUP parameters

It is tempting to use estimated SNP effects d; to estimate the genetic
variance as 2 Y. p;q;@2, but it doesn’t work:

— 02 K 2Yp;q;a?

Estimated SNP effects are shrunken towards the mean and the figure

2 Y p;q;@? is much smaller than o2

If this worked, we wouldn’t need REML ©. We'd just run BLUP and compute
crossproducts of EBVs
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Not all p’s are equal !!

Note that we have used p in two places

(X'R-lx X'R-1Z )(B)_ X'R7ly
ZR'X Z'R1'Z+1lo,f/\a) \Z'Rly

oy

Ol ® o~
202X piqi)

define and store p*,
buildZ* = ZOlZ — Zp*

2

Here we can
use anything
inp* !l

Here we have to use p; as close
as possible to allele frequencies
in the base population for which
0,2 was estimated

The two p* and

p; don’t need to
match !!

57

e All this is not much used

e But it prepares the terrain for GBLUP and
ssGBLUP
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GBLUP and G matrices

* GBLUP from SNP-BLUP
* GBLUP and genomic relationships




GBLUP from SNP-BLUP

* We have defined breeding values as sum of SNP effects: u = Za

* To refer breeding values to an average value of 0, we center using —2p;. We can

use:

* allele frequencies p; in the pedigree base population: then breeding values refer to the

pedigree base population and we use the same scale as “regular” BLUP with A

* (observed) allele frequencies p; in the genotyped population: then breeding values refer to
the genotyped population and we use a different scale as “regular” BLUP with A (BV are

shifted)
* this is another source of confusion ®
Genotype 101 012
Coding  Coding
aa —a; 0
Aa 0 a;
AA a; Zai

Centered
coding
—2p;a;
(1 —2p)a;
(2 - 2ppay

GBLUP from SNP-BLUP

* We have defined breeding values as sum of SNP effects:
u=~2a
* Because Var(a) = IoZ2, then
Var(uw) = Z(Io2)Z' = ZZ'c},

2

* But before, we found out that 62 = Yo
[ e’

+ where 2 and p; refer to the same population (usually the pedigree base population).

* Substituting:

Z7'
Var(u) = ma}f
i1

* Finally, we factorize o2




VanRaden’s “first G”

VanRaden’s “first G”

Shifted to refer to the

average of a population
Genotypes {0,1,2} with allele frequencies p’

!/

(20" r-20") gz

25'Did;  2Ypiqi

Scaled to refer to the

genetic variance of a

population with allele
frequencies p

They don’t need to be
the same allele

frequencies !! (but they
usuallyare)




G =

VanRaden’s “first G”

Shifted to refer to the
average of a population
with allele frequencies p” |

Genotypes {0,1,2} ||

!

(M-2p"")(M-2p"")

If  want my EBVs to be in the same scale as
pedigree analyses the numerator should
contain « base population allele frequencies »
If | use observed allele frequencies, then the
EBVs will be shifted by negative constant (= to
the genetic progress)

The difference can be large for selected traits

Z7'

2).pidi

" Scaled to refer to the

genetic variance of a
population with allele
frequencies p

2)piqi

If | want to use « old » 6,2 from pedigree
analyses then the denominatorshould be

« base population allele frequencies »

If | use observed allele frequencies, then the
denominatoris « too small »

In practice the difference is small

GBLUP

y=Xb+Wu-+e

(X’R‘l X

X'Rtw )<b> _
WRX WRW+61o?)\ui)

X'Rly
WRly

* when we started showing this circa 2009 people made analogies

with “A-BLUP”

* is there anyone still using “A-BLUP”?




GBLUP

(X’R‘1 X X'R'w )(5) _ X'R 1y
WRX WRW+615.?)\u W'R 'y

* We obtain animal, not SNP, solutions

* Immediate application to maternal effects model, random
regression, competition effect models, multiple trait, etc.

* All genotyped individuals can be included, either with phenotype or
not..

* Regular software (blupf90, asreml, wombat...) works
* Therefore, GREML and G-Gibbs are simple extensions.

Multiple trait GBLUP

(X’R‘1 X X'R'w )(3) _(X'Ry
WR™'X WR'W+6'®6;" /\u/ \WR 1y

G, is the matrix of genetic covariance across traits
usually R = IQR,, where R is residual covariances.




Reliabilities

Nominal reliabilities (NOT cross-validation reliabilities) can be obtained
from the Mixed Model equations, as: B
24

Reli =1-

2
ii0u

where CU is the i, i element of the inverse of the mixed model equations

Again,
* Rel; is NOT invariant to the allele frequencies used inZ = M — Zp*’
* A solution is to define a contrast

GREML, G-Gibbs...

Use of G to estimate variance components (heritability)...
It can be done with b1upf90+, gibbsf90+, AsReml, TM...
The result will refer to an ideal population with whatever allelic frequencies
7'z
2%piqi

we introduced in the denominator of G =

If you put observed allele frequencies then you refer the estimate of
variance components tothe « observed » population
If you put base allele frequencies you refer to the « old » population

In livestock with large and good data bases the difference is small
For a method to compare genetic variances across different G’s, A, etc etc
relationships, check Legarra, TPB 2016




GBLUP == SNPBLUP

* Both give the same solutions
* (up to the small detail of “tuning” and”blending” so that actually G** < (1 —x)(a + bG) +x
A,,; this is taken care of in blupf90)

* We can jump from SNP-BLUP to GBLUP

u==72a
* We can jump from GBLUP to SNP-BLUP
1
a-= Z¢'a
2%.p:4;

More gory stuff

* « Blending » -> making G invertible & accounting for genetic variance
unexplained by markers

* « Tuning » -> making G similar to A




Tuning

* Having “base population allele frequencies” to get (on one hand)
2Y'p;q; and (on the other hand) Z = M — 2p™' is “tout bénef” (all
good)

* Your genetic variance is on the right scale
* Your EBVs are on the right scale
* In other words, G and A,, are “comparable”

» USDA/CDCB have, for dairy, DNA samples from 1970’s and can get
base allele frequencies...

* most people don’t

* ...dozens of papers on “compatibility”

Tuning

* When base allele frequencies are not available there are 3 manners of “making
compatible” G and 4,,

* Fix statistics of G so that they resemble those of 4,, -> “tuning” G: Vitezica et al.,
2011; Christensen et al., 2012

* fixes both mean and variances
* difficult to extend to several base population

* Add an intercept to account for the difference -> Fernando et al., 2014 “J factors”
* fixes only means
* can be extended to several base populations
* only works in ssGBLUP

* Define a “new” base population with p = 0.5 and “complete” pedigree
relationships in 4 : “metafounders” (£ristensen 2012; Legarra et al., 2014)
* fixes both means and variances
* can be extended to several base populations




Tuning: Mean

* Fix statistics of G so that they resemble those of 4,,

* First, referring BV “from G” to the same base as BVs “from A,,"
* In fact we introduce a random mean which compensates for p* — Ppase
* because the meanis random, we can just add it, as a constant,to G
sVar(lpu+uw) =11"Var(u)+G=a+ G > G"
* It can be worked out that a = Var(u) = mean(4,,) — mean(G)

o If G_is constructed with observed allele frequencies a = mean(4,,) = ZFp
for F,average pedigree inbreeding

Tuning: Variance

* Fix statistics of G so that they resemble those of 4,,

* Second, referring BV “from G” to the same genetic variance as BVs “from
AZZII
* In fact we introduce a scaling factor b which compensates for 2Y.p;q; — 2Y.p; q;
which is the loss of heterozygosity from the base population to the one with p;
. usi tation th p = LAz
using expectation theory b = 1+F, G
* bG = G”
* If G is constructed with observed allele frequencies b = 1 + F, — Ay, ~ 1 — F, for
Fp average pedigree inbreeding

* This corresponds exactly with the theory: the reduction in genetic variationis 1 — E,




Tuning: Mean and Variance

*G" < a + bG, a and b from previous slides

* Equivalently, you can get both numbers using two equations
mean(diag(G))b +a= ﬁan(diag(Azz))
a+ bG = A22

* This is the strategy of Christensen et al. 2012

* Concepts are the same, and in practice it results in the same results
as before

* This is the default in blupf90

Tuning: Mean and Variance

* Note

* All this works because adding a positive constant to a matrix keeps its
“positive-definiteness”

* In practice, it means that if G is to be tuned,, one needs to use in
(M-2p")M-2p") zZ
2Y.0iq; 2Ypiq;
* allele frequencies that result in a and b being positive, otherwise the
final G may not be invertible

* The right choice is observed frequencies or « close to base »
(estimates of) allele frequencies

G




Blending

* G is often no invertible (clones, « centering », more individuals than
markers)
* However G is semi-positive definite.
* We want invertible G to use in the MME
* A practical solution is to « blend » G with a positive definite matrix to yield a
modified invertible G*
* Blend with identity: G* = (1 — a)G + al for a a small number, e.g.
0.01

* Blend with pedigree relationships: G* = (1 — @)G + aA,,

21

Blending

* This has an extra interpretation
* Blend with pedigree relationships: G* = (1 — )G + a4,

Fraction of genetic Fraction of genetic

variation explained by
markers

variation explained by
pedigree

* In theory you can estimate a by REML

* In practice people use defaults (0.05 in blupf90) or do some cross-
validation to find « the best a » (I think this is a bad idea)

22




Blending & Tuning: yet one slide

* We should mix only things that can be properly compared

* The right manner to work is

1. Tuning:ladjust G = ZEZZ.q. to be similarto 4,, : G* < a + bG
[’
2. Blending: | « blend » with 4,, to make G* invertible: G** < (1 —x)G" 4+

AZZ
* Blupf90 did in the opposite order until ~2021 but this has been fixed

now
* There are no major consequences (but it’s better to have everything right,

you never know)

Single Metafounder

* Define a “new” base population with p = 0.5 and “complete”
pedigree relationships in 4 : “metafounders” (Christensen 2012;
Legarra et al., 2014)

* fixes both means and variances
* can be extended to several base populations




Single Metafounder

* Christensen (2012) suggests fitting A to G instead of the opposite
* A depends on pedigree completion
* Pedigrees are never complete !!
* Ancestral relationships that can be seenin G go undetectedin A

* Christensen analitically integrates out p; (=allele frequencies) in a
model that
_ (M-11")(M-11")’
2Y0.5%0.5

* usesp = 0.5 as reference in ALL loci and builds G

* uses a relationship matrix AY with related founders

* The parameter y is the relationship across founders such that we see
“current” genomic relationships

Single Metafounder

Classically we assume for founders

100 0
(o 10 0
4=lo 010
00 0 1
* Christensen changes this into: v
I+5 7 4 4
14 1+}§/ 14 14

14
142
14 14 +2 14
|4
1 -
14 14 14 +2

We proved that the same can be achieved definig an ancestor (a metafounder)

that represents the base population and its average relationship (as referred to a
population where all markers had p = 0.5) is y




RELATIONSHIPS

Across founders within the population

A SINGLE
METAFOUNDER

Metafounder pedi
Py edigree

131011

It has self-relationshipA;;=y so F = y—1.
If y = 0 then we have regular relationships.
All A and A"l methods work.

METHODS
Metafounder relationships
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Single Metafounder

* Interestingly , if we knew base population frequencies p;
y = %(2p; — 0.5)*

* which is the same as G5 with fractional genotypes

* For a single base population, the estimation of y can be done by
Maximum Likelihood comparing G5 and 4,

* The “reference” genetic variance has changed — we need to scale

. ) 0 lated
genetic variances by Uqf(related) = %
2

* The method can be extended to more populations — see later.
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But what are genomic
(additive) relationships?

Interpretation of G

. . parenté
Kinship .
: 1 Liens qui unissent les membres d’une famille. Quel est votre lien de
Kin |km| d

parenté avec elle? — C’est ma sceur.
noun [treatedaspl. ]

. . ) It obviously comes from Latin “parentes”
one's family and relations: many elderly people have no kin to turn to for

assistance.
ORIGIN

Old English cynn, of Germanic origin; related to Dutch kunne, from an Indo-
European root meaning 'give birth to’, shared by Greek genos and Latin
genus ‘race’.




So what is kinship?

* Socially it has a “pedigree” interpretation
* e.g. "all royal families are related”

* However pedigrees “go back forever”
* We need a more rigorous definition

True relationships

* Two individuals are genetically identical (for a trait) if they carry the
same genotype at the causal QTLs or genes
* This is a biological fact
* The genetics of one locus for two diploid individuals can be described
using Gillois” identity coefficients




Relationships

* Relationships were conceived as standardized covariances (Fisher, Wright)
. Cov(ui,uj) = Rijalf
* R;; “some” relationship
* 0, genetic variance

* Genetic relationships are due to shared (ldentical By State) alleles at causal
genes
* if I share the blood group 00 with somebody | am “like” his twin
* These genes are unknown (and many will likely remain so)
* Use proxies

* Pedigree relationships
* Marker relationships

33
X Y

Juan Lebn Pedro Petrona Francisco Caciana Julio-Mencha_ Progeny- Julio-progeny Mencha-pros
8 0.01025 0.06580 0.03467 0.03467

[y 0.02393 0.04333 0.08252 0.00000

Juana 83 0.02490 0.04333 0.00000 0.08252

N 0.02393 0.04333 0.06665 0.06665

a5 0.02490 0.04333 0.08228 0.08228

Palperon Marlana Beltran Carmen Constantlno b 0.00708 0. (!TITZU 0.00000 0.00000
o7 0.05103 0.02383 0.00000 0.00000

b 0.05103 0.02383 0.00000 0.00000

&y 0.05127 0.24713 0.08228 0.06665

b1 0.10937 0.15900 0.29248 0.00000

o 0.16992 0.15900 0.00000 0.29248

Leonor Andres Teresa Catoya O12 0.00708 0.00729 0.06665 0.08228

i3 0.05103 0.02383 0.00000 0.29248

14 0.05103 0.02383 0.29248 0.00000

bis 0.34326 0.08582 0.00000 0.00000

Julio Mencha

Figure 2. The pedigree of the Jicaque Indians Julio and Mencha.

Garcia-Cortes Gen Sel Evol 2015




Pedigree relationships: A

* Systematic “tabular” rules to compute any 4;; (Emik & Terrill 1947)

* The whole array of A;; is disposed in a matrix 4.

» A7 1is very sparse and easy to create and manipulate (Henderson
1976)
* Extraordinary development of whole-pedigree methods in livestock genetics
* E.g. computing inbreeding for 15 generations including 10° sheep takes
minutes

Early use of markers used them to infer A

* In conservation genetics, molecular markers have often been used to
estimate pedigree relationships
* Gather markers, then reconstruct pedigrees, then construct A

* Either estimates of A, or estimates of « the most likely relation » (son-
daughter, cousins, whatever)

* Li and Horvitz 1953, Cockerham 1969, Ritland 1996, Caballero & Toro 2002,
and many others

* With abundant marker data we can do better than this




Realized relationships

* Identical By Descent Relationships based on pedigree are average relationships
which assume infinite loci.

* « Real » IBD relationships R are a bit different due to finite genome size (Hill and
Weir, 2010)

* Therefore A is the expectation of realized relationhips R
* Ais false, and is « very » false for small values of A

* SNPs more informative than A.
* Two full sibs might have a correlation of 0.4 or 0.6

* You need many markers to get these « fine relationships »

Comparison of expected and observed
variances — relationship/sharing

300 4401 full sib pairs
400-800 markers
250 ! Expected
THI Mean 0.5
2004 . SD 0.039

Observed

Mean 0.498

SD 0.036

Range 0.37 - 0.63

Frequency
Q
1

100

Source: Visscher et al.

T T T T T T
035 040 045 050 055 060 065

Additive coefficient of relationship

Slide from WG Hill




Traditional Pedigree
Sire of Sire
Sire ~‘
Dam of Sire
Sire of Dam
Dam ﬂ‘
Dam of Dam

Interbull annual meeting 2007 (39) VanRaden

Animal

Genomic Pedigree

Interbull annual meeting 2007 (40) VanRaden



Haplotype Pedigree

ctgtagc ctgtagcttagg

agatctagatcg

ctgtctagatcg cgatctagatcg
tcgeg
agagatcg agagatcgatct
tcgctca

ctatcgctcagg

Interbull annual meeting 2007 (41) VanRaden

Genotype Pedigree

Count number of second allele

121101011110
111211120200
101121101111
122221121111
101101111102
011111012011
121120011010

0 = homozygous for first allele (alphabetically)
1 = heterozygous
2 = homozygous for second allele (alphabetically)

Interbull annual meeting 2007 (42) VanRaden




Covariance of gene content (seen as a trait)

* Consider gene content coding {AA, Aa, aa} as
m = {01,2}
* Cockerham, 1969:
* For two individuals, the covariance of their gene contents is
Cov(my, m;) = Ri;2pq
* In other words, two related individuals will show similar genotypes at the markers
* Backsolve R;; = Cov(mi,mj)/qu.
-~ ZiZi
* If we have centered z = m — 2p then R;; = ﬁ

! !
mean(zizj) _ Zizj

mean(2Lprax)  2XPkdk

* Extended to many loci I?l-j =

VanRaden’s “first G”

Genotypes {0,1,2}

G — (M-2P)(M—-2P)" _ Z'Z

2Ypiqi 2.piqi
If base allelic frequencies If observed allelic
are used, G is an unbiased frequencies are used, G is a
an efficient estimator of IBD biased (but accurate !1)
realized relationships estimator of IBD realized

relationships




Some properties of G

* If p are computed from the sample

* In HWE & Linkage Equilibrium G = (M—2P)(M—2P)’
* Average of Diag(G) = 1 2)'piqi
* Average (G) =0

* With average inbreeding F
* Average of Diag(G) = 1+F

AA Aa aa
freq | g + paF | 2pq(1-F) | p? + pgF

Some intriguing properties of G

* If p are computed from the data
* This implies that E(Breeding Values)=0

* Positive and negative inbreeding
* Some individuals are more heterozygous than the average of
the population (OK, no biological problem)
* Positive and negative genomic relationships

* This implies that individuals i and j are more distinct than an
average pair of individuals in the data

* Fixing negative estimates of relationships to 0 is wrong praxis




Real results (AMASGEN)

* 9 real French bulls among 1827 genotyped, ~50000
SNPs

* Very complex pedigree, simplified graph:

Pedigree-based relationship
Little inbreeding

(11 (,21 [,31 [,4] [,5] [,6] [,7] [,8]

—

~
O

—

[1,] 1.00 0.51 0.57 0.51 0.26 0.15 0.15 0.14 0.14
[2,] 0.51 1.01 0.30 0.33 0.17 0.17 0.12 0.11 0.11
[3,] 0.57 0.30(1.07)0.30 0.20 0.12 0.18 0.11 0.12
[4,]7 0.51 0.33 0.30 1.01 0.17 0.18 0.11 0.11 0.11
[5,] 0.26 0.17 0.20 0.17 1.00 0.56 0.51 0.52 0.53
[6,] 0.15/0.17 0.12 0.18 0.56 1.06 0.31 0.32 0.32
[7,] 0.15/0.12 0.18 0.1] 0.51 0.31 1.01 0.30 0.29
[8,] 0.14/0.11 0.11 0.1l 0.52 0.32 0.30 1.02 0.30
[9,] 0.14%—++—o-+2—6=+1 0.53 0.32 0.29 0.30 1.03

Cousin relationships ~0.125




“first G” genomic relationship

Less than 1 in the diagonal

[,1] [,2] [,31] [,4]
[1,] 0.82 0.40 0.43 0.38
[2,] 0.40 0.91 0O7TI8 Q.24
[3,1 0.43 0.18 \0.88 0.19
[4,]1 0.38 0.24 0.19 0.86
[5,]1 0.12 0.02 0.07 0.02
[6,]1 0.04 0050 T00—=0-0%
[7,1 0.04|-0.04 0.07 -0.02
[8,] 0.01|-0.04 -0.02 0.01
[9,1 0.100L.0.04 0.05 0.03

0
0
0
0
0.
0
0
0
0

[,5]
.12
.02
.07
.02
73
.34
.30
.31
.35

[,6]
.04

0.05

.00
.01
.34
.85
.15
.14
.18

Negative coefficients

.10

.04

.05

0 0.03

.30 0.31 0.35
15 0.14 0.18
.80 0.14 0.17
.14 0.80 0.17
.17 0.17 0.85

G=27'12 Z p(1-p) Relationships among cousins are ~0

all SNPs
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IBS relationships at the markers

* G;ps is a genomic relationship matrix based on Identity By State at
the markers

* The terms in G;gs are usually described in terms of identities or

countings:

.G e —
IBSU n

2 2
Lyn o Zk=12iz1lkl
m=1 4

’

* where [};; measures the identity across all 4 combinations of alleles




IBS and IBD

* IBS at markers (G;ps;j) is a frequently used estimator of realized IBD (R;;)
* Individuals can be identical by IBD or by IBS at the founders:

Gissij = Rij + (2 = Ri;) (P + q%)

* Thus, IBS is biased upwards with respect to IBD.

* This has originated a bunch of estimators, with a common problem: where
to get p from.

* For a detailed account, see Toro et al (2011 Gen Sel Evol)

GBLUP == GBLUP with IBS

* Gigs = %60_5 + 11" where G s is built pretending that p = 0.5

* The implicit denominator in G;g¢ is “too big”

* Note thate.g. (¥ J)os=(, °i5)1,

* in other words, what matter is the product Gg 5 0121»0.5»

* we can scale the genetic variance appropriately as (n = number of

markers)
n

2Ypiq;
* Then we get the same GEBVs as with « normal G »

2 2
0,70.5” — 0oy




OK, so what allele frequencies should | use?

* If you “know” and want to use the variance components:

* Try to use base allele frequencies
* If not, use a “tuned” G or metafounders theory

* If you “don’t know” variance components and you estimate them
* If using REML or Bayesian methods you get the variance components just right
* However, inferring variance componentsand h? gets tricky,

* because they refer to the population with the allele frequencies in the
denominator of G

* See Legarra 2016, Theor Pop Biol

OK, so what should | use?

* For SSGBLUP it is essential to have “compatible” genomic and pedigree
relationships

* Populations evolve with time, but genotypes came years after
pedigree started

* Genomic Predictions are shifted from Pedigree Predictions

* Compatibility is achieved if both relationships refer to the same
genetic base:
* Same average BV at the base
* Same genetic variance at the base

* Will be presented at SSGBLUP




GWAS

* brief history of QTL detection
* GWAS from single marker regression or GWAS from GBLUP

* what GWAS signals mean

Brief history

* Geneticists always want to find genes, but it is a very difficult task

* 1989: Lander & Botstein propose a systematic scan using linkage and
microsatellites

* These methods were based on following putative different alleles
using microsatellites -> within-family linkage

* explossion of « QTL » studies in human, plant and livestock




Information content

A QTL with major effect on milk yield and composition maps to

bovine Chromosome 14

Wouter Coppieters, Juliette Riquet, Juan-José Arranz, Paulette Berzi, Nadine Cambisano, Bernard Grisart,
Latifa Karim, Fabienne Marcq, Laurence Moreau, Carine Nezer, Patricia Simon, Pascal Vanmanshoven,

Danny Wagenaar, Michel Georges

& 0%

Fig. 2. Location scorcs obtained along the Chr 14
microsatellite map with the sum-of-rank QTL
‘mapping method (Coppicters ct al. 1998b).
Evidence in favar of the presence of a QIL at a
given map position is measured as log{1/p) with p
camesponding to the p-valuc of the actual data as
measured from chromosome-wise aalyses of 10°
phicnotype permutations. Experiment-wisc
thresholds obtained by Bonferroni camrection of
the chromosome-wisé thresholds to account for the

£ i s § chromosomes are indicated by horizontal bars. ®:
8 2 H H milk yicld; M: protein yicld; .
S = L = percentage; A: fat yield; A: fat percentage. For fat
percentage (2) the location profiles are flat
Py ‘positions 0 and 26cM becanse the x>
&‘h&w values obtained from the real data within this
segment exceeded all values obtained from the 10
j Mag position (cM) permutations.
'&ﬁw . . ‘ Microsatellite genotyping. A whole genome scan was undertaken with
| ™ "\ a battery of 215 microsatellite markers compiled from published marker
maps and jointly covering 2947 cM (Haldane) of the bovine genome
‘ Fig. 1. Information content of the used Chr 14
| i ite map in the design (0
I = T low density map. x: high Jensity map) and

Map position (cM) grand®-daughter design (A).

Methods: from (ss)GBLUP

* The use of high-density SNP chips shifted the methods towards

marker-based regressions

* the hope is that the marker close(st) to the QTL is in linkage

disequilibrium




Uruguayan Holstein

[ JoX ] [X| Gnuplot
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Methods: Single-marker regression

* Single-marker regression (« one marker at a time ») with accounting
for relationships
y=Xb+zf+Wu+e
Var(u) = Go?
* (B effect of the marker; z incidence vector as we have seen

PN

. test: P
test.se_(ﬁ)

~N(0,1)

M et h O d S : fro m ( S S ) ge@-a!ﬁauiPof genome-wide association from genomic prediction

models

Y. L. Bernal Rubio*", J. L. Gualdrén Duarte*, R. O. Bates*, C. W. Ernst*, D. Nonneman?,
G. A. Rohrer*, A. King*, S. D. Shackelford*, T. L. Wheeler*, R. J. C. Cantet and J. P. Steibel*!

Rapid screening tor phenotype-genotype
associations by linear transformations of genomic

evaluations
Jose L Gualdrén Duarte', Rodolfo JC Cantet’, Ronald O Bates?, Catherine W Ernst?, Nan(&%anngme-WIde Association Analyses Based on Broadly
and Juan P Steibel*™" Different Specifications for Prior Distributions,

Genomic Windows, and Estimation Methods

Chunyu Chen," Juan P. Steibel, and Robert J. Tempelman
Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
ORCID ID: 0000-0002-7833-6730 (R.J.T.)

GWAS by GBLUP: Single and Multimarker EMMAX

and Bayes Factors, with an Example in Detection of

a Major Gene for Horse Gait

Andres Legarra,* Anne Ricard, " and Luis Varonat Genome-wide association analyses based on a multiple-trait
approach for modeling feed efficiency

Y. Lu,* M. J. Vandehaar,* D. M. Spurlockf K.A. Welgelt L. E. Armentano,f E. E. Connor,§ M. Coﬁey#
R. F. Veerkamp, Il Y. de 1Z. Wang M D Hanigan,tt and R. J. Tempelman*!




Methods: from (ss)GBLUP

I . Z'z
* |t can be proved (see lengthy details in the Notes) that if G = >
ili
* and we
1. backsolve SNP effects using @|ii = Z¢tu
22piq;

2. computes.e. (@)
. B___a
Then se.(B) s.e(d)
* This makes our life easier: we just need to run a GBLUP and backsolve
* implemented on blupf90+ , postGSf90

* The same can be obtained directly using SNP-BLUP

Details on GWAS

* the purpose of GWAS is (or should be) to inform on the etiology of
diseases or causal mechanisms of traits

* It is better to find 2 very good hits than 50 small ones !!

* Choice of an indicator

* | strongly recommend using p-values
* If you want to detect a gene you need to be sure.
* p-values are there to control how many mistakes (false positives) you will made
* if you don’t like thresholds, use FDR

* effect sizes are VERY misleading:
* more polymorphic markers have larger effects
* small studies will have large effect just by chance




Details on GWAS: QQ plots

* If the modelis correct, Qgplots should align properly. if not, they may not

IH

* If you can’t fix the model, then you can use “genomic contro
1999, 2004) which is a hack that basically scales the p-values

(Devlin and Roeder,

s -
& m
p

Bad

Observed (-logy, p-value)

2

4 6
Expected (-log: p-value)
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Biological vs. statistical effects

Biological effects

The terms ‘dominance/epistasis’ describe apparent distortions of
mendelian segregation ratios that were due to one gene masking the

effects of another
Genotypes

atlocus 1

F\Generation ! AA 3 3 3

Genotypes at locus 2

” Aa
Example of dominance Example of epistasis: dominance-by-dominance

two-locus epistasis




Biological effects

* Unfortunately we don’t know all gene actions & pathways
* For many purposes, we need to make educated guesses

* Guesses include:
* predicting phenotype of progeny (Genetic evaluation)
* |s this genome region interesting? (GWAS)
* What happened in this genome region? (selection footprints)

* For these practical purposes, we use statistical models

Statistical effects

* Fisher’s described dominance and epistasis as deviations from
additivity in a linear statistical model

* Statistical effects (dominance & epistasis) are a population phenomenon

* Genetic model

Epistatic deviation

Phenotype

P=A+D+I+E

Additive (or breeding) value Dominance deviation




Statistical effects

Fisher (1918) explained that the
substitution effect of one allele
is the regression of phenotype
on genotype

N = O

a=(z22)717y, z= {

* Dominance deviations are essentially residuals

This decomposition is a regression of &

>
u+ 2a, ?022

G
© GuT o2 ..
z e wragr o
pS
2
g “:20{1 Slope = a = ap - oy
2 P
]
3 .
Guf ¥
1 1 1
T T T
O N=# Copies of Allele 2 1 2
1 Genotypes 21 22
Walsh B., 2013

* Dominance deviations are the difference for a genotype (in red) between the

genotypic value and its prediction from 2 alleles.

Statistical effects

* Why is a relevant & how does it take care
of non-additive gene action?

* The statistical definition doesn’t care how a
“works”

* By definition, a potentially includes biological
dominance and epistasis

* Because individuals pass on gametes (and not
complete genotypes) to offspring:

* a describes how much you gain by selecting an
allele (in either natural or artificial selection)

Genotypic Value

611 T

This decomposition is a regression of G

w+ 20,728

B p+o+a,

Slope = a = ap- oy

| xbn

T T
O N=# Copies of Allele 2 1
11 Genotypes 21

INEO e

2

Walsh B., 2013




Example pairwise epistasis

I T
AA y=mta, tag+ti yi=m+a,+dgtj y;=mta,—ag—i
B. I . I Aa y=m+d, tagtl  ys=m+d,tdgtk ys=m+d,— ag—1
10 Oglca aa yi=m—a, tag—i  ys=m—a,+ dg—j Yo=m-— a,— ag+i
al = u=m+a,(p,—-q)+ - 2p,qd +2 d - —q,)i
AP =q)+ay(py=q,)+2pigd F2p,q,d o H(pr = 4Py = 42)i+
iy 2P =4 P242J + 29141 (P2 = @) + 41, prgok
aA Ad d Itive ay=a,td (1-2p) H(py-4,)i+2 PG, j+(1-2p ) (py-q, )12 p2g,k(1-2p, )
. =a,td,(1- +(p,-q, )i+ +(1- -q, )j+ ((1-
-|-(1 — 2p1)dA Dominant @, = aytd,(1-2p,) +(pa, )i+ 2paid+(1-2p, ) (-4, )i +2p\a,k(1-2p,)

dy=(d, =) +2p, (I + k)= 2kp;

+(p, — q2)i | Additive x additive  «=@-i+2nG 0200

aay=(i+j+k+0)=2p (j+k)=2p,(j+k)=2kp p,

+(2p2q2)j | Additive x dominant  wi=¢+0-2u,
dyaty = (1+ k)~ 2kp,

+(1 = 2p1) (P2 — q2)1| Dominant x additive .-«
+2p,q,(1 — 2p;)k | Dominant x dominant

Toro, 2017

Statistical & biological effects

Being a “Big” horse is determined by
Genotypes at locus 2 biological dominance-by-dominance
two-locus epistasis

Genotypes
atlocus 1

BB Bb bb
y o A 4 Genotypes at Genotypes at locus 2
Aa g Q locus 1 \

BB | Bb bb
aa \Q \Q ‘Q AA u : M M

ay = 2p;q2(1 — 2py)(9-5) Aa pooptdn p
as u u u

10




Statistical & biological effects

* In the classical V, + V, + V; partition,
» Additive biological gene actions contribute only to Vy, while

* Both biological dominant and biological epistatic gene actions contribute to
multiple variance components

Gene actions

Huang & Mackay, 2016
Variance
components

L Total genetic variance !

* There is no correspondence between the kind of biological gene action and
the variance component

11

What to do with all these math?

* In absence of knowing true action genes, this gives tools

® (X (statistical additive effect) SQYS
* how much do you improve if you select me
* Big a = interesting locus

* d: (statistical dominance effect) Says

* For whatever reason, the heterozygote here is interesting

* Perhaps we can mate these two animals here and maximize it
° (aa)ij (statistical epistatic effect) SAYS

* Somehow the fates of these two loci are bound together

12




What to do with all these math?

* ( (statistical additive effect) iS the ONLY component involved in selection,
because only individual alleles are transmitted from parents to
descendants

® d: (statistical dominance effect) and (CZOZ)U (statistical epistatic effect) also contribute
to the total genetic value and to the expected phenotype of the
crosses/hybrid, but not to selection, because the allele/gene
combinations are not transmitted to the descendants

New models accounting for non-additive effects
GBLUP, GDBLUP, and its extensions
Inbreeding depression




“Mixed model” based prediction

* We use quantitative genetic theory to build relationship matrices
* Then we fit them into mixed model

Genomic prediction with non-additive effects

1. We need to construct a linear model based on SNP genotypes

2. Write orthogonal incidence matrices for additive, dominant, additive x additive,
additive x dominant... SNP effects
1. This yields SNP-BLUP or RR-BLUP kind of models but they are cumbersome for epistasis

3. Equivalently, define relationship matrices
1. High order matrices are products of low order matrices

2. The whole theory stems from
1. VanRaden 2008 (A),
2. Vitezica et al., 2013 (A+D)
3. Vitezica et al., 2017 (A+D+AXA + any epistatic interactions)
4. Gonzalez-Diéguez et al. (2021) (A+D+AXA + any epistatic interactions in hybrid crops)

4. Use a Mixed Model with relationship matrices

This is doable if all individuals are genotyped
* There is no Single Step GBLUP for dominance or epistasis




Genomic prediction with non-additive effects

* Recipe:
1. Define incidence matrices Z for « and W for d* , e.g.

2-2p —2q* AA
Zij={1-2p and W;j =4 2pq forgenotypes { Aa
0—2p —2p? aa
2. Relationship matrices are:
z7'
. GA = 2P for individual additive effects (GEBVSs)
D= = | »
=Gp = L for dominance deviations Use in Mixed Model: GD-BLUP

Genomic prediction with non-additive effects

* Recipe:
2. Relationship matrices are:
c Gyu=27'/2)p;q; for individual additive effects (GEBVs)
* D=Gp=WW /4Y(p;q;)? for dominance deviations
* Ggq =G4 O Gy/mean(diag(G4 O Gp)) for additive x additive
* Gyap = G4 © Gp/mean(diag(G4 © Gp)) for additive x dominant

* ..e8.Gyap =Gy, O G4 O Gp/mean(diag(G, © G4 O Gp))




Genomic prediction with non-additive effects

* Recipe:
2. Relationship matrices are:
* Ggp = G4 © Gp/mean(diag(G4 © Gp)) for additive x dominant
G = G, O Gp
AD =
tr(G4 © Gp)/n
t Use in Mixed Model: GDI-BLUP

A standardization based on the trace of the relationship matrices is needed.

Genomic prediction with non-additive effects

* Recipe:
* Then use these matrices in (G)(D)(I)BLUP / REML

Yy=Xb+gs+9p+9as+Gap +9pp + - (+pe)..+e

Var(g,) = GAO}%; Var(gp) = DUDZ; Var(gaa) = GAAO-AZA

* pe is the permanent environmental effect
* captures remaining genetic effects (e.g. AXAxAXA...) in repeated records (such as
analysis of milk yield)

* The matrices of higher orders G44, G444, Gaaaa are increasingly less
informative and at some point they’re not worth fitting.




Genomic prediction with non-additive effects
— crosses in hybrid crops

* In hybrid crops like maize, the cultivated plant is usually an F1 hybrid
which is the cross of two homozygote lines, each from a different
population (“heterotic group”)

* Parental homozygote lines are homozygous at all loci

* This generates a particular partition of additive, dominance and
epistasis across and within heterotic groups

Genomic prediction of hybrid crops allows disentangling
dominance and epistasis GENETICS, 2021, 218(1), iyab026

David Gonzalez-Diéguez (& *, Andrés Legarra', Alain Charcosset?, Laurence Moreau?, Christina Lehermeier (® 3, DOI: 10.1093/genetics/iyab026
Simon Teyssédre®, and Zulma G. Vitezica (® '

21

Genomic prediction in hybrid crops

* Hybrid crops from pure lines
* E.g. maize: population 1 is “Dent” and population 2 is “Flint”
* The effects (GCA and SCA) are defined “according to parental

origin”
* We define Z-matrices within each heterotic groups y w
* W-matrix is defined in the hybrid David Gonzalez-Diéguez
Population (1) Population (2)
e.g. Heterotic group Dent e.g. Heterotic group Flint

22




Genomic prediction in hybrid crops

* Recipe:
1. For each locus,
define incidence matrices Z, for a; (pop 1), Z, for @, (pop 2) and W for d* (in hybrids)

1-p) BBy (1-p,) BB,
Zy.. = for genotypes ) Z, = for genotypes
tij {( —p1) & P biby 2ij ( —p2) & P b, b,
and
—2019 BB,
2q1p Bib,
W;: = for genotypes
Y 2p19; & vp b1 B,
—2p1p2 b:b,

New models accounting for non-additive effects
GBLUP, GDBLUP, and its extensions
Inbreeding depression




Inbreeding / heterosis

* Inbreeding depression is the decline in biological fitness (viability,
fertility, ...) as a consequence of inbreeding

(Falconer, 1981)

* This phenomenon may be explained by directional dominance.
* Directional dominance, e.g. the heterozygote is usually “better”

(Lynch & Walsh, 1998)

Inbreeding/ heterosis

* If heterosis or inbreeding depression, E(d) = 1up with up > 0

* Statistically this translates into a regression on a measure F of
homozygosity (y = XB+Fb+ g4+ gp + -+ e)

* Across individual markers: “genomic inbreeding” (Silio et al 2013; Xiang et al
2016)

* In blocks: ROHs (long ROHs are better because inbreeding has not been
purged)

* Ignoring inbreeding/heterosis may inflate estimates of dominance
variance

* Including inbreeding/heterosis allows finer estimates of EBV




Results?

OK, so we have this nice theory, what now?

* Is this any useful?
* Extra accuracy in predictions
* Variance components
* Mate allocation

27

Example in pigs
y=XB+Fb+gs+9gp+9gaa+9pat+9gpop +pe+e

* Small variances for non-additive effects

* The model is empirically orthogonal: variance component estimates do not change by adding an
extra term

* Inclusion of dominance/epistasis did not increase the accuracy of prediction of breeding values

O VarA
~ @ VarD
- O VarAA

PIC 21

Litter size
12.7+3.1

Genetic variance
6

Genus plc (Hendersonville, TN, USA)
3,619 genotyped sows 13,369 records
38,779 SNPs o

From Genus

Vitezica et al., 2018. A A0 ADWAA ANDSAAVAD A4DIARSADIOD 28




Additive Dominance E l ° . g
12 ' 0.75-
104 1 From Genus
. Model
° 050~ i ol . . . . .
8 cor Without including inbreeding
" as o depression in the model, dominance
variance was overestimated
0.25-
06~
This has long been known for pedigree
analysis (e.g. DeBoer and Hoeschele, 1993).
0.4~ : 0.00~
abi GDIF abi GDIF
Model
Posterior distributions of additive and dominance genetic variances for
model including (GDIF) or not (GDI) genomic inbreeding
Vitezica et al., 2018. »
Example in beef cattle
American Angus Association
% 19r375 genOtyped males Estimating dominance genetic variances for
i i i th traits in American A les usi
Carolina Garcia-Baccino 39,245 SNPs g;:gmicr::;d:s merican Angus males using
Carolina A. Garcia-Baccino,** Daniela A. L. Lourenco,' Stephen Miller,!
Rodolfo J. C. Cantet,*s and Zulma G. Vitezica*

Small variances for non additive effects
Inclusion of dominance in the model did not increase the accuracy of prediction of breeding values

Table 2. Estimates of additive, dominance deviation, and residual variance components (73, 03, o2 and heritability for growth traits using MG
and MGD models

Trait! Model* % o} h; h3 (0B /%) a2
BW MG 6.27 (0.33) — 0.25 — — 18.82 (0.24)
MGD 6.28 (0.33) 0.18 (0.15) 0.25 0.01 0.03 18.65 (0.28)
ww MG 222.75 (14.61) — 0.16 — — 1186.28 (14.26)
MGD 223.55 (14.82) 10.02 (4.98) 0.16 0.01 0.04 1176.88 (14.86)
PWG MG 270.76 (20.42) — 0.16 — — 1388.81 (19.87)
MGD 270.30 (21.94) 21.68 (10.95) 0.16 0.01 0.08 1369.01 (26.00)
1BW, birth weight; WW, weaning weight; PWG, postweaning gain. F AAA
rom

MG, model including only additive effects; MGD, model including both additive and dominant effects.
The results are given as estimate (in parenthesis SE); h} = 03 /o3 and h} = 3 /o3, where o is the phenotypic variance.
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Example in beef cattle

2,111 Australian Brahman (BB) cows and bulls
Genotyped with 770,000 SNPs
Body yearling weight

" Daof
@ =

Small variances for non additive effects M Aditive [ Dominance Il Epistasis Il Residual
Without including inbreeding depression in the model, dominance variance was overestimated

BB
800+

.
AOOIIII IIII

Phenotipyc variance
@
3
3

N
151
3

AH AD ADH GxG HGXxG GXD HGXD DxD HDxD

04

From ABBA

Raidan et al., 2018 3t

Results

* Inclusion of dominance/epistasis

* does not increase the accuracy of prediction of breeding values (Ertl et al., 2014;
Xiang et al, 2016; Esfandyari et al., 2016; Moghaddar and van der Werf, 2017, Gonzélez-Diéguez et al.,
2019, Garcia-Baccino et al., 2020 — Pégard et al., 2020, Gonzalez-Diéguez et al., 2021 )

* with the exception of Aliloo et al. (2016) (for fat yield in Holstein)

* Inclusion of inbreeding depression/heterosis effect
* does increase predictive ability (Xiang et al., 2016) in pigs
* and in maize (Roth et al., 2022)
* Fitting non-orthogonal models or non fitting inbreeding
* Biases in variance component estimation (Vitezica et al. 2013; 2018)
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Results?

OK, so we have this nice theory, what now?

* Is this any useful?
* Extra accuracy in predictions
* Variance components
* Mate allocation

Mate allocation: theory

* What happens if | mate i and j so that the product has an extraordinarily good
phenotype (=dominance deviation)?

What is the best combination of matings?

it**" :)? IF//?( I
) \ A & A - y N, j." %
e ¥4 UK
.&H Best progeny

(;" k"’: u merit




Example in pigs (within breed)

France Genetic Porc
Age at 100 kg (AGE), Backfat depth (BD), Average piglet weight at birth (APWL)

39,353 SNPs

Trait | Boars | Sows | Genotyped animals | Number of records | _Mean sD) |

AGE (days) 789 2179 2968 2968 149.03 (9.36)
David Gonzalez-Diéguez m 1007 2675 3682 3682 11.20 (1.68)
APWL (g) 1446 1226 2672 3297 1321.73 (213)

Evolution

RESEARCH ARTICLE Open Access
®™

SNP-based mate allocation strategies =
to maximize total genetic value in pigs

David Gonzalez-Diéguez"®, Llibertat Tusell', Céline Carillier-Jacquin', Alban Bouquet* and Zulma G. Vitezica'

CONZalezUIegUEZ eLaL Gener SVl (20193133 Genetics
httpsy//doi.org/10.1186/512711-019-0498-y
Selection

Landrace frangais 35

Example in pigs (within breed)

Estimation of variance components: Of 0[2)

» Model GD : additive + dominance + genomic inbreeding
Within breed

toes iy
Vit ="
b is the inbreeding depression parameter i-th boar J-th sow
Progeny  PB performance

u~N(0, Ga2), G built as in VanRaden (2008) “on
matejj_g Nl‘o\\‘\{'ﬁ ™ /}
|/

v~N(0, Da3), D built as in Vitezica et al. (2013)

y=XB+Fb+Zu+Zv+e

F is a vector of genomic inbreeding coefficients

» Model G : only additive + genomic inbreeding
remlf90 software (Misztal et al. 2012)

Estimation of additive and dominant SNP effects: @ and d

» BLUP-SNP model including dominance and genomic inbreeding
GS3 software (Legarra et al. 2011)




Example in pigs (within breed)

Prediction of expected progeny values (Toro and Varona 2010):

I~

* Prediction of the total genetic values (g;;) of the mating i-th boar l Jj-th sow

Gij = Z[Pijk(cc)ak + Py (CT)dy, + Pijpc(TT) (—y)] S
%

L
i "

Pl WK

Future progeny

¢ Prediction of the breeding values (u;;) of the progeny

;= Z[Pijk(cc)(z — 2D @i+ Piji (CTY(1 — 2p3) @y +Pyji (TT) (— 25 ) @ |
%

&, = a+ di(qr — i)

Example in pigs (within breed)

Allocation of matings

e.g. AGE
Topessv 120 2,179 females
{0 x 4R
i-th boar l J-th sow

Gij » Wij

@ Potential matings
mateij_th s,

Vi W e.g. 261 480

Future progeny

Two mate allocation strategies:
(1) 600 matings selected on u;; — fopn-m(ﬁi]-)
(2) 600 matings selected on g;; > fopn-m(@,-j)

Evaluation of expected genetic gains:
Additive genetic gain (Au):

*  Au=mean(figo) — mean(ﬁall_matings)

Total genetic superiority (Ag):

* Ag =mean(geoo) — mean(gall_matings)

Optimization by linear programming
R package Ipsolve (Berkelaar et al., 2004)

Two constraints:
(1) each boar could be mated to up to 15 sows

(2) each sow could not be mated to more than one boar




Example in pigs (across breeds)

Is it possible to boost CB performance by implementing mate allocation in a
two-way pig crossbreeding scheme in the long term?

Simulation study (QMSim + Fortran program)
Maternal trait: litter size
Genome: 18 Chr 120 cM each

Purebred and Crossbred Genomic Evaluation and
Mate Allocation Strategies To Exploit Dominance in
Pig Crossbreeding Schemes

Uibertat Tusell,* Alban Bouquet,"* Andres Le ar’a,' and Zulma G. Vitezica*
INRAE, ENVT, F-31326, Castanet Tolosan, France, "IFIP Institut du Porc, BP35104,

louse.
nd *France Génétique Porc, BP35104, 35651 Le Rheu, France
37-1835 (D.G.-D)

Sargolzaei and Schenkel, 2009

Mate allocation to produce
two-way crossbreds

Purebred 1 Purebred 2

Pt ey
i-th boar } J-th sow

& & CB performance
matej;_. T 4
jj—th Vo W5
L WL |
Crgsgbred fJ‘
progeny

David Gonzélez-Diéguez

Genetic improvement in pigs

* |t uses selection and crossbreeding

* The breeding goal is to improve crossbred (CB) performance, while
selection takes place in purebred (PB) animals based on PB

performances

* Selection depends on the correlation between PB and CB

performance (rpc)

Selection may be suboptimal (GXE)
rec<1 (~0.7)

y
X 9

Landrace
»

8

[ R Ve
]" ——

VR, v
Large White

P P\
iPiétrain !
Crossbred female [P ,yf:,fﬁ;;
: ’{"’i‘\

-

Comercial crossbred pigs
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Example in pigs (across breeds)

Simulation of heterosis and QTL effects
Maternal trait: “e.g. Litter size” controlled by additive and dominant QTL action (2,500 QTLs)

Inbreeding depression was assumed to be -1 piglet per 10% increase in genomic inbreeding in P1, P2 and CB

Additive and dominance QTL effects were sampled from a MVN distribution with correlation between the
three populations to account for GXE and GxG. Landrace and Yorkshire genetic variances were taken from

Xiang et al. (2016)

TQTLp1,p2

D SR . '~
l & a
TorLp I‘CBX; Gl W j QTLpz,cB

Correlation between QTLs (rory):

TQTLp1cs = TQTLpypz = TQTLpycp = 0-D

Example in pigs (across breeds)

p1  Two-way crossbreeding scheme P2
Gen 0
Founders sampled |92D4 | | g 12 '[9 204 | |d’ 12 |
from generation 2030
RM RM

2,448 descendants 2,448 descendants

Genl [0 2032 [g~a16] . 2 ~2032 [g~416 |-
i\BeSt 10% E Best 3%‘} Mate allocation Best 10% Best 3%;;
" / strategies  2eBest |
|9 204| | 12 ~ -Te 1 Q 204 d'12 |
RM RM

2,448 descendants 2,448 descendants

: Q ~2032 [g~416 2448 Q ~2032 [5'~416

- RM = Random mating
Gen 10 *Same boars than used in purebred lines




Mate allocation: results

* Mate allocation has a small added benefit within-breed and no
benefit across-breed

* Selecting PB animals for CB performance using PB and CB data is a
good strategy to exploit heterosis and improve crossbred
performance, especially if the 7p. is low

Some conclusions

* We have a comprehensive theory

* We know how to properly define/estimate non-additive statistical
effects

* Inbreeding/heterosis should be fit in the genetic evaluation model

* Fitting dominance and epistatic effects is interesting to correctly
appraise genetic variances




Some conclusions

* Dominance and epistasis is not difficult with markers provided all

animals © (plants © ) are genotyped

* In our experience, computational complexity is not an issue (models
fit into computers), but convergence and accuracy are an issue (many

parameters, little information)
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REVIEW

Non-additive Effects in Genomic
Selection

Luis Varona™*, Andres Legarra®, Miguel A. Toro* and Zulma G. Vitezica®

®

Chapter 8

Methods for Nonadditive

Genetic Effects

Luis Varona, Andred Legarra, Miguel A. Toro, and Zulma G. Vitezica
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Matrix H and Single Step
GBLUP

Multiple-step Genomic evaluation

Records ‘Y” _,E : Pedlgree
EBV

Not all animals
Pseudo observatlons are genotyped

De-regressed EBVs

SNPs




Genomic evaluation

e Estimate effect of all SNPs in the genome:

y = Za+e BayesA, BayesB,
2 _ 1 O 31 BLUP-SNP, etc
12\ [ 1 -1)/a (e
g8 ] {0 -1 (az) e
6.2 -1 -1 €4

Marker

Records Genotypes
effects

Genomic evaluation

* What about records?

y=Za+e
2 -1 0 €1
12y [ 1 -1\/a  [e
» s |71 o 1))t
6.2 -1 -1

Marker
effects

Records Genotypes




Genomic evaluation

* What about records?

* We genotype key animals (breeding males and maybe
females)
— They may not have phenotype on their own

— They also have progenies who could have phenotype but
could not have genotype

* “Project” family phenotypes on genotyped animals
— Deregressed Proofs, DYD, etc.
— Let’s call this “DP”

* More easy said than done

What about records ?

e Typical in dairy cattle: the male is “assigned” the
performance of the daughters

* Similar to a sire model

=] O OO0 .,
® OO o

- But to achieve more accuracy and to avoid selection bias, we need to
correct for the dams’ EBV and for the fixed effects

» This is what we do in DEREGRESSION

- And corrections contain errors which pass on to deregressed proofs
6




What about records ?

* Assumethat Daisy EBV is overestimated as 6.4 (true BV is 4)

Percy @ John
l l DPperey =10 —-3.2=6.8
| | DPjopn =8—3.2 =438

* Now both Percy and John are biased downwards !!
- Sometimes Daisy will be biased upwards and sometimes downwards

* Thus, the deregressed proofs of Percy and John will have a residual
covariance

- This covariance is always ignored in practice

« The same problem exists when we correct by effects such as herd

Creeping bias

e BLUP can’t consider selection that is not in the records

e thus, BLUP evaluations underestimate genomic selection
trends

AG=1.8 kglyr

Mantysaari, et al. (2020).
JDS 103(6),5314-5326.

eeeeeeeee




Single-Step Genomic Evaluation

Aguilaret al., 2010

Pedigree Records ‘Y” SNPs

N7

GEBV

Expand information

* We can do ONE evaluation if we “augment”
information generating either
— genotypes for all animals (SNP-BLUP)
— G matrix for all animals (GBLUP)

— genotypes of all animals will take lots of space (~100
M cows in US dairy cattle evaluation)

— G matrix of all animals will be very cumbersome too
. ?7?

10




Expand information

* We can do ONE evaluation if we “augment”
information generating either

— genotypes for all animals (SNP-BLUP)
— G matrix for all animals (GBLUP)

* Imputing algorithms (Beagle, Fimpute, Alphalmpute,
etc.) are conceived to impute from low to high
density

* For non-genotyped animals, we may “obtain” a point
estimate of the genotype

* Why is this bad?

11

Problem with point estimates of genotypes

* Imagine a major gene

- Point estimate of genotype of the
D D descendants: “Aa”
A Sl * Clearly, based on y there is Mendelian
Aa @ segregation where one descendant received
“AA” and the other “aa”

> - There is variation of true genotype around
y;io 3 the point estimate of the genotype
ON

- If we do not consider this variation we
consider the offspring as identical twins

12




« Remember « genotype seen as a trait »?

Heritability of gene content

* If the genotype is accurate, “genotype seen as a trait” z
is observed with no error

e zis transmitted from parents to offspring and there is
no external influences

» zis additive (by definition)

* Heritability of zis 1 (!!!)

We can model gene content as a quantitative trait:
. Cov(zi,zj) = A;j2pq

e z=1u+u=112p) +u

« Var(u) = Ao, = Aof = A2pq




Genotype prediction using BLUP for
gene content (Gengler’s method)

« Assuming h? =~ 0.99, use BLUP !
—z=1uy+Wu+e

Grz ww 412 () =)

— On exit, 11 + U are estimates of gene content for all animals

* Using Selection Index (which is BLUP without fixed
effects)

— if z has been centered using p in the base generation, then u =
0 and U, = u, = z, for genotyped animales, and

— 2; =1, = A,A 50, = A,A5Z, isthe prediction for non-
genotyped animals

15

Example

Animals with genotype

Observed genotypes [ Relati neest Estimated
(correctly as 0/1/2) genotypes
(fractional !!)

2 OO0 ON0H0OTD OMPO  OIDMHGD G0 O@O
T T

The prediction is not very good:
- it is fractional
- it has large error 16




Augmenting genotypes

- Gengler et al. (2007) conceived an algebraic way to deal with these
point estimates

« Christensen & Lund (2010) showed how to take the error into account

- Genotype of descendants = half their parents + Mendelian sampling

AA with probability %
» Aa with probability %

Prediction of Genotype == g + ="a“

Variance( Genotype)-— ‘A" +;1L a"

17

Missing data in « classic »
contexts

Fill-in missing data: « data augmentation »

* Augmenting = adding genotypes

« But we need to account for the fact that these
are « guesses »

» Expectation-Maximization, « data
augmentation », « missing data theory »

18




Missing data in « fancy »
contexts

Fill-in missing data: « imputation »

* « Hot deck imputation is a method for handling missing datain
which each missing valueis replaced with an observed
response from a"similar" unit.”

* Multiple imputation is a general approach to the problem of
missing datathat is availablein several commonly used
statistical packages. It aims to allow for the uncertainty about the
missing data by creating several different plausible imputed data
sets and appropriately combining results obtained from each of them

* What Expectation-Maximization or « missing data theory » does is
an analytical »multiple hot deck imputation »

19

Single Step as a missing data
problem

* We can see genotype as a missing data problem Q
(Christensen & Lund, 2010)

« Use the prediction and the distribution of the prediction
(if not the procedure does not work)

non genotyped
—A—
_{An A12:|
Let A=
A21 Azz

H—l
genotyped

20




Inferring genotypes

« There is Gengler's gene content prediction J. Dairy Sci.
91:1652

. Linear approximation to the imputation problem
—  This method can be applied to any member of a pedigree

« Using centered gene content:

Z, = A,AZ5Z,

«  Christensen and Lund realized that
Var(Z,1Z;) = (A11—A245, 4,0V
where V contains (base population) 2p,q; in the diagonal

21

Inferring genotypes

 Instead of working with individual SNP effects,
we will define
— u=Za
— i.e., the genetic value is the sum of SNP effects

— We're not really interested in a themselves but in u
(we know from GBLUP that we can jump from one to the other)

— Moreover, we're interested in the distribution of u’s,
so that we can compute their covariances and put
them into the MME

22




u= uz 2=« genotyped »

u1
Breeding values SNP effects Re-create GBLUP...

Chistensen & Lund use Var(4) = E(Var(A|B)) + Var(E(A|B)) to
consider the prediction of the genotype and its variance

Christensen & Lund key idea:
[1= « non genotyped » ]

Var(u) = <§1) Var(a)(Z, Z,) + (g Var(Z )) Var(a)

E(z1 1Z,) 1/2Ep;q; Var(Z,1Z,)

Resulting in:

t Using Gengler’s results J

23

Covariances of all animals

Legarra et al. 2009; Aguilar et al., 2010; Christensen & Lund, 2010

u H H
Var( 1j = H={ H 12} = non genotyped

P

A11 - AlezAm + AleéiGAéiAzl Ale;G
GALA,, G
———

genotyped
non genotyped

—r

o afR A
A21 A22

24




Covariances of all animals

This is the variance of prediction
of genotypes from genotyped to
non-genotyped

u H H
Var[ 1j:H:{ 1 12}:
u, H, Hy e ~ e -
N P 1
AL —ARAL AL +ALALGALA, | ALALG
-1
This is the error in the GARAL ‘ G
prediction
The prediction « generates » a E G comes from genotypes

covariance

25

A11 o A12A55A21 + Ale;;GAE;Azl AleEQG
GALA,, G
which after matrix algebra...

* Incredibly: H? is very simple:

0 0 ...and avoiding « double }

H!=A!+ {O G-1_ A-! counting »

Inverse of the regular pedigree
relationship matrix [

Correcting for genomic
relationships...

26




* Things would be simple if we had
genomic relationships for everyone
(Legarraet al., 2009)

« Things would be simple if we could add
genotypes for all animals (Christensen et
al., 2010)

27

Overall modification

* Look at A as a « prior » relationship and to
G as an « observed » relationship

— G is observed for some individuals only,
whose « a priori » relationship matrix was A,,

 Try to construct a « posterior » relationship
matrix

28




Joint distributions

Unconditional distribution of genetic values of Genotyped individuals

p(uz) =N (O, G) and ﬁAﬂer seeing their genotypes !}

Conditional distribution of Non-Genotyped individuals

P (ul ‘uz) =N (Ale;uz VA — Ale;Au)

Because they have no
genotypes, this depends
only on pedigree

p(ul’UZ): p(uz) p(u1|u2)

Joint distribution ]

29

Joint distributions

p (ul’ uz) =P (Ul, | Uz) p (UZ) prediction of non genotyped "Genomic"
from genotyped . .
(U |u,)p(u,) relationships
- 1 2 2

oc exp[—0.5(u, — ALALU,) A (U, — AL,AU,)]exp[-0.5u,G'u,]

= ex 0 5|: u’ u’ :I_ At _AllAlZAE% ul
- . ' ’ L _AE%AzlAll G+ AizlAzlAllAlegzl u,

[ AL A2 u,
ool 05w w] 1 e a o] ]

...for those inclined to algebra

30




Joint distributions
p(u,)=N(0,G)

P (ul ‘uz) =N (Ale;uz . T AlZAE;AZI)

31

Joint distributions
p(u,)=N(0,G) =—=  Var(u,)=G

P (ul |u2) =N (Ale;;uz Ay — A12A;;A21)

32




Joint distributions
p(u,)=N(0,G) =—=  Var(u,)=G

p(u1|u2)=N( Apuy A —ALA 21)

></

Var (u ) All AlZAZ;AZZI. + A12 ZZlGAZ;AZZI.

because Var(Xt) = XVar(t)X’

33

Joint distributions
p(u,)=N(0,G) =—=  Var(u,)=G

p(u1 |u2) =N (Ale;;uwAn ~ALA, 21)
——

.

——
Cov(u,,u,)=A,A,G

because Cov(Xt,t) = XVar(t)

34




Covariances of all animals

Legarraet al. 2009; Aguilaret al., 2010; Christensen& Lund, 2010

non genotyped

—

~ S

|:A11 - A12A£§A21 + AleéiGAéiAu AlZA;G

GALA,,

G

——
genotyped

35

GALA,,

|:A11 - A12A55A21 + AleEQGAEQAzl AleEQG

* Incredibly: H? is very simple:

G

|

counting »

...and avoiding « double

)

el

H'=A"'+ {

Inverse of the regular pedigree

relationship matrix

0 G'-Aj
Correcting for genomic
relationships...

36




Understanding H matrix

It is a projection of G matrix on the rest of individuals “so that” G matrix makes sense
— e.g. parents of two animals related in G should be related in A

It is a Bayesian updating of the pedigree relationship matrix based on new information
from genotypes

The approximation of multivariate normality is good because we have many markers

Typically
— Alinthe millions but extremely sparse
— G and A,, in the thousands
— Leads to a very efficient method of genomic evaluation:
» Single Step GBLUP

37

Understanding H matrix

Still H it’s an approximation: animals DO NOT have fractional genotypes
— An optimal method would consider Mendelian inheritance, transmission and linkage
disequilibrium
— Which computationally and analytically is just too complicated

My personal opinion is that H is good as far as we cover well key individuals at each
generation

For instance, if all Al males are genotyped

But genotyping the last 2 years of animals and including the preceding 30 years of
pedigreed animals in H might not be a good idea

38




Examples on H matrix

39

« Consider 4 full-sibs with one progeny each

i
|« with pedigree, sibs are related by
) 0.5
< * their offspring are cousins with a

relationship of 0.125

* The 0.5 assumes infinite unlinked loci, with actual genomes
relationship varies: 0.5 + 0.05

40




« Pedigree; grey is genotyped

Yy

1.0 0.3

0.7 1.0 0.3 More related than More related than
0.3 0.7 average average

0.3 0.3 0.7 1.0

Less related than
average

How is this includedin A?

Classical A (pedigree)

1.00 0.00 0.50 0.50 0.50 0.50 0.25 0.25 0.25 0.25
0.00 1.00 0.50 0.50 0.50 0.50 0.25 0.25 0.25 0.25
0.50 0.50 1.00 0.50 0.50 0.50 0.50 0.25 0.25 0.25
0.50 0.50 0.50 1.00 0.50 |0.50 | 0.25 0.50 0.25 0.25
0.50 0.50 0.50 0.50 1.00 |0.50 |0.25 0.25 0.50 0.25
0.50 0.50 0.50 0.50 0.50 1.00 0.25 0.25 0.25 0.50
0.25 0.25 0.50 0.25 0.25 0.25 1.00 [0.12 0.12| 0.12
0.25 0.25 0.25 0.50 0.25 0.25 0.12 1.00 0.12 0.12
0.25 0.25 0.25 0.25 0.50 0.25 ©0.12 ©0.12 1.00 0.12
0.25 0.25 0.25 0.25 0.25 0.50 0.12 0.12 0.12_ 1.00

Full-sibsis 0.50 Uncle-nephew is 0.25

M
Cousinsis 0.125 g gg g

42
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H (pedigree + markers)

1.00 0.00 0.50 0.50 0.50 0.50 0.25 0.25 0.25 0.25
0.00 1.00 0.50 0.50 0.50 0.50 0.25 0.25 0.25 0.25
0.50 0.50 3700 017070730 0730 T 0.50 0.35 0.15 0.15
0.50 0.50 b.70 1.00 0.30 /0.30 | 0.35 0.50 0.15 0.15
0.50 0.50 b.30 0.30 1.00 /0.70 | 0.15 0.15 0.50 0.35
0.50 0.50 0,30 030 0.70 1.00 {0.15 0.15 0.35 0.50
0.25 0.25 0.50 0.35 0.15 0.15 1.00] 0.17 0.07 | 0.07
0.25 0.25 0.35 0.50 0.15 0.15 ©0.17 1.00 0.07 0.07
0.25 0.25 0.15 0.15 0.50 0.35 0.07 0.07 1.00 0.17
0.25 0.25 0.15 0.15 0.35 0.50 0.07 O. 0.17_ 1.0

|

5 07 0
Full-sibsis 0.70 — 0.30 Uncle-nephewis 0.35-0.15 I__'—I Q
Cousinsis 0.17 - 0.07 g g% %
W e have extended genomic relationships to all the pedigree
43

More complex example
« Pedigree; grey is genotyped

- @

-

|
()63 Gonod )




More complex example

. Ayy=
« Before genotyping L 00 0 . 0 55
0 1 0 0.25
— , 0 0 1 0.50
' 0.25 0.25 0.50 1.00
’
|
l
O o )
More complex example
. G=
* After genotyping 1.13 0.08 0.04 0.45
0.08 0.91 0.14 0.32
— , 0.04 0.14 1.12 0.62
0.45 0.32 0.62 1.10

SO
-

ST=

46




Classical A (pedigree)

1.00 0.00 0.00 0.50 0.50 0.50 0.5 0.25 0.25 0.25 0.25 0.38 0.38 0.38
0.00 1.00[0.00]0.50 0.50 0.50 0.5 0.25 0.25 0.25 0.25 0.38 0.38 0.38
0.00 0.00 1.00 0.00 0.00 0.00 0.0 0.50 0.50 0.50 0.50 0.25 0.25 0.25
0.50 0.50 0.00 1.000.50 0.5 0.25 0.25 0.25 0.25 0.62 0.62 0.62
0.50 0.50 0.00 0.50 1.00 0.50 0.5 0.25 0.25 0.25 0.25 0.38 0.38 0.38
0.50 0.50 0.00 0.50 0.50 1.00 0.5 0.25 0.25 0.25 0.25 0.38 0.38 0.38
0.50 0.50 0.00 0.50 0.50 0.50 1.0 0.50 0.50 0.50 0.50 0.50 0.50 0.50
0.25 0.25 0.50 0.25 0.25 0.25 0.5 1.00 0.50 0.50 0.50 0.62 0.62 0.62
0.25 0.25 0.50 0.25 0.25 0.25 0.5 0.50 1.00 0.50 0.50 0.38 0.38 0.38
0.25 0.25 0.50 0.25 0.25 0.25 0.5 0.50 0.50 1.00 0.50 0.38 0.38 0.38
0.25 0.25 0.50 0.25 0.25 0.25 0.5 0.50 0.50 0.50 1.00 0.38 0.38 0.38
0.38 0.38 0.25 0.62 0.38 0.38 0.5 0.62 0.38 0.38 0.38 1.12 0.62 0.62
0.38 0.38 0.25 0.62 0.38 0.38 0.5 0.62 0.38 0.38 0.38 0.62 1.12 0.62
0.38 0.38 0.25 0.62 0.38 0.38 0.5 0.62 0.38 0.38 0.38 0.62 0.62 1.12
|:| Full-sibsis 0.50 Uncle-nephew is 0.38
Unrelated is O

47
1.13 0.08 0.04 0.60 0.60 0.60 0.65 0.45 0.34 0.34 0.34 0.52 0.52 0.52
0.08 0.91[0.14]0.50 0.50 0.50 0.50 0.32 0.32 0.32 0.32 0.41 0.41 0.41
0.04 0.14 1.12 0.09 0.09 0.09 0.09 0.62 0.61 0.61 0.61 0.35 0.35 0.35
0.60 0.50 0.09 1.05 [0.55]0.55 0.58 0.38 0.33 0.33 0.33 0.72 0.72 0.72
0.60 0.50 0.09 0.55 1.05 0.55 0.58 0.38 0.33 0.33 0.33 0.47 0.47 0.47
0.60 0.50 0.09 0.55 0.55 1.05 0.58 0.38 0.33 0.33 0.33 0.47 0.47 0.47
0.65 0.50 0.09 0.58 0.58 0.58 1.09 0.62 0.59 0.59 0.59 0.60 0.60 0.60
0.45 0.32 0.62 0.38 0.38 0.38 0.62 1.10 0.62 0.62 0.62 0.74 0.74 0.74
0.34 0.32 0.61 0.33 0.33 0.33 0.59 0.62 1.10 0.60 0.60 0.48 0.48 0.48
0.34 0.32 0.61 0.33 0.33 0.33 0.59 0.62 0.60 1.10 0.60 0.48 0.48 0.48
0.34 0.32 0.61 0.33 0.33 0.33 0.59 0.62 0.60 0.60 1.10 0.48 0.48 0.48
0.52 0.41 0.35 0.72 0.47 0.47 0.60 0.74 0.48 0.48 0.48 1.23 0.73 0.73
0.52 0.41 0.35 0.72 0.47 0.47 0.60 0.74 0.48 0.48 0.48 0.73 1.23 0.73
0.52 0.41 0.35 0.72 0.47 0.47 0.60 0.74 0.48 0.48 0.48 0.73 0.73 1.23
|| Full-sibsis 0.55 Uncle-nephew is 0.48

“Unrelated” is 0.147 Because pedigree founders are related in G
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Some properties of H

Semi-positive definite always

Positive definite & invertible if & only if G is
invertible

If everyone is genotyped, Single Step is GBLUP
If no one is genotyped, Single Step is BLUP

In practice, if G is too different from A,,, this
gives lots of numerical problems

— (wrong pedigree or genotyping)

— very poor « compatibility »

49

H matrix

H is then a relationship matrix constructed
with markers and pedigree

But Henderson taught us how to use
relationship matrices of any kind

50




Single step GBLUP

Single Step = Your regular BLUP with small modifications

W: incidence matrix of
animals on data
X'R™X XR?W_ [[b] [XRMy
WRX  WRW+H 2 || o || wry

H* :A1+{0 0

1 «—n 1 |
0 G'TA}]

—— G

This G could be any matrix describing
« genomic » covariances of breeding
values;

it does not restrict to VanRaden’s (2008)
GBLUP

A: pedigree
relationship matrix

A,,: pedigree matrix among
genotyped individuals

51

Single step GBLUP

« So the Single Step GBLUP is like regular
BLUP changing one small submatrix !!!

* |t is almosttoo simple to be true...

52




Single Step GBLUP

Easy modification to a general purpose BLUP software
— Only changes: addition of 6™ and 45,
— Matrices G~1 and A3 can be computed with external tools

Can fit any model (probit, GxE,...)

Simple extraction of SNP effects for indirect prediction or
(multimarker) GWAS:

AP
2).rq
Avoids selection bias due to genomic preselection

(Patry & Ducrocq, 2011)

-~

Single Step GBLUP

What models have we fit so far in SSGBLUP?

— Multiple traits ( up to 18 so far)

— Multiple trait + correlated genetic maternal effects
(beef cattle)

— Random regressions (lactation curves)
— Threshold (probit) models
— Horse rankings (Thurstonian model)

Anything that was fit in BLUP can be fit in
SSGBLUP, changing AtoH
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Details in ssGBLUP

Details in SSGBLUP

Storage

Inbreeding

G is not invertible (« blending »)

G might not explain all genetic variance (« blending »)

Compatibility of G and A22
Assumption p(u,)=N(0,G)
If there is selection, mean is not 0 (« tuning » solves it: see Vitezica later)
Same genetic variance in genotyped and ungenotyped animals

Large data
Unknown parent groups

* Need to modify H to include them (Misztal et al., 2013)
* Metafounders

Crosses

Computation
* APY
* Sherman-Woodbury
* «hybrid » model




Details in SSGBLUP
* Storage

* Inbreeding
* Gis not invertible (« blending »)
* G might not explain all genetic variance (« blending »)

* Compatibility of G and A22
* Assumption p(u,)=N(0,G)
* Ifthere is selection, mean is not 0 (« tuning » solves it: see Vitezica later)
* Same genetic variance in genotyped and ungenotyped animals
* Unknown parent groups
* Need to modify H to include them (Misztal et al., 2013)
* Metafounders

* Crosses

* Computation
* APY
¢ Sherman-Woodbury
* « hybrid » model

Storage

0 0
-1 _ -1
B =47+ (g g1 ag)

A~ 1is very sparse (9 elements /animal)

G~1 — A} is very dense (number of genotyped animals?)
Efficient storage and handling using hash/ija/yams

When 61 — A3} is very big, use APY or similar methods

Manech Tete Rouse sheep: Angus beef cattle:
3000 animals (rams) genotyped 500,000 animals genotyped
500,000 animals pedigree. 11M animals pedigree.
A~1~36 Mb RAM A1~ 800 Mb RAM

H~1~108 Mb H™1 has 350 x10%elements ~ 2800 Gb !




Details in SSGBLUP

» Storage

* Inbreeding

* Gis not invertible (« blending »)
* G might not explain all genetic variance (« blending »)

* Compatibility of G and A22
* Assumption p(u,)=N(0,G)
* Ifthere is selection, mean is not 0 (« tuning » solves it: see Vitezica later)
* Same genetic variance in genotyped and ungenotyped animals
* Unknown parent groups
* Need to modify H to include them (Misztal et al., 2013)
* Metafounders

* Crosses

* Computation
* APY
¢ Sherman-Woodbury
* « hybrid » model

Inbreeding

* Inbreeding F; is useful to:
* Monitor genetic diversity

PEV;
(1+Fi)

* Obtain accuraciesas acc; = |1

* Obtaining inbreeding in A is easy F4; = A;; — 1 (e.g. Meuwissen and
Luo 1992)

.Obt-. .b d. . G- F=G_1=ZL—Z',‘—
aining inpreeding in IS easy F g ii 254,

* Obtaining inbreeding in H is very complicated !!




Computing H inbreeding

H= Ajq +AA(G—Ay)AA AppAL; G
GAZ;A,; G

* We only need for individual i :

_ 1 1, :
hii = a;; + a;,A5;(G — Ayz)A%a,; = a; + a; ;Ma,;

Or
FHi = FAi + aIZ’iMaz’i = FAi + Ci

* a,; : relationships of i with all the genotyped individuals
* All the difficulty is computing correction ¢;

Short communication: Methods to compute genomic
inbreeding for ungenotyped individuals

| n b r'e e d I n g A. Legarra,™ © I. Aguilar,2® and J. J. Colleau®
-~

For ungenotyped animals, H, = A; + ¢, and Fy, =
Fu + ¢, where Fy, is the pedigree inbreeding coeffi-

L] 3 m et h od S (a | | r‘ath e r tec h n ica | ) cient. The correction term c; is 1 to the quadratic

¢, = a,,A5;GAa,, —a,,Aza,, = a, Ma, where

a, =a,, (the ith column of matrix Ay,) is the vector

of relationships between ungenotyped individual i with
all the genotyped individuals and M = A, (G — A,, ) A,

* Not doing things well leads to unexpected results, i.e. negative
accu racies SSGBLUP reliability

Effects of ignoring inbreeding in model-based accuracy for BLUP
and SSGBLUP

Ignacio Aguilar’ | Eduardo N. Fernandez’ | Agustin Blasco® | Olga Ravagnolo' |
Andres Legarra®

Incorrect reliability |“'

,'n‘ s°
£
> '.
) ,
0.00 025 050 075 1.00

Correct reliability




Obtaining overall measures of diversity

* Optimal Contribution

* If you select bulls in list x and cows in list y, the expected future
inbreeding is y'Hx = y'(Hx)

* Optimal contribution methods optimize the lists to minimize
inbreeding while keeping genetic progress (e.g. choosing two cousins
instead of two sibs)

* For the pedigree information, obtaining Ax is very easy using the
algorithm by Colleau (2002)

* Modification of the algorithm to obtain Hx

Obtaining overall measures of diversity

* Global measures of diversity (e.g. average relationship of all young
bulls) can be obtained as x' Hx = x' (Hx)

* Obtaining Ax is very easy using the algorithm by Colleau
* Modification of the algorithm to obtain Hx

1. Compute z = Ax using [4],

2. Compute yp = GA2_2112 = G(Az_zlzz),

3. Computed; =y; — zy, A fast indirect method to compute
4. Compute d = A12A2_21d2, functions of genomic relationships
5.

L. concerning genotyped and ungenotyped
Compute y; = z; + di. This is the final step. individuals, for diversity management

Jean-Jacques Colleau’, Isabelle Palhiére?, Silvia T. Rodriguez-Ramilo? and Andres Legarra®"




Details in SSGBLUP

» Storage
* Inbreeding
* Gis not invertible (« blending »)
* G might not explain all genetic variance (« blending »)
Compatibility of G and A22
* Assumption p(u,)=N(0,G)
* |If there is selection, mean is not 0 (« tuning » solves it: see Vitezica later)
* Same genetic variance in genotyped and ungenotyped animals

* Unknown parent groups
* Need to modify H to include them (Misztal et al., 2013)
* Metafounders

* Crosses

* Computation
* APY
* Sherman-Woodbury
* « hybrid » model




Blending and compatibility

* These are two different things

Many people don’t understand this
“compatibility” or “tuning” tries to put G and A in the same scale

“blending” :
* assigns part of the genetic variance to pedigree — not markers
* at the same time used to have an invertible G.

we have seen this in the GBLUP part
| will explain now why this might be important

Details in SSGBLUP

» Storage

* Inbreeding

* Gis not invertible (« blending »)

* G might not explain all genetic variance (« blending »)

* Compatibility of G and A22

* Assumption p(u,)=N(0,G)
* If there is selection, mean is not 0 (« tuning » solves it: see Vitezica later)
* Same genetic variance in genotyped and ungenotyped animals
* Unknown parent groups
* Need to modify H to include them (Misztal et al., 2013)
* Metafounders

* Crosses

* Computation
* APY
* Sherman-Woodbury
* « hybrid » model




Compatibility of marker and pedigree
relationships

* Populations evolve with time, but genotypes came years after
pedigree started
* Underlying hypothesis false:
* Christensen & Lund (base allelic frequencies known)
* Legarra et al. (average genetic value does not change)
* Genomic Predictions may be shifted from Pedigree Predictions
* and make them not directly comparable

15

U.S. dairy population and milk yield
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Lait (litres)

Milk Yield Genetic and Herd-year trend
MANECH TETE NOIRE

genotyping
starts

220 4 - 220
2000 - 2017 /7
200 + AP /year : 4,9 litres /' - 200
180 | AG Jyear: 2,7 litres / . 180
160 1 Pedigree [ 160
140 || Starts L= - 140
This AG from “pedigree start”
120 A - 120 « ”
to “genotype starts” needs to
100 - - 100 be considered
80 - - 80
60 60
N ONODNDO ™N M -
© 0 00w oo O, o
S SRR
’ ==-lait = index lait —troupeau‘ Année de production

Compatibility of marker and pedigree
relationships

* The population for which average(u) = 0 and for which the genetic
variance is defined is called the genetic base
* Founders of the pedigree in classical A
* Whole set of genotyped animals in most typical G

* Typically, genotyped animals come after pedigree starts
* e.g. Lacaune sheep pedigree go back to 1960 but genotypes start in 1995

* Drift (and selection) causes :
* Average genetic values “drift” (in particular in small populations)
* Genetic variance reduces

18




Reduction of genetic variance

Long-term selection experiments (Weber, 1996)

Two populations of Drosophila selected for performance in a wind tunnel
with effective sizes 500-1000 and selected proportion of 4.5%.

i ol e e e R e e O
© 10 20 30 40 50 60 70 8 90 100
generation

Cut data

* For practical purposes, you only need a few years of data

* Simplest thing: cut old data and pedigree

* Then there is no problem of selection and pyase = Peurrent
* Lourenco (2014) did this with good results

* Many breeds are reluctant because they feel that they loose
information

20




Lait (litres)

Force G to be similar to A
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”

p(uz) = N(0,Gof)

Setting both to 0

does not make
sense

Pedigree
starts

p(w) = N(0,Ac])
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Force G to be similar to A

Vitezica et al. 2011 included the AG explicitely as un unknown u

e pisrandom because u = AG =u, = %l’uz

* uhasvariance Var(AG) = a = Var(uy) = % 1'4,,1 for typical G
2
Fernando et al. (2014, 2016) method of J- coefficients consider u as

genotyping
starts

fixed
T B 4 =
@ 160 R e
5 ’ —
= 140 - 140
=
©
1 120 - 120
100 - 100
80 - on
0 +H———r———————+—+—————++—+—r+++—++—+ 60
NMONONDODTANNMNTUVLONODIOTTrANNMTLOMNODIOTTNMT O
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ANANANNNNNNNNNNNNNNNN
=<=-lait == index lait ==troupeau Année de production

p(u;) = N(1p, Goy)

Setting both to 0

does not make
sense

Pedigree
starts

p(w) = N(0,Ac)
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Force G to be similar to A

* You can include explicitly:

* Or implicitly (equivalent model)

X'X X'Z 0
ZX ZZ+H A ~H'QA
0 —-QH'A QH 'Qi+ta 1

b X'y
x |lu|=|Zy|.
u 0

XX X'Z bl [XYy
zX zzZ+HT | |u| T | zy |

where

HT*I? All A12
LAY AP H(GH1Ta) AL

Force G to be similar to A

* The method has an interesting genetic interpretation

* Using G < G + 11'a forces G to yield same “average relationship’

than 4,,

* But we forgot something...

)

* There is reduction in the genetic variance

* This reduction is contained in the inbreeding coefficients
* Thus, we should have diag(G) = diag(4,,)




Force G to be similar to A

* Vitezica et al. (2011) and Christensen et al. (2012) provided an
unbiased method that forces the same genetic base across G and A :

G =a+ bG

* a accounts for old relationships among non genotyped ancestors

* b accounts for reduction in the genetic variance
a+bG= Azz

a + b diag(G) = (diag(Az))

Does actually G resemble A?

* If pedigree is good and genotyping is good, yes
* Usually

+ Cor (Agay;,Giy) ~ 08

 Cor (Fpeaigreey Fgenomic;) ~ 0.5

* Useful for quality control




Does actually G resemble A?

Differences between genomic-based and pedigree-based
relationships in a chicken population, as a function of quality
control and pedigree links among individuals

H. Wang', I. Misztal® & A. Legarra®

Table 2 Statistics for coefficient differences between genomic (G) and numerator (A) relationship matrices for genotyped chickens

Quality control level G — A coefficient measure Number of animal pairs Minimum Maximum Mean Standard deviation
Stromg2 Diagonals 4667 —0.18 0.84 0.000 0.048
Off-diagonals 10 888 111 —0.57 1.02 0.000 0.037
Parent-progeny pairs 5259 —0.16 0.17 —0.011 0.034
Full-sib pairs 9126 -0.19 0.18 —0.017 0.050
Half-sib pairs 59 870 -0.18 0.16 —0.015 0.040
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Force A to be similar to G

* Christensen (2012) suggests fitting A to G instead of the opposite
* A depends on pedigree completion
* Good for chicken, bad for the rest
* Ancestral relationships that can be seen in G go undetected in A

* Christensen analitically integrates out p; (=allele frequencies) in a
model that
* uses p = 0.5 as reference in ALL loci and builds G5
* uses a relationship matrix AY with related founders

* The parameter y is the relationship across founders such that we see
“current” genomic relationships

28




Relationship across founders

Classically we assume

1 0 0 O
(0 1 0 O
A= 0 010
0 0 0 1
* Christensen changes this into: y
1+5 v Y 14
Y
vy 1435 v 14
Ay = %
1+ =
14 14 2 Y
14
1+=
14 14 14 2

we have seen this before. The y can also be introduced using a single metafounder

Big Data




Big Data

* Angus beef cattle:
* 500,000 animals genotyped
* 11M animals pedigree.
« A~1~800 Mb RAM
« H™1 has 350 x10%elements ~ 2800 Gb !

* Imagine that we have to deal only with 500,000 animals genotyped
* G"1isa500,000x500,000 matrix
* A1 is a 500,000%500,000 matrix

« SNP-BLUP ZZ' 1 is 2 50,000%50,000

Big Data

. Agzl can be computed efficiently using sparse matrices
A521 — A22 _ A21(A11)—1A12
See details in Yutaka et al.

Technical note: Avoiding the direct inversion of the numerator
relationship matrix for genotyped animals in single-step genomic best
linear unbiased prediction solved with the preconditioned conjugate gradient!

Y. Masuda,*2 I. Misztal,* A. Legarra,t S. Tsuruta,* D. A. L. Lourenco,* B. O. Fragomeni,* and L. Aguilar}




Big Data

* |f number of animals > number of SNPs

* G has at most rank “number of SNPs »
* Indirect representations of G

* APY
* Sherman-Woodbury inversions
s G=21+27

-1
« Gl= al—(azl(11+z'z) Z’a)
a\a

Z'Zis smaller
than 27’

33

Reducing computations by ssGTBLUP

Assume: G = Gy + C
1
= ;I - TeTe

where Gy = ZZ' and G, = Gy + el >__ G;*!
where T. = lL—lzr and L1 m Woodbury matrix identity |
e =l gle = 7

Te has size nxm =>» Number of computations is 2nm instead of n2 ‘

T, ]— m= number of markers/rank

n= number of
genotyped Te

Size of T¢ matrix is the same as the original marker matrix.

ssGTBLUP gives the same solutions as ssGBLUP with Gz (e.g., Koivula et al. WCGALP 2018)

© Natural Resources Institute Finland

Stranden, WCGALP, 2018

34

712 WCGALP, New Zealand, 2018




APY

* Misztal showed that G matrix is redundant due to limited population
size

* Some chromosomal segments are copies of others
* Then G is not full rank and has a small number of eigenvalues >0

)
n
.
UNIVERSITY OF

GEORGIA

How large-scale genomic
evaluations are possible

Daniela Lourenco

05-24-2018




Algorithm for Proven and Young (APY)

- GL 0 -GLG - -
Gabe= [ O]+ [CaCor] Ml 62 1

M, = diag{g;i - 8icGue 8ci}

USA_287506
USA_287507
USA_287508

USa_287509
USA_287510

usa 287511 —— COle

Usa_287513

USA_287514

USA 287515 -
T0SA_287516 p—
USA_287518
USA_287519
USA_287520
Usa_ 287521
USA_ 287522
USA_287523
usa_287524 — NON-COre
USA_ 287525
USA_287526
USA_287527
USA_ 287528
USA_ 287529
USA_ 287530
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Algorithm for Proven and Young (APY)

G-l

APY G APY G

= APY G'lsparse
> = Efficient computation

=  Why does it work?
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APY and dimension of G

# genotyped animals > # SNP

G = aG + (1-a)A,,

VanRaden (2008)

independent blocks
G has a limited dimensionality

Dependent blocks

Dimension of G = min (#animals, # independent SNP, Me)

39

How many core animals in APY?

# largest eigenvalues of G explaining 98% ~ 99% variance

'
. 14k ~ 19k

11k ~ 16k 6

11k ~ 14k

16
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APY and why some people don’t like it

* Works well but open questions: how to choose core? Is it an
approximation? etc

* Dairy cattle breeders use “Indirect Predictions” a lot
* Estimate SNP effects every 3-4 months
* For young animals: GEBV= sum of SNP effects , every week

* Dairy cattle breeders may prefer to work with marker effects because
they use marker effects weekly: SS-SNPBLUP

41

SS-SNPBLUP=SSGBLUP with marker effects

Legarra & Ducrocq 2012 described a SSGBLUP model on marker effects a and BV u.

X'X X/W, X, W,Z 0
WX, WW, +aA" o, A”Z 0
WX, o ZA®  ZWW,Z+a,ZA”Z+D 0" o2

0 0 a,Z a,A,y,

Non b X'y
genotyped | | Wy,
Erafiael gl |ZWy,| Matrices ZW in this model get very complicated
- 0 for complex models because they involve
formidable products

effects
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SS-SNPBLUP=SSGBLUP with marker effects

* The model was rediscovered by Fernando et al. 2016 with the name “super
hybrid model”

Non

genotyped
animals
X'X X, Z, X, W,
2 2
Z Xm Z,Z,+ Amm% AV”gRZ—%
WX RAST  WIW, +1% + Q%
varg o2 yWy + o2 +Q o2
for same variance components, Marker
SSGBLUP=SS-SNP-BLUP effects

Matrices W in this model get very complicated for
complex models because they involve formidable

products .

Big Data

* Large number of animals is a problem only for 1% of the users

* |t is possible to fit enormous data sets with millions of genotyped
animals

* The exact strategy may depend on the problem. Generality, elegance
or efficiency?

* Maybe in 10 years all animals are genotyped, old data is forgotten ©
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Details in SSGBLUP

» Storage
* Inbreeding
* Gis not invertible (« blending »)

G might not explain all genetic variance (« blending »)

Compatibility of G and A22
* Assumption p(u;)=N(0,G)
« If there is selection, mean is not 0 (« tuning » solves it: see Vitezica later)
* Same genetic variance in genotyped and ungenotyped animals

* Unknown parent groups
* Need to modify H to include them (Misztal et al., 2013)
* Metafounders

* Crosses

* Computation
* APY
* Sherman-Woodbury
* « hybrid » model
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Metafounders & Unknown Parent Groups
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Cows (millions)
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In the 70’s there was a massive export of US Holstein
to “European Friesian”

Unknown Parent Groups

* US Holstein had no data in European countries
* But treating them as equal to European cows was unfair

* European Genetic evaluations included effect of “origin”

)

* This effect mutated to Unknown Parent Groups




Unknown Parent Groups

* (Thompson 1979, Quaas 1988):

* Regression on % of origin computed from pedigree
* E.g. one cow is 15% US, 80% European, 5% New Zealand
* Final EBV = portions of UPG + random part
cu=Qg+u
* @ contains fractions
* gis fixed
* g has no quantitative genetics interpretation or "a priori” distribution
* Use of unknown parent groups is essential to get unbiased estimates
across origins (UY vs US) and years (2000 vs. 2008)

49

Unknown Parent Groups

Unknown Parent Groups are used extensively to model:

* Missing parentship, as in sheep (father is often unknown). Genetic
Groups are often defined by year of birth to model genetic progress.

* Importations, or introduction of foreign material (as in pig
companies). Genetic Groups are often defined by country of origin.

* Crosses (e.g. Angus x Gelbvieh). Genetic Groups are often defined by
breed.

50




Unknown Parent Groups in Single Step GBLUP

* Things get complicated
p(w) = N(Qg, Ady)

p(uz) = N(0,Goy)

* Contradictions
* Reports of problems in SSGBLUP with complex UPG structure

Unknown-parent groups in single-step genomic evaluation
S4BV, J. Dairy Sci. 105
https://doi.org/10.3168/jds.2021-20293
© 2022, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science /
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

I. Misztal', Z.G. Vitezica?, A. Legarra®, |. Aguilar® & A.A. Swan®

Invited review: Unknown-parent groups and metafounders
in single-step genomic BLUP

Yutaka Masuda,'*t © Paul M. VanRaden,? © Shogo Tsuruta,’ © Daniela A. L. Lourenco,’
and Ignacy Misztal' 51

Unknown Parent Groups in Single Step GBLUP

S SCIEN,

J. Dairy Sci. 105
https://doi.org/10.3168/jds.2021-20293
© 2022, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®.

* Still open problem

v

. Curl’e nt Options This is an open access article under the CC BY-NC-ND license (http: d/4.0/).
* Simplify your model !!! Invited review: Unknown-parent groups and metafounders
plity y!
» Truncate pedigree and data in single-step genomic BLUP
+ Approximate UPGs H =A"+ 0 0 1 Yutaka Masuda,*t © Paul M. VanRaden,?® Shogo Tsuruta,’ ® Daniela A. L. Lourenco,’
0 G'-A43 and Ignacy Misztal'® o

* A" includes UPG using existing theory
e A, is constructed “as if” UPG don’t exist, which is an approximation
¢ Default in blupf90

* Fitting UPG as covariates

0 0
. = i -1=4"1
y=Xb+Qg+Wu+e withH 1 =4 +(0 G*l—A;;)
* Final EBVs Qg + U
* Fitting “exact UPGs”

* Equivalent to Fitting UPG as covariates
* Still not quite perfect

* Fitting « UPGsin Anotin G »
* See

* The fancyest solution is « metafounders »
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* The G matrix
* Is exact, independently of pedigree depth

* Breeds/UPGs were considered unrelated, but they ARE related if we
look at markers

* We may need to adjust the UPG theory to match A to G instead of
viceversa

Missing pedigree

* We needed A to be complete
* To my knowledge, the only complete livestock pedigrees are in rabbit

* Incompleteness depend on species

* Sometimes you know the pedigree but not the associated record, so
pedigree is useless




Missing pedigree

* Dairy cattle

Complete for bulls and elite cows,
incomplete for “cheap cows”

Missing pedigree

* Dairy sheep

30-80% complete

Females have (often) dam known and
(sometimes) sire known

Males have both parent known




Missing pedigree If we could go back to 1700 ...

* Two breeds
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Covariates to fit A to G and to fit UPGs

* Hsu et al. (2017) proposed to fit a J-covariate to fit the difference
between pedigree and genetic bases

* |t is the same as the Vitezica et al (2010) method but fixed instead of
random

* In theory the method can be extended to several populations
(breeds)

* Covariates to account for different genetc bases at G-A across breeds
* Covariates for UPGs
* |t gets quite complicated
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Strandén et al. Genetics Selection Evolution (2022) 54:38
Single-step genomic BLUP with genetic
groups and automatic adjustment for allele
coding

Ismo Strandén'"®, Gert P. Aamand? and Esa A. Mantysaari'

Eq for difference of

X'R™IX 0 0 X'R™Iw b X'Rly bases in G and A
0 Q/G'Qu;?2 -Q/G'Qu;? —Q/F ;2 ¢l 0
0 —Qz’G_cho;z Q’H‘lQo;Z +s! —Q’H_IG;Z g | 0

WRIX  —FQc,? —H1Qo;2  WRIW +H 1672 | |2 W'R™y

* | find this to be
* Complicated
* How do you define groups
* How do you ensure that all these groups are estimable
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Metafounders

* Define clusters of missing parents and call them “metafounders”
* Metafounders have relationships y;;: I’

* The relationships I;; are the average relationships across missing
parents of clusteriandj

* “relative to a population of maximum heterozygosity” (= identical to
the “making A resemble Gy5” of Christensen 2012)
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To condensate:

* Things are easier if we define pseudo-individuals (metafounders) that
represent “pools” of founder individuals

* These pools have self-relationships and across-relationships
contained in a matrix I.
Holstein) _ (0.55 0.48)
Jersey 048 0.77
* Holstein is more variable than, and related to, Jersey

* ForinstanceI' (

* Build A from T following tabular rules
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METHODS
Metafounder relationships

RELATIONSHIPS

Across founders within the population Across founders across the populations
A SINGLE TWO OR MORE
METAFOUNDER METAFOUNDERS
Metafounder Ancestral populations LA Y2 Metafounders
Py Pedigree Pop 1@ @2
100 et oo o9 ‘ e o ‘ . Pseudo pedigree
211 .
311 Base mpu\a;on_: Al Basgmpulanona 3.4s 546. 7. | Base population
411 YN\ !
511 § % Y
611 I\ A A \j Pedigree starts g Pedigree starts
723 T
834
956 '
1078 Pedigree
1146 100
1274 200
131011 i Tz 311
r= V22 411
512
622
722
834

It has self-relationship A;;=y so F = y-1.

If y = 0 then we have regular relationships. leorith h b h "
All A and A methods work. Algorithms change but they are still easy. o




Missing pedigree

* We define a relationship y;;
across the two metafounders




Missing pedigree

* One breed

V11
V21
V31
Va1

V12
V22
V32
Va2

V13
V23
V33
Va3

V14
V24
V34
Vaa
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METHODS
Metafounder relationships

RELATIONSHIPS

Across founders within the population Across founders across the populations
A SINGLE TWO OR MORE
METAFOUNDER METAFOUNDERS
Metafounder Ancestral populations " "2 Metafounders
Py Pedigree pop 1@ ) 2
{5 100 e o oo (o9 ‘ oo o 3 ) Pseudo pedigree
211 Soulat
311 Base povu\_a;on_: i Ba;gpopulanona I Base population
411 N A
511 4 /( 1 \ \# Pedigree starts 8
611 /\ - \‘ Pedigree starts
723 S
834
956 '
1078 Pedigree
1146 100
1274 200
131011 i Tz 311
r= V22 411
512
622
722
834

It has self-relationship A;;=y so F = y-1.
If y = 0 then we have regular relationships.

All A and Al methods work. Algorithms change but they are still easy. .




Inbreeding with metafounders

* Assume
* ¥BB2012-BB2012 = 0.2
* ¥BB2014-BB2014 = 0.1
* ¥YBB2012-BB2014 = 0.04

* Then
* “Lucy” BB animal born in 2012 with unknown parents has F=0.1
* “Sean” BB animal born in 2014 with unknown parents has F=0.05
* Relationship of Sean and Lucy is 0.04

* “Paul” offspring of Sean and Lucy has inbreeding 0.02
* This shows that we compensate for missing pedigrees

Metafounders

* Metafounders have relationships y;;: I'

*y;; = 8Cov(p',p’) = 80p,,,, With p at each base opulation

* Related to Fst differentiation indices and to genetic and evolutionary
distances

The kinship matrix: Due to drift and coancestries,
frequencies ;s are correlated, so that

Cov(pi, pj) = fypo(1 = po) (1)
Var(pi) = fupo(1 = po)s (2)

FIGURE
ition: con

Detecting Selection in Population Trees: The Lewontin
and Krakauer Test Extended

Maxime Bonhomme,* Claude Chevalet,* Bertrand Servin,* Simon Boitard,* Jihad Abdallah,*'
Py [ P3 Py P2 P3 Sarah Blott' and Magali SanCristobal' g
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&

. Cockieil;ham(1969) and Robertson (1975) interpret 40pb‘pb, as the

coancestry across two populations and Fariello et al. (2013) use
Oppy to describe the divergence of populations.

* There are several measures of genetic distance between populations
(e.g. (Laval et al. 2002)), and most of them contain a term related,
implicitly or explicitly, to Opppy

* |t is also related to Fst and Nei’s distance (see extra doc)
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Compatibility of G and A using metafounders

v Extension of Christensen (2012)

v Write as many metafounders as base populations

v These metafounders are related by a matrix of additive
relationships T’

v Estimate I' using markers and pedigree (and maybe data)

(M-2P)(M-2P)’

v Define G as crossproduct G = with P containing 0.5

2
v Then combine everything into one H matrix for all animals

0 0
0 G 1-AL'
« AT first invert I', then use Henderson’s rules
* This is the "best” compatibility of G and A

H' 7 =AT +
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Technical note: Genomic evaluation
for crossbred performance in a single-step approach with metafounders!

T. Xiang,*+2 O. F. Christensen,* and A. Legarrat

Re-analyses of exact same data as previous paper:

Application of single-step genomic evaluation for crossbred performance in pig!

T. Xiang,*}L2 B. Nielsen,i G. Su,* A. Legarra,t and O. F. Christensen*
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Landrace Yorkshire

Some are genotyped
(7700 L, 7700 Y, 5500
F1)

TNB was recorded in
293,339 LL,

180,112 YY, and
10,974 crossbred.

332,929 LL, 210,554
YY, and 10,974
crossbreds were in

the pedigree
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Landrace x Yorkshire = F1 (Tao Xiang)

* Single Step
* Genotypes and phenotypes in purebreds and crosses

* Old method: two SSGBLUPs separate for each origin (Xiang 2016 J
Anim Sci)

* New method: metafounders
* Two populations Landrace and Yorkshire

Vi ?L,y] _ [0.756 0.259

F=1p., # 1% lo2s9 0730

estimated by GLS

Landrace x Yorkshire = F1 (Tao Xiang)

* One H matrix for all animals (Landrace, Yorkshire, or F1)
H' ™ = [O 0 ] +AT
“lo G 1-AL ’

* Three trait model (L,Y, F1) depending on which population the trait
was recorded

* The three trait model accommodates interactions GxG and GxE.




Landrace x Yorkshire = F1 (Tao Xiang)

* The results were as good as the more complex method in the

previous paper
* But much easier
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Missing pedigree

* One breed

V11
V21
V31
Va1

V12
V22
V32
Va2

V13
V23
V33
Va3

V1a
V24
V34
Vaa
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Removing data and using metafounders alleviates biases
for all traits in Lacaune dairy sheep predictions

F. L. Macedo,"**® J. M. Astruc,* T. H. E. Meuwissen,’® and A. Legarra™

Use of UPG results in similar estimates than using MF
...but more biased evaluations (b_p <<1)

100- — 2
Pod
7
pr
» -
=1 / g IR
g ¢ o m i ESRTES Model
5 .
@ f 2 i - BLUP-UPGA
I g x
s ‘f. - -4 SSGBLUP-MT-peeling
8 0 4 = SSGBLUP-MT-trend
O
S a” SSGBLUP-UPGH
= Vs /
7= - P
Seal A //
TS L / y . . . .
_50- - / Table 5. Slope (bw) of the regression of EBV,, (whole data set) on EBV, (
-
/
A 2
{}/ Evaluation Model® MY
e Official BLUP-UPGA 0.71
S100- B Official SSGBLUP-MF-trend 0.86
Official SSGBLUP-MF-pecling 0.75
Official SSGBLUP-UPGH 0.59
Figure 4. Estimates of unknown parent groups (UPG) and metafounders effect for milk yield
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UPG or metafounders?

UPG are “fixed effects”
Metafounders are “random and related”

effects

There are equations to use UPG as fixed effects in SSGBLUP

* but they’re more complex to implement than metafounders
* The compatibility of G and A using “J-coefficients” needs to be obtained separately

Metafounders
* does compatibility & estimation in one shot
* computationally very simple
* estimation of I is tricky
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State of the art for Metafounders

* Right now there are a few papers using MF, in particular (to my knowledge)
in pure & crossbred dairy cattle and sheep

* A complex issue is how to estimate (or assume) y;; = 8Cov(pi,pj) =
8pr,pbr with p at each base opulation

* It is similar, but not equal, to estimate a variance component

* in particular if MF are distant from genotypes

* We have now:
* A Maximum Likelihood estimate for a single y
* A method using increase of inbreeding for multivariate I within breed (this is based
in Macedo et al. 2021)

* See extra docs for details

State of the art for Metafounders

* Single y

* Maximum Likelihood

* get Gos = MM/ (k/2) with M={-1,0,1} and k number of markers
* get Az,

* compute a = 1'A331, b = Tr(A33G) and c = Tr(Az311'A31G)

* the ML estimate of y is the solution of a cubic equation




marter

Test with Lacaune Al rams (which have very complete pedigrees)

the value of ¥ = 0.46 makes pedigree and genomic relationships
”m ost com pat| b | e" log-likelihood as a function of y

—2300

—24000

25000/

Likelihood

26000

lo‘,

—27000F

2800 L L L I
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State of the art for Metafounders

* Multiple y, simple population

We conceived a method based on average increase of relationship in the population
— Average relationships in t generations a population increase by 24F

Ay Ay Ay .. 0o 0 0 . 00 0 ..\
- 7, 7, A, .| _(o0 2aF 20 . _ ce o [1 0 0 .
) P 0 24F aaF .. |THTTAE T={y 1 o
o A1 Az .

is also described by A (VanRaden 1992).

— Metafounders describe average relationships so we have:
Iy Iy Iy
(L Ty+24F TL+24F .\_ .. ,

= =11'Ty + 2kTT'AF(1 — I /2

<1‘0 Iy + 24F; TIy+44F .. ot A =1/2)
— we got good results in Lacaune (good alignment of pedigree and genomic relationships”
the remaining case is “breeds + crosses + missing pedigree”

o/

Kudinov et al., 10.3389/fgene.2022.1012205 ; Legarra et al. Gen Sel Evol (2024) 56:35
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Method LR in theory and practice

Legarra, A., Reverter, A., Macedo, F

andres.legarra@inra.fr

Financed by an INRA-CSIRO joint action, program Genopyr and
AAABG,trips to UGA, and ARDI grant and Smarter

AL: INRAE
AR: CSIRO (Australia)

FM: Universidad de la Republica (Uruguay), INRAE,
Interbull (Sweden)

Risks of forecasting in Animal Breeding

* Spelman et al:

* New Zealand Animal Evaluation Limited (NZAEL), [...] first included genomic
information in the national evaluation in 2009 [...]

* The first two crops of DNA-proven sires, used in 2008 and 2009 [...] the initial GEBVs
of these sires were found to be over-estimated [...] as a gesture of appreciation to
the early adopters of genomic evaluation, LIC credited the $5 premium that the
farmers paid

* (Similar report by Sargolzaei, Chesnais...)

* We need tools to rank, understand and quantify the behavior of prediction
models in an “animal breeding” context

* The need for these tools has dramatically increased with genomic
selection, that takes riskier decisions




Why do we need cross-validation?

* Classic statistical methods to compare models (AIC...) only inform
about global fit and parsimony of ALL data

* (In Animal Breeding) we want our models to predict THE FUTURE
offspring of selected animals

* We're not interested in better finding out the effect that “lambing at
18 months” had in 1998 — we want to know the best sheep NOW

Cross-validation in a nutshell

* Split data into “training” and “validation”,
* using a model and data in “training” predict “data” in “validation”

* Measure quality of prediction




Which kind of cross-validation should we use?

For selection:

* Is my genetic evaluation leading me to maximization of genetic
progress?

* We want the method that best predicts future performance

* Forward cross-validation (or retrospective analysis)
* (Interbull tests)
* Cutdataatdatet
* Could we have predicted at time t the data that was actually observed after t?

Which kind of cross-validation should we use?

* Random k-fold, leave-one-out, k-means cluster for crossvalidation:
* Predict contemporaries (and not offspring)
* It might be useful to predict performance of existing individuals in, say, other
environments (plants)
* Results from these crossvalidations should not be taken as “reliabilities” in a
selection theory sense
* Random k-fold: you may predict e.g. parents from offspring

* Leave-one-out: overfit
* (it has been proven in Stat literature)
* there’s always a close sib with information
* and are we interested in predicting well one individual?




Example: Forward cross-validation

Cutoff date: 2008

,,,,ﬁ. Prediction with
‘ . information up to 2008

e
Truth observed in 2012 | S

Metrics

. Thepr(yéé)\i)quantitative genetics suggest using Metrics from linear regression of u (TBV)
ontl :

L]

Bias: by = E(u — 1) (itis NOT the intercept of the regression of u on i)

* Slope: b, = %}lﬁ? (slope of the regression of u on i)
cov(u,i)

Accuracy: r = —Var(u)Var(ﬁ)
2 2

In fact: MSE = bZ + o2 (1 4 _ZL)

by by

* Why are these relevant? Genetic progress !!




True and estimated genetic progress

* When we select animals, we believe our AG = %Z(GEBV) =1

* This only holds if bias by = 0, regression b; =1

* by < 0or by < 1 (overdispersion) lead to overestimation of selected

young animals

* So, in addition to accuracy r we should check both b, and b,

10

Geneticgain: b,

If bias

Ideal situation If the EBVs are biased, all
animals are now

Consider a Genetic Evaluation Young animals EBVs underestimated (for example)

should lie around the
true genetic mean of
their generation

_——d - _ __ . RO == = = = Selection rule

True Geneticgain ~ Younganimals
® e Bad accuracy

©®01d animal
Old animals Youdon't select as
Good accuracy many young
animals as you
Year of Sl
birth

EBV

INRAZ

Titre de la présentation
Date / information / nom de I'auteur




. . . . If we have too much If problemsin
Dispersion: b, Ideal situation

dispersion... dispersion
Consider a Genetic Evaluation Young animals EBVs o
: The genetic gain
should have the right .
. . after selection of
dispersion . .
Correct mean after young animals is
selection overestimated

Selection rule
Dispersion

.. True Genetic gain Young animals

Bad accuracy

EBV

@
@ O|danimals
Good accuracy

Good dispersion if

Year of birth reg(TBV~EBV)

INRAZ

Titre de la présentation

Date / information / nom de l'auteur

p.12

How should we cross-evaluate?

* We cansee il (EBVs), we can’t see u (TBVs)

* “Predictivity”: compare predictions with observations (precorrected
phenotypes y* or deregressed proofs) :

* eg. 7 = cor(y*,y)/h (Legarra et al. 2008)

* But this ignores the covariance structure in precorrected y*and leads to
paradoxes:

* r > 1 (observed in chicken)

* Tpedigree > Tgenomic (Observed in dairy cattle for fertility)
* It also ignores that candidates to selection have reduced genetic variance
* [for this: see page 9 in Legarra-Reverter 2018]
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Underestimation of accuracy using predictability
due to reduction of genetic variance

* o . acc
* 7(¥new Up) has expectation —
* only when animals are NOT selected
* often is not the case: for instance, prospective Al rams (jeunes
agneaux), their genetic variance Ui* is less than the “normal”
variance ¢;2

genetic

. P . .
* Using acc = % underestimates populational accuracy

Fictional example in dairy cattle

* Using the “dairy” example in [Bijma 2011] ...
* assume observed Py.p = 0.3,

* this yields (biased) acc = pyT,p = 0.55 and

* (correct) dcc = ’;ly—'p = 0.67.

00

* This value can, in turn, be translated as an “unselected accuracy” of 0.82




Overestimation of accuracy using predictability
due to ignoring error in estimate of fixed effects

* We use Y. as it was “exact”
* For a balanced design with n; records per contemporary group
E(py;Lew'P) 1
— . R acc (1 + n_l)
* a (relative) overestimation of the accuracy of acc, (ni)
l
* Dairy sheep: 25 animals / contemporary group, overestimation of
accuracy by 4%

* Beef cattle: 5 animals / contemporary group, overestimation of
accuracy by 20%

How should we cross-evaluate?

* Dairy cattle breeders use DYDs (average performance of daughters
after correction)
* In other species, DYDs are very little reliable (pigs!! but also sheep and goat)

* Analysis of DYDs assumes that they are “uncorrelated” across bulls, but this is
false when the number of daughters is small or the trait is low heritable

* Use of genomic selection makes DYDs more and more biased

* “Deregressed Proofs” (Garrick et al.) suffer the same problems as
“predictivity” unless large progenies

* (also: The method of Garrick is not quite correct, see Ricard-Legarra-Danvy
JAS 2013)




Legarra & Reverter (2018) proposed a new method based on
comparisons of EBV from partial (old) data vs whole (old+new) data.

* Does not require “true” breeding values
* Does not require pre-corrected phenotypes
* Could be used for any kind of traits

INRAZ

Titre de la présentation
Date / informati om de "auteur

Check of bias using successive evaluations

» Legarra, A., & Reverter, A. (2018). Semi-parametric estimates of population accuracy and bias of
predictions of breeding values and future phenotypes using the LR method. Genetics Selection
Evolution, 50(1), 1-18.

» Legarra, A., & Reverter, A. (2019). Correction to: Semi-parametric estimates of population accuracy
and bias of predictions of breeding values and future phenotypes using the LR method. Genetics
Selection Evolution, 51(1), 1-2.

* We proved (analytically) that in successive genetic evaluations there
are useful statistical properties of the distributions of “early” and
“late” EBVs

* We use these properties to get estimators of biases and accuracies




The proposed method LR

20

2005

2010

2015

Pedigree(
+markers)

RECORDS

How does LR method works?

EBVs (1) of
“Focal group”
e.g. Young males

| without l
BLUP daughters
with
Partial | BLUPwith Whole + W
(old) data (old+new) data L Vs

2L

EBVs (@, ) of
“Focal group”
e.g. Same males
with daughters




Practicalities: defining focal groups

* The properties of the method hold for a group of animals that are
contemporaries and have
* similar information at ”“partial” (e.g. only Parent Average)

* and similar information at “whole” predictions (e.g. Parent Average +
phenotype, or Parent Average + offspring, or...)

» we call this focal group

* we're interested in the group, not in each individual animal
* young born rams (bulls) can be a focal group.

* 1st-lambing females can be a focal group, and

* rams with first crop of daughters could be a focal group

III

Estimators of LR method: Bias and
Slope

Old evaluations New
evaluations

Bias Ep = ﬁp - i_iw
Expected value of 0 in absence of bias

Slope B, = 2T w)

var (ip)
Expected value of 1 in unbiased genetic evaluations




24

2018 2019
Top 50 Ranked by Net Merit $ Top 50 Net Merit $
NAAB Name NMS$  Rel. NAAB Code  Short Name NM$ OR Rel
29H017553 JOSUPER 999 G 96 29HO17553  JOSUPER *99-| 973 G o7
1H011881 PRINCETON 849 G 93 1HO11881  PRINCETON *99-| 83 G 95
250H013267 DUKE 831 G 82 250H013267 DUKE 904 G 92
151H0681  RUBICON 953 G 95 151HO881  RUBICON %3 G 97
200H07846 SUPERMAN 764 G 93 200HO7846  SUPERMAN 807 G 95

999 + 849 + 831 + 953 + 764 973 + 833 + 904 + 963 + 807
Hwp = . - = =-16.8

EBV2018=c(999,849,831,953,764)
EBV2019=c(973,833,904,963,807)
delta_wp=mean(EBV2018)-mean(EBV2019)# -16.8 Ewp
aa=Im(EBV2019~EBV2018)

b_wp=aaScoefficients[2]# 0.71| b

1100
L

1000
L

p

EBVs 2019
a0i

800
L

700
L

700 800 200 1000 1100

EBVs 2018

p.24

Estimators of LR method: Accuracies

Relative estimators

Ratio of accuracies
~  _  Cov(upuy)

. accy .. “ . —
Pw,p = ——————with expected value—F (values close to 1 indicate that “partial evaluation
var(a,)Var(,,) accw

was “as accurate” as later evaluation, but both evaluationscould be “little accurate”)

Relative increase in accuracy
accy—accy (if accy—accy

1 .
o 1 with expected value

— i i 0 3
. o ace, 0.5 then genetic progress increases by SOA)

Ratio of reliabilities

A2 _ Cov(ﬁg,ﬁw)

. acc} . e
pw Var(a,) with expected value—’laccal (ratio of reliabilities)




Estimators of LR method: Accuracies

Direct estimators
Selected reliability
a’c\czp _ Cov(ﬁf, u,)
o5
The denominatorolf* is the variance of animalsin the focal group (and not the variance of the base
generation).

When animals are pre-selected: for instance, prospective Al rams, their genetic variance crlfx is less than

the “normal” genetic variance 0,2

- InMTR, 62 = 500 but 6,2, = 350 for young rams (milk yield)

- Thisequation a’c\czp gives the “selected” reliability of Bijma (J. Anim. Breed. Genet. (2012) 1-14)
and Dekkers (Anim Sci 1992)

- This reliability says the “ability” to rank within those animals (more difficult when they’re selected)

- aj* can be estimated using e.g. Gibbs sampling (proven bulls is aj* ~ var (EBV))

But we can’t use this accuracy for the whole population,and we can’t compare it with results in less
selected animals, say, beef cattle

Estimators of LR method: Accuracies

Direct estimators

- Solution: correct using ratios of unselected and observed genetic variances of these animals :

Unselected reliability

— a2
rel, =1— 6—”2(1 — acc?)
u

- This matches what you should get from the inverse of the MME (Model-based reliabilities)

- The mathematical explanation of all this is quite boring but is detailed in the Appendix of Macedo et
al. 2020 J Dairy Sci

- The computation of 05* etc etc can be found in Macedo et al. 2020 GSE (Gibbs sampler, no problem
for < 10 M animals).




Examples of estimation of accuracies (MTR)

Selected Unselected Ratio of
reliability reliability reliabilities
Model 5&‘27 rel, Pow
BLUP-MF 022 053 032
BLUP-UPG 0.24 0.54 031
SSGBLUP-MF 32 0.59 045
All of them agree in saying SSGBLUP >> BLUP
* The "unselected reliability” is in the scale of Reliability
GFE » The “ratio of reliabilities” is harder to interpret
RESEARCH ARTICLE Open

Bias and accuracy of dairy sheep evaluations
using BLUP and SSGBLUP with metafounders
and unknown parent groups

Practicalities: defining focal groups

* In dairy sheep we take the data file and we work looking forward
* Take all rams born in 2014 that were used in Al in the breed MTR

* Few years later (say 2017) we find out which of these rams have
daughters with milk yield

* This defines a focal group for “partial”’=2014 and “whole”=2017
* We can do the same for 2014 vs. 2018, 2019, et

|0w’ ggplat? lubriclate
purr

] e

* lots of work of data exploring but we have [




|II

Practicalities: defining “whole” and “partia

* You can do many “partials” and many “wholes”

* for instance you can do “partial” at 2010, 2011,...

* and compare each of them vs. “whole” at 2014, 2015...
* it is important to do several comparisons !!

* this requires automatic handling of files and data editing, fortunately
we have —

OREILLY

for instance: work in MTR

Evaluations with data until 2005, until 2006 and so on until 2017.

We compare
* EBVsatbirth (EBV;) of a set of Artificial Insemination males (2005 - 2014)

* EBVsofthesame malesin later evaluations (after having progeny) (EBV,,) (until 2017).
For example for males born in 2005, 11 pairs of evaluations were analysed,
* 2005vs 2007;2005vs 2008; ...and 2005vs 2017

The same for males born in 2006, 2007 ... 2015
e 2006vs 2008;...and 2015vs 2017

Total of 65 comparisons that we “average” using a linear model to account for unbalance
(detailsinthe paper)
INRAZ

Titre de la présentation p. 31
Date / information / nom de I'auteur
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Practicalities: defining “whole” and “partia

* Delete records (y) after cut-off date

* ideally, keep pedigree and markers only up to the cut-off date

* for instance if “partial”’= March 2014 we should keep records, pedigree and
markers up to March 2014 (because pedigree and markers were used to

predict the young rams)

* in practice:
* we delete “records” (milk yield, etc etc) based on the year
* for practicality, we keep ALL pedigree and ALL markers
* we don’t think this should give problems because pedigree does not
contribute information to ssGBLUP, and genotypes very very little

Practicalities: referring to same genetic base

* In genetic evaluations with Unknown Parent Groups, the EBVs are not
estimable functions

* So you need to refer all EBVs to a common genetic base in order to
infer “bias” or not.

* Typically the genetic base is something like “average EBV of all
females born in 2010” or something like that.




Practicalities: genomic vs pedigree

* Wait, how do know if | want to spend money in genotypes?

* In other words, how do | compare a “genomic” and a “non
genomic” evaluation?

* Easy:
* keep the same records (y) and pedigree (A) for two analyses:
* “non genomic” = "partial”
* “genomic” = “whole” (markers = more “data”)

* Alternatively: run “whole” and “partial” with “genomic” and
“pedigree” (4 evaluations in total)

What do we do with several models?

* If the model is correct it should be “internally” coherent (no biases,
bo =Oandb1 =1)
* Don’t use models that are obviously “internally” biased

* Can | compare two models?
* “partial” with one model and “whole” with another model

* We did for “partial” = “old data without markers (BLUP)” vs. “whole”
= “new data with markers (ssGBLUP)”
* Because ssGBLUP requires changing the model! ( a bit)

* We expect to see no biases




Some results

* Dairy sheep improvement is a French specialty !
* This is not meat or wool sheep

* Very well structured “mini — dairy cattle style”
breeding program

* Al, performance recording, etc etc
<2015: progeny-testing
>2015: genomic selection

Fernando Macedo PhD
36
The breeds
/ Manech Téte Rousse \ f
Female populationsize: 274,000
Females in the breeding flocks: 80,260 (29%)
Tested rams per year: 150
Rams at Al Center: 600 heaune
Individualsin the pedigree 540,999
Number of records Milk Yiedl: 1,842,295 Female population size: 290.000
Missing pedigree: ~25% Females in the breeding flocks: 174,472 (19%)
. — Tested rams per year: 440
Traits selected: MilkYield and contents R &t A Camiar: 1400
Individualsin the pedigree 1,868,975
Number of records Milk Yield: 5,696,348
Missing pedigree: ~9%
Qs: Milk Yield and contents, SCS, Udder try

p.37

I [ | _But, with real data? | |




Genotyping in French dairy sheep

* Every year, new lambs enter the Al center

* They have undergone two steps of selection:

* 1t selection: based on “parent average” (%2 mom + % dad) => retain so many
(n) “best” lambs (say 1000) among all male lambs in the breed (say 50,000)

* Genotype the n “best” lambs with 15K chip; impute

* do genomic predictions for the n newly genotyped “best” lambs

« 2" selection: based on genomic prediction, retain the n/5 “best best” lambs
(say 200)

* These “best best” n/5 lambs enter the Al center

38

Main results Manech Téte Rousse

Some models (UPGH...) are really biased
Model | 4,

Very small bias in Manech Téte Rousse! BLUP-MF 0.25 0.98
slope b,~1 BLUP-UPGA 0.48 0.96
small, positive bias Ap (0.2 genetics.d.) SSGBLUP-MF 0.23 0.97
lambs are over-predicted SSGBLUP-UPGA 0.32 0.94

SSGBLUP-UPGH 0.48 0.88

Across models

~ EBV, SSGBLUP-UPGA  SSGBLUP-UPGH  SSGBLUP-MF
5|0pe bp . BLUP-MF 132 1.29 0.98
MF performs better BLUP-UPGA 1.25 1.23 0.92

— | But, with real data? |

p. 39




Main results Manech Téte Rousse

BLUP-MF SSGBLUP-UPGH
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Important variation between truncation points!
p. 40
[ |_But, with real data? | [
Examples of estimation of accuracies (MTR)
Selected Unselected Ratio of
reliability reliability reliabilities
Model 5&‘27 Fe\lp ﬁ:w
BLUP-MF 022 053 032
BLUP-UPG 0.24 0.54 0.31
SSGBLUP-MF 032 0.59 045
All of them agree in saying SSGBLUP >> BLUP
D The "unselected reliability” is in the scale of Reliability that we
e B.ﬂgl are familiarwith
The “ratio of reliabilities” is harder to interpret

Bias and accuracy of dairy sheep evaluations
using BLUP and SSGBLUP with metafounders
and unknown parent groups




REMOVING DATA AND USING METAFOUNDERS ALLEVIATES
BIASES FOR ALL TRAITS IN LACAUNE DAIRY SHEEP
PREDICTIONS

Journal: | Journal of Dairy Science

Manuscript ID | JDS.2021-20860.R1

Article Type: | Research

Date Submitted by the
uthor:

3
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Complete List of Authors: | Macedo, Fernando; Institut National de la Recherche Agronomique;
Universidad de la Republica, Facultad de Veterinaria; Swedish University
of Agricultural Sciences, Animal Breeding and Genetics

Astruc, Jean-Michel; Institut de I'Elevage (IDELE) SCENARIOS
Meuwissen, Theo; Agricultural University Norway, Inst. Animal Science
Legarra, Andrés; INRAE, GenPhySE

Lacaune

Several scenarios:

OFFICIAL — Production traits and SCS as single trait; udder morphology as
multiple trait

SINGLETRAIT — All evaluationsare single trait

DELETION — Like “official” but deleting data (pedigree + records) since 1990

MULTIPLETRAIT  — All traits in a multiple trait evaluation

Main results Lacaune: BIAS

Traits
MMBIEE-“M

BLUP-UPGA -0.02 -014 -0.22 -0.05 0.01 -0.06 -0.03
DELETION iASFG:LBLUP- -0.01 -0.09 -0.12 -0.03 0.01 -0.05 -0.02
lSJSP(;BHLUP- -0.01 -0.09 -0.12 -0.03 0.01 -0.04 -0.03
BLUP-UPGA OXI5) EERCOF1Y BRE=020] B0, 0.08 -0.12 -0.07
OFFICIAL iASFGlBLUP- 0.11 -0.09 -0.14 -0.09 0.06 -0.10 -0.07
fJSP%Bl_lLUP- 0.14 -0.08 -0.13 -0.08 0.07 -0.10 -0.06

Bias (overestimation of genetic trend) on “official” evaluations
Similar biases for SINGLETRAIT and MULTIPLETRAIT

The DELETION of historical data decreases the bias in almost all traits




Main results Lacaune: SLOPE

Traits
m-m

BLUP-UPGA 1.01 0.96 0.96 0.99 0.97
DELETION 'SVISSlBLUP- 0.99 0.99 0.98 0.99 0.97 0.96 0.91
fJSP%?'lLUP- 0.98 0.98 0.96 0.99 0.97 0.96 0.91
BLUP-UPGA 0.86 0.95 0.94 0.88 0.85 0.80 0.66
OFFICIAL ISVISSIBLUP- 0.87 0.93 0.91 0.87 0.83 0.79 0.73
ESP%?_'LUP- 0.80 0.94 0.92 0.87 0.83 0.79 0.73

DELETION improves the values of Slope

MF tend to perform better in Milk Yield OFFICIAL

Main results Lacaune: p,,,,

Mm

BLUP-UPGA 0.45 0.5 0.59 0.52 0.69 0.75 0.61
OFFICIAL  SSGBLUP- 065 072 073 071 068 066 062
MF1

Almost all traits benefit from genomic prediction

Some do not — not clear why




Main conclusions of Dairy Sheep studies

ﬂhere is an important variation in estimates of bias across diffelm

truncation points

* The deletion of historical data eliminates the bias in genetic evaluations
without affecting the ranking of individuals

* In both works, the use of metafounders to manage missing pedigree
performs better than (fixed) unknown parent groups

* The use of genomic information reduces bias and increases accuracy of the
EBVs at birth

- /

What if my model is already wrong?

* The LR theory assumes that the model is correct !!
* Can we verify if a model is correct if the model is not correct?
* FM explored that

47




By simulation

Correct Model

Genetic evaluations
performed with correct
heritabilitiesand effects

For generation 5 to 10{

* Software: QMsim, Blupf90 family and our own
* 20 replicates of a “dairy” population

* 10 generations
* Two heritabilities (0.1 and 0.3)
* Three scenarios

Wrong Heritability

Using higher (+0.05) and lower

(-0.05) heritabilitiesin the
evaluation model

LR method

Environmental trend not (well) accounted for

Simulatea environmental trend.
Fit contemporary groups either as fixed, or as
random heavily shrunken to O .

Compare males’ EBVs at birth with the EBVs at “next” evaluation with daughter information.

Get bias, slope and accuracies.

IDoes LR method works?|

Main Results: the correct model
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There was no
surprise with the
right model.
Bias, slope, and
accuracies were
well estimated.

IDoes LR method works?




Estimated Bias

-0.05 0.05 0.15

-0.15

Main Results: the wrong heritabilities
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True Bias True Bias

True bias was generated
LR method could estimate the good
direction but not the magnitude

The slope was
estimated but
with low
precision

Accuracies were
well estimated

IDoes LR method works?|

Main Results: the environmental trend

It was impossible to estimate the
Bias, neither fitting CG as fixed nor
as random effect.

The slope was poorly estimated. The
estimation was better when CG
were fit as fixed effects.

In general, accuracies were well
estimated

IDoes LR method works?|

p. 51




Main conclusion

ﬁhe LR method can estimate the Bias, Slope,\
and Accuracies when the genetic evaluation
model is robust, even if not perfect.

When the model is really wrong, the
Kestimates from LR method are unreliable./

p. 52

IDoes LR method works?|

Take home messages

* In dairy sheep:
* modelling of unknown parent groups in SSGBLUP is tricky and our best
solution is metafounders
* Lacaune has more bias than Manech Tete Rousse
* possibly because it has more years of data and modelling is complicated
* deleting old data is a very simple solution !!
* even when the models are wrong, deleting old data alleviates the problem

53




Take home messages

* The LR methods gives a “very automatic” manner
* of verifying that evaluations are correct
* and of assessing accuracies empirically

* The most difficult part is to define the “focal groups” and to
manipulate the data
* you need to know the selection scheme and the data set
* an unguided PhD student can not do it correctly
* someone who doesn’t like scripting can not do it correctly

* It is very important to analyze multiple truncation points

Technical details and relevant literature

Legarra, A., & Reverter, A. (2017, Jul % Can we frame and understand cross-validation re'sultsf Background

in‘animal breeding.” In Proceedings of the 22nd conference association for the advancement o
animal breeding and genetics (pp. 2-5).

of predictions of breedin% vilul%s and future phenotypes using the LR method. Genetics

Legarra, A., & Reverter, A. (2018). Semi-parametric estimates of population accuracy and bias
Selection Evolution, 50(

accuracy and bias of predictions "of breeding values and future phenotypes using the LR
method.” Genetics Selection Evolution, 51(8, 1-2.

Legarra, A., & Reverter, A. 32019). Correction to: Semi-parametric estimates of population Developmentand theory

Macedo, F. L., Reverter, A., & Legarra, A. (2020). Behavior of the Linear Regression method
to estimate, bias and accuracies with correct and incorrect genetic evaluation models. Journal
of dairy science, 103(1), 529-544.

Macedo, F. L., Christensen, O. F, Astruc, J. M., Aguilar, I., Masuda, Y., & Legarra, A. (2020).
Bias and accuracy of dairy sheep evaluations using BLUP and SSGBLUP with metafounders
and unknown parent groups. Genetics Selection Evolution, 52(1), 1-10.

Simulation:it works

Bermann, M., Legarra, A,, Holifield, M. K., Masuda, Y., Lourenco, D., & Misztal, |. (2021). All the correct expressions
Validation of single-step GBLUP genomic predictions from threshold models using the linear + testi MTR
regression method: An application in chicken mortality. Journal of Animal Breeding and esting on

Genetics, 138(1), 4-13

More development+
testing on chicken

+ Atutorial: http:/genoweb.toulouse.inra.fr/~alegarra/ GSIP.pdf (chapter 15)
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