Manual for

BLUPF90 family of programs

Ignacy Misztal (ignacy@uga.edu), Shogo Tsuruta (shogo@uga.edu),
Daniela Lourenco (danilino@uga.edu), Yutaka Masuda (yutaka@uga.edu)
University of Georgia, USA

Ignacio Aguilar (iaguilar@inia.org.uy)
INIA, Uruguay

Andres Legarra (andres.legarra@toulouse.inra.fr)
INRA Toulouse, France

Zulma Vitezica (zulma.vitezica@ensat.fr)
ENSAT, France
Table of Contents

Introduction .. 4

List of programs from Wiki page .. 5

Programs in a chart ... 6

Parameter file for application programs .. 7

Description of effects ... 8

Definition of random effects ... 10

Correlated effects .. 11

Data and Pedigree files ... 14

Data file .. 14

Pedigree file ... 14

Error messages in parameter file .. 14

RENUMF90 parameter file .. 15

Basic rules for RENUMF90 parameter file .. 15

Parameter file .. 15

Combining fields ... 17

Options ... 17

Output files .. 17

Output pedigree file .. 18

Example ... 18

When to use what program and computing limits .. 22

BLUP ... 22

Variance component estimation ... 24

Genomic programs ... 32

PREGSF90 ... 32

POSTGSF90 .. 39

PREDF90 ... 41

Demonstration for genomic analysis ... 42

PREDICTF90 ... 44

Examples for parameter files ... 47

Appendix A (single trait animal model) .. 63

Appendix B (multiple trait sire model) .. 67

Appendix C (test-day model) ... 70

Appendix D (multibreed maternal effect model) ... 74

Appendix E (random regression model) .. 77

Appendix F (terminal cross model) ... 79
Appendix G (competitive model) ... 81
Appendix H (genomic model) .. 83
Appendix I (complete genomic analysis) .. 94
Appendix J (custom relationship matrices) .. 123
Appendix K (selected programming details) .. 125

Modules and Libraries .. 128

- **Module DENSEOP** .. 128
 - Symmetric matrices .. 128
 - General matrices .. 129
 - Technical details ... 129
 - Example (exdense.f90) .. 130
 - Compilation ... 130
- **Module SPARSEM** .. 131
 - Introduction .. 131
 - Matrix formats ... 132
 - Matrix operations ... 132
 - Storage type ... 134
 - Numerical accuracy .. 134
 - Diagnostics .. 134
 - FSPAK90 .. 134
- **Module Prob** .. 141
 - Subroutines/functions .. 141
 - Other functions/subroutines ... 142
Introduction

BLUPF90 is a family of programs for mixed-model computations with focus on animal breeding applications. The programs can do data conditioning, estimate variances using several methods, calculate BLUP for very large data sets, calculate approximate accuracy, and use SNP information for improved accuracy of breeding values + for genome-wide association studies (GWAS).

The programs have been designed with 3 goals in mind:

1. Flexibility to support a large set of models found in animal breeding applications.
2. Simplicity of software to minimize errors and facilitate modifications.
3. Efficiency at the algorithmic level.

Aside from being used in hundreds of studies, the programs are utilized for commercial genetic evaluation in dairy, beef, pigs and broiler chicken by major companies/institutions/associations in the US and beyond.

The programs are written in Fortran 90/95 and originated as exercises for a class taught by Ignacy Misztal at the University of Georgia. Over time, they have been upgraded and enhanced by many contributors. Details on programming and computing algorithms are available in an Interbull 1999 paper and as course notes. Nearly all programs are available in source code.

Online information about the programs is available at http://nce.ads.uga.edu/wiki/doku.php as wiki pages. There is discussion group blupf90 at groups.yahoo.com.
List of programs from Wiki page

Latest versions available from website at http://nce.ads.uga.edu/wiki/doku.php?id=application_programs
(Use latest versions. All applications for Linux, Mac OSX, and Windows have been updated frequently)

The programs support mixed models with multiple-correlated effects, multiple animal models and dominance.

- **BLUPF90** - BLUP in memory
- **REMLF90** - accelerated EM REML
- **QXPAK** - joint analysis of QTL and polygenic effects (M. Perez-Enciso) [QxPak web page](http://nce.ads.uga.edu/wiki/doku.php?id=application_programs)
- **AIREMLF90** - Average Information REML with several options including EM-REML and heterogeneous residual variances (S. Tsuruta)
- **CBLUP90** - solutions for bivariate linear-threshold models
- **CBLUP90THR** - as above but with thresholds computed and many linear traits (B. Auvray)
- **CBLUP90REML** - as above but with REML (B. Auvray)
- **GIBBSF90** - simple block implementation of Gibbs sampling
- **GIBBS1F90** - as above but faster for creating mixed model equations only once
- **GIBBS2F90** - as above but with joint sampling of correlated effects
- **GIBBS3F90** - as above with support for heterogeneous residual variances
- **POSTGIBBSF90** - statistics and graphics for post-Gibbs analysis (S. Tsuruta)
- **THRGIBBSF90** - Gibbs sampling for any combination of categorical and linear traits (D. Lee)
- **THRGIBBS1F90** - as above but simplified with several options (S. Tsuruta)
- **RENUMF90** - a renumbering program that also can check pedigrees and assign unknown parent groups; supports large data sets
- **INBUPGF90** - a program to calculate inbreeding coefficients with incomplete pedigree (I. Aguilar)
- **SEEKPARENTF90** - a program to verify paternity and parent discovery using SNP markers (I. Aguilar)
- **PREDICTF90** - a program to calculate adjusted y, \(\hat{y} \), and residuals (I. Aguilar)
- **PREDF90** - a program to predict direct genomic value (DGV) for animals based on genotypes and SNP solution

Available by request
- **MRF90** - Method R program suitable for very large data sets; contact T. Druet.
- **COXF90** - Bayesian Cox model - contact J. P. Sanchez (JuanPablo.Sanchez@irta.cat)
- **BLUPF90HYP** - BLUPF90 with hypothesis testing (F and Chi2 tests) - contact J. P. Sanchez as above

Available only under research agreement
- **BLUP90IOD2** - BLUP by iteration on data with support for very large models (S. Tsuruta)
- **CBLUP90IOD** - BLUP by iteration on data for threshold-linear models
- **ACCF90** - approximation of accuracies for breeding values
- **BLUP90MBE** - BLUP by iteration on data with support for very large models for multi-breed evaluations
- **BLUP90ADJ** - BLUP data preadjustment tool

Included in application programs
- **PREGSF90** - genomic preprocessor that combines genomic and pedigree relationships (I. Aguilar)
- **POSTGSF90** - genomic postprocessor that extracts SNP solutions after genomic evaluations (single step, GBLUP) (I. Aguilar)

Other programming contributions were made by Miguel Perez-Enciso (user_file) and François Guillaume (Jenkins hashing functions).
Programs in a chart

Application programs (BLUP*, *REMLF90, THRGIBBS*, and GIBBS*) are driven by parameter files and require data files with effects renumbered from 1 consecutively.

Renumbering and quality control can be done by RENUMF90, which is also driven by a parameter file. Separation of renumbering and application programs allows supporting complicated models.

Some models are not directly supported by RENUMF90 and require tweaking the parameter file in the application programs.
Parameter file for application programs

The parameter file has keywords that are fixed and cannot be changed followed by values, with the following structure (the following example comes from 2-trait maternal model):

<table>
<thead>
<tr>
<th>Keywords*</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATAFILE</td>
<td>Name of file with phenotypes; free fortran format (space-delimited file)</td>
</tr>
<tr>
<td>file.dat</td>
<td></td>
</tr>
<tr>
<td>NUMBER OF TRAITS</td>
<td>Number of traits</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>NUMBER OF EFFECTS</td>
<td>Number of effects in a model except for residual</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>OBSERVATIONS(S)</td>
<td>Position(s) of observations in data file</td>
</tr>
<tr>
<td>1 2</td>
<td></td>
</tr>
<tr>
<td>WEIGHTS</td>
<td>Position of weight on observations if used; otherwise blank</td>
</tr>
<tr>
<td>2</td>
<td>“2” means that residual variance (R) is set to R/2.</td>
</tr>
<tr>
<td>EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]</td>
<td></td>
</tr>
<tr>
<td>4 4 10 cross</td>
<td>4 4 = crossclassified effect positions in data file for 2 traits; 10 = levels</td>
</tr>
<tr>
<td>5 0 100 cross</td>
<td>5 0 = crossclassified effect, positions for 2 traits; 100 = levels</td>
</tr>
<tr>
<td>6 6 1 cov</td>
<td>6 6 = covariable positions in data file</td>
</tr>
<tr>
<td>7 7 10 cov 4 4</td>
<td>7 7 = covariable nested in effect position 4; 10 = levels</td>
</tr>
<tr>
<td>8 8 1000 cross</td>
<td>8 8 = crossclassified effect positions for 2 traits; 1000 = levels</td>
</tr>
<tr>
<td>0 9 1000 cross</td>
<td>0 9 = crossclassified effect positions for 2 traits; 1000 = levels</td>
</tr>
<tr>
<td>RANDOM_RESIDUAL_VALUES</td>
<td>Residual variance or residual covariance matrix</td>
</tr>
<tr>
<td>10 1</td>
<td>For 2 trait model</td>
</tr>
<tr>
<td>1 10</td>
<td></td>
</tr>
<tr>
<td>RANDOM_GROUP</td>
<td>List of effect numbers that form a group</td>
</tr>
<tr>
<td>5 6</td>
<td>For correlated random effects</td>
</tr>
<tr>
<td>RANDOM_TYPE</td>
<td>Type of random effect (distribution)</td>
</tr>
<tr>
<td>add_animal</td>
<td>diagonal, add_sire, add_an_upg, add_an_upginb, par_domin, or user_file</td>
</tr>
<tr>
<td>FILE</td>
<td>Pedigree file or other file associated with random effect; blank if none</td>
</tr>
<tr>
<td>file.ped</td>
<td></td>
</tr>
<tr>
<td>(CO)VARIANCES</td>
<td>(Co)variance matrix for each random effect</td>
</tr>
<tr>
<td>10 1 0 1</td>
<td>For 2 trait model</td>
</tr>
<tr>
<td>1 10 0 1</td>
<td></td>
</tr>
<tr>
<td>0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>1 1 0 10</td>
<td></td>
</tr>
</tbody>
</table>

*Keywords need to be typed exactly (up to 20 characters). When preparing a new parameter file, consider modifying an existing file.

Note that this parameter file is for application programs (BLUPF90, AIREMLF90, GIBBSF90 etc.) and it is not for RENUMF90. This program needs a different type of parameter file. See page 15 for details.
Description of effects

The effects are specified after the keyword:

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]

Each line contains the following:
- Position(s) of each effect in the data file; t positions for t traits
- Number of levels (assumed consecutive from 1)
- Type of effect: “cross” for crossclassified, and “cov” for covariable
 - crossclassified uses integer number from 1
 - covariable uses integer or real numbers
- For nested covariables, the following number (or t numbers for t traits) indicates the position of nesting in the data file
- Text after # can be used as a comment

Consider a data file (file.dat) with the following columns

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>k</th>
<th>y1</th>
<th>y2</th>
<th>x1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4.30</td>
<td>5.67</td>
<td>22.40</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2.76</td>
<td>3.20</td>
<td>18.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2.20</td>
<td>5.30</td>
<td>7.25</td>
</tr>
</tbody>
</table>

Let i go from 1 to 50, j from 1 to 80, and k from 1 to 200. The model:

\[y_{1ij} = a_i + b_j + cX + e_{ij} \]

will be specified in the parameter file as:

```plaintext
DATAFILE
file.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
3
OBSERVATIONS(S)
4
WEIGHTS

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
2 80 cross # position 2, 80 levels
1 50 cross # position 1, 50 levels
6 1 cov # covariable on position 6, one level
......
```

By definition, a regular covariable has one level (i.e., a slope as regression).
For a similar model but with a nested covariable:

\[y_{1ij} = a_j + b_i + c_i X + e_{ij} \]

The description will change to:

```
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
2 80 cross # position 2, 80 levels
1 50 cross # position 1, 50 levels
6 50 cov 1 # covariable on position 6 nested in position 1; 50 levels
```

Assume a two trait model:

\[
\begin{align*}
 y_{1ij} &= a_{1j} + c_{1i} X + e_{1ij} \\
 y_{2ij} &= b_{2i} + c_{2i} X + e_{2ij}
\end{align*}
\]

This corresponds to:

```
......
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
3
......
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
2 0 80 cross # position 2 for trait 1 only, 80 levels
0 1 50 cross # position 1 for trait 2 only, 50 levels
6 6 50 cov 1 1 # covariable on position 6 for two traits nested in position 1
```

“0” in effect definitions means missing effect per trait.

Two effects above can be merged:

```
NUMBER_OF_EFFECTS
2
......
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
2 1 80 cross # positions 2 and 1 for traits 1 and 2, 80 is max(50,80) levels
6 6 50 cov 1 1 # covariable on position 6 for two traits nested in position 1
```
Definition of random effects

RANDOM_GROUP defines one group of random effects. A group is one effect or multiple (correlated) effects that share the same covariance structure, e.g., direct-maternal effect or random regressions.

The structure of **RANDOM_GROUP** is:

```
RANDOM_GROUP
  5
```

or

```
  5  6
```

RANDOM_TYPE defines a covariance structure: diagonal \(\text{var}() = s \otimes I\) or \(G\) where \(s\) is a variance and \(G\) is a covariance matrix. For other types, see “Random effects and Pedigree files”

Assume a model:

\[y = \text{farm} + \text{animal additive} + \text{animal environment} + \text{error} \]

with \(\text{var(animal additive)} = 2.5 \otimes A\), \(\text{var(animal environment)} = 5.1 \otimes I\), \(\text{var(error)} = 13.7 \otimes I\)

With these effects:

```
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
  3  100 cross  # effect 1: farm
  2 1000 cross  # effect 2: additive genetic
  2 1000 cross  # effect 3: permanent environment

RANDOM_RESIDUAL_VALUES
  13.7

RANDOM_GROUP
  2  # this is for effect 2 on the effect list

RANDOM_TYPE
  add_animal  # additive genetic

FILE
  file.ped  # name of pedigree file

(CO)VARIANCES
  2.5

RANDOM_GROUP
  3  # effect 3 on the effect list above

RANDOM_TYPE
  diagonal  # permanent environment

FILE
  # no file associated with diagonal structures

(CO)VARIANCES
  5.1
```
Correlated effects

Assume a model:
\[
y = \text{farm} + \text{season} + \text{direct} + \text{maternal} + \text{error}
\]
\[
\text{var(direct, maternal)} = \begin{bmatrix} 5 & 1 \\ 1 & 6 \end{bmatrix} \otimes A
\]

with the effects as specified:

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]

<table>
<thead>
<tr>
<th>EFFECT</th>
<th>POSITIONS_IN_DATAFILE</th>
<th>NUMBER_OF_LEVELS</th>
<th>TYPE_OF_EFFECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>100</td>
<td>cross</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>cross</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1000</td>
<td>cross</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1000</td>
<td>cross</td>
</tr>
</tbody>
</table>

The distribution of the random effects are specified below:

...
RANDOM_GROUP

<table>
<thead>
<tr>
<th>GROUP</th>
<th>POSITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 4</td>
<td>3 4</td>
</tr>
</tbody>
</table>

RANDOM_TYPE

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>add_animal</td>
<td>additive genetic</td>
</tr>
</tbody>
</table>

FILE

<table>
<thead>
<tr>
<th>FILE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>file.ped</td>
<td>name of pedigree file</td>
</tr>
</tbody>
</table>

(CO)VARIANCES

<table>
<thead>
<tr>
<th>COVARIANCE</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 1</td>
<td></td>
</tr>
<tr>
<td>1 6</td>
<td></td>
</tr>
</tbody>
</table>

Random regression models may have many correlated random effects. Assume a data file with the following positions:

1 to 4: polynomials
5: animal number (1000 levels)
6: herd year season (50 levels)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]

<table>
<thead>
<tr>
<th>EFFECT</th>
<th>POSITIONS_IN_DATAFILE</th>
<th>NUMBER_OF_LEVELS</th>
<th>TYPE_OF_EFFECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>50</td>
<td>cross</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1000</td>
<td>cov</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1000</td>
<td>cov</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1000</td>
<td>cov</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>1000</td>
<td>cov</td>
</tr>
</tbody>
</table>

RANDOM_GROUP

<table>
<thead>
<tr>
<th>GROUP</th>
<th>POSITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3 4 5</td>
<td>2 3 4 5</td>
</tr>
</tbody>
</table>

RANDOM_TYPE

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>add_animal</td>
<td>additive genetic</td>
</tr>
</tbody>
</table>

FILE

<table>
<thead>
<tr>
<th>FILE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>file.ped</td>
<td>name of pedigree file</td>
</tr>
</tbody>
</table>

(CO)VARIANCES

(4 x 4 matrix)
There are a few types of additive genetic effects, each with a different pedigree format.

a) additive sire (add_sire)
 The pedigree file has the following format:
 sire number, sire’s sire number, sire’s maternal grandsire (MGS) number
 where unknown sire’s sire and/or sire’s MGS numbers are replaced by 0.

b) additive animal (add_animal)
 The pedigree file has the following format:
 animal number, sire number, dam number
 where unknown sire and/or dam numbers are replaced by 0.

c) additive animal with unknown parent groups (add_an_upg)
 The pedigree file has the following format:
 animal number, sire number, dam number, parent code
 where sire and/or dam numbers can be replaced by unknown parent group numbers
 parent code = 3 - number of known parents:
 1 (both parents known)
 2 (one parent known)
 3 (both parents unknown)

d) additive animal with unknown parent groups and inbreeding (add_an_upginb)
 The pedigree file has the following format:
 animal number, sire number, dam number, inb/upg code
 where sire and/or dam numbers can be replaced by unknown parent group numbers
 inb/upg code = 4000 / \[(1+ms)(1-Fs) + (1+md)(1-Fd)\]
 where ms (md) is 0 whenever sire (dam) is known, and 1 otherwise, and Fs(Fd) is the
 coefficient of inbreeding of the sire (dam). For example, the inb/upg code for the animal
 with both parents known is 2000. The code should be an integer value.

e) parental dominance (par_domin)
 The pedigree class file has the following format:
 s-d s-sd s-dd ss-d ss-dd ds-sd ds-dd ds-sd-ds-dd code
 where x-y is a combination number of animals x and y, s is sire, d is dam, sd is sire of dam, etc.
 Code is a number of 0 to 255 and refers to the combination of missing subclasses. If one line is:
 p s0 s1 s2 s3 s4 s5 s6 s7 code
 then code = \(\sum_{i=0}^{7} (a_i \times 2^i) \) where \(a_i = 0 \) if \(s_i > 0 \), or \(a_i = 1 \) otherwise.
 For example, the code for a line with all nonzero parental subclasses is 255. For a line with only
 zero parental subclasses, if classes are ordered so that lines with zero parental subclasses,
 code=0. If lines are ordered so that p for parental classes with code=0 are ordered last, they may
 be omitted and will be added automatically. The parental dominance file can be created by
 program RENDOMN.

f) user provided matrix (user_file)
 A file specified in FILE contains the inverse of a matrix in the following format:
 row col value
as lower- or upper-triangular elements (but not full stored). The matrix is used directly by
application programs. For example, to use a genomic relationship matrix G, the file needs to
contain G\(^{-1}\).

g) user provided matrix with inversion (user_file_inv)
As above but the matrix in FILE is inverted by the application programs before being used. For
example, to use a genomic relationship matrix G, the file needs to contain G. The inversion is by
sparse matrix techniques so it is efficient for sparse matrices but slow for dense matrices.
Data and Pedigree files

All files are free format, with fields separated by spaces. By default, 0 is a missing value for all effects, including covariables.

Transferring a file from Windows (DOS) to Linux environment

Use “dos2unix” to convert the DOS (Windows) format to the UNIX (Linux) format if the programs show an error message while reading a file (“flip –u” can be also used instead of “dos2unix”).

Data file

a. Space(s) is a delimiter. At least one character space between columns is required.
b. Dot (.) is just one character but not a missing value (default missing value = 0).
c. Check the data again especially when converting from another format or software such as EXCEL, SAS, ...
d. For Gibbs sampling programs with “OPTION cont”, copy the previous output files somewhere else just in case making mistakes and replacing those files.

Pedigree file

a. An original pedigree file for RENUMF90 can include alpha-numeric characters with free format.
b. Remove duplicates.
c. Use 0 for unknown parent(s).

Error messages in parameter file

a. Wrong data file name
 Check outputs for the data file name and the number of records on the screen. The program will not stop if the wrong file name already exists.
b. Wrong pedigree file name
 Check output for the pedigree file name and the number of animals on the screen. The program will not stop if the wrong file name exists.
c. Wrong positions or formats for observations and effects
 Program may not stop and may get wrong results. Check outputs for the number of levels for each effect on the screen.
d. Missing or skipping one or more fixed lines in the parameter file
 Program may stop. Check the missing line.
e. Misspelling
 Program may stop. Correct the wrong spelling.
f. Missing an empty last line
 Program may not stop. Parameter, data, and pedigree files may need one more extra line at the end of the file.
g. (Co)variance matrix is not symmetric, not positive definite, not right sized, ...
 Program may not stop.
h. A good result does not mean that your parameter file is correct. Always double-check!
RENUMF90 parameter file

Basic rules for RENUMF90 parameter file

RENUMF90 is a renumbering program to create input (data, pedigree, and parameter) files for BLUPF90 programs and provide basic statistics. Note that RENUMF90 uses a different type of parameter file as used in BLUPF90 or other programs. RENUMF90-specific parameter file should be prepared as follows.

- The file consists of pairs of **keyword** and the corresponding **value(s)**. The keyword is always capital.
- First 7 keywords are mandatory and must appear in the following order: **DATAFILE**, **TRAITS**, **FIELDS_PASSED_TO_OUTPUT**, **WEIGHT(S)**, **RESIDUAL_VARIANCE** and **EFFECT**. If you don’t actually need **FIELDS_PASSED_TO_OUTPUT** and **WEIGHT(S)**, simply put the empty line as a value.
- The remaining keywords are optional but appear in the specific order shown below. For example, the **FILE** keyword must be followed by **FILE_POS** (or by **SNP_FILE** if **FILE_POS** is omitted; or by **PED_DEPTH** if both **FILE_POS** and **SNP_FILE** are omitted, and so on).
- Several **OPTION** lines can be included. RENUMF90 interpret a few options. Other options are simply passed through the template parameter file for BLUPF90 (**renf90.par**).

Parameter file

DATAFILE

`f1` # data file name – input files cannot contain character # because it is used as a comment.

TRAITS

`t1 t2 t3 ...` # positions of traits in data file

FIELDS_PASSED_TO_OUTPUT

`p1 p2 ... pm` # positions that are not renumbered; put empty line if not needed.

WEIGHT(S)

`w` # position of weight - fraction to the residual variance; put empty line if not needed.

RESIDUAL_VARIANCE

`R` # matrix of residual (co)variances

EFFECT

`e1 e2 e3 ... type form` # e1, e2, e3 ... = position of this effect for each trait

type = 'cross' for crossclassified or 'cov' for covariables

form = 'alpha' for alphanumeric or 'numer' for numeric (form is only for cross)

EFFECT

`d1 d2 d3 ... cov` # d1, d2, d3 ... = positions of covariables nested in the following cross-classified effects

NESTED

`e1 e2 e3 ... form` # e1, e2, e3 ... = positions of cross-classified effects nested

form = 'alpha' for alphanumeric or 'numer' for numeric

RANDOM

`random_type` # 'diagonal', 'sire' or 'animal' for random effect

OPTIONAL
\[O_1, O_2, O_3, \ldots \] # 'pe' for permanent environment, 'mat' for maternal, and 'mped' for maternal permanent environment

FILE

fped # pedigree file name

FILE_POS

animal sire dam alt_dam yob # positions of animal, sire, dam, alternate dam (recipient dam), and year of birth in pedigree file (default 1 2 3 0 0).

SNP_FILE

fsnp # specify a SNP file with ID and SNP information; the relationship matrix will include the genomic information; a fsnp file should start with ID with the same format as fped, and SNP info needs to start from a fixed column and include digits 0, 1, 2 and 5 (5 is for missing SNP); ID and SNP info need to be separated by at least one space; see more information in http://nce.ads.uga.edu/wiki/doku.php?id=readme.pregsf90.

PED_DEPTH

p # depth of pedigree search (default 3); all pedigrees are loaded if p = 0.

GEN_INT

min avg max # minimum, average, and maximum generation interval; applicable only if year of birth present in pedigree file; minimum and maximum used for pedigree checks; average used to predict year of birth of parent with missing pedigree.

REC_SEX

sex # if only one sex has records, specifies which parent it is; used for pedigree checks.

UPG_TYPE

t # 'yob' = based on year of birth; if 'in_pedigrees', the value of a missing parent should be -x, where x is UPG number that this missing parent should be allocated to; in this option, all known parents should have pedigree lines, i.e., each parent field should contain either the ID of a real parent, or a negative UPG number. If it is 'internal', allocation is by a user-written function custom_upg (year_of_birth,sex,ID, parent_code).

INBREEDING

s # use of inbreeding coefficients to compute inb/upg code in the 4th column of the output pedigree file; if 'pedigree', the program computes inbreeding coefficients with Meuwissen and Luo (1992) using the pedigree to be saved in renaddxx.ped; calculated inbreeding coefficients will be saved in a file "renf90.inb" with the original ID; if 'file', the program reads inbreeding coefficients from an external file. You should put the filename after 'file' e.g. 'file inbreeding.txt'. The file has at least 2 columns: original_ID and inbreeding value (from 0.0 to 1.0). The program just skips unnecessary IDs.

(CO)VARIANCES

G # (co)variances for animal effects or animal + maternal effects

(CO)VARIANCES_PE

GPE # (co)variances for the PE effect

(CO)VARIANCES_MPE
GMPE # (co)variances for the MPE effect

Combining fields
How can we specify interactions? - Combining fields or interactions. Several fields in the data file can be combined into one using a COMBINE keyword.

COMBINE a b c # keywords COMBINE need to be on top of the parameter file, but possibly after comments.

For example:

COMBINE 7 2 3 4

combines content of fields 2 3 4 into field 7; the data file is not changed, only the program treats field 7 as fields 2 3 4 put together (without spaces). The combined fields can be treated as "numeric" with the total length is < 9 or "alpha". The keyword is optional but must be placed in the top of the parameter file.

Options
RENUMF90 parameter file can accept few options. If the program detects non-RENUMF90 options, such option lines are simply passed through renf90.par.

OPTION alpha_size nn # new size
Change the maximum size of character fields (default 20 characters).

OPTION max_string_readline nn
Change the maximum length of characters in a line (default 800 characters).

OPTION max_field_readline nn
Change the maximum number of fields capable in a line (default 100 fields).

Output files
RENUMF90 generates several files.

- **renf90.par**: parameter template file for BLUPF90
- **renf90.tables**: table relating the original code and the renumbered code
- **renf90.dat**: data file for BLUPF90
- **renaddxx.ped**: pedigree file for BLUPF90; **xx** is an integer number that indicates the position of animal effect among all model effects in renf90.par. This file will be created only if **RANDOM animal** is specified.
- **SNPfile_XrefID**: cross-reference file for genomic analysis, which contains renumbered ID and original ID; **SNPfile** is the original SNP marker file. This file will be created only if **SNP_FILE** is specified.
- **renf90.inb**: inbreeding coefficients. This file will be created only if **INBREEDING pedigree** is specified.
Output pedigree file
The additive pedigree file built by RENUMF90 is renaddxx.ped. The pedigree file has the following structure:
1) animal number (from 1)
2) parent 1 number or unknown parent group number for parent 1
3) parent 2 number or unknown parent group number for parent 2
4) 3 minus number of known parents (this column is replaced by inbreeding code if INBREEDING pedigree is specified)
5) known or estimated year of birth (0 if not provided)
6) number of known parents (if genotypes are used: 10 + number of known parents)
7) number of records
8) number of progenies as parent 1
9) number of progenies as parent 2
10) original animal id

Example
Input file - data
aa 1 10
aa 2 12
bb 1 11
cc 1 12
cc 2 14
dd 2 13
ee 2 14

Pedigree file - ped
aa ff ee 2004
bb hh gg 2004
cc hh ii 2004
dd ff 0 2004
ee ff 0 2002
ff 0 0 2002
gg ff 0 2002
hh 0 0 2002
ii 0 0 2002
kk 0 0 2000

Parameter file - testpar1

Parameter file for program renumf90; it is translated to parameter file for BLUPF90 family of programs.
DATAFILE
data
TRAITS
3
FIELDS_PASSED TO OUTPUT
1 #passing original ID to the renumbered data file
WEIGHT(S)
RESIDUAL_VARIA NCE
1
EFFECT
2 cross num
EFFECT
1 cross alpha
RANDOM
animal
FILE
ped
FILE_POS
1 2 3 0 4
PED_DEPTH
3
GEN_INT
1 2 10
UPG_TYPE
yob
2002 2003
(CO)VARIANCES
1

Output log

RENUMF90 version 1.73
name of parameter file?testpar1
datafile:data
traits: 3
fields passed: 1
R 1.000

Processing effect 1 of type cross
item_kind=num

Processing effect 2 of type cross
item_kind=alpha
pedigree file name "ped"
positions of animal, sire, dam, alternate dam and yob 1 2 3 0 4
pedigree traced to generation 3
Minimum, average and maximum generation intervals: 1 2 10
Unknown parent groups separated by years: 2002 2003

Maximum size of character fields: 20

hash tables for effects set up
read 7 records
table with 2 elements sorted
added count
Effect group 1 of column 1 with 2 levels
table expanded from 10000 to 10000 records
added count
Effect group 2 of column 1 with 5 levels
wrote statistics in file "renf90.tables"

Basic statistics for input data (missing value code is 0)

<table>
<thead>
<tr>
<th>Pos</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>SD</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.000</td>
<td>2.000</td>
<td>1.5714</td>
<td>0.53452</td>
<td>7</td>
</tr>
</tbody>
</table>
Correlation matrix

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.00</td>
<td>0.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.80</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Counts of nonzero values (order as above)

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

random effect 2
type: animal
opened output pedigree file "renadd02.ped"
read 10 pedigree records
loaded 4 parent(s) in round 1

Pedigree checks

ee: younger than parent 1 by 0 years
gg: younger than parent 1 by 0 years

Unknown parent group allocation

<table>
<thead>
<tr>
<th>Equation</th>
<th>Group</th>
<th>#Animals</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>0-2001</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>8</td>
<td>2002-2002</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>1</td>
<td>2003-</td>
</tr>
</tbody>
</table>

Number of animals with records: 5
Number of parents without records: 4
Total number of animals: 9

Wrote parameter file "renf90.par"
Wrote renumbered data "renf90.dat"

Output data file - renf90.dat
observation, effect 1, animal number, original animal ID

10	1	4	aa
12	2	4	aa
11	1	2	bb
12	1	5	cc
14	2	5	cc
13	2	3	dd
14	2	1	ee

Output pedigree file - renadd03.ped
Animal, sire, dam, 3-unknown parents, birth year, #known parents, #records, #progeny of sire, #progeny of dam, original animal ID

| 1 6 11 2 2002 1 1 0 1 ee |
| 2 8 7 1 2004 2 1 0 0 bb |
| 7 6 11 2 2002 1 0 0 1 gg |
| 3 6 12 2 2004 1 1 0 0 dd |
| 9 11 11 3 2002 0 0 0 1 ii |
| 4 6 1 1 2004 2 2 0 0 aa |
| 6 11 11 3 2002 0 0 4 0 ff |
| 5 8 9 1 2004 2 2 0 0 cc |
| 8 11 11 3 2002 0 0 2 0 hh |

Output parameter file - renf90.par
DATAFILE
renf90.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
1
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
2 2 cross
3 12 cross

RANDOM_RESIDUAL VALUES
1.000
RANDOM_GROUP
2
RANDOM_TYPE
add_an_upg
FILE
renadd02.ped

(CO)VARIANCES
1.000

Output tables after renumbering - renf90.tables

Effect group 1 of column 1 with 2 levels Value # consecutive number

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
When to use what program and computing limits

BLUP

BLUPF90 sets up equations in memory. It can support a few million equations with a simple model to much smaller with complicated models (multiple traits, maternal effects, random regression, etc). BLUPF90 uses three solvers, chosen with options. PCG is the default solver and is usually the fastest one. SOR require less memory but usually converges slower. Sparse Cholesky (FSPAK) is usually the most accurate method but uses the most memory. The following options are available:

OPTION conv_crit 1e-12
Set convergence criteria (default 1e-10).

OPTION maxrounds 10000
Set maximum number of rounds (default 1000).

OPTION solv_method FSPAK
Selection of solving method: FSPAK, SOR or PCG (default PCG).

OPTION r_factor 1.6
Set relaxation factor for SOR (default 1.4).

OPTION solse
Store solutions and s.e. If this option is used, the solving method will turn to FSPAK.

OPTION blksize 3
Set block size for preconditioner (default 1).

OPTION use_yams
Run the program with YAMS (modified FSPAK). The computing time can be dramatically improved when solv_method is FSPAK.

OPTION hetres_int 5 10
The position (5) to identify the interval in the data file and the number of intervals (10) for heterogeneous residual variances as used in GIBBS3F90.

OPTION fixed_var file
Combined with hetres_int, heterogeneous residual variances are read from file. The file has to contain residual (co)variances for each interval class.

BLUP90IOD2 uses an iteration on data algorithm. It can handle hundreds of millions of equations with complicated models in a reasonable time. However, it is only available with a research contract or for research at UGA. The following options are available:

OPTION conv_crit 1e-12
Set convergence criteria (default 1e-12).

OPTION maxrounds 10000
Set maximum number of rounds (default 5000).

OPTION blksize 3
Set block size for preconditioner (default 1). Usually `blksize` number will be the same as the number of traits.

OPTION init_eq 10
Set the number of effects to be solved directly (default 0).

OPTION solv_method FSPAK
Solving method for initial equations (default DIRECT).

OPTION tol 1d-12
Tolerance to get a positive definite matrix (default 1d-12).

OPTION residual
y-hat and residuals will be included in “yhat_residual”.

OPTION avgeps 50
Using the last 50 average eps for convergence.

OPTION cont 1
To restart the program from the previous solutions.

OPTION missing -1
Set the missing value (default 0).

OPTION restart 100
Set the number of iteration to recompute residuals (default 100).

OPTION prior_solutions
Using the previous solution file to start the iteration. Additional software is required to use this option.

OPTION random_upg 1 2
Set the UPG random. “1” the weight for random UPG = 1. If the second number exists, the weight will be inverted (e.g., 1/2=0.5).

OPTION SNP_file snp
Specify the SNP file name snp to use genotype data.
Variance component estimation

There is not a single-best choice for variance component estimation. Programs below offer choices for simple and complicated models. For advice on what works best under your circumstances, google a paper “Reliable computing in estimation of variance components”.

REMLF90 uses EM REML. For most problems it is the most reliable algorithm but can take hundreds of rounds of iteration. REMLF90 was found to have problems converging with random regression models. In this case, using starting variances that are too large than too small usually helps. Also, EM does not calculate standard errors for the estimates. The following options are available:

OPTION conv_crit 1d-12
Convergence criterion (default 1d-12).

OPTION maxrounds 10000
Maximum rounds (default 5000).

OPTION sol se
Store solutions and se.

OPTION residual
y-hat and residuals will be included in “yhat_residual”.

OPTION missing -999
Specify missing observations (default 0).

OPTION constant_var 5 1 2
5: effect number, 1: first trait number, 2: second trait number implying the covariance between traits 1 and 2 for effect 5 is fixed.

OPTION SNP_file snp
Specify the SNP file name snp to use genotype data.

OPTION use_yams
Run the program with YAMS (modified FSPAK). The computing time can be dramatically improved.

AIREMLF90 uses Average Information REML. It usually converges much faster but sometimes does not converge. Very slow convergence usually indicates that the model is over parameterized and there is insufficient information to estimate some variances. AI REML calculates standard errors for the estimates. The following options are available:

OPTION conv_crit 1d-12
Convergence criterion (default 1d-12).

OPTION maxrounds 500
Maximum rounds (default 5000). When it is zero, the program calculates BLUP without running REML.

OPTION EM-REML 10
Run EM-REML for the first 10 rounds to get initial variances within the parameter space (default 0).

OPTION tol 1d-18
Tolerance (or precision) for positive definite matrix and G-inverse subroutines (default 1d-14).

OPTION sol se
Store solutions and s.e.

OPTION missing -1
Set the missing observation (default 0).

OPTION constant_var 5 1 2
5: effect number, 1: first trait number, 2: second trait number implying the covariance between traits 1 and 2 for effect 5 is fixed.

OPTION use_yams
Run the program with YAMS (modified FSPAK). The computing time can be dramatically improved.

OPTION fact_once memory
Save Cholesky factor of LHS in memory. It greatly improves the computing time instead of memory consumption.

OPTION fact_once file
Save Cholesky factor of LHS in a temporary file. It improves the computing time without extra memory.

OPTION approx_loglike
Skip the exact computation of log-likelihood. It would improve the computing time.

Heterogeneous residual variances for a single trait

OPTION hetres_pos 10 11
Specify positions of covariables.

OPTION hetres_pol 4.0 0.1 0.1
Initial values of coefficients for heterogeneous residual variances. Use \(\ln(a_0, a_1, a_2, \ldots) \) to make these values. When the number of positions = the number of polynomials, the regressions do not include the intercept (e.g., linear spline).

Heterogeneous residual variances for multiple traits (the convergence will be very slow)

OPTION hetres_pos 10 10 11 11
Specify positions of covariables (trait first).

OPTION hetres_pol 4.0 4.0 0.1 0.01 0.01
Initial values of coefficients for heterogeneous residual variances using \(\ln(a_0, a_1, a_2, \ldots) \) to make these values (trait first). “4.0 4.0” are intercept for first and second traits. “0.1 0.1” could be linear and “0.01 0.01” could be quadratic. To transform back to the original scale, use \(\exp(a_0+a_1 \times X_1+a_2 \times X_2) \).

OPTION SNP_file snp
Specify the SNP file name `snp` to use genotype data.

Standard deviations for (co)variance functions including heritability

OPTION se_covar_function label function
Calculate SD for (co)variance functions by repeated sampling of parameter estimates from their asymptotic multivariate normal distribution, following idea presented by Meyer and Houle 2013. For details, see documentation at http://nce.ads.uga.edu/wiki/doku.php?id=readme.aireml.
GIBBSxF90 programs implement Bayesian methods. These methods potentially have better statistical properties. Also they are more stable and use less memory for complicated models. After running any of the Gibbs sampling programs, samples can be analyzed (posterior means, SD, and convergence parameters) with the POSTGIBBSF90 program.

In practical cases, results from Gibbs samplers and REML are similar. Choose one or the other based on computing feasibility. If there are large differences beyond sampling errors, this indicates problems usually with the Gibbs sampler. Try longer chains or different priors.

Gibbs samplers may be slow to achieve convergence if initial values are far away from those at convergence, e.g., 100 times too low or too high. Before using more complicated models, Karin Meyer advocates using a series of simpler models.

GIBBS1F90 can run models with over 20 traits. However, if models are different per trait, the lines due to effects need to be modified. Also, with too many differences in models among traits, the program becomes increasingly slower.

GIBBS2F90 adds joint sampling of correlated effects. This results in faster mixing with random regression and maternal models.

Interactive inputs:
- **number of samples and length of burn-in?**
 In the first run, if you have no idea about the number of samples and burn-in, just type your guess (10000 or whatever) for samples and (0) for burn-in. You may need 2 or 3 runs to figure out the convergence.

- **Give n to store every n-th sample?**
 Gibbs samples are highly correlated, so you do not have to keep all samples (every 10th, 20th, 50th, ...). The following options are available for **GIBBSxF90**:

- **OPTION fixed_var all 1 2 3**
 Store all solutions and posterior means and SD for effects for effects 1, 2, and 3 are stored in "all_solutions" and in "final_solutions" every round using fixed variances. Without numbers, all solutions for all effects are stored.

- **OPTION fixed_var mean 1 2 3**
 Posterior means and SD for effects 1, 2, and 3 in "final_solutions".

- **OPTION solution all 1 2 3**
 Store all solutions and posterior means and SD for effects 1, 2, and 3 are stored in "all_solutions" and in "final_solutions" every round. Without numbers, all solutions for all effects are stored.

- **OPTION solution mean 1 2 3**
 Posterior means and SD for effects 1, 2, and 3 in "final_solutions".

- **OPTION cont 10000**
 10000 is the number of samples run previously when restarting the program from the last run.

- **OPTION prior 5 2 -1 5**
The (co)variance priors are specified in the parameter file. Degree of belief for all random effects should be specified using the following structure: **OPTION prior eff1 db1 eff2 db2 ... effn dbn -1 dbres;**
where effx correspond to the effect number and dbx to the degree of belief for this random effect, -1 corresponds to the degree of belief of the residual variance. In this example 2 is the degree of belief for the 5th effect, and 5 is the degree of belief for the residual.

OPTION seed 123 321
Two seeds for a random number generator can be specified.

OPTION SNP_file snp
Specify the SNP file name snp to use genotype data.

GIBBS3F90 adds estimation of heterogeneous residual covariances in classes. The computing costs usually increase with the number of classes.

OPTION hetres_int 5 10
The position (5) to identify the interval in the data file and the number of intervals (10) for heterogeneous residual variances.

Other options are the same as for **GIBBS1F90** and **GIBBS2F90**. For fixed_var all or fixed_var mean, heterogeneous residual variances are read from a file 'hetres'. This file name can’t be changed.

THRGIIBBS1F90 is a Gibbs sampling program to analyze categorical and continuous traits simultaneously; categorical traits can be censored. The following options are available:

OPTION cat 0 0 2 5
“0” indicate that the first and second traits are linear. “2” and “5” indicate that the third and fourth traits are categorical with 2 (binary) and 5 categories.

OPTION thresholds 0.0 1.0 2.0
Set the fixed thresholds. No need to set 0 for binary traits.

OPTION residual 1
Set the residual variance = 1.

OPTION censored 1 0
Negative values of the last category in the data set indicate censored records. “1 0” determines that the first categorical trait is censored and the second categorical trait is uncensored.

Using following options for ordered categorical data with right censored records:

OPTION cat 0 0 2 5
OPTION censored 1 0
The data file may look like
traits: 1 2 3 4
1.71 11.1 1 1
2.22 15.2 0 5
Columns 1 and 2 are observations for linear traits and columns 3 and 4 are traits for 2 categories (binary) with censored records (negative values) and 5 categories.

Other options are the same as for GIBBS1F90 and GIBBS2F90.

POSTGIBBSF90 is a program to calculate posterior means and SD and diagnose the convergence. The program reads “gibbs_samples” and “fort.99” files from Gibbs sampling programs.

Read 1000 samples from round 10 to 10000

Burn-in?
1000 # in the first run, type 0 for burn-in to include all samples

Give n to read every n-th sample? (1 means read all samples)
10 # Type the same number used with a Gibbs sampling program. You shouldn’t type 1 # unless you have typed 1 in the Gibbs sampling program.

samples after burn-in = 9000

Input files:
gibbs_samples, fort.99, and other files used in a parameter file from (THR)GIBBSxF90

Output files:
postgibbs_samples, postout, postmean, postsd

postgibbs_samples
A text file containing all Gibbs samples from gibbs_samples for other software (EXCEL, SAS, …) to calculate posterior means and SD, and to create graphs.

postmean
Posterior means

postsd
Posterior standard deviations

postout

<table>
<thead>
<tr>
<th>Pos.</th>
<th>eff1</th>
<th>eff2</th>
<th>trt1</th>
<th>trt2</th>
<th>MCE</th>
<th>Mean</th>
<th>Error by Monte Carlo</th>
<th>HPD</th>
<th>Effective Sample Size</th>
<th>Independent Chain Size</th>
</tr>
</thead>
</table>
3.29 | | | | | | | | | | |
1.95 | | | | | | | | | | |
2.25 | | | | | | | | | | |
3.64 | | | | | | | | | | |
1.99 | | | | | | | | | | |
<table>
<thead>
<tr>
<th>Pos.</th>
<th>eff1</th>
<th>eff2</th>
<th>trt1</th>
<th>trt2</th>
<th>PSD</th>
<th>Mean</th>
<th>PSD Interval (95%)</th>
<th>Geweke diagnostic</th>
<th>Autocorrelations lag: 1</th>
<th>10</th>
<th>50</th>
<th>Independent # batches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1.362E-02</td>
<td>0.9889</td>
<td>0.7788</td>
<td>1.215</td>
<td>70.4</td>
<td>0.9844</td>
<td>0.9861</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1.288E-02</td>
<td>1.006</td>
<td>0.777</td>
<td>1.219</td>
<td>84.1</td>
<td>1.006</td>
<td>0.952</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1.847E-02</td>
<td>1.66</td>
<td>1.347</td>
<td>1.987</td>
<td>80.3</td>
<td>1.652</td>
<td>1.579</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>9.530E-03</td>
<td>24.47</td>
<td>24.07</td>
<td>24.84</td>
<td>425.6</td>
<td>24.47</td>
<td>24.53</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>8.253E-03</td>
<td>11.84</td>
<td>11.54</td>
<td>12.18</td>
<td>395.8</td>
<td>11.83</td>
<td>11.82</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1.233E-02</td>
<td>30.1</td>
<td>29.65</td>
<td>30.58</td>
<td>387.8</td>
<td>30.09</td>
<td>29.97</td>
<td>5</td>
</tr>
</tbody>
</table>

******** Posterior Standard Deviation ********

<table>
<thead>
<tr>
<th>Pos.</th>
<th>eff1</th>
<th>eff2</th>
<th>trt1</th>
<th>trt2</th>
<th>PSD</th>
<th>Mean</th>
<th>PSD Interval (95%)</th>
<th>Geweke diagnostic</th>
<th>Autocorrelations lag: 1</th>
<th>10</th>
<th>50</th>
<th>Independent # batches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0.1144</td>
<td>0.9889</td>
<td>0.7648</td>
<td>1.213</td>
<td>-0.02</td>
<td>0.853</td>
<td>0.188</td>
<td>0.049</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>0.1182</td>
<td>1.006</td>
<td>0.7742</td>
<td>1.237</td>
<td>-0.11</td>
<td>0.828</td>
<td>0.111</td>
<td>-0.066</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0.1656</td>
<td>1.66</td>
<td>1.335</td>
<td>1.984</td>
<td>0.06</td>
<td>0.828</td>
<td>0.108</td>
<td>-0.021</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.1967</td>
<td>24.47</td>
<td>24.09</td>
<td>24.86</td>
<td>-0.01</td>
<td>0.034</td>
<td>0.029</td>
<td>-0.062</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0.1643</td>
<td>11.84</td>
<td>11.51</td>
<td>12.16</td>
<td>0.03</td>
<td>0.032</td>
<td>-0.006</td>
<td>-0.016</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0.2429</td>
<td>30.1</td>
<td>29.62</td>
<td>30.57</td>
<td>-0.02</td>
<td>0.07</td>
<td>-0.014</td>
<td>0.037</td>
</tr>
</tbody>
</table>

where

"Pos." position of each parameter in the parameter file

"eff1" and "eff2" effect number in the parameter file

"trt1" and "trt2" trait number in the parameter file (0 for residual)

"MCE" Monte Carlo Error

"Mean" posterior means

"HPD interval (95%)" 95% Highest Probability Density

"Effective sample size" at least > 10 is recommended. > 30 may be better.

"Median" median of Gibbs samples

"Mode" when the distribution of the samples is not normal, "Mean" and "Mode" could be different.

"Independent chain size" number of independent cycles of Gibbs samples

"PSD" Posterior Standard Deviation

"PSD interval (95%)" 95% Posterior Standard Deviation interval

"Geweke diagnostic"
ratio between first half and second half of the samples should be < 1.0, but it is not useful because it is < 1.0 most of the time.

"Autocorrelations"

autocorrelations between two lags. High correlation implies samples are not independent.

"Independent # batches"

Hint 1: when eff1, eff2, trt1, trt2 are all -1, the values presented are for thresholds (if THRIBBS1F90 is used).

Choose a graph for samples (= 1) or histogram (= 2); or exit (= 0)

1
positions
1 2 3 # choose from the position numbers 1 through 6

If the graph is stable (not increasing or decreasing), the convergence is met. All samples before that point should be discarded as burn-in.

print = 1; other graphs = 2; or stop = 0
2
Choose a graph for samples (= 1) or histogram (= 2); or exit (= 0)
2
Type position and # bins
1 20
The distribution should be usually normal (Mean = Mode = Median).
print = 1; other graphs = 2; or stop = 0

0

*** Log Marginal Density for Bayes Factor ***
after 900 burn-in
log(p) = -179448.742766031

This value could be used when calculating Bayes Factor and/or DIC.
Genomic programs

PREGSF90
The PREGSF90 program constructs a genomic relationship matrix G and a relationship matrix A for genotyped animals. The relationship matrix A based on the pedigree information in mixed model equations is replaced by matrix H, which combines the pedigree and genomic information. The main difference between A^{-1} and H^{-1} is the structure of $G^{-1} - A^{-1}_{22}$. Some of the options for PREGSF90 can be also used with BLUPF90, (AI)REMLF90, GIBBS1F90, GIBBS2F90, GIBBS3F90, THRGIBBS1F90, and BLUP90IOD2.

Input files

OPTION SNP_file <file>
This option invokes the genomic routine in the application program. The SNP file should contain:
Field 1 - animal ID with the same format as in pedigree file
Field 2 - genotypes with 0, 1, 2, and 5 (missing) or real values for gene content (or genotype probability)

0.12, ...

Two Fields (animal ID and SNP) need to be separated by at least one space, and Field 2 should have fixed format (i.e., all rows of genotypes should start at the same column number or position).

```
80   21101011021201101101101101211121112110100
8014 211101101511101120221110111511112101112110100
516  2110011022520221211012112111211111101
181  21110111112201102221221111101
```

The renumbered ID file for genotypes named as the genotype file name.XrefID is created by RENUMF90 (using the SNP file), containing sequential ID renumbers and the original ID, which must be in the same order as in the SNP file as follows:

```
1732 80
8474 8014
406 516
9441 181
```

The pedigree file from RENUMF90 looks like

```
1732 11010 10584 1 3 12 1 0 0 80
8474 8691 9908 1 3 12 1 0 0 8014
406 8691 9825 1 3 12 1 0 2 516
9441 8691 8829 1 3 12 1 0 0 181
```

Map file for SNP can be used as optional:

OPTION chrinfo <file>: read SNP map information from the file.
Field 1 – SNP number (sequential marker number)
Field 2 – chromosome number
Field 3 – physical location (position) in bp

Example:

```
1 1 1201
```
All the values should be integer. The SNP number corresponds to the index number of the SNP, in the sorted map by chromosome and the position. The first line in the file corresponds to the first SNP in the genotype file, and so on. You can optionally put the marker name in the 4th or later fields (can handle alphanumeric format). The map file is useful to check for Mendelian conflicts and HWE (with also OPTION sex_chr) and for POSTGSF90 (ssGWAS).

With other options, the program can read G or its inverse, A_{22} or its inverse, etc.

Output files

By default, PREGSF90 always create GimA_{22}i in binary format for use by later programs specifying OPTION readGimA_{22}i. With OPTION saveAscii, this file can be stored as ASCII format: i, j, \(G^{-1} - A_{22}^{-1} \).

"freqdata.count" contains allele frequencies in the original genotype file with the format: SNP number (related to the genotype file) and allele frequency as mentioned above.

"freqdata.count.after.clean" contains allele frequencies as used in calculations with the format: SNP number (related to the genotype file), allele frequency, and code of exclusion.

Exclusion codes:
1: Call Rate
2: MAF
3: Monomorphic
4: Excluded by request
5: Mendelian error
6: HWE
7: High Correlation with other(s) SNP

"Gen_call_rate" contains a list of animals excluded with call rate below the threshold.

"Gen_conflicts" contains a report of animals with Mendelian conflicts with their parents.

The program can store files such as G or its inverse, A_{22} or its inverse, or other reports from QC as specified by their respective OPTIONs.

Options for creation of genomic relationship Matrix (G)

The genomic relationship matrix G can be created in different ways.

OPTION whichG x

Specify how G is created.
The variable x can be
1: \(G = \frac{ZZ'}{k} \); VanRaden, 2008 (default)
2: \(G = \frac{ZDZ'}{n} \); Amin et al., 2007; Leuttenger et al., 2003; where \(D = \frac{1}{2p(1-p)} \)
3: As 2 with modification UAR from Yang et al 2010
OPTION whichfreq x
Specify what frequency is used to create G.
The variable x can be
0: read from file “freqdata” or from the other file using OPTION FreqFile
1: 0.5
2: current calculated from genotypes (default)

OPTION FreqFile <file>
Read allele frequencies from a file. For example, based on allele frequencies calculated by estfreq.f90
(VanRaden, 2009) with format:
Field 1 – SNP number (sequential marker number)
Field 2 – allele frequency as a real value from 0 to 1
Example:
1 0.525333
2 0.293667
3 0.448333
4 0.510667

where SNP corresponds to the index of SNP based on the same order that are in the genotype file.
If whichfreq is set to 0, the default file name is “freqdata”.

OPTION whichScale x
Specify how G is scaled.
The variable x can be
1: \[2 \sum_{i} p(1-p)\}; VanRaden 2008 (default)
2: \[\frac{tr(Z'Z)}{n}\}; Legarra 2009, Hayes 2009
3: correction; Gianola et al 2009

OPTION weightedG <file>
Read weights from a file to create weighted genomic relationship. Weighting \(Z^* = Z \sqrt{D} \Rightarrow G = Z^*Z^*\) = ZDZ'. Format:
Field 1 – weight
Example:
0.7837836E-01
0.4900770E-01
0.7538282
1.0
Each weight is corresponding to each SNP marker defied in the map file.
Weights can be extracted from output of the POSTGSF90 program.

OPTION maxsnp x
Set the maximum length of string to read marker data from a file. It is only necessary if greater than default (400,000).

Quality Control (QC) for G

By default the following QC can be run:
- MAF
- Call rate (SNPs and animals)
- Monomorphic
- Parent-progeny conflicts (SNPs and animals)

Parameters can be modified with the following options:

OPTION minfreq x
Ignore all SNP with MAF < x (default value = 0.05).

OPTION callrate x
Ignore SNP with call rates < x (number of calls / number of individuals with genotypes). The default value is 0.90.

OPTION callrateAnim x
Ignore genotypes with call rates < x (number of calls / number of SNPs). Default value is 0.90.

OPTION monomorphic x
Ignore monomorphic SNPs. Optional parameter x can be used to enable (1) or disable (0) the check, default value 1.

OPTION hwe x
Check departure of heterozygous from Hardy-Weinberg equilibrium. By default this QC is not run. The optional parameter x can be the maximum difference between observed and expected frequency (default value = 0.15) as used in Wiggans et al. (2009) in JDS.

OPTION high_correlation x y
Check for high correlated SNP. By default this QC is not run. The optional parameter x can be the maximum difference in allele frequency to check a pair of locus. If no value is set, 0.025 is used. Decrease this value to speed up the calculation. A pair of loci is considered highly correlated if all genotypes are the same (0-0, 1-1, 2-2) or the opposite (0-2, 1-1, 2-0) (Wiggans et al., 2009. JDS). The optional parameter y can be used to set a threshold to check the number of identical samples out of the number of genotypes (default values: x=0.025, y=0.995).

OPTION verify_parentage x
Verify parent-progeny Mendelian conflicts and write report to a file “Gen_conflicts”. The optional parameter x can be
0: no action
1: only detect
2: detect and search for an alternate parent; no change to any file. Not yet implemented
3: detect and eliminate progenies with conflicts (default)

OPTION exclusion_threshold x
Set the number of parent-progeny exclusions as percentage. All SNP are used to determine wrong relationships (default value = 2).
OPTION exclusion_threshold_snp x
Set the number of parent-progeny exclusions for each locus as percentage. A pair of genotyped animals is evaluated to exclude SNP from the analysis (default value = 10).

OPTION number_parent_progeny_evaluations x
Set the number of minimum pair of parent-progeny evaluations to exclude SNP due to parent-progeny exclusion (default value = 100).

OPTION outparent_progeny x
Create a full log file “Gen_conflicts_all” with all pairs of parent-progeny tested for Mendelian conflicts.

OPTION excludeCHR n1 n2 n3 ...
Exclude all SNP from chromosomes n1, n2, n3, ... A map file must be provided (see OPTION chrinfo).

OPTION sex_chr n
Set the chromosome number equal to or greater than n are not considered autosome. If this option is used, sex chromosomes will not be used for checking parent-progeny, Mendelian conflicts, and HWE. A map file must be provided (see OPTION chrinfo).

OPTION threshold_duplicate_samples x
Set the threshold to issue warning for possible duplicate samples if \(G(i,j) / \sqrt{G(i,i) * G(j,j)} > x \) (default value = 0.9).

OPTION threshold_diagonal_g x
Check for extremely large diagonals in the genomic relationship matrix. If optional x is present, the threshold will be set (default value = 1.6).

OPTION plotca
Plot first two principal components to look for stratification in the population.

OPTION extra_info_pca <file> col
Read the column col to plot with different colors for different classes from the file. The file should contain at least one variable with different classes for each genotyped individual, and the order should match the order of the genotype file. Variables could be alphanumeric and separated by one or more spaces.

**OPTION saveCleanSNPs **
Save clean genotype data with excluded SNP and animals based on the OPTIONS specified.

*_clean files are created:
- gt_clean
- gt_clean_XrefID

*_removed files are created.
- gt_SNPs_removed
- gt_Animals_removed

where “gt” is the genotype file.

OPTION no_quality_control
Turns off all quality control. It is useful to speed up computation when the QC was performed previously.
OPTION outcallrate
Print all call rate information for SNP and individuals. The files “callrate” for SNP and “callrate_a” for individuals are created.

Quality Control for Off-diagonal of A_{22} and G

OPTION thrWarnCorAG x
Set the threshold to issue warning if correlation between A_{22} and $G < x$ (default value = 0.5).

OPTION thrStopCorAG x
Set the threshold to stop the analysis if correlation between A_{22} and $G < x$ (default values = 0.3).

OPTION thrCorAG x
Set the threshold to calculate correlation between A_{22} and G for only $A_{22}, \geq x$ (default values = 0.02).

Options for H
The options includes different weights to create $G^{-1} - A_{22}^{-1}$ as
$$\tau(\alpha G + \beta A_{22} + \gamma I + \delta 11')^{-1} - \omega A_{22}^{-1}$$
where the parameters are to scale the genomic info to be compatible with the pedigree information, to make matrices invertible in the presence of clones, and to control bias. The defaults values are: tau (τ) = 1, alpha (α) = 0.95, beta (β) = 0.05, gamma (γ) = 0, delta (δ) = 0 and omega (ω) = 1. Options to change these defaults are specified with:

OPTION TauOmega tau omega
OPTION AlphaBeta alpha beta
OPTION GammaDelta gamma delta

OPTION tunedG x
Scale G based on A_{22}. The variable x can be:
0: no scaling
1: mean(diag(G))=1 and mean(offdiag(G))=0
2: mean(diag(G))=mean(diag(A_{22})) and mean(offdiag(G))=mean(offdiag(A_{22})) (default)
3: mean(G)=mean(A_{22})
4: rescale G using the first adjustment as in Powell et al. (2010) or Vitezica et al. (2011).

General control of PREGSF90

OPTION nthreads n
Specify number of threads to be used with MKL-OpenMP for creation and inversion of matrices.

OPTION nthreadsiod n
Specify number of threads to be used with MKL-OpenMP in BLUP90IOD for matrix-vector multiplications in the PCG algorithm.

OPTION graphics s
Allows to generate plots with GNUPLLOT. If optional parameter s is present, set the time in seconds to show the plot. Avoid using in batch programs!!!

OPTION msg x
Set the level of verbose; 0 minimal; 1 gives lots of diagnostics.
Save and Read options:

OPTION saveAscii
Save intermediate matrices (GimA22i, G, Gi, etc.) files as ASCII (default = binary).

OPTION saveHinv
Save H^{-1} in “Hinv.txt” (format: i, j, val with i, j, the index level for the additive genetic effect).

OPTION saveAinv
Save A^{-1} in “Ainv.txt” (format: i, j, val with i, j, the index level for the additive genetic effect).

The following options use the information of the original ID (alphanumeric) stored in the 10th column of the “renaddxx.ped” file created by RENUMF90.

OPTION saveHinvOrig
Save H^{-1} with original IDs

OPTION saveAinvOrig
Save A^{-1} with original IDs

OPTION saveDiagGOrig
Save diagonal of G in “DiagGOrig.txt” (format: id, val with id, original IDs).

OPTION saveGOrig
Save G in “G_Orig.txt” (format: id_i, id_j, val with id_i and id_j, the original IDs).

OPTION saveA22Orig
Save A_{22} in “A22_Orig.txt” (format: id_i, id_j, val with id_i and id_j, the original IDs).

OPTION readOrigId
Read information from “renaddxx.ped” file, original ID and possibly year of birth for its use in parent-progeny conflict. Only need unless the previous “save*Orig” is present.

OPTION savePLINK
Save genotypes in PLINK format files: toPLINK.ped and toPLINK.map.

Save and Read intermediate files:

OPTION readGimA22i <file>
Read $\tau G^{-1} - \omega A_{22}^{-1}$ from a file. This option can be used in analysis programs (BLUPF90, REMLF90, etc.) in order to use matrices stored in GimA22i file (default filename). In general, methods used to create and invert matrices in such programs do not use optimized version. For large number of genotyped animals, run first PREGSF90 and read stored matrices in analysis programs. The optional file can be used to specify the other file name or path. For example,

OPTION readGimA22i ../../pregsrun/GimA22i

Other intermediate matrices files can be stored for inspection or for use in BLUPF90 programs as user_file type of random effect. See tricks and REMLF90 for details.

Individual output options:

OPTION saveA22
Save A_{22} in “A22”.
OPTION saveA22Inverse
Save ωA_{22}^{-1} in “A22i”.

OPTION saveG all
If optional all is present, all intermediate matrices for G will be saved in separate files. If omitting all, only the final G will be saved in “G”.

OPTION saveGInverse
Save τG^{-1} in “Gi”.

OPTION saveGmA22
Save $G - A_{22}$ in “GmA22”. This option is obsolete.

OPTION readG <file>
Read G from “G” by default, or from user-supplied file.

OPTION readGInverse <file>
Read G^{-1} from “Gi” by default, or from user-supplied file. See the caution below.

OPTION readA22 <file>
Read A_{22} from “A22” by default, or from user-supplied file.

OPTION readA22Inverse <file>
Read A_{22}^{-1} from “A22i” by default, or from user-supplied file. See the caution below.

OPTION readGmA22 <file>
Read $G - A_{22}$ from “A22i” by default, or from user-supplied file. This option is obsolete.

Caution:
With the options readGInverse and readA22Inverse, the program applies τ to the loaded G^{-1} and ω to the loaded A_{22}^{-1} regardless of whether the matrices have been already scaled with τ or ω. In other words, the loaded matrix could be scaled twice if the user used τ or ω both in saving and reading the matrix. Be careful to use the scaling factors combined with the input/output options.

POSTGSF90
Basic options
The program calculates SNP effects using the ssGBLUP framework (Wang et al., 2012). The program needs OPTION chrinfo to calculate SNP effects. The following options for POSTGSF90 (ssGWAS) are available:

OPTION Manhattan_plot
Plot using GNUPLOT the Manhattan plot (SNP effects) for each trait and correlated effect.

OPTION Manhattan_plot_R
Plot the Manhattan plot (SNP effects) for each trait and correlated effects using R. TIF images are created: manplot_Sft1e2.tif (note: t1e2 corresponds to trait 1, effect 2). CAIRO packaged is required.

OPTION plotsnp n
Control the values of SNP effects to use in Manhattan plots
1: plot regular SNP effects: abs(val)
2: plot standardized SNP effects: abs(val/sd) (default)
OPTION SNP_moving_average n
Solutions for SNP effects will be by moving average of n adjacent SNPs.

OPTION windows_variance n
Calculate the variance explained by n adjacent SNPs.

OPTION windows_variance_mbp n
Calculate the variance explained by n Mb window of adjacent SNPs.

OPTION windows_variance_type n
Set windows type for variances calculations
1: moving windows
2: exclusive windows

OPTION which_weight x
Generate a weight variable to be used in the creation of a weighted genomic relationship matrix $G = ZDZ'$

1: scaled $w_i = \hat{u}_i^2 [2p_i(1 - p_i)] \times k$
2: scaled $w_i = \hat{u}_i^2 \times k$

where $k = n / \sum_{j=1}^{n} w_j$ as the scaling factor and n is the number of markers.

Output files for POSTGSF90:
“snp_sol” contains solutions of SNP and weights
1: trait
2: effect
3: SNP
4: Chromosome
5: Position
6: SNP solution
7: weight (can be used as the weight to calculate the weighted G matrix) #if OPTION windows_variance is used
8: variance explained by n adjacent SNP.

“chrsnp” contains data to create plot by GNUPLOT
1: trait
2: effect
3: values of SNP effects to use in Manhattan plots
4: SNP
5: Chromosome
6: Position

“chrsnpvar” contains data to create plot by GNUPLOT
1: trait
2: effect
3: variance explained by n adjacent SNP
4: SNP
“dgv” contains direct genomic values (DGV) and pedigree predictions (PP).

1: trait
2: effect
3: animal ID
4: \[DGV = - \sum_{j \neq i} g_{ij} \text{GEBV}_j / g_{ii} \] where \(g_{ij} \) is the elements in \(G^{-1} \). See Lourenco et al. (2015).
5: \[PP = - \sum_{j \neq i} a_{22}^{ij} \text{GEBV}_j / a_{22}^{ii} \] where \(a_{22}^{ij} \) is the elements in \(A_{22}^{-1} \). See Lourenco et al. (2015).

“snp_pred” contains gene frequencies + SNP effects. The file is needed for PREDF90 to indirectly calculate GEBV for animals based on the SNP effects i.e. \(\hat{a} = Z\hat{u} \).

Graphic control files:
Several files are created to generate graphics using either GNUPLOT or R.

File names rules
“Sft1e2.R”. The first letter indicates “S” for solutions of SNP and “V” for variance explained.
“t1e2” indicates that the file is for the trait 1 and the effect 2.

Filename extension
- xxx.gnuplot => GNUPLOT
- xxx.R => R programs
- xxx.tif => image

PREDF90
Predicts direct genomic value (DGV) for young animals based on only genotypes i.e. \(\hat{a} = Z\hat{u} \), where \(\hat{a} \) is DGV and \(\hat{u} \) is the SNP effects. The prediction is based on SNP effects obtained from POSTGSF90. For young animals that were not included in the previous analysis, DGV can be calculated using the “snp_pred” file from POSTGSF90. This program simply asks the user about the name of genotype file.

Input files:
This program automatically detects and read the following file.
“snp_pred”
- information about the random effect (number of traits + correlated effects)
- gene frequencies
- solutions of SNP effects

Snp_file_for_animals_to_predict
SNP file for animals to have DGV predicted. This file has the same format as used in PREGSf90 and
POSTGSf90.

Output file:

“SNP_predictions”
- ID, calling rate, and DGV

Constant parameters that cannot be changed by the users:

1. alpha - fraction of G used (default=0.95); affects scale of prediction
2. callrate - to be used later for discarding genotypes with poor quality (default=0.7)

Demonstration for genomic analysis

Preparation with RENUMF90

“renum.par” for RENUMF90

DATAFILE

phenotypes.txt

TRAITS

3

FIELDS_PASSED TO OUTPUT

WEIGHT(S)

RESIDUAL_VARIANCE # variances are from airemlf90 results

0.9038

EFFECT

1 cross alpha

EFFECT

2 cross alpha #animal

RANDOM

animal

FILE

pedigree

SNP_FILE

marker.geno.clean

(CO)VARIANCES

0.9951E-01

Run RENUMF90

RENUMF90 version 1.94

name of parameter file? renum.par

.......

Number of animals with records: 15800

Number of animals with genotypes: 1500

.......

Wrote renumbered data “renf90.dat”
"renf90.par" from RENUMF90

BLUPF90 parameter file created by RENF90
DATAFILE
renf90.dat
NUMBER_OF_TRAITS
 1
NUMBER_OF_EFFECTS
 2
OBSERVATION(S)
 1
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
 2 1 cross
 3 15800 cross
RANDOM_RESIDUAL VALUES
 0.9038
RANDOM_GROUP
 2
RANDOM_TYPE
add_animal
FILE
renadd02.ped
(CO)VARIANCES
 0.9951E-01
OPTION SNP_file marker.geno.clean

Analysis with BLUPF90
Run BLUPF90

name of parameter file? renf90.par

round 67 convergence= 1.259204136398044E-012
round 68 convergence= 9.025592858512443E-013
 68 iterations, convergence criterion= 9.025592858512443E-013
solutions stored in file: "solutions"

$a/postGSf90
name of parameter file? renf90.par

 postGS 1.11

Solutions read from file: "solutions"

Files for predictions by SNP effects in file: "snp_pred"

$head -5 snp_pred
3000 1 0 15800
0.751 0.382 0.569 0.680 0.184 0.298 0.392 0.380 0.597 0.352
0.514 0.717 0.464 0.502 0.639 0.773 0.364 0.645 0.566 0.514
Indirect computation of GEBV with PREDF90

Run PREDF90

PRED90 1.00
Predicts EBVs from genotypes based on results from single-step evaluation
name of genotype file?
marker.geno.clean
Number of SNP: 3000
Number of traits: 1
number of correlated traits: 1
3000 SNP
The genotype file contains 3000 SNP starting from position 7
8002 0.1186204
8014 -0.1033363
8016 0.1308713
8018 -0.1905423
8024 -0.3675095
8038 0.1939673
8041 -0.1284970
8063 -0.1314869
8065 -2.8898019E-02
Processed 1500 genotypes
Average calling rate: 1.00

$head -5 SNP_predictions
8002 1.00 0.1156
8014 1.00 -0.1007
8016 1.00 0.1276
8018 1.00 -0.1857
8024 1.00 -0.3582

PREDICTF90

This program is used to calculate adjusted \hat{y}, \hat{y}, and residuals using the same parameter file and
“solutions” as BLUPF90
Output files:
“yhat_residual”
Format: record #, adjusted \hat{y}, \hat{y}, residual
“bvs.dat”
The same format as “solutions” including (G)EBV.

BLUPF90 parameter file created by RENF90 and extended to work with PREDICTF90
DATAFILE
renf90.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
1
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
 2 1 cross
 3 15800 cross

RANDOM_RESIDUAL VALUES
 0.9038

RANDOM_GROUP
 2

RANDOM_TYPE
 add_animal

FILE
 renadd02.ped

(CO)VARIANCES
 0.9951E-01

OPTION SNP_file marker.geno.clean
OPTION include_effects 2 #phenotypes will be corrected for all effects but effect number 2 (animal)

Run PREDICTF90

name of parameter file?
 pred.par

*** include effects to predict Yhat n, effects 1 2

 PREDICTF90 1.3
 .
 .
 .
 Animal Effect: 2
 y(s), yhat(s), residual(s) in written in "yhat_residual" file

Trait: 1 15800
 mean Y 4.03501847757689 var Y 83.715229825781
 mean Yhat 4.03446550045574 var Yhat 32.2906703880498
 cov (Y,Yhat) 47.5001153783459 corr (Y,Yhat) 0.913595421845247

wrote bvs for animals in data in file "bvs.dat"

Hints:
1) The effect that goes into OPTION include_effects (e.g., OPTION include_effects 2) is included in the Yhat. In this small example with 1 trait, the format of yhat_residual is:
 Animal_id, Y, Yhat, residual
 where:
$Y = \text{Phenotype} - \mu$

$\text{Yhat} = \text{EBV (or animal effect)}$

$\text{Residual} = \text{Phenotype} - \text{EBV}$

2) When 2 traits are used in the model, the format of yhat_residual is:

Animal_id, Y1, Y2, Yhat1, Yhat2, residual1, residual2

3) corr (Y, Yhat) should not be used as a measure of predictivity because it uses adjusted phenotypes and EBVs from the same dataset. Usually, predictivity requires phenotypes adjusted for fixed effects in the complete data (benchmark) and (G)EBVs calculated from the reduced data (without records for validation animals). The regular predictivity measure is: corr[$Y_{\text{from_PREDICTf90}}, (G)\text{EBV_reduced}$]

For this small example with 1 trait, a general Linux code is:

$\text{awk}'\{print$1,$2\}' ebv_complete/yhat_residual | sort +0 -1 > $Y

$\text{awk}'\{if($2==2)print$3,$4\}' ebv_reduced/solutions | sort +0 -1 > $ebv.temp

$\text{awk}'\{if($2==2)print$3,$4\}' gebv_reduced/solutions | sort +0 -1 > $gebv.temp

$\text{join} -1 +1 -2 +1 Y\ validation_animals > file1.temp

$\text{join} -1 +1 -2 +1 file1.temp $ebv.temp > file2.temp

$\text{join} -1 +1 -2 +1 file2.temp $gebv.temp > $Y\ ebv_gebv$

#obs: validation_animals is a file that contains sorted ids for validation animals

An R code to calculate correlations is:

pred <- read.table("$Y\ ebv_gebv", header=F)

$ebv_predictivity <- \text{cor(pred[,2], pred[,3])}; \text{ebv_predictivity}$

$gebv_predictivity <- \text{cor(pred[,2], pred[,4])}; \text{gebv_predictivity}$
Examples for parameter files

Sire model without A matrix

DATAFILE
test.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
3
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
1 2 cross
2 3 cross
RANDOM_RESIDUAL VALUES
10
RANDOM_GROUP
2
RANDOM_TYPE
diagonal
FILE

(CO)VARIANCES
1

Sire model with A matrix

DATAFILE
test.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
3
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
1 2 cross
2 3 cross
RANDOM_RESIDUAL VALUES
10
RANDOM_GROUP
2
RANDOM_TYPE
add_sire
FILE
sire.ped
(CO)VARIANCES
1
Multiple (2) trait sire model
DATAFILE
test.dat
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
3 4
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
1 1 2 cross
2 2 3 cross
RANDOM_RESIDUAL VALUES
10 1
1 5
RANDOM_GROUP
2
RANDOM_TYPE
add_sire
FILE
sire.ped
(CO)VARIANCES
1 0.1
0.1 1

Animal model
DATAFILE
test.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
3
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
1 2 cross
5 10 cross
RANDOM_RESIDUAL VALUES
10
RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
animal.ped
(CO)VARIANCES
1
Multiple trait animal model

Example 1: 2 trait animal model
DATAFILE
test.dat
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
3 4
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
1 1 2 cross
5 5 10 cross
RANDOM_RESIDUAL VALUES
10 1
1 5
RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
animal.ped
(CO)VARIANCES
1 0.1
0.1 1

Example 2: different model for each trait
DATAFILE
test.dat
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
3
OBSERVATION(S)
3 4
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
1 2 2 cross
5 5 10 cross
6 7 30 cross
RANDOM_RESIDUAL VALUES
10 1
1 5
RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
animal.ped
(CO)VARIANCES
1 0.1
0.1 1
RANDOM_GROUP
3
RANDOM_TYPE
diagonal
FILE

(CO)VARIANCES
1 0
0 1

Animal model with UPG
DATAFILE
test.dat
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
3 4
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
1 1 2 cross
5 5 13 cross
RANDOM_RESIDUAL VALUES
10 1
1 5
RANDOM_GROUP
2
RANDOM_TYPE
add_an_upg
FILE
animal.ped
(CO)VARIANCES
1 0.1
0.1 1

Animal model with inbreeding
DATAFILE
test.dat
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
3 4
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
1 1 2 cross
5 5 13 cross
RANDOM_RESIDUAL VALUES
10 1
1 5
RANDOM_GROUP
2
RANDOM_TYPE
add_an_upginb
FILE
animal.ped
(CO)VARIANCES
1 0.1
0.1 1

Repeatability model 1
DATAFILE
test.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
3
OBSERVATION(S)
3
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
1 2 cross
5 5 cross
5 10 cross
RANDOM_RESIDUAL VALUES
10
RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
animal.ped
(CO)VARIANCES
1
RANDOM_GROUP
3
RANDOM_TYPE
diagonal
FILE
(CO)VARIANCES
1

Repeatability model 2
DATAFILE
test.dat
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
3
OBSERVATION(S)
3 4
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
1 1 2 cross
5 5 5 cross
5 5 10 cross
RANDOM_RESIDUAL VALUES
10 1
1 5
RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
animal.ped
(CO)VARIANCES
1 0.1
0.1 1
RANDOM_GROUP
3
RANDOM_TYPE
diagonal
FILE
(CO)VARIANCES
1 0.1
0.1 1

Maternal effect model
DATAFILE
maternal.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
4
OBSERVATION(S)
4
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
3 946 cross
1 22473 cross
2 22473 cross
2 22473 cross
RANDOM_RESIDUAL VALUES
1050
RANDOM_GROUP
2 3
RANDOM_TYPE
add_animal
FILE
maternal.ped
(CO)VARIANCES
450 -100
-100 340
RANDOM_GROUP
4
RANDOM_TYPE
diagonal
FILE

(CO)VARIANCES
370

For (THR)GIBBSxF90
Example 1
DATAFILE
test.dat
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
5
OBSERVATION(S)
3 4
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
1 0 2 cross
0 2 2 cross
5 5 10 cross
6 0 30 cross
0 7 20 cross
RANDOM_RESIDUAL VALUES
10 1
1 5
RANDOM_GROUP
3
RANDOM_TYPE
add_animal
FILE
animal.ped
(CO)VARIANCES
1 0.1
0.1 1
RANDOM_GROUP
4
RANDOM_TYPE
diagonal
FILE

(CO)VARIANCES
1 0
0 0
RANDOM_GROUP
5
RANDOM_TYPE
diagonal
FILE

(CO)VARIANCES
0 0
0 1

Example 2
DATAFILE
test.dat
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
5
OBSERVATION(S)
3 4
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
1 0 2 cross
0 2 2 cross
5 5 10 cross
6 0 30 cross
0 7 30 cross
RANDOM_RESIDUAL VALUES
10 1
1 5
RANDOM_GROUP
3
RANDOM_TYPE
add_animal
FILE
animal.ped
(CO)VARIANCES
1 0.1
0.1 1
RANDOM_GROUP
4 5
RANDOM_TYPE
diagonal
FILE

(CO)VARIANCES
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

Dominance model
DATAFILE
dom.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
4
OBSERVATION(S)
3
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
1 1 cross
4 1 cov
2 30001 cross
5 10412 cross
RANDOM_RESIDUAL VALUES
100
RANDOM_GROUP
3
RANDOM_TYPE
add_an_upginb
FILE
add.ped
(CO)VARIANCES
10
RANDOM_GROUP
4
RANDOM_TYPE
par_dom
FILE
dom.ped
(CO)VARIANCES
2

Random regression model
Example 1
DATAFILE
data_score
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
10
OBSERVATION(S)
9
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
1 788 cross
2 32 cross
5 1 cov
6 1 cov
3 15097 cross
5 15097 cov 3
6 15097 cov 3
3 81883 cross
5 81883 cov 3
6 81883 cov 3

RANDOM_RESIDUAL VALUES
100
RANDOM_GROUP
5 6 7
RANDOM_TYPE
diagonal
FILE

(CO)VARIANCES
100 1 1
1 10 1
1 1 10
RANDOM_GROUP
8 9 10
RANDOM_TYPE
add_an_upg
FILE
ped_score
(CO)VARIANCES
100 1 1
1 10 1
1 1 10

Example 2
DATAFILE
test.dat1
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
9
OBSERVATION(S)
3 4
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
1 1 2 cross
6 6 1 cov
7 7 1 cov
2 2 5 cross
6 6 5 cov 2 2
7 7 5 cov 2 2
2 2 10 cross
6 6 10 cov 2 2
7 7 10 cov 2 2
RANDOM_RESIDUAL VALUES
10 1
1 5
RANDOM_GROUP
4 5 6
RANDOM_TYPE
diagonal
FILE

(CO)VARIANCES
1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 1

RANDOM_GROUP
7 8 9
RANDOM_TYPE
add_animal
FILE
animal.ped

(CO)VARIANCES
1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 1

Example 3
DATAFILE
test.dat2
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
10
OBSERVATION(S)
3 4
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
1 1 2 cross
6 6 1 cov
7 7 1 cov
8 8 1 cov
6 6 5 cov 2 2
7 7 5 cov 2 2
8 8 5 cov 2 2
6 6 10 cov 2 2
7 7 10 cov 2 2
8 8 10 cov 2 2
RANDOM_RESIDUAL VALUES
10 1
1 5
RANDOM_GROUP
5 6 7
RANDOM_TYPE
diagonal
FILE

(CO)VARIANCES
1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 1
RANDOM_GROUP
8 9 10
RANDOM_TYPE
add_animal
FILE
animal.ped
(CO)VARIANCES
1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 1

Random regression model with heterogeneous residual variances
using airemlf90

Example 1: with intercept
DATAFILE
test.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
9
OBSERVATION(S)
3
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
1 2 cross
6 1 cov
7 1 cov
5 5 cross
6 5 cov 5
7 5 cov 5
5 10 cross
6 10 cov 5
7 10 cov 5
RANDOM_RESIDUAL VALUES
10
RANDOM_GROUP
4 5 6
RANDOM_TYPE
diagonal
FILE

(CO)VARIANCES
1 0.1 0.1
0.1 1 0.1
0.1 0.1 1
RANDOM_GROUP
7 8 9
RANDOM_TYPE
add_animal
FILE
animal.ped
(CO)VARIANCES
1 0.1 0.1
0.1 1 0.1
0.1 0.1 1
OPTION hetres_pos 6 7
OPTION hetres_pol 4.0 1.0 0.1

Example 2: with no intercept
DATAFILE
test.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
7
OBSERVATION(S)
3
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
1 2 cross
6 1 cov
7 1 cov
6 5 cov 5
7 5 cov 5
6 10 cov 5
7 10 cov 5
RANDOM_RESIDUAL VALUES
10
RANDOM_GROUP
4 5
RANDOM_TYPE
diagonal
FILE

(CO)VARIANCES
1 0.1
0.1 1
RANDOM_GROUP
6 7
RANDOM_TYPE
add_animal
FILE
animal.ped
(CO)VARIANCES
1 0.1
0.1 1
OPTION hetres_pos 6 7
OPTION hetres_pol 1.0 0.1

using GIBBS3F90
DATAFILE
test.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
9
OBSERVATION(S)
3
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
1 2 cross
6 1 cov
7 1 cov
5 5 cross
6 5 cov 5
7 5 cov 5
5 10 cross
6 10 cov 5
7 10 cov 5
RANDOM_RESIDUAL VALUES
10
RANDOM_GROUP
4 5 6
RANDOM_TYPE
диагональ
FILE

(CО)VARIANCES
1 0.1 0.1
0.1 1 0.1
0.1 0.1 1
RANDOM_GROUP
7 8 9
RANDOM_TYPE
add_animal
FILE
animal.ped
(CО)VARIANCES
1 0.1 0.1
0.1 1 0.1
0.1 0.1 1
OPTION hetres_int 8 5

Competitive model
DATAFILE
competition.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
19
OBSERVATION(S)
24
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
2 88 cross
3 362 cross
21 2409 cross
4 8004 cross
22 0 cov 5
22 0 cov 6
22 0 cov 7
22 0 cov 8
22 0 cov 9
22 0 cov 10
22 0 cov 11
22 0 cov 12
22 0 cov 13
22 0 cov 14
22 0 cov 15
22 0 cov 16
22 0 cov 17
22 0 cov 18
22 8004 cov 19
RANDOM_RESIDUAL VALUES
1225.8
RANDOM_GROUP
4 5
RANDOM_TYPE
add_animal
FILE
renadd04.ped
(CO)VARIANCES
267.03 25.313
25.313 104.44
RANDOM_GROUP
2
RANDOM_TYPE
diagonal
FILE

(CO)VARIANCES
89.187
RANDOM_GROUP
3
RANDOM_TYPE
diagonal
FILE

(CO)VARIANCES
167.34
Appendix A (single trait animal model)

Single trait “USDA-type” animal model. This example is from the documentation of program JAA20.

\[y_{ijkl} = hys_i + hs_{ij} + p_k + a_k + e_{ijkl} \]

where

- \(y_{ijkl} \) - production yield
- \(hys_i \) - fixed herd year season
- \(hs_{ij} \) - random herd x sire interaction
- \(p_k \) - random permanent environment
- \(a_k \) - random animal

and

- \(\text{var}(hs_{ij}) = 0.05, \text{var}(p_k) = 0.1, \text{var}(a_k) = 0.5, \text{var}(e_{ijkl}) = 1 \)

Data file (ic)
Format: animal/hys/p/hs/y

1 1 1 1 10
2 1 2 1 11
3 2 3 2 15
4 2 4 3 13
5 3 5 4 14
6 3 6 3 12

Relationship file (is)
Format: animal/dam/sire/code

1 12 8 2
2 1 8 1
3 2 9 1
4 7 10 1
5 12 11 2
6 1 10 1
7 13 14 3
8 5 11 1
9 13 8 2
10 7 14 2
11 13 14 3

Parameter file
Example of single-trait animal model with one fixed effect
DATAFILE
ic
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
4
OBSERVATION(S)
5
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
2 3 cross
3 6 cross
4 4 cross
1 14 cross
RANDOM_RESIDUAL VALUES
1
RANDOM_GROUP
2
RANDOM_TYPE
diagonal
FILE

(CO)VARIANCES
.1
RANDOM_GROUP
3
RANDOM_TYPE
diagonal
FILE

(CO)VARIANCES
.05
RANDOM_GROUP
4
RANDOM_TYPE
add_an_upg
FILE
is
(CO)VARIANCES
.5

Execution
name of parameter file? exiap

BLUPF90 1.00

Parameter file: exiap
Data file: ic
Number of Traits 1
Number of Effects 4
Position of Observations 5
Position of Weight (1) 0
Value of Missing Trait/Observation 0

EFFECTS
type position (2) levels [positions for nested]
1 cross-classified 2 3
2 cross-classified 3 6
3 cross-classified 4 4
4 cross-classified 1 14
Residual (co)variance Matrix

1.000

Random Effect 2
Type of Random Effect: diagonal
trait effect (CO)VARIANCES
1 2 0.100

Random Effect 3
Type of Random Effect: diagonal
trait effect (CO)VARIANCES
1 3 0.050

Random Effect 4
Type of Random Effect: additive animal
Pedigree File: is
trait effect (CO)VARIANCES
1 4 0.500

REMARKS
(1) Weight position 0 means no weights utilized
(2) Effect positions of 0 for some effects and traits means that such effects are missing for specified traits

Data record length = 5
original G
0.10
inverted G
10.00
original G
0.05
inverted G
20.00
original G
0.50
inverted G
2.00
solutions stored in file: "solutions"

<table>
<thead>
<tr>
<th>trait/effect level</th>
<th>solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1</td>
<td>11.8589</td>
</tr>
<tr>
<td>1 1 2</td>
<td>13.7539</td>
</tr>
<tr>
<td>1 1 3</td>
<td>14.7086</td>
</tr>
<tr>
<td>1 2 1</td>
<td>-0.0088</td>
</tr>
<tr>
<td>1 2 2</td>
<td>0.0088</td>
</tr>
<tr>
<td>1 2 3</td>
<td>-0.0159</td>
</tr>
<tr>
<td>1 2 4</td>
<td>0.0159</td>
</tr>
<tr>
<td>1 2 5</td>
<td>0.0321</td>
</tr>
<tr>
<td>1 2 6</td>
<td>-0.0321</td>
</tr>
<tr>
<td>1 3 1</td>
<td>0.0000</td>
</tr>
<tr>
<td>1 3 2</td>
<td>-0.0079</td>
</tr>
<tr>
<td>1 3 3</td>
<td>-0.0081</td>
</tr>
<tr>
<td>1 3 4</td>
<td>0.0161</td>
</tr>
<tr>
<td>1 4 1</td>
<td>-1.7627</td>
</tr>
<tr>
<td>1 4 2</td>
<td>-0.9553</td>
</tr>
<tr>
<td>1 4 3</td>
<td>1.4288</td>
</tr>
<tr>
<td>1 4 4</td>
<td>-0.9206</td>
</tr>
<tr>
<td>1 4 5</td>
<td>-1.0781</td>
</tr>
<tr>
<td>1 4 6</td>
<td>-2.3474</td>
</tr>
<tr>
<td>1 4 7</td>
<td>0.8511</td>
</tr>
<tr>
<td>1 4 8</td>
<td>-0.1521</td>
</tr>
<tr>
<td>1 4 9</td>
<td>3.8926</td>
</tr>
<tr>
<td>1 4 10</td>
<td>-2.7717</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| 1 | 4 | 11 | 0.8528
| 1 | 4 | 12 | -3.1911
| 1 | 4 | 13 | 7.9976
| 1 | 4 | 14 | -6.3340

Appendix B (multiple trait sire model)

Example of multiple trait sire model (from L.R. Schaeffer notes of 1985).

Models

\[
\begin{align*}
\text{Trait 1: } & y_{1i} = h_i + s_{1j} + e_{1ijk} \\
\text{Trait 2: } & y_{2i} = \mu + s_{2j} + e_{2jk}
\end{align*}
\]

where

- \(h\) - fixed herd
- \(s\) - random sire

and

\[
\text{var}(s) = A[8 \ 6; 6 \ 17], \ \text{var}(e) = I[10 \ 10; 10 \ 20]
\]

Data file (lrsdat)
Format: h/\mu/s/y_1/y_2
1 0 1 3 .4 0
2 0 2 1 .3 0
1 1 3 .8 50 .3
2 1 4 4 .5 52 .6
0 1 5 0 55 .0

Pedigree file (lrsrel)
Format: bull/sire/MGS
1 3 0
2 0 5
3 0 0
4 0 0
5 0 0

Parameter file (lrsex)
Example of two trait sire model with unequal models
DATAFILE
lrsdat
NUMBER_OF_TRAITS
2
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
4 5
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
1 2 2 cross
3 3 5 cross
RANDOM_RESIDUAL VALUES
10 10
10 20
RANDOM_GROUP
2
RANDOM_TYPE
add_sire
FILE
lrsrel
(CO)VARIANCES
8 6
6 17

Execution
name of parameter file? lrsex

BLUPF90 1.00

Parameter file: lrsex
Data file: lrsdat
Number of Traits 2
Number of Effects 2
Position of Observations 4 5
Position of Weight (1) 0
Value of Missing Trait/Observation 0

EFFECTS
type position (2) levels [positions for nested]
1 cross-classified 1 2 2
2 cross-classified 3 3 5

Residual (co)variance Matrix
10.000 10.000
10.000 20.000

Random Effect 1
Type of Random Effect: additive sire
Pedigree File: lrsrel
trait effect (CO)VARIANCES
1 2 8.000 6.000
2 2 6.000 17.000

REMARKS
(1) Weight position 0 means no weights utilized
(2) Effect positions of 0 for some effects and traits means that such
 effects are missing for specified traits

Data record length = 5
original G
8.00 6.00
6.00 17.00
inverted G
0.17 -0.06
-0.06 0.08

solutions stored in file: "solutions"
<table>
<thead>
<tr>
<th>trait/effect level</th>
<th>solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1</td>
<td>2.3877</td>
</tr>
<tr>
<td>2 1 1</td>
<td>52.4449</td>
</tr>
<tr>
<td>1 1 2</td>
<td>3.2180</td>
</tr>
<tr>
<td>2 1 2</td>
<td>0.0000</td>
</tr>
<tr>
<td>1 2 1</td>
<td>0.2243</td>
</tr>
<tr>
<td>2 2 1</td>
<td>-0.0210</td>
</tr>
<tr>
<td>1 2 2</td>
<td>-0.8217</td>
</tr>
<tr>
<td>2 2 2</td>
<td>-0.3866</td>
</tr>
<tr>
<td>1 2 3</td>
<td>-0.4969</td>
</tr>
<tr>
<td>2 2 3</td>
<td>-0.7512</td>
</tr>
<tr>
<td>1 2 4</td>
<td>0.6178</td>
</tr>
<tr>
<td>2 2 4</td>
<td>-0.0769</td>
</tr>
<tr>
<td>1 2 5</td>
<td>0.2217</td>
</tr>
<tr>
<td>2 2 5</td>
<td>1.0851</td>
</tr>
</tbody>
</table>
Appendix C (test-day model)

This test-day model example comes from the paper of Schaeffer and Dekkers (WCGALP94 18:443).

Model

\[y_{ijkl} = h_i + \beta_1 X_{1j} + \beta_2 X_{2j} + a_k + \gamma_1 k X_{1j} + \gamma_2 k X_{2j} + e_{ijkl} \]

where

- \(y_{ijkl} \) - yield of test day
- \(h_i \) - test day effect
- \(X_{1j} \) - days in milk
- \(X_{2j} \) - log(days in milk)
- \(\beta_1, \beta_2 \) - fixed regressions
- \(a_k \) - random animal
- \(\gamma_1 k, \gamma_2 k \) - random regressions for each animal

and

\[\text{var}(e_{ijkl}) = 1; \text{var}(a_k, \gamma_1 k, \gamma_2 k) = [2.25, 4, -0.7; 4, 1375, 12; -0.7, 12, 94] \]

Data file (lrsrrdat)

Format: h/a/X_1/X_2/y

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>73</td>
<td>1.42985</td>
<td>26</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>34</td>
<td>2.19395</td>
<td>29</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>8</td>
<td>3.64087</td>
<td>37</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>123</td>
<td>0.908127</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>84</td>
<td>1.28949</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>58</td>
<td>1.65987</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
<td>4.11087</td>
<td>44</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>178</td>
<td>0.538528</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>139</td>
<td>0.785838</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>113</td>
<td>0.992924</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>60</td>
<td>1.62597</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>184</td>
<td>0.505376</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>158</td>
<td>0.657717</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>105</td>
<td>1.06635</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>1</td>
<td>3.08125</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>218</td>
<td>0.335817</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>165</td>
<td>0.614366</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>74</td>
<td>1.41625</td>
<td>23</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>31</td>
<td>2.28632</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>268</td>
<td>0.129325</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>215</td>
<td>0.349674</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>124</td>
<td>0.90003</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>81</td>
<td>1.32586</td>
<td>22</td>
</tr>
</tbody>
</table>

Relationship file (lrsrrrel)

Format: animal/sire/dam

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>1</td>
</tr>
</tbody>
</table>
Parameter file (exlrsrr)
Example of single-trait random-regression model
DATAFILE
lrsrrdat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
6
OBSERVATION(S)
5
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
1 6 cross
3 1 cov
4 1 cov
2 11 cross
3 11 cov 2
4 11 cov 2

RANDOM_RESIDUAL VALUES
1

RANDOM_GROUP
4 5 6

RANDOM_TYPE
add_animal

FILE
lrsrrrel

(CO)VARIANCES
.447906 -0.001334 0.003506
-0.001334 0.000732 -0.000103
0.003506 -0.000103 .010678

Execution
name of parameter file?exlrsrr

BLUPF90 1.00

Parameter file: exlrsrr
Data file: lrsrrdat
Number of Traits 1
Number of Effects 6
Position of Observations 5
Position of Weight (1) 0
Value of Missing Trait/Observation 0

EFFECTS
type position (2) levels [positions for nested]
1 cross-classified 1 6
2 covariable 3 1
3 covariable 4 1
4 cross-classified 2 11
5 covariable 3 11 2
6 covariable 4 11 2

Residual (co)variance Matrix
1.000
correlated random effects 4 5 6
Type of Random Effect: additive animal
Pedigree File: lrsrrrel
trait effect (CO)VARIANCES
1 4 0.448 -0.001 0.004
1 5 -0.001 0.001 0.000
1 6 0.004 0.000 0.011

REMARKS
(1) Weight position 0 means no weights utilized
(2) Effect positions of 0 for some effects and traits means that such
 effects are missing for specified traits

Data record length = 5
original G
0.45 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.01
inverted G
2.25 4.00 -0.70
4.001375.09 11.95
-0.70 11.95 94.00
solutions stored in file: "solutions"

trait/effect level solution
1 1 1 19.9496
1 1 2 20.3729
1 1 3 20.6095
1 1 4 19.7278
1 1 5 18.6035
1 1 6 17.8500
1 2 1 -0.0498
1 3 1 5.2912
1 4 1 -0.4430
1 4 2 0.2704
1 4 3 -0.7288
1 4 4 1.1019
1 4 5 -0.1626
1 4 6 -0.4828
1 4 7 -0.0988
1 4 8 0.4574
1 4 9 -0.6288
1 4 10 0.4574
1 4 11 -0.1872
1 5 1 0.0369
1 5 2 -0.0661
1 5 3 0.0068
1 5 4 -0.0054
1 5 5 0.0069
1 5 6 0.0167
1 5 7 0.0133
1 5 8 -0.0238
1 5 9 0.0350
<table>
<thead>
<tr>
<th>1</th>
<th>5</th>
<th>10</th>
<th>-0.0238</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>11</td>
<td>-0.0008</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>1</td>
<td>-0.0370</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>2</td>
<td>0.0325</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>3</td>
<td>-0.0479</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>4</td>
<td>0.0767</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>5</td>
<td>-0.0149</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
<td>-0.0377</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>7</td>
<td>-0.0103</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>8</td>
<td>0.0364</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>9</td>
<td>-0.0480</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>10</td>
<td>0.0364</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>11</td>
<td>-0.0145</td>
</tr>
</tbody>
</table>
Appendix D (multibreed maternal effect model)

This model was used for studies on multibreed evaluation in beef cattle. It is provided as an example of a model with maternal effect and different models per trait.

Model (in concise form, with most indices omitted)

\[
\begin{align*}
y_1 &= c_{g_1} + bt + mbt + a + M + e \\
y_2 &= c_{g_2} + bt + mbt + a + M + pe + e \\
y_3 &= c_{g_3} + bt + mbt + a + e
\end{align*}
\]

where

- \(y_1, y_2, y_3\) - birth weight, weaning weight, and gain
- \(c_{g_1}, c_{g_2}, c_{g_3}\) - contemporary groups separate for each trait
- \(bt\) - breed type
- \(mbt\) - maternal breed type
- \(a\) - additive effect
- \(m\) - maternal effect
- \(pe\) - permanent environmental effect of the dam

Data file (data.out)
Format:
1. contemporary group for trait 1
2. contemporary group for trait 2
3. contemporary group for trait 3
4. animal breed type
5. maternal breed type
6. animal id
7. dam id
8. birth weight
9. weaning weight
10. gain

Relationship file (pedi.outok)
Format:
- animal
- sire or unknown parent group
- dam or unknown parent group
- “1 + number of missing parents”

Parameter file (exlrsrr)
DATAFILE
```
data.out
NUMBER_OF_TRAITS
3
NUMBER_OF_EFFECTS
6
OBSERVATION(S)
8 9 10
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
1 2 3   133085 cross
4 4 4   181 cross
5 5 0   165 cross
6 6 6   1724112 cross
7 7 0   1724112 cross
0 7 0   1724112 cross

RANDOM_RESIDUAL VALUES
26.3  40.7  20.3
40.7  1312.9  141.9
20.3  141.9  1246.3

RANDOM_GROUP
4 5

RANDOM_TYPE
cross
pedi.outok

(CO)VARIANCES
22.9  36.3  18.6  -4.6  0.0  0.0
36.6  500.2 110.8  0.0  -91.6  0.0
18.6  110.8 313.0  0.0  0.0  0.0
-4.6  0.0  0.0  10.1  0.0  0.0
0.0  -91.6  0.0  0.0  419.1  0.0
0.0  0.0  0.0  0.0  0.0  0.0

RANDOM_GROUP
2
diagonal

FILE

(CO)VARIANCES
0.263  0.0  0.0
0.0   13.129  0.0
0.0   0.0    12.463

RANDOM_GROUP
3
diagonal

FILE
```
(CO)VARIANCES
0.263 0.0 0.0
0.0 13.129 0.0
0.0 0.0 0.0
RANDOM_GROUP
6
RANDOM_TYPE
diagonal
FILE

(OC)VARIANCES
0.0 0.0 0.0
0.0 45.5 0.0
0.0 0.0 0.0
Appendix E (random regression model)

A single-trait random regression model for test-day milk is using cubic Legendre polynomials.

Model

\[
\begin{align*}
 \text{func} & \\
 y_{ijkl} &= \text{hym}_{ij} + \sum_{m=1}^{4} \alpha_m(l) \ h_{im} + \\
 & \sum_{m=1}^{4} \alpha_m(l) \ u_{km} + \\
 & \sum_{m=1}^{4} \alpha_m(l) \ p_{im} + e_{ijkl}
\end{align*}
\]

where

- \(y_{ijkl} \) - test day milk
- \(\text{hym}_{ij} \) - hear-year-test for herd i and year-test j
- \(h_i \) - effects of herd i
- \(\alpha_m(l) \) - value of m-th Legendre polynomial at point corresponding to DIM=l
- \(u \) - additive effects
- \(pe \) - permanent environmental effects

Data file (datarr)
Format:
1. herd
2. hear-year-test
3-6. values of Legendre polynomials
7. weight for residuals: 100/\(\text{var}(e_{ijkl}) \)
8. test day
9. animal

Relationship file (pedirr)
Format:
- animal
- sire
- dam

Parameter file (exrr3)
DATAFILE
dataarr
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
13
OBSERVATION(S)
8
WEIGHT(S)
7
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT
2 3726 cross #herd-year-test
3 84 cov 1 #herd
4 84 cov 1
5 84 cov 1
6 84 cov 1
3 21874 cov 9 additive
4 21874 cov 9
5 21874 cov 9
6 21874 cov 9
3 21874 cov 9 pe
4 21874 cov 9
5 21874 cov 9
6 21874 cov 9
RANDOM_RESIDUAL VALUES
100
RANDOM_GROUP
6 7 8 9
RANDOM_TYPE
add_animal
FILE
pedirr
(CO)VARIANCES
(4 x 4 matrix)
RANDOM_GROUP
10 11 12 13
RANDOM_TYPE
diagonal
FILE
(CO)VARIANCES
(4 x 4 matrix)
Appendix F (terminal cross model)

A terminal cross model by Fernando et al. and Lo et al.

breed A: \[ya = cga + ua + ea \]
breed B: \[yb = cgb + ub + eb \]
cross: \[yab = cgab + uaab + ubab + eab \]

Data file (data_cross)
1. cg A (85 levels)
2. cg B (110 levels)
3. cg crossbred (87 levels)
4. animal - breed A (2400 animals) or parent from breed A
5. animal - breed B (3000 animals) or parent from breed B
6. ya
7. yb
8. yc

Pedigree files: pedig_A for breed A and pedig_B for breed B

Parameter file
Example of a terminal-cross model
DATAFILE
data-cross
NUMBER_OF_TRAITS
3
NUMBER_OF_EFFECTS
3
OBSERVATION(S)
6 7 8
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
1 2 3 110 cross
4 0 4 2400 cross
0 5 5 3000 cross
RANDOM_RESIDUAL VALUES
100 0 0
0 100 0
0 0 100
RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
pedig_A
(CO)VARIANCES
(3 x 3 matrix)
RANDOM_GROUP
3
RANDOM_TYPE
add_animal
FILE
pedig_B
(CO)VARIANCES
(3 x 3 matrix)
Appendix G (competitive model)

Example of a competitive model (a la Muir and Schinkel)

\[y = c_g + a + c_1 + c_2 + \ldots + c_5 + e \]

\(c_i \) is the effect of the \(i \)-th competitor; assumed pen size of up to 6.

Datafile (data_comp)
1. \(y \)
2. \(c_g \) (max 120)
3. animal (max 3000)
4. competitor 1
5. \(c_2 \)
 ...
8. \(c_5 \)

If pen size is less than 6, unused fields set to 0.

Parameter file

```
# Example of a competitive model
DATAFILE
data_comp
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
7
OBSERVATION(S)
1
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT [EFFECT NESTED]
2 120 cross
3 3000 cross
4 0 cross
5 0 cross
6 0 cross
7 0 cross
8 3000 cross

RANDOM_RESIDUAL VALUES
50
RANDOM_GROUP
2 3
RANDOM_TYPE
add_animal
FILE
```

The 2nd effect (position 3 in the data) is additive direct effect and 3rd to 7th effects (positions 4 to 8 in the data) are competitive effects (animal ID for competitors).
The covariance matrix contains variance for the second effect, variance for effects 3 to 7 (accumulated to 7), and covariance between direct and competitive effects.
Appendix H (genomic model)

Example of evaluation/variance component estimation using phenotypic, pedigree and genomic information in single-step evaluation

Files simulated by Huiyu Wang using program QMSim by Mehdi Sargolzaei & Flavio Schenkel.

Parameter file for renumbering program RENUMF90

DATAFILE
phenotypes.txt
TRAITS
3
FIELDS_PASSED TO OUTPUT
WEIGHT(S)
RESIDUAL_VARIANCE
0.9038
EFFECT
1 cross alpha #fixed effect
EFFECT
2 cross alpha #animal
RANDOM
animal
FILE
pedigree
SNP_FILE
marker.geno.clean
(CO)VARIANCES
0.9951E-01

Phenotype file

phenotypes.txt

1 1 4.16 0
1 2 3.47 0
1 3 4.5 0
1 4 4.97 0
1 5 5.98 0
1 6 6.63 0
1 7 3.32 0
1 8 5.85 0
1 9 4.77 0
1 10 4.22 0

Pedigree file

pedigree

1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
cut -c1-50 marker.geno.clean|head -10

8002 21101011100201201101110111112111112101100
8014 2111010111110112210111111112101121111101
8016 21100101220221121012112111212112111101
8018 211101111122012102002010122221211111100
8024 21110102210121112201211121220122111111
8038 11110001021001201022112111121111
8041 2221000120121111111210122121111111
8063 2011010122022121110112022201210021
8065 21110101111121112211101010102221200111002
8083 101110111100101111111101121001111210110121

Run RENUMF90

RENUMF90 version 1.86
name of parameter file?renum.par
renum.par
datafile:phenotypes.txt
traits: 3
fields passed: 4
R
0.9038

Processing effect 1 of type cross
item_kind=alpha

Processing effect 2 of type cross
item_kind=alpha
pedigree file name "pedigree"
positions of animal, sire, dam, alternate dam and yob 1 2
0 0 3
SNP file name "marker.geno.clean"
all pedigrees to be included
Reading (CO)VARIANCES: 1 x 1

Maximum size of character fields: 20

Maximum size of record (max_string_readline): 800

Maximum number of fields input file (max_field_readline): 100

hash tables for effects set up
table expanded from 10000 to 20000 records
table expanded from 20000 to 40000 records
read 15800 records
table with 1 elements sorted
added count
Effect group 1 of column 1 with 1 levels
table expanded from 10000 to 10000 records
added count
Effect group 2 of column 1 with 15800 levels
wrote statistics in file "renf90.tables"

Basic statistics for input data (missing value code is 0)

<table>
<thead>
<tr>
<th>Pos</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>SD</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.73000</td>
<td>8.83000</td>
<td>4.9793</td>
<td>1.0069</td>
<td>15800</td>
</tr>
</tbody>
</table>
random effect with SNPs 2
type: animal
file: marker.geno.clean
read SNPs 1500 records
Effect group 2 of column 1 with 15800 levels

random effect 2
type: animal
opened output pedigree file "renadd02.ped"
read 15800 pedigree records

Pedigree checks
Number of animals with records: 15800
Number of animals with genotypes: 1500
Number of animals with records or genotypes: 15800
Number of animals with genotypes and no records: 0
Number of parents without records or genotypes: 0
Total number of animals: 15800

Wrote cross reference IDs for SNP file "marker.geno.clean_XrefID"

Wrote parameter file "renf90.par"
Wrote renumbered data "renf90.dat"

Parameter file for application programs with renumbered fields

renf90.par

BLUPF90 parameter file created by RENF90
DATAFILE renf90.dat
NUMBER_OF_TRAITS 1
NUMBER_OF_EFFECTS 2
OBSERVATION(S) 1
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
2 1 cross
3 15800 cross
RANDOM_RESIDUAL VALUES 0.9038
RANDOM_GROUP 2
RANDOM_TYPE add_animal
FILE renadd02.ped
(CO)VARIANCES 0.9951E-01
OPTION SNP_file marker.geno.clean

renadd02.ped
Renumbered phenotype file

renf90.dat

4.16 1 5903 0
3.47 1 3628 0
4.5 1 1329 0
4.97 1 14808 0
5.98 1 12481 0
6.63 1 10205 0
3.32 1 7935 0
5.85 1 5639 0
4.77 1 3348 0
4.22 1 1951 0

Run BLUPF90

name of parameter file? renf90.par

* SNP file: marker.geno.clean
* SNP Xref file: marker.geno.clean_XrefID
* Frequency to Center Z=M-p to create G=Z'/k (default whichfreq = 2):
 2

BLUPF90 1.42

Parameter file: renf90.par
Data file: renf90.dat
Number of Traits 1
Number of Effects 2
Position of Observations 1
Position of Weight (1) 0
Value of Missing Trait/Observation 0

EFFECTS
type position (2) levels [positions for nested]
1 cross-classified 2 1
2 cross-classified 3 15800

Residual (co)variance Matrix
0.90380

Random Effect(s) 2
Type of Random Effect: additive animal
Pedigree File: renadd02.ped

trait effect (CO)VARIANCES
1 2 0.9951E-01

REMARKS
(1) Weight position 0 means no weights utilized
(2) Effect positions of 0 for some effects and traits means that such
 effects are missing for specified traits

Data record length = 3
equations = 15801
G
0.99510E-01
Statistics for A22

Statistic of Rel. Matrix A22

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal</td>
<td>1500</td>
<td>1.001</td>
<td>1.000</td>
<td>1.250</td>
<td>0.000</td>
</tr>
<tr>
<td>Off-diagonal</td>
<td>2248500</td>
<td>0.003</td>
<td>0.000</td>
<td>0.750</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Statistics for SNP file

Reading SNP file
Column position in file for the first marker: 7
Format to read SNP file: (6x,400000i1)
Number of SNPs: 3000
Number of Genotyped animals: 1500
Reading SNP file elapsed time 0.4639290

Statistics of alleles frequencies in the current population
N: 3000
Mean: 0.501
Min: 0.132
Max: 0.890
Var: 0.014

Quality Control - Check call rate for animals

Quality Control - Check Parent-Progeny Mendelian conflicts
Total animals: 15800 - Genotyped animals: 1500
Number of Individual - Sire pairs: 470
Number of Individual - Dams pairs: 256
Number of Individual - Sire - Dam trios: 152

Checking SNPs for Mendelian conflicts
Total number of parent-progeny evaluations: 726
Number of SNPs with Mendelian conflicts: 0

Checking Animals for Mendelian conflicts

Statistics of alleles frequencies in the current population after Quality Control (MAF, monomorphic, call rate)
N: 3000
Mean: 0.501
Min: 0.132
Max: 0.890
Var: 0.014

Locus Freq 0-2p 1-2p 2-2p
1 0.751333 -1.502667 -0.502667 0.497333
2 0.382333 -0.764667 0.235333 1.235333
3 0.568667 -1.137333 -0.137333 0.862667
4 0.680000 -1.360000 -0.360000 0.640000
5 0.184333 -0.368667 0.631333 1.631333
6 0.298333 -0.596667 0.403333 1.403333
7 0.392000 -0.784000 0.216000 1.216000
8 0.379667 -0.759333 0.240667 1.240667
9 0.596667 -1.193333 -0.193333 0.806667
10 0.352333 -0.704667 0.295333 1.295333

Genotypes missings (%): 0.0000000E+00
Average denom. (scale): 1415.90178466665
Center Matrix elapsed: 8.3986998E-02

Creating G Matrix

Calculating G Matrix
Wall time: 08-05-2011 16h 57m 34s 213
MMP - OPTML
Elapsed time 18.47419
Wall time: 08-05-2011 16h 58m 09s 371

Statistics of G calculated assuming current allele frequencies

Statistic of Genomic Matrix

<table>
<thead>
<tr>
<th>Statistic of Genomic Matrix</th>
<th>N</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal</td>
<td>1500</td>
<td>0.999</td>
<td>0.889</td>
<td>1.463</td>
<td>0.002</td>
</tr>
<tr>
<td>Off-diagonal</td>
<td>2248500</td>
<td>-0.001</td>
<td>-0.147</td>
<td>0.830</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Correlation of Genomic Inbreeding and Pedigree Inbreeding
Correlation: 0.3220

All elements - Diagonal / Off-Diagonal

Estimating Regression Coefficients \(G = b_0 11' + b_1 A + e \)

Regression coefficients \(b_0 \) \(b_1 \) = -0.004 0.997

Correlation all elements \(G \& A \) 0.644

Off-Diagonal

Using 70386 elements from \(A_{22} \geq 0.02000 \)

Estimating Regression Coefficients \(G = b_0 11' + b_1 A + e \)

Regression coefficients \(b_0 \) \(b_1 \) = -0.006 1.000

Correlation Off-Diagonal elements \(G \& A \) 0.660

Blend \(G \) as \(\alpha G + \beta A_{22} \): \((\alpha, \beta)\) 0.950 0.050

Statistic of Genomic Matrix

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal</td>
<td>1500</td>
<td>0.999</td>
<td>0.894</td>
<td>1.446</td>
<td>0.002</td>
</tr>
<tr>
<td>Off-diagonal</td>
<td>2248500</td>
<td>0.000</td>
<td>-0.139</td>
<td>0.820</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Frequency - Diagonal of \(G \)

<table>
<thead>
<tr>
<th>N</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Range</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8942</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.9218</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.9494</td>
<td>343</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.9770</td>
<td>480</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.005</td>
<td>361</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.032</td>
<td>139</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.060</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.087</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1.115</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.142</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1.170</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.198</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1.225</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1.253</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.280</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.308</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1.336</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1.363</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1.391</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.418</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1.446</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scale \(G \) matrix according to \(A_{22} \) - Method: 2

Diagonal A: 1.001 Offdiagonal A: 0.003 All A: 0.004 Difference: 0.998
Diagonal G: 0.999 Offdiagonal G: 0.000 All G: 0.000 Difference: 0.999
Diff G Diag - G OffDiag: 0.999 \((da-oa)/(dg-og)\): 0.998
Diff A OffDiag - G OffDiag: 0.004
Diff A all - G all: 0.004
New Alpha: 0.948 New Beta: 0.050 New Delta 0.004

Final Pedigree-Based Matrix

Statistic of Rel. Matrix A22
Statistics of G after scaling as in Chen et al (2011) or Vitezica et al. (2011)
Statistics should be same as for A22.

Final Genomic Matrix

Statistic of Genomic Matrix

<table>
<thead>
<tr>
<th>N</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal</td>
<td>1500</td>
<td>1.001</td>
<td>1.000</td>
<td>1.250</td>
</tr>
<tr>
<td>Off-diagonal</td>
<td>2248500</td>
<td>0.003</td>
<td>0.000</td>
<td>0.750</td>
</tr>
</tbody>
</table>

Correlation of Genomic Inbreeding and Pedigree Inbreeding
Correlation: 0.3363

All elements - Diagonal / Off-Diagonal
Estimating Regression Coefficients $G = b_0 11' + b_1 A + e$
Regression coefficients $b_0 b_1 = 0.000 \quad 0.995$
Correlation all elements G & A 0.663

Off-Diagonal
Using 70386 elements from A22 >= 0.02000
Estimating Regression Coefficients $G = b_0 11' + b_1 A + e$
Regression coefficients $b_0 b_1 = -0.001 \quad 0.998$
Correlation Off-Diagonal elements G & A 0.679

Creating A22-inverse
Wall time: 08-05-2011 16h 58m 10s 866
Inverse using ginv2
elapsed time 3.54446100000000
Wall time: 08-05-2011 16h 58m 17s 691

Statistics of Az^{-1}

Statistic of Inv. Rel. Matrix A22

<table>
<thead>
<tr>
<th>N</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal</td>
<td>1500</td>
<td>1.607</td>
<td>1.056</td>
<td>9.221</td>
</tr>
<tr>
<td>Off-diagonal</td>
<td>2248500</td>
<td>-0.001</td>
<td>-1.067</td>
<td>0.533</td>
</tr>
</tbody>
</table>

Creating G-inverse
Wall time: 08-05-2011 16h 58m 17s 987
Inverse using ginv2
elapsed time 4.24635400000000
Wall time: 08-05-2011 16h 58m 26s 044

Statistics of G^{-1}

2 x diag(G^{-1}. A22^{-1}) is approx. measure of extra genomic info in terms of effective daughters

Statistic of Inv. Genomic Matrix

<table>
<thead>
<tr>
<th>N</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal</td>
<td>1500</td>
<td>8.007</td>
<td>3.597</td>
<td>64.893</td>
</tr>
<tr>
<td>Off-diagonal</td>
<td>2248500</td>
<td>-0.005</td>
<td>-12.697</td>
<td>6.632</td>
</tr>
</tbody>
</table>

Creating GimA22i in file: "GimA22i"
Calculating GmA22/GimA22i Matrix Densem storage
Calculating GmA22/GimA22i Matrix...elapsed time 0.1269817
Setup Genomic Done.

wGimA22i 1.00000000000000

hash matrix increased from 100000 to 150000 % filled: 0.9000
hash matrix increased from 150000 to 225000 % filled: 0.9000
hash matrix increased from 225000 to 337500 % filled: 0.9000
hash matrix increased from 337500 to 506250 % filled: 0.9000
hash matrix increased from 506250 to 759375 % filled: 0.9000
hash matrix increased from 759375 to 1139062 % filled: 0.9000

finished peds in 30.68333 s, 1193064 nonzeroes

round 1 convergence= 3.234776127905992E-004
round 2 convergence= 1.615955145159698E-005
round 3 convergence= 9.675137058360991E-006
round 4 convergence= 6.533482675941447E-006
round 5 convergence= 2.711751165983321E-006

round 64 convergence= 2.721030958617683E-012
round 65 convergence= 1.93102957858311E-012
round 66 convergence= 1.610472992188148E-012
round 67 convergence= 1.259204136643006E-012
round 68 convergence= 9.025592862452768E-013

68 iterations, convergence criterion= 9.025592862452768E-013
solutions stored in file: "solutions"

Variance component estimation by AIREMLF90

name of parameter file?renf90.par

* SNP file: marker.geno.clean
* SNP Xref file: marker.geno.clean_XrefID
* Frequency to Center Z=M-p to create G=ZZ'/k (default whichfreq = 2):
 2
AI-REMLF90 ver. 1.96

Parameter file: renf90.par
Data file: renf90.dat
Number of Traits 1
Number of Effects 2
Position of Observations 1
Position of Weight (1) 0
Value of Missing Trait/Observation 0

Statistic of Inv. Genomic Matrix

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal</td>
<td>1500</td>
<td>8.007</td>
<td>3.597</td>
<td>64.893</td>
<td>21.055</td>
</tr>
<tr>
<td>Off-diagonal</td>
<td>2248500</td>
<td>-0.005</td>
<td>-12.697</td>
<td>6.632</td>
<td>0.056</td>
</tr>
</tbody>
</table>

Creating GimA22i in file: "GimA22i"
Calculating \(GmA_{22}/GimA_{22i} \) Matrix Dense storage

Calculating \(GmA_{22}/GimA_{22i} \) Matrix...elapsed time 0.1089821

Setup Genomic Done.

\[wGimA_{22i} = 1.00000000000000 \]

hash matrix increased from 85428 to 128142 \% filled: 0.9000
hash matrix increased from 128142 to 192213 \% filled: 0.9000
hash matrix increased from 192213 to 288319 \% filled: 0.9000
hash matrix increased from 288319 to 432478 \% filled: 0.9000
hash matrix increased from 432478 to 648717 \% filled: 0.9000
hash matrix increased from 648717 to 973075 \% filled: 0.9000
hash matrix increased from 85428 to 128142 \% filled: 0.9000
hash matrix increased from 128142 to 192213 \% filled: 0.9000
hash matrix increased from 192213 to 288319 \% filled: 0.9000
hash matrix increased from 288319 to 432478 \% filled: 0.9000
hash matrix increased from 432478 to 648717 \% filled: 0.9000
hash matrix increased from 648717 to 973075 \% filled: 0.9000

finished peds in 32.01313 s, 1193064 nonzeros

rank= 15801

**** FSPAK ***

MPE / IM / MAE
Jun 1994

SPARSE STATISTICS

DIMENSION OF MATRIX = 15801
RANK = 15801
STORAGE AVAILABLE = 7061497
MAXIMUM NEEDED = 7061497
NZE IN UPPER TRIANGULAR = 1208865
NZE IN FACTOR = 1521840
NO. OF CALLS NUM FACT = 1
NO. OF CALLS SOLVE = 1
NO. OF CALLS SPARS SOLV = 0
NO. OF CALLS DET / LDET = 1
NO. OF CALLS SPARS INV = 1
TOTAL CPU TIME IN FSPAK = 9.465561
TIME FOR FINDING ORDER = 2.568611
TIME FOR SYMBOLIC FAC = 0.676899
TIME FOR NUMERICAL FAC = 2.017693
TIME FOR SOLVE = 0.008995
TIME FOR SPARSE SOLVE = 0.000000
TIME FOR SPARSE INVERSE = 4.147369

\(-2\log L = 43515.7413644011 : AIC = 43519.7413644011\)

In round 1 convergence= 0.423851780381002
delta convergence= 0.252173522062583

new R 0.58510
new G 0.28516

\(-2\log L = 53013.2734486053 : AIC = 53017.2734486053\)

In round 2 convergence= 0.141351613622645
delta convergence= 0.117430758820623

new R 0.52205
new G 0.45696

\(-2\log L = 52800.6601605267 : AIC = 52804.6601605267\)

In round 3 convergence= 0.1743079882623
delta convergence= 0.1174307982623

new R 0.49575
new G 0.52606

\(-2\log L = 52785.2479463395 : AIC = 52789.2479463395\)

In round 4 convergence= 0.10189176351498E-004
delta convergence= 0.10189176351498E-004

new R 0.49400
new G
0.53164
-2\log L = 52785.1635385807 \quad : \quad AIC = 52789.1635385807
In round 5 convergence = 2.804695847240073E-009
delta convergence = 1.777604045032979E-005
new R
0.49400
new G
0.53167

Estimates of variance components

Final Estimates
Genetic variance(s) for effect 2
0.53167
Residual variance(s)
0.49400
inverse of AI matrix (Sampling Variance)
0.40448E-03 -0.17367E-03
-0.17367E-03 0.14702E-03
Correlations from inverse of AI matrix
1.0000 -0.71219
-0.71219 1.0000
SE for R
0.12125E-01
SE for G
0.20112E-01
solutions stored in file: "solutions"
Appendix I (complete genomic analysis)

Using RENUMF90, PREGSF90, BLUPF90 (BLUP), BLUPF90 (ssGBLUP), PREDICTF90, POSTGSF90 (ssGWAS)

Simulated data

Single trait with heritability of 0.30 and phenotypic variance = 1.0
Five generations
Total of 994 parents from generations 1 to 4 were genotyped
Three hundred progeny from 5th generation had genotypes and pedigree, but phenotypes were removed for traditional and genomic evaluations

Data Structure:

<table>
<thead>
<tr>
<th>#Animal</th>
<th>Generation</th>
<th>Sex</th>
<th>Mu</th>
<th>QTL</th>
<th>Residual</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-0.826104</td>
<td>1.586661</td>
<td>1.76056</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>-1.093034</td>
<td>-0.451821</td>
<td>-0.544855</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>-0.135824</td>
<td>0.984936</td>
<td>1.84911</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0.044242</td>
<td>-0.802145</td>
<td>0.242097</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0.342068</td>
<td>0.028434</td>
<td>1.3705</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6095</td>
<td>5</td>
<td>1</td>
<td>1.801324</td>
<td>-0.494822</td>
<td>2.3065</td>
<td></td>
</tr>
<tr>
<td>6096</td>
<td>5</td>
<td>2</td>
<td>0.772964</td>
<td>0.791936</td>
<td>2.5649</td>
<td></td>
</tr>
<tr>
<td>6097</td>
<td>5</td>
<td>2</td>
<td>0.748241</td>
<td>0.285815</td>
<td>2.03406</td>
<td></td>
</tr>
<tr>
<td>6098</td>
<td>5</td>
<td>1</td>
<td>1.042522</td>
<td>-1.606656</td>
<td>0.435866</td>
<td></td>
</tr>
<tr>
<td>6099</td>
<td>5</td>
<td>1</td>
<td>0.891319</td>
<td>0.179843</td>
<td>2.07116</td>
<td></td>
</tr>
<tr>
<td>6100</td>
<td>5</td>
<td>1</td>
<td>0.745873</td>
<td>0.034715</td>
<td>1.78059</td>
<td></td>
</tr>
</tbody>
</table>

Pedigree: 6100 animals

<table>
<thead>
<tr>
<th>#Animal</th>
<th>Sire</th>
<th>Dam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6095</td>
<td>4576</td>
<td>4403</td>
</tr>
<tr>
<td>6096</td>
<td>4576</td>
<td>4065</td>
</tr>
<tr>
<td>6097</td>
<td>4576</td>
<td>2263</td>
</tr>
<tr>
<td>6098</td>
<td>4576</td>
<td>4150</td>
</tr>
<tr>
<td>6099</td>
<td>4576</td>
<td>3690</td>
</tr>
<tr>
<td>6100</td>
<td>4576</td>
<td>4311</td>
</tr>
</tbody>
</table>

Genotypes: 1294 animals genotyped for 1000 SNP across 5 chromosomes

<table>
<thead>
<tr>
<th># Animal</th>
<th>SNP1</th>
<th>SNP2</th>
<th>SNP3</th>
<th>SNP4</th>
<th>SNP5</th>
<th>SNP6...SNP1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>6100</td>
<td>22212</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Map:
#SNP order chromosome position
1 1 1 10010
2 1 16722
3 1 33444
4 1 50166
5 1 66888
.
.
1000 5 299878

Parameter file for RENUMF90
DATAFILE
newdata.txt
TRAITS
7
FIELDS_PASSED TO OUTPUT
2
WEIGHT(S)
RESIDUAL_VARIANCE
0.70
EFFECT
4 cross alpha #mu
EFFECT
1 cross alpha #animal
RANDOM
animal
FILE
ped.txt
FILE_POS
1 2 3 0 0
SNP_FILE
snp.txt
PED_DEPTH
0
(CO)VARIANCES
0.30
OPTION chrinfo map.txt

Log file for RENUMF90
RENUMF90 version 1.104
name of parameter file? renum.par
datafile:newdata.txt
traits: 7
fields passed: 2
R 0.7000
Processing effect 1 of type cross
item_kind=alpha
Processing effect 2 of type cross
item_kind=alpha
pedigree file name "ped.txt"
positions of animal, sire, dam, alternate dam and yob 1 2 3 0 0
SNP file name "snp.txt"
all pedigrees to be included
Reading (CO)VARIANCES: 1 x 1

Maximum size of character fields: 20

Maximum size of record (max_string_readline): 800

Maximum number of fields for input file (max_field_readline): 100

hash tables for effects set up
read 6100 records
table with 1 elements sorted
added count
Effect group 1 of column 1 with 1 levels
 table expanded from 10000 to 10000 records
added count
Effect group 2 of column 1 with 6100 levels
wrote statistics in file "renf90.tables"

Basic statistics for input data (missing value code is 0)
 Pos Min Max Mean SD N

7 -2.8883 5.0863 1.0042 0.99034 6100

random effect with SNPs 2
type: animal
file: snp.txt
read SNPs 1294 records
Effect group 2 of column 1 with 6100 levels

random effect 2
type: animal
opened output pedigree file "renadd02.ped"
read 6100 pedigree records

Pedigree checks

Number of animals with records: 6100
Number of animals with genotypes: 1294
Number of animals with records or genotypes: 6100
Number of animals with genotypes and no records 0
Number of parents without records or genotypes: 0
Total number of animals: 6100

Wrote cross reference IDs for SNP file "snp.txt_XrefID"

Wrote parameter file "renf90.par"
Wrote renumbered data "renf90.dat"

Parameter file for PREGSF90 without quality control

DATAFILE
renf90.dat
NUMBER_OF_TRAITS
 1
NUMBER_OF_EFFECTS
 2
OBSERVATION(S)
 1
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
 2 1 cross
 3 6100 cross
RANDOM_RESIDUAL VALUES
 0.70000
RANDOM_GROUP
 2
RANDOM_TYPE
 add_animal
FILE
 renadd02.ped
(CO)VARIANCES
 0.30000
OPTION SNP_file snp.txt
OPTION chrinfo map.txt
OPTION no_quality_control

Log file for PREGSF90 without quality control
name of parameter file?
 renf90.par

 preGS 1.10
Parameter file: renf90.par
Data file: renf90.dat
Number of Traits 1
Number of Effects 2
Position of Observations 1
Position of Weight (1) 0
Value of Missing Trait/Observation 0

EFFECTS
 # type position (2) levels [positions for nested]
 1 cross-classified 2 1
 2 cross-classified 3 6100

Residual (co)variance Matrix
 0.70000

Random Effect(s) 2
Type of Random Effect: additive animal
Pedigree File: renadd02.ped
trait effect (CO)VARIANCES
 1 2 0.30000

REMARKS
 (1) Weight position 0 means no weights utilized
 (2) Effect positions of 0 for some effects and traits means that such
effects are missing for specified traits

Options read from parameter file:

 * SNP file: snp.txt
* SNP Xref file: snp.txt_XrefID
* Map file: map.txt
* No Quality Control Checks !!!!! (default .false.): T

--
* Genomic Library: Version 1.164 *
* Optimized OpenMP Version *
* Modified relationship matrix (H) created for effect: 2 *
--

Read 6100 animals from pedigree file: "renadd02.ped"
Number of Genotyped Animals: 1294

Creating A22
Extracting subset of: 2312 pedigrees from: 6100 elapsed time: 0.0150
Calculating A22 Matrix by Colleau OpenMP...elapsed time: .0190
Numbers of threads=8 16

Reading SNP file
Column position in file for the first marker: 8
Format to read SNP file: (7x,400000i1)
Number of SNPs: 1000
Number of Genotyped animals: 1294
Reading SNP file elapsed time: .06

Statistics of alleles frequencies in the current population
N: 1000
Mean: 0.504
Min: 0.043
Max: 0.929
Var: 0.032

Reading MAP file: "map.txt" - 1000 SNPs out of 1000
Min and max # of chromosome: 1 5
Min and max # of SNP: 1 1000

Genotypes missings (%): 0.000

Calculating G Matrix
Dgemm MKL #threads= 8 16 Elapsed omp_get_time: 0.7359

Scale by Sum(2pq). Average: 435.221580281360

Blend G as alpha*G + beta*A22: (alpha,beta) 0.950 0.050

Frequency - Diagonal of G
N: 1294
Mean: 0.999
Min: 0.895
Max: 1.468
Range: 0.029
Class: 20

#Class Class Count
1 0.8949 27
2 0.9236 109
3 0.9523 300
4 0.9810 380
Check for diagonal of genomic relationship matrix

Check for diagonal of genomic relationship matrix, genotypes not removed: 0

Final Pedigree-Based Matrix

Statistic of Rel. Matrix A22

<table>
<thead>
<tr>
<th>N</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal</td>
<td>1294</td>
<td>1.001</td>
<td>1.000</td>
<td>1.250</td>
</tr>
<tr>
<td>Off-diagonal</td>
<td>1673142</td>
<td>0.005</td>
<td>0.000</td>
<td>0.750</td>
</tr>
</tbody>
</table>

Final Genomic Matrix

Statistic of Genomic Matrix

<table>
<thead>
<tr>
<th>N</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal</td>
<td>1294</td>
<td>1.001</td>
<td>0.898</td>
<td>1.469</td>
</tr>
<tr>
<td>Off-diagonal</td>
<td>1673142</td>
<td>0.005</td>
<td>-0.158</td>
<td>0.791</td>
</tr>
</tbody>
</table>

Correlation of Genomic Inbreeding and Pedigree Inbreeding

Correlation: 0.2177

All elements - Diagonal / Off-Diagonal

Estimating Regression Coefficients \(G = b_0 11' + b_1 A + e \)

Regression coefficients \(b_0 \) \(b_1 \) = 0.000 0.991

Correlation all elements \(G & A \) 0.717

Off-Diagonal

Using 83426 elements from A22 >= .02000

Estimating Regression Coefficients \(G = b_0 11' + b_1 A + e \)

Regression coefficients \(b_0 \) \(b_1 \) = -0.003 0.999

Correlation Off-Diagonal elements \(G & A \) 0.777

Creating A22-inverse

Inverse LAPACK MKL dpotrf/i #threads= 8 16 Elapsed omp_get_time: 0.1071

Final A22 Inv Matrix

Statistic of Inv. Rel. Matrix A22

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal</td>
<td>1294</td>
<td>1.851</td>
<td>1.067</td>
<td>5.812</td>
<td>0.431</td>
</tr>
<tr>
<td>Off-diagonal</td>
<td>1673142</td>
<td>-0.001</td>
<td>-1.200</td>
<td>0.600</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Creating G-inverse
Inverse LAPACK MKL dpotrf/i #threads= 8 16 Elapsed omp_get_time: 0.1050

Final Genomic Inv Matrix

Statistic of Inv. Genomic Matrix

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal</td>
<td>1294</td>
<td>13.457</td>
<td>5.827</td>
<td>45.588</td>
<td>27.985</td>
</tr>
<tr>
<td>Off-diagonal</td>
<td>1673142</td>
<td>-0.010</td>
<td>-13.500</td>
<td>6.896</td>
<td>0.226</td>
</tr>
</tbody>
</table>

Check for diagonal of Inverse Genomic - Inverse of pedigree relationship matrix

Saving GimA22i in file: "GimA22i"

Final G Inv - A22 Inv Matrix

Statistic of Inv. Genomic- A22 Matrix

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal</td>
<td>1294</td>
<td>11.606</td>
<td>4.746</td>
<td>40.310</td>
<td>21.707</td>
</tr>
<tr>
<td>Off-diagonal</td>
<td>1673142</td>
<td>-0.009</td>
<td>-12.500</td>
<td>6.396</td>
<td>0.211</td>
</tr>
</tbody>
</table>

Parameter file for PREGSF90 with quality control

DATAFILE
renf90.dat
NUMBER_OF_TRAITS
1
NUMBER_OF_EFFECTS
2
OBSERVATION(S)
1
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
2 1 cross
3 6100 cross
RANDOM_RESIDUAL VALUES
0.70000
RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
renadd02.ped

(CO)VARIANCES
0.30000

OPTION SNP_file snp.txt
OPTION chrinfo map.txt

Log file for PREGSF90 with quality control

name of parameter file?
renf90.par

 preGS 1.10

Parameter file: renf90.par
Data file: renf90.dat
Number of Traits 1
Number of Effects 2
Position of Observations 1
Position of Weight (1) 0
Value of Missing Trait/Observation 0

EFFECTS
type position (2) levels [positions for nested]
1 cross-classified 2 1
2 cross-classified 3 6100

 Residual (co)variance Matrix
 0.70000

Random Effect(s) 2
Type of Random Effect: additive animal
Pedigree File: renadd02.ped

trait effect (CO)VARIANCES
1 2 0.30000

REMARKS
 (1) Weight position 0 means no weights utilized
 (2) Effect positions of 0 for some effects and traits means that such
effects are missing for specified traits

Options read from parameter file:

* SNP file: snp.txt
* SNP Xref file: snp.txt_XrefID
* Map file: map.txt

* Genomic Library: Version 1.164 *
* Optimized OpenMP Version *
* Modified relationship matrix (H) created for effect: 2 *

Read 6100 animals from pedigree file: "renadd02.ped"
Number of Genotyped Animals: 1294

Creating A22
Extracting subset of: 2312 pedigrees from: 6100 elapsed time: 0.0160
Calculating A22 Matrix by Colleau OpenMP...elapsed time: .0189
Numbers of threads=8 16

Reading SNP file
 Column position in file for the first marker: 8
 Format to read SNP file: (7x,400000i1)
 Number of SNPs: 1000
 Number of Genotyped animals: 1294
 Reading SNP file elapsed time: .06

Statistics of alleles frequencies in the current population
 N: 1000
 Mean: 0.504
 Min: 0.043
 Max: 0.929
 Var: 0.032

Reading MAP file: "map.txt" - 1000 SNPs out of 1000
 Min and max # of chromosome: 1 5
 Min and max # of SNP: 1 1000

Quality Control - SNPs with Call Rate < callrate (0.90) will removed: 0
Quality Control - SNPs with MAF < minfreq (0.05) will removed: 1
Quality Control - Monomorphic SNPs will be removed: 0
Quality Control - Removed Animals with Call rate < callrate (0.90): 0

Quality Control - Check Parent-Progeny Mendelian conflicts
 Total animals: 6100 - Genotyped animals: 1294 - Effective: 1294
 Number of pairs Individual - Sire: 450
 Number of pairs Individual - Dam: 440
 Number of trios Individual - Sire - Dam: 206

 No sex Chromosome information is available
 Parent-progeny conflicts or HWE could eliminate SNPs in sex Chr
 Provide map information and sex Chr to checks using autosomes

Checking SNPs for Mendelian conflicts
 Total number of effective SNP: 999
 Total number of parent-progeny evaluations: 890
 Number of SNPs with Mendelian conflicts: 0

Checking Animals for Mendelian conflicts
 Total number of effective SNP for checks on Animals: 999
 Number of Parent-Progeny Mendelian Conflicts: 0

Number of effective SNPs (after QC): 999
Number of effective Individuals (after QC): 1294

Statistics of alleles frequencies in the current population after
Quality Control (MAF, monomorphic, call rate, HWE, Mendelian conflicts)
N: 999
Mean: 0.504
Min: 0.051
Max: 0.929
Var: 0.032

Genotypes missings (%): 0.100
Genotypes missings after cleaning (%): 0.000

Calculating G Matrix
Dgemm MKL #threads= 8 16 Elapsed omp_get_time: 0.9840
Scale by Sum(2pq). Average: 435.140185710293
Blend G as alpha*G + beta*A22: (alpha,beta) 0.950 0.050
Frequency - Diagonal of G
N: 1294
Mean: 0.999
Min: 0.895
Max: 1.469
Range: 0.029
Class: 20

#Class Class Count
1 0.8951 27
2 0.9238 109
3 0.9524 304
4 0.9811 379
5 1.010 285
6 1.038 137
7 1.067 32
8 1.096 14
9 1.125 3
10 1.153 1
11 1.182 0
12 1.211 2
13 1.239 0
14 1.268 0
15 1.297 0
16 1.325 0
17 1.354 0
18 1.383 0
19 1.411 0
20 1.440 1
21 1.469 0

Check for diagonal of genomic relationship matrix
Check for diagonal of genomic relationship matrix, genotypes not removed: 0

--
Final Pedigree-Based Matrix
--

Statistic of Rel. Matrix A22

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal</td>
<td>1294</td>
<td>1.001</td>
<td>1.000</td>
<td>1.250</td>
<td>0.000</td>
</tr>
<tr>
<td>Off-diagonal</td>
<td>1673142</td>
<td>0.005</td>
<td>0.000</td>
<td>0.750</td>
<td>0.001</td>
</tr>
</tbody>
</table>
Final Genomic Matrix

Statistic of Genomic Matrix

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal</td>
<td>1294</td>
<td>1.001</td>
<td>0.898</td>
<td>1.470</td>
<td>0.002</td>
</tr>
<tr>
<td>Off-diagonal</td>
<td>1673142</td>
<td>0.005</td>
<td>-0.158</td>
<td>0.791</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Correlation of Genomic Inbreeding and Pedigree Inbreeding

Correlation: 0.2180

All elements - Diagonal / Off-Diagonal

Estimating Regression Coefficients $G = b_0 \mathbf{1}\mathbf{1}' + b_1 \mathbf{A} + \mathbf{e}$

Regression coefficients $b_0 \ b_1 = 0.000 \ 0.991$

Correlation all elements $G \& \mathbf{A} = 0.717$

Off-Diagonal

Using 83426 elements from $\mathbf{A}_{22} \geq .02000$

Estimating Regression Coefficients $G = b_0 \mathbf{1}\mathbf{1}' + b_1 \mathbf{A} + \mathbf{e}$

Regression coefficients $b_0 \ b_1 = -0.003 \ 0.999$

Correlation Off-Diagonal elements $G \& \mathbf{A} = 0.777$

Creating \mathbf{A}_{22}^{-1}

Inverse LAPACK MKL dpotrf/i #threads= 8 16 Elapsed omp_get_time: 0.1068

Final \mathbf{A}_{22}^{-1} Inv Matrix

Statistic of Inv. Rel. Matrix \mathbf{A}_{22}

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal</td>
<td>1294</td>
<td>1.851</td>
<td>1.067</td>
<td>5.812</td>
<td>0.431</td>
</tr>
<tr>
<td>Off-diagonal</td>
<td>1673142</td>
<td>-0.001</td>
<td>-1.200</td>
<td>0.600</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Creating \mathbf{G}^{-1}

Inverse LAPACK MKL dpotrf/i #threads= 8 16 Elapsed omp_get_time: 0.1047

Final Genomic \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} Inv Matrix

Statistic of Inv. Genomic Matrix

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal</td>
<td>1294</td>
<td>13.466</td>
<td>5.863</td>
<td>45.587</td>
<td>28.023</td>
</tr>
<tr>
<td>Off-diagonal</td>
<td>1673142</td>
<td>-0.010</td>
<td>-13.521</td>
<td>6.897</td>
<td>0.227</td>
</tr>
</tbody>
</table>

Check for diagonal of Inverse Genomic - Inverse of pedigree relationship matrix

Saving GimA22i in file: "GimA22i"

Final G Inv - \mathbf{A}_{22}^{-1} Inv Matrix

Statistic of Inv. Genomic- \mathbf{A}_{22} Matrix

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal</td>
<td>1294</td>
<td>11.615</td>
<td>4.782</td>
<td>40.309</td>
<td>21.740</td>
</tr>
<tr>
<td>Off-diagonal</td>
<td>1673142</td>
<td>-0.009</td>
<td>-12.521</td>
<td>6.397</td>
<td>0.211</td>
</tr>
</tbody>
</table>

* Setup Genomic Done !!! *

Parameter file for PREGSF90 with quality control, removing SNP from chromosome 5 and saving the clean SNP file

DATASET
renf90.dat

NUMBER_OF_TRAITS
1

NUMBER_OF_EFFECTS
2

OBSERVATION(S)
1

WEIGHT(S)

EFFECTS:

<table>
<thead>
<tr>
<th>Position in Datafile</th>
<th>Number_of_levels</th>
<th>Type of effect [effect nested]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1 cross</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6100 cross</td>
<td></td>
</tr>
</tbody>
</table>

RANDOM_RESIDUAL VALUES
0.70000

RANDOM_GROUP
2

RANDOM_TYPE
add_animal

FILE
renadd02.ped

(CO)VARIANCES
0.30000

OPTION SNP_file
snp.txt

OPTION chrinfo
map.txt

OPTION excludeCHR
5

OPTION saveCleanSNPs

Log file for PREGSF90 with quality control, removing SNP from chromosome 5 and saving the clean SNP file

name of parameter file?
renf90.par

preGS 1.10

Parameter file:
renf90.par

Data file:
renf90.dat

Number of Traits:
1

Number of Effects:
2

Position of Observations:
1

Position of Weight (1):
0

Value of Missing Trait/Observation:
0

EFFECTS

<table>
<thead>
<tr>
<th>#</th>
<th>type</th>
<th>position (2)</th>
<th>levels</th>
<th>[positions for nested]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cross-classified</td>
<td>2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>cross-classified</td>
<td>3</td>
<td></td>
<td>6100</td>
</tr>
</tbody>
</table>
Residual (co)variance Matrix
0.70000

Random Effect(s) 2
Type of Random Effect: additive animal
Pedigree File: renadd02.ped

trait effect (CO)VARIANCES
1 2 0.3000

REMARKS
(1) Weight position 0 means no weights utilized
(2) Effect positions of 0 for some effects and traits means that such effects are missing for specified traits

Options read from parameter file:

* SNP file: snp.txt
* SNP Xref file: snp.txt_XrefID
* Map file: map.txt
* Save Clean SNP data to (SNP_file)_clean file (default .false.)
* Exclude Chromosomes (default .false.): 5

--
* Genomic Library: Version 1.164 *
* Optimized OpenMP Version *
* Modified relationship matrix (H) created for effect: 2 *
--

Read 6100 animals from pedigree file: "renadd02.ped"
Number of Genotyped Animals: 1294

Creating A22
Extracting subset of: 2312 pedigrees from: 6100 elapsed time: 0.0150
Calculating A22 Matrix by Colleau OpenMP...elapsed time:.0190
Numbers of threads=8 16

Reading SNP file
Column position in file for the first marker: 8
Format to read SNP file: (7x,400000i1)
Number of SNPs: 1000
Number of Genotyped animals: 1294
Reading SNP file elapsed time: .06

Statistics of alleles frequencies in the current population
N: 1000
Mean: 0.504
Min: 0.043
Max: 0.929
Var: 0.032

Reading MAP file: "map.txt" - 1000 SNPs out of 1000

Min and max # of chromosome: 1 5
Min and max # of SNP: 1 1000

Excluded 199 SNPs from 1 chromosomes: 5

Quality Control - SNPs with Call Rate < callrate (0.90) will removed: 199
Quality Control - SNPs with MAF < minfreq (0.05) will removed: 1
Quality Control - Monomorphic SNPs will be removed: 0
Quality Control - Removed Animals with Call rate < callrate (0.90): 0
Quality Control - Check Parent-Progeny Mendelian conflicts

Total animals: 6100 - Genotyped animals: 1294 - Effective: 1294

Number of pairs Individual - Sire: 450
Number of pairs Individual - Dam: 440
Number of trios Individual - Sire - Dam: 206

No sex Chromosome information is available
Parent-progeny conflicts or HWE could eliminate SNPs in sex Chr
Provide map information and sex Chr to checks using autosomes

Checking SNPs for Mendelian conflicts

Total number of effective SNP: 801
Total number of parent-progeny evaluations: 890
Number of SNPs with Mendelian conflicts: 0

Checking Animals for Mendelian conflicts

Total number of effective SNP for checks on Animals: 801
Number of Parent-Progeny Mendelian Conflicts: 0

Number of effective SNPs (after QC): 801
Number of effective Individuals (after QC): 1294

Statistics of alleles frequencies in the current population after
Quality Control (MAF, monomorphic, call rate, HWE, Mendelian conflicts)
N: 801
Mean: 0.503
Min: 0.051
Max: 0.928
Var: 0.032

List of SNPs removed in: "snp.txt_SNPs_removed"

Clean genotype file was created: "snp.txt_clean"
Cross reference ID file was created: "snp.txt_clean_XrefID"

Genotypes missings (%): 19.900
Genotypes missings after cleaning (%): 0.000

Calculating G Matrix
Dgemm MKL #threads= 8 16 Elapsed omp_get_time: 0.8764
Scale by Sum(2pq). Average: 349.571560214902
Blend G as alpha*G + beta*A22: (alpha,beta) 0.950 0.050

Frequency - Diagonal of G
N: 1294
Mean: 1.000
Min: 0.874
Max: 1.593
Range: 0.036
Class: 20

<table>
<thead>
<tr>
<th>#Class</th>
<th>Class</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8741</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>0.9100</td>
<td>107</td>
</tr>
<tr>
<td>3</td>
<td>0.9460</td>
<td>341</td>
</tr>
<tr>
<td>4</td>
<td>0.9819</td>
<td>419</td>
</tr>
<tr>
<td>5</td>
<td>1.018</td>
<td>281</td>
</tr>
<tr>
<td>6</td>
<td>1.054</td>
<td>98</td>
</tr>
<tr>
<td>7</td>
<td>1.090</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>1.126</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>1.162</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>1.198</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1.234</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>1.270</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>1.306</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>1.342</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>1.377</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>1.413</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>1.449</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>1.485</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>1.521</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>1.557</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>1.593</td>
<td>0</td>
</tr>
</tbody>
</table>

Check for diagonal of genomic relationship matrix

Check for diagonal of genomic relationship matrix, genotypes not removed: 0

Final Pedigree-Based Matrix

Statistic of Rel. Matrix A22

<table>
<thead>
<tr>
<th>N</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal</td>
<td>1294</td>
<td>1.001</td>
<td>1.000</td>
<td>1.250</td>
</tr>
<tr>
<td>Off-diagonal</td>
<td>1673142</td>
<td>0.005</td>
<td>0.000</td>
<td>0.750</td>
</tr>
</tbody>
</table>

Final Genomic Matrix

Statistic of Genomic Matrix

<table>
<thead>
<tr>
<th>N</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal</td>
<td>1294</td>
<td>1.001</td>
<td>0.876</td>
<td>1.593</td>
</tr>
<tr>
<td>Off-diagonal</td>
<td>1673142</td>
<td>0.005</td>
<td>-0.169</td>
<td>0.861</td>
</tr>
</tbody>
</table>

Correlation of Genomic Inbreeding and Pedigree Inbreeding
Correlation: 0.2092

All elements - Diagonal / Off-Diagonal
Estimating Regression Coefficients G = b0 11' + b1 A + e
Regression coefficients b0 b1 = 0.000 0.991

Correlation all elements G & A 0.677

Off-Diagonal
Using 83426 elements from A22 >= .02000
Estimating Regression Coefficients $G = b_0 11' + b_1 A + e$
Regression coefficients $b_0 \ b_1 = \begin{pmatrix} -0.002 \\ 0.996 \end{pmatrix}$
Correlation Off-Diagonal elements $G \ A = 0.742$

Creating $A22$-inverse
Inverse LAPACK MKL dpotrf/i #threads= 8 16 Elapsed omp_get_time: 0.1409

Final $A22$ Inv Matrix

Statistic of Inv. Rel. Matrix $A22$

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal</td>
<td>1294</td>
<td>1.851</td>
<td>1.067</td>
<td>5.812</td>
<td>0.431</td>
</tr>
<tr>
<td>Off-diagonal</td>
<td>1673142</td>
<td>-0.001</td>
<td>-1.200</td>
<td>0.600</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Creating G-inverse
Inverse LAPACK MKL dpotrf/i #threads= 8 16 Elapsed omp_get_time: 0.1370

Final Genomic Inv Matrix

Statistic of Inv. Genomic Matrix

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal</td>
<td>1294</td>
<td>17.075</td>
<td>7.840</td>
<td>56.092</td>
<td>43.645</td>
</tr>
<tr>
<td>Off-diagonal</td>
<td>1673142</td>
<td>-0.013</td>
<td>-16.499</td>
<td>8.893</td>
<td>0.309</td>
</tr>
</tbody>
</table>

Check for diagonal of Inverse Genomic - Inverse of pedigree relationship matrix

Saving GimA22i in file: "GimA22i"

Final G Inv - $A22$ Inv Matrix

Statistic of Inv. Genomic- $A22$ Matrix

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal</td>
<td>1294</td>
<td>15.223</td>
<td>6.759</td>
<td>51.043</td>
<td>35.648</td>
</tr>
<tr>
<td>Off-diagonal</td>
<td>1673142</td>
<td>-0.012</td>
<td>-15.499</td>
<td>8.393</td>
<td>0.289</td>
</tr>
</tbody>
</table>

* Setup Genomic Done !!! *

Parameter file for PREGSF90 with quality control and PCA analysis

Include extra option: OPTION plotpca
Parameter file for BLUPF90 without genomic information

DATAFILE
renf90_5.dat

NUMBER_OF_TRAITS
1

NUMBER_OF_EFFECTS
2

OBSERVATION(S)
1

WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
2 1 cross
3 6100 cross

RANDOM_RESIDUAL VALUES
0.70000

RANDOM_GROUP
2

RANDOM_TYPE
add_animal

FILE
renadd02.ped

(CO)VARIANCES
0.30000

OPTION conv_crit 1e-15

Default convergence criteria = 1e-12

Log file for BLUPF90 without genomic information

renf90_5.dat has phenotypes for all animals, but generation 5

Linux code to remove phenotypes for those animals:

```bash
awk '{ if ($4==5) print 0,$2,$3,$4; else print $1,$2,$3,$4}' renf90.dat > renf90_5.dat
```

name of parameter file?
renf90.par

* convergence criterion (default=1e-12): 1.0000000E-15

BLUPF90 1.48

Parameter file: renf90.par
Data file: renf90_5.dat
Number of Traits 1
Number of Effects 2
Position of Observations 1
Position of Weight (1) 0
Value of Missing Trait/Observation 0

EFFECTS
type position (2) levels [positions for nested]
1 cross-classified 2 1
2 cross-classified 3 6100

Residual (co)variance Matrix
0.70000

Random Effect(s) 2
Type of Random Effect: additive animal
Pedigree File: renadd02.ped

trait effect (CO)VARIANCES
1 2 0.3000

REMARKS
(1) Weight position 0 means no weights utilized
(2) Effect positions of 0 for some effects and traits means that such
effects are missing for specified traits

Data record length = 3
equations = 6101

G
0.30000
read 6100 records in 1.4997000E-02 s, 12201
nonzeroes
read 6100 additive pedigrees finished peds in 1.9996000E-02 s, 27178 nonzeroes
round = 1 convergence = 0.1730E-03
round = 2 convergence = 0.7971E-03
round = 3 convergence = 0.5923E-04
round = 4 convergence = 0.6219E-04
round = 5 convergence = 0.2122E-04
.
.
round = 40 convergence = 0.1230E-13
round = 41 convergence = 0.3164E-14
round = 42 convergence = 0.2804E-14
round = 43 convergence = 0.1081E-14
round = 44 convergence = 0.5761E-15
44 iterations, convergence criterion= 0.5761E-15
solutions stored in file: "solutions"

Solutions for BLUPF90 without genomic information

trait/effect level solution
1 1 1 1.02176505
1 2 1 -0.24665178
EBV accuracy

If accuracy of EBV is desired, it can be calculated based on standard errors (se) for EBV.

BLUPF90 has an option for calculating se:

OPTION sol se

Solutions for BLUPF90 with option to calculate se

<table>
<thead>
<tr>
<th>trait/effect level</th>
<th>solution</th>
<th>s.e.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.02176504</td>
<td>0.02496866</td>
</tr>
<tr>
<td>1</td>
<td>-0.24665117</td>
<td>0.39158195</td>
</tr>
<tr>
<td>1</td>
<td>0.16421026</td>
<td>0.40488662</td>
</tr>
<tr>
<td>1</td>
<td>0.32371755</td>
<td>0.29405286</td>
</tr>
<tr>
<td>1</td>
<td>-0.13277154</td>
<td>0.46566701</td>
</tr>
</tbody>
</table>

Parameter file for BLUPF90 with genomic information (ssGBLUP)

DATAFILE
renf90_5.dat

NUMBER_OF_TRAITS
1

NUMBER_OF_EFFECTS
2

OBSERVATION(S)
1

WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
2 1 cross
3 6100 cross

RANDOM_RESIDUAL VALUES
0.70000

RANDOM_GROUP
2

RANDOM_TYPE
add_animal

FILE
renadd02.ped

(CO)VARIANCES
0.30000

OPTION SNP_file snp.txt

OPTION chrinfo map.txt

OPTION conv_crit 1e-15
Log file for BLUPF90 with genomic information (ssGBLUP)

name of parameter file?
renf90.par
 * convergence criterion (default=1e-12): 1.000000E-15

Options read from parameter file:

* SNP file: snp.txt
* SNP Xref file: snp.txt_XrefID
* Map file: map.txt
 BLUPF90 1.48

Parameter file: renf90.par
Data file: renf90_5.dat
Number of Traits 1
Number of Effects 2
Position of Observations 1
Position of Weight (1) 0
Value of Missing Trait/Observation 0

EFFECTS
 # type position (2) levels [positions for nested]
 1 cross-classified 2 1
 2 cross-classified 3 6100

Residual (co)variance Matrix
0.70000

Random Effect(s) 2
Type of Random Effect: additive animal
Pedigree File: renadd02.ped

trait effect (CO)VARIANCES
 1 2 0.3000

REMARKS
(1) Weight position 0 means no weights utilized
(2) Effect positions of 0 for some effects and traits means that such
effects are missing for specified traits

Data record length = 3
equations = 6101
G
0.30000
read 6100 records in 0.149977 s, 12201
nonzeros
read 6100 additive pedigrees

* Genomic Library: Version 1.164 *
* *
* Optimized OpenMP Version *
* *
* Modified relationship matrix (H) created for effect: 2 *

Read 6100 animals from pedigree file: "renadd02.ped"
Number of Genotyped Animals: 1294

Creating A22
Extracting subset of: 2312 pedigrees from: 6100 elapsed time: 0.0150
Calculating A22 Matrix by Colleau OpenMP...elapsed time: 0.0346
Numbers of threads=8 16

Reading SNP file
Column position in file for the first marker: 8
Format to read SNP file: (7x,400000i1)
Number of SNPs: 1000
Number of Genotyped animals: 1294
Reading SNP file elapsed time: .06

Statistics of alleles frequencies in the current population
N: 1000
Mean: 0.504
Min: 0.043
Max: 0.929
Var: 0.032

Reading MAP file: "map.txt" - 1000 SNPs out of 1000
Min and max # of chromosome: 1 5
Min and max # of SNP: 1 1000

Quality Control - SNPs with Call Rate < callrate (0.90) will removed: 0
Quality Control - SNPs with MAF < minfreq (0.05) will removed: 1
Quality Control - Monomorphic SNPs will be removed: 0
Quality Control - Removed Animals with Call rate < callrate (0.90): 0
Quality Control - Check Parent-Progeny Mendelian conflicts
Total animals: 6100 - Genotyped animals: 1294 - Effective: 1294
Number of pairs Individual - Sire: 450
Number of pairs Individual - Dam: 440
Number of trios Individual - Sire - Dam: 206

No sex Chromosome information is available
Parent-progeny conflicts or HWE could eliminate SNPs in sex Chr
Provide map information and sex Chr to checks using autosomes

Checking SNPs for Mendelian conflicts
Total number of effective SNP: 999
Total number of parent-progeny evaluations: 890
Number of SNPs with Mendelian conflicts: 0

Checking Animals for Mendelian conflicts
Total number of effective SNP for checks on Animals: 999
Number of Parent-Progeny Mendelian Conflicts: 0

Number of effective SNPs (after QC): 999
Number of effective Individuals (after QC): 1294

Statistics of alleles frequencies in the current population after
Quality Control (MAF, monomorphic, call rate, HWE, Mendelian conflicts)
N: 999
Mean: 0.504
Min: 0.051
Max: 0.929
Var: 0.032

Genotypes missings (%): 0.100
Genotypes missings after cleaning (%): 0.000

Calculating G Matrix

Dgemm MKL #threads= 8 16 Elapsed omp_get_time: 1.024

Scale by Sum(2pq). Average: 435.140185710293

Blend G as alpha*G + beta*A22: (alpha,beta) 0.950 0.050

Frequency - Diagonal of G

N: 1294
Mean: 0.999
Min: 0.895
Max: 1.469
Range: 0.029
Class: 20

#Class Class Count
1 0.8951 27
2 0.9238 109
3 0.9524 304
4 0.9811 379
5 1.010 285
6 1.038 137
7 1.067 32
8 1.096 14
9 1.125 3
10 1.153 1
11 1.182 0
12 1.211 2
13 1.239 0
14 1.268 0
15 1.297 0
16 1.325 0
17 1.354 0
18 1.383 0
19 1.411 0
20 1.440 1
21 1.469 0

Check for diagonal of genomic relationship matrix

Check for diagonal of genomic relationship matrix, genotypes not removed: 0

--
Final Pedigree-Based Matrix
--

Statistic of Rel. Matrix A22

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal</td>
<td>1294</td>
<td>1.001</td>
<td>1.000</td>
<td>1.250</td>
<td>0.000</td>
</tr>
<tr>
<td>Off-diagonal</td>
<td>1673142</td>
<td>0.005</td>
<td>0.000</td>
<td>0.750</td>
<td>0.001</td>
</tr>
</tbody>
</table>
Final Genomic Matrix

Statistic of Genomic Matrix

<table>
<thead>
<tr>
<th>N</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal</td>
<td>1294</td>
<td>1.001</td>
<td>0.898</td>
<td>1.470</td>
</tr>
<tr>
<td>Off-diagonal</td>
<td>1673142</td>
<td>0.005</td>
<td>-0.158</td>
<td>0.791</td>
</tr>
</tbody>
</table>

Correlation of Genomic Inbreeding and Pedigree Inbreeding

Correlation: 0.2180

All elements - Diagonal / Off-Diagonal

Estimating Regression Coefficients $G = b0 \mathbf{11}' + b1 \mathbf{A} + e$

Regression coefficients $b0$ $b1$ = 0.000 0.991

Correlation all elements G & A 0.717

Off-Diagonal

Using 83426 elements from $\mathbf{A}_{22} \geq 0.02000$

Estimating Regression Coefficients $G = b0 \mathbf{11}' + b1 \mathbf{A} + e$

Regression coefficients $b0$ $b1$ = -0.003 0.999

Correlation Off-Diagonal elements G & A 0.777

Creating \mathbf{A}_{22}-inverse

Inverse LAPACK MKL dpotrf/i #threads= 8 16 Elapsed omp_get_time: 0.1059

Final \mathbf{A}_{22} Inv Matrix

Statistic of Inv. Rel. Matrix \mathbf{A}_{22}

<table>
<thead>
<tr>
<th>N</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal</td>
<td>1294</td>
<td>1.851</td>
<td>1.067</td>
<td>5.812</td>
</tr>
<tr>
<td>Off-diagonal</td>
<td>1673142</td>
<td>-0.001</td>
<td>-1.200</td>
<td>0.600</td>
</tr>
</tbody>
</table>

Creating \mathbf{G}-inverse

Inverse LAPACK MKL dpotrf/i #threads= 8 16 Elapsed omp_get_time: 0.1093

Final Genomic Inv Matrix

Statistic of Inv. Genomic Matrix

<table>
<thead>
<tr>
<th>N</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal</td>
<td>1294</td>
<td>13.466</td>
<td>5.863</td>
<td>45.587</td>
</tr>
<tr>
<td>Off-diagonal</td>
<td>1673142</td>
<td>-0.010</td>
<td>-13.521</td>
<td>6.897</td>
</tr>
</tbody>
</table>

Check for diagonal of Inverse Genomic - Inverse of pedigree relationship matrix

Final G Inv - \mathbf{A}_{22} Inv Matrix

Statistic of Inv. Genomic- \mathbf{A}_{22} Matrix
<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal</td>
<td>1294</td>
<td>11.615</td>
<td>4.782</td>
<td>40.309</td>
<td>21.740</td>
</tr>
<tr>
<td>Off-diagonal</td>
<td>1673142</td>
<td>-0.009</td>
<td>-12.521</td>
<td>6.397</td>
<td>0.211</td>
</tr>
</tbody>
</table>

* Setup Genomic Done !!! *

hash matrix increased from 131072 to 262144 % filled: 0.8000
hash matrix increased from 262144 to 524288 % filled: 0.8000
hash matrix increased from 524288 to 1048576 % filled: 0.8000
hash matrix increased from 1048576 to 2097152 % filled: 0.8000
finished peds in 25.61810 s, 861721 nonzeroes

round = 1 convergence = 0.6397E-03
round = 2 convergence = 0.4280E-03
round = 3 convergence = 0.3112E-03
round = 4 convergence = 0.9994E-04
round = 5 convergence = 0.8129E-04

round = 90 convergence = 0.3590E-14
round = 91 convergence = 0.2549E-14
round = 92 convergence = 0.2022E-14
round = 93 convergence = 0.1453E-14
round = 94 convergence = 0.9599E-15
94 iterations, convergence criterion= 0.9599E-15
solutions stored in file: "solutions"

Solutions for BLUPF90 with genomic information (ssGBLUP)
The solution file has the same format as in blupf90 without genomic information. The option for calculating se for EBV can also be used here.

Parameter file for PREDICTF90
Predictivity can be measured as correlation between adjust phenotypes and (G)EBV. In this example we show how to use PREDICTF90 to adjust phenotypes for genotyped animals in the validation population.

1) Adjusting phenotypes
As this program needs solution file, it can be run in the same folder as BLUP with complete data

Parameter file:
DATAFILE
pred.dat
NUMBER_OF_TRAITS 1
NUMBER_OF_EFFECTS 2
OBSERVATION(S) 1
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
2 1 cross
3 6100 cross

RANDOM_RESIDUAL VALUES
0.70000

RANDOM_GROUP
2

RANDOM_TYPE
add_animal

FILE
renadd02.ped

(CO)VARIANCES
0.30000

OPTION include_effects 2

Log file for adjusting phenotypes for genotyped animals in 5th generation

name of parameter file?
pred.par

*** include effects to predict Yhat n, effects 1 2
PREDICTF90 1.3

Parameter file: gen.par
Data file: pred.dat

Number of Traits 1
Number of Effects 2
Position of Observations 1
Position of Weight (1) 0
Value of Missing Trait/Observation 0

EFFECTS

<table>
<thead>
<tr>
<th>#</th>
<th>type</th>
<th>position (2)</th>
<th>levels</th>
<th>[positions for nested]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cross-classified</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>cross-classified</td>
<td>3</td>
<td>6100</td>
<td></td>
</tr>
</tbody>
</table>

Residual (co)variance Matrix
0.70000

Random Effect(s) 2
Type of Random Effect: additive animal
Pedigree File: renadd02.ped

(REMARKS)

(1) Weight position 0 means no weights utilized
(2) Effect positions of 0 for some effects and traits means that such
effects are missing for specified traits

Data record length = 3
equations = 6101

*** effects to include in Yhat (T/F): F T
solutions read from file: soltutions
Animal Effect: 2

y(s), yhat(s), residual(s) in written in “yhat_residual” file
300 records read

Trait: 1 300

mean Y -5.204056186291079E-002 var Y 0.979795877964320
mean Yhat -1.187536126623551E-002 var Yhat 7.349890384221654E-002
cov (Y,Yhat) 0.232182257800019E-002 corr (Y,Yhat) 0.306765659847626

wrote bvs for animals in data in file “bvs.dat”

Output files from PREDICTF90

yhat_residual

<table>
<thead>
<tr>
<th>yhat_residual has 4 columns:</th>
<th>animal</th>
<th>y</th>
<th>yhat</th>
<th>residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>4644</td>
<td>-0.266520</td>
<td>0.415535</td>
<td>0.339710</td>
<td></td>
</tr>
<tr>
<td>2176</td>
<td>-0.418925</td>
<td>0.094263</td>
<td>0.508577</td>
<td></td>
</tr>
</tbody>
</table>

Because OPTION include_effects 2 was used:
y is phenotype minus all effects other than animal
yhat receives the second effect, which is the animal effect
residual is phenotype minus animal effect

bvs.dat

<table>
<thead>
<tr>
<th>bvs.dat has 4 columns:</th>
<th>trait</th>
<th>effect</th>
<th>Animal</th>
<th>solution (EBV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 4644</td>
<td>0.415535</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 2 2176</td>
<td>0.094263</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hint: corr (Y,Yhat) from the output of PREDICTF90 (corr (Y,Yhat) 0.306765659847626) should not be used as a measure of predictivity because it uses adjusted phenotypes and EBVs from the same dataset. Usually, predictivity requires phenotypes adjusted for fixed effects in the complete data (benchmark) and (G)EBVs calculated from the reduced data (without records for validation animals). The regular predictivity measure is: corr[Y_from_PREDICTf90, (G)EBV_reduced]

For this small example with 1 trait, a general linux code to merge files is:

```bash
$awk '{print $1,$2}' ebv_complete/yhat_residual | sort +0 -1 > Y
$awk '{if ($2==2) print $3,$4}' ebv_reduced/solutions | sort +0 -1 > ebv.temp
$awk '{if ($2==2) print $3,$4}' gebv_reduced/solutions | sort +0 -1 > gebv.temp
$join -1 +1 -2 +1 Y ebv.temp > file1.temp
$join -1 +1 -2 +1 file1.temp gebv.temp > Y_ebv_gebv
```

An R code to calculate correlations is:

```r
pred <- read.table("Y_ebv_gebv",header=F)
ebv_predictivity <- cor(pred[,2],pred[,3]); ebv_predictivity
gebv_predictivity <- cor(pred[,2],pred[,4]); gebv_predictivity
```

Parameter files for GWAS using ssGBLUP (ssGWAS)
Run BLUPF90 with genomic information and save G^{-1} and A_{22}^{-1}

DATAFILE
renf90.dat
NUMBER_OF_TRAITS
 1
NUMBER_OF(EFFECTS)
 2
OBSERVATION(S)
 1
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
 2 1 cross
 3 6100 cross
RANDOM_RESIDUAL VALUES
 0.70000
RANDOM_GROUP
 2
RANDOM_TYPE
add_animal
FILE
renadd02.ped
(CO)VARIANCES
 0.30000
OPTION SNP_file snp.txt
OPTION chrinfo map.txt
OPTION no_quality_control
OPTION saveGInverse
OPTION saveA22Inverse
OPTION weightedG wei

Weights for SNP can be updated by an iterative process, where the initial weights are all equal to 1.

Linux code to get initial weights for 1000 SNP:
awk 'BEGIN { for (i==1;i<1000;i++) print 1}' > wei

Run POSTGSF90 and read G^{-1} and A_{22}^{-1}

DATAFILE
renf90.dat
NUMBER_OF_TRAITS
 1
NUMBER_OF_EFFECTS
 2
OBSERVATION(S)
 1
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
 2 1 cross
 3 6100 cross
RANDOM_RESIDUAL VALUES
 0.70000
RANDOM_GROUP
 2
RANDOM_TYPE
add_animal
FILE
renadd02.ped
(CO)VARIANCES
0.30000
OPTION SNP_file snp.txt
OPTION chrinfo map.txt
OPTION no_quality_control
OPTION Manhattan_plot
OPTION readGinverse
OPTION readA22Inverse
OPTION weightedG wei
OPTION windows_variance 5

Moving average of SNP effects can be obtained by using the following option:
OPTION SNP_moving_average n
where n is the number of SNP

Manhattan plots for SNP windows variance

Manhattan plots for SNP effect using moving average of 2 SNP
Output files for ssGWAS

snp_sol

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.7001368E-02</td>
<td>0.2209213</td>
<td>0.1119293</td>
<td>0.1126648E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>-0.1359349E-01</td>
<td>0.5065436</td>
<td>0.2104747</td>
<td>0.2118577E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0.8714214E-02</td>
<td>0.3917027</td>
<td>0.7757968</td>
<td>0.7808942E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>-0.4223401E-02</td>
<td>0.6873333E-01</td>
<td>1.2711113</td>
<td>0.1279465E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0.5471629E-03</td>
<td>0.1539137E-02</td>
<td>1.2610101</td>
<td>0.1269296E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

snp_sol has 9 columns because “OPTION windows_variance” was used:

- **trait** | **effect** | **SNP** | **chromosome** | **position** | **SNP_solution** | **weight** | **% of variance explained by n adjacent SNP**

chrsnpvar

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0.1119293459</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.2104747339</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.7757968029</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1.2711127978</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1.26101035</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

chrsnpvar has 6 columns:

- **trait** | **effect** | **% of variance explained by n adjacent SNP** | **SNP** | **chromosome** | **position**

This file is used by POSTGSF90 for Manhattan plots
Appendix J (custom relationship matrices)

When a relationship (or dispersion) matrix cannot be created within the application programs, it can be prepared separately and then included as a custom relationship matrix. Two options exist for inclusion of such a matrix. Option user_file incorporates this matrix directly. Option user_file_inv incorporates the inverse of this matrix.

The example below presents a model from the previous Appendix with matrix H^{-1} created externally and then read as a custom matrix. The custom matrix (Hinverse.txt) is stored as below, with each line containing: row, column and value.

```
1   1   3.0000
1   422 -1.0000
1   870  0.5000
1   4326 -1.0000
1   4612 -1.0000
.   .   .
.   .   .
6096 6100 -0.0527
6097 6097  2.5000
6098 6098  11.0000
6099 6099   2.0000
6100 6100  12.0236
```

Parameter file for BLUPF90 with a custom relationship matrix

```
DATAFILE
renf90_5.dat
NUMBER_OF_TRAITS
   1
NUMBER_OF_EFFECTS
   2
OBSERVATION(S)
   1
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
   2   1 cross
   3   6100 cross
RANDOM_RESIDUAL VALUES
   0.70000
RANDOM_GROUP
   2
RANDOM_TYPE
user_file
FILE
Hinverse.txt
(CO)VARIANCES
   0.30000
OPTION conv_crit 1e-15
```
Log file for BLUPF90 with a custom relationship matrix

name of parameter file?
user.par
* convergence criterion (default=1e-12): 1.0000000E-15

BLUPF90 1.48

Parameter file: user.par
Data file: renf90_5.dat
Number of Traits 1
Number of Effects 2
Position of Observations 1
Position of Weight (1) 0
Value of Missing Trait/Observation 0

EFFECTS
type position (2) levels [positions for nested]
1 cross-classified 2 1
2 cross-classified 3 6100

Residual (co)variance Matrix
0.70000

Random Effect(s) 2
Type of Random Effect: user defined from file
User File: Hinverse.txt

trait effect (CO)VARIANCES
1 2 0.3000

REMARKS
(1) Weight position 0 means no weights utilized
(2) Effect positions of 0 for some effects and traits means that such
 effects are missing for specified traits

Data record length = 3
equations = 6101
G
0.30000
read 6100 records in 4.7991998E-02 s, 12201 nonzeroes
... g_usr_inv: read 855620 elements
largest row, column, diagonal: 6100 6100 6100
... finished peds in 1.776729 s, 861721 nonzeroes
round = 1 convergence = 0.5737E-03
... round = 80 convergence = 0.9128E-15
80 iterations, convergence criterion= 0.9128E-15
solutions stored in file: “solutions”
Appendix K (selected programming details)

This section provides some programming insight into an early version of the blupf90 program. The model is completely described in the module MODEL.

module model

! Types of effects
integer, parameter :: effcross=0, & ! effects can be cross-classified
 effcov=1 & ! or covariables

! Types of random effects
integer, parameter ::
 g_fixed=1, & ! fixed effect
 g_diag=2, & ! diagonal
 g_A=3, & ! additive animal
 g_A_UPG=4, & ! additive animal with unknown ! parent groups
 & g_A_UPG_INB=5, & ! additive animal with unknown ! parent groups and inbreeding
 & g_As=6, & ! additive sire
 g_PD =7, & ! parental dominance
 g_last=8 & ! last type

character (40) :: parfile, & ! name of parameter file
datafile & ! name of data set

integer :: ntrait,& ! number of traits
 neff,& ! number of effects
 miss=0 & ! value of missing trait/effect

integer, allocatable :: pos_y(:,), & ! positions of observations
 pos_weight & ! position of weight of records; zero if none

integer, allocatable :: pos_eff(:,,:),& ! positions of effects for each trait
 nlev(:,),& ! number of levels
 effecttype(:,),& ! type of effects
 nestedcov(:,,:),& ! position of nesting effect for each trait
 & randomtype(:,),& ! status of each effect, as above
 randomnumb(:,), & ! number of consecutive correlated effects

character (40), allocatable:: randomfile(:,), & ! name of file associated with given ! effect

real, allocatable :: r(:,,:), & ! residual (co)variance matrix
 rinv(:,,:), & ! and its inverse
 g(:,,:,), & ! The random (co)variance matrix for each trait

end module model

The core of the program is presented below.

program BLUPF90

use model; use sparsem; use sparseop
implicite none

real, allocatable :: y(:,), & ! observation value
 indata(:,), & ! one line of input data

real :: weight_y & ! weight for records

type (sparse_hashm):: xx & X’X in sparse hash form
type (sparse_ija):: xx_ija
real, allocatable:: xy(:,),sol(:,)
real, allocatable :: weight_cov(:, :)
integer, allocatable:: address(:, :)
integer :: neq, io, &
data_len, &
i, j, k, l
real:: val, dat_eff

call read_parameters
call print_parameters
eq=ntrait*sum(nlev)
data_len=max(pos_weight,maxval(pos_y),maxval(pos_eff))
print*, 'Data record length = ',data_len
allocate (xy(eq), sol(eq), address(neff,ntrait), &
weight_cov(neff,ntrait), y(ntrait), indata(data_len))
call zerom(xx, eq); xy=0
!
call setup_g
! invert R matrices
!
! Contributions from records
do
read(50,*,iostat=io)indata
if (io.ne.0) exit
call decode_record
call find_addresses
call find_rinv
doi=1,neff
do j=1,neff
do k=1,ntrait
do l=1,ntrait
val=weight_cov(i,k)*weight_cov(j,l)*weight_y*rinv(k,l)
call addm(val,address(i,k),address(j,l),xx)
endo
dendo
dendo
do k=1,ntrait
do l=1,ntrait
xy(address(i,k))=xy(address(i,k))+rinv(k,l)*y(l)*weight_cov(i,k) &
*weight_y
endo
dendo
dendo
!
! Random effects' contributions
ado i=1,neff
select case (randomtype(i))
case (g_fixed)
continue
! fixed effect, do nothing
case (g_diag)
call add_g_diag(i)
case (g_A, g_As, g_A_UPG, g_A_UPG_INB)
call add_g_add(randomtype(i),i)
case (g_PD)
call add_g_domin(i)
case default
print*, 'unimplemented random type',randomtype(i)
endselct
endo
if (eq < 15) then
print*, 'left hand side'
call printm(xx)
print '('' right hand side:' ',10f8.1)',xy
endif
call solve_iterm(xx,xy,sol)

! Comment the line above and uncomment the lines below only if ! solutions by FSPAK are desired
!xx_ija=xx;
!call fspak90('solve',xx_ija,xy,sol)

if (neq <15) print '('', solution:' ,100f7.3)',sol

call store_solutions
Modules and Libraries

Module DENSEOP
Subroutines and functions for dense matrix manipulation in Fortran 90.
Uses F90 LAPACK implementation by Alan Miller for some low level routines.

Written by: Tomasz Strabel & Ignacy Misztal, University of Georgia e-mail: strabel@au.poznan.pl, ignacy@uga.edu, Oct/5/98-June 8, 2006

The module implements matrix operations on dense general and symmetric matrices. Each subroutine/function is overloaded to work with several types of arguments. The module is primarily designed for matrix operations where timing and memory requirements are not critical.

Symmetric matrices
Each of the functions/subroutines works with full-stored and packed (half-stored) matrices. Each matrix or vector can be single or double precision. However, in one function/subroutine, all arguments should be of the same precision, and all matrices should be stored the same way.

Subroutines
\begin{itemize}
 \item \texttt{call chol(a,rank)} - Cholesky decomposition
 \item \texttt{call inverse_s(A,rank)} - Generalized inverse: \texttt{A^{-1} = A^{-T}}
 \item \texttt{call eigen(A,d,V)} - Eigenvalues and eigenvectors: \texttt{A = V diag(d) \times V'}
 \item \texttt{call solve_s(A,b,x)} - Generalized solutions: \texttt{x: Ax=b}
\end{itemize}

The optional variable rank returns the rank of the matrix.

Functions
\begin{itemize}
 \item \texttt{fchol(A)} - Cholesky decomposition
 \item \texttt{finverse_s(A)} - Generalized inverse
 \item \texttt{fsolve_s(A,b)} - Generalized solve
 \item \texttt{fdet_s(A)} - Determinant of \texttt{A}
\end{itemize}

Procedures for symmetric matrices work with generalized matrices. Redundant rows/columns equations are determined by operational zero, which is kept in global variable denseop_tol with default value is 10-10. To change the limit, change the value of the variable in the application program, e.g., denseop_tol=1d-12

Conversions
Let \texttt{A} be a square matrix and \texttt{AP} be a packed matrix

\begin{itemize}
 \item \texttt{call packit(A,AP)} - Conversion from square to packed form; only lower-diagonal elements are used.
\end{itemize}
call unpackit(AP, A) - Conversion from packed to square form; the matrix is assumed symmetric.

General matrices
Each matrix or vector can be single or double precision. However, in one function/subroutine, all arguments should be of the same precision. All matrices are assumed full-rank.

Subroutines
call inverse(A) - Inverse: AI = A^-1

Functions
AI = finverse(A) - Returns inverse: AI = Ax = fsolve(A,b)

Printing
call printmat(matrix, text, fmt, un) print any type of matrix using the specified format fmt and preceded by text. Both text and fmt are optional. If optional un is present, the output is send to file with unit un.
Warning: The printmat function prints the symmetric packed matrices in full. If a half-stored matrix is in packed form, it will be printed as full-stored matrix.

Additional subroutines and functions
The subroutine(s) and functions below work only with double precision arguments (r8) and full-stored matrices.
call pos_def(x, text, min_eig, stat) Corrects X if it is not “sufficiently” positive-definite; ignores rows/columns with 0 elements only.
X - real (r8) symmetric square matrix
text - optional character variable that is printed if X is corrected
min_eig - optional real (r8) variable that sets the minimum relative eigenvalue in X; if min_eig is missing, 1e-5 is used.
stat - optional logical variable that is set to .true. if X was corrected and .false. if not.

A = diag(b) - creates square diagonal real (r8) matrix with values of real (r8) vector b on diagonal
b = diag(A) - creates real (r8) vector b containing diagonals of real (r8) matrix A
A=kron(B,C) - A = B “Kronecker product” C; works with real(r4) and real (r8) matrices

Technical details
The basic operations are done in full storage and double precision. Operations with other formats and precision are obtained by conversions. Computing of eigenvalues/eigenvectors and general matrix operations use parts of LAPACK subroutines as converted by Alan Miller. These subroutines may contain many more functionality than necessary and may be trimmed to reduce size of the object code.
The modules consist of two files:

lapack90r.f90 - Part of LAPACK denseop.f90 - Interfaces, subroutines, functions and conversion codes.
For compilation, module kind in file kind.f90 that contains definitions of single and double precision is also needed.

In the BLUPF90 distribution, these files are included in directory libs and are compiled as denseop.a. One way to use the denseop module is via a Makefile from an application program in the blupf90 package.

Example (exdense.f90)

Program Example:

use kinds; use denseop
real (r4):: xpacked4(3)=(/1,3,10/) ! Symmetric packed single precision
real (r4)::x4(2,2) ! Full single precision
real (r8)::x8(2,2) ! Full double precision
call printmat(xpacked4,' X ')
call printmat(fchol(xpacked4),' Cholesky(X) ','(10(f10.2))')
x4=xpacked4
x8=x4
print*, ' Determinant(xpacked4)=',fdet_s(xpacked4)
print*, ' Determinant(x8)=',fdet_s(x8)
print*, ' Determinant(x4)=',fdet_s(x4)
end

Compilation

To compile standalone:

f90 kind.f90 lapack90r.f90 denseop.f90 exdense.f90
This assumes that all files are in the same directory.
To compile in subdirectory of the blupf90 distribution under Linux/Absoft,

f90 -p ../libs exdense.f90 ../libs/denseop.a
where option -p specifies library directory. This option (-p) is different under different platforms. See documentation on blupf90 distribution for details.
Module SPARSEM
Collection of sparse matrix modules for Fortran 90 useful in animal breeding problems

Written by: Ignacy Misztal, University of Georgia e-mail: ignacy@uga.edu, 9/4/1997 - 5/25/2007

Introduction
Traditionally, programming in animal breeding is done in 2 stages: in a matrix language and in a regular programming language. Programs in a matrix language such as IML SAS, Matlab, Mathematica or APL are reasonably simple and useful for creating examples but inefficient for large problems. Programs in a regular programming language such as Fortran or C/C++ are much more efficient but could take much longer to write and require substantial training.

Matrix languages are easy to deal with matrices partly because usually only one format is usually supported: dense rectangular. Operations on such matrices are easy to specify and program, but large matrices require large memory and long running time. Also, memory and computations are equal whether matrices are sparse (contain very few nonzero elements) or not. In animal breeding, many matrices are sparse. If that sparsity is taken into account, the memory requirements and computations can decrease dramatically. Unfortunately, there is more than one format for storing sparse matrices, and some computations are fast with one format and but not with another one. Also, the storage formats and operations are considerably more complicated than dense rectangular matrices. A library to handle multiple matrix formats and multiple operations would contain many subroutines, each with a long list of arguments. Such a library would involve considerable learning, and many details associated with the library would create many opportunities for making a mistake.

One matrix package, Matlab, has some forms of sparse-matrix storage and operations included.

Modern programming languages with “object-oriented” features, such as C++ or Fortran 90, have abilities to create classes/modules, where many implementation details on specific data structures can be hidden. A technique called overloading allows single function/subroutine to work with different formats of its arguments. Therefore, the number of details to remember can be drastically reduced. Subsequently, programming can be done much easier and quicker.

SPARSEM is a module for Fortran 90 that enables programming common sparse matrix operations almost as easily as with dense matrices. It supports two dense matrix formats, useful for testing, and two sparse matrix formats. Changing a program from dense to sparse-matrix format using DENSEM can be as simple as changing one declaration line. SPARSEM incorporates an interface to FSPAK, which enables efficient sparse matrix factorization, solving, sparse inversion and calculation of determinant on matrices much larger than possible with dense matrix structures.
Matrix formats
Four matrix formats are available.

DENSEM - dense square matrix.
DENSE SYMM - dense symmetric upper-stored.
 It has approximately only half memory requirements of the dense square matrix.
SPARSE HASHM - sparse triple accessed by hash algorithm.
 This is a very efficient format for set-up and for iterative-solving of sparse matrices.
SPARSE IJA - Sparse IJA.
 This is a memory-efficient format for sparse matrices used by sparse matrix packages.
 Format IJA cannot easily be set up directly but can be derived by conversion from the hash format.

For more information on all these formats see Duff et al, George and Liu, or my class notes.

A popular format that is not included here is linked list. That format is reasonably efficient for creating and computing with sparse matrices if the number of nonzero elements per row is not too high and the matrix is not too large. However, the combination of hash plus ija is generally more efficient.

Matrix operations
The following subroutines/functions are supported. All real scalars and vectors are single precision unless indicated otherwise.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>call init(x)</td>
<td>Initialize x</td>
<td>Required by standard but usually not necessary because on most systems pointers are initialized automatically</td>
</tr>
<tr>
<td>call zerom(x,n)</td>
<td>Allocate storage for x as an n*n matrix and zero it</td>
<td>If x was set before, it is reallocated¹</td>
</tr>
<tr>
<td>call reset(x)</td>
<td>Deallocates storage</td>
<td></td>
</tr>
<tr>
<td>call addm(a,i,j,x)</td>
<td>Add to matrix: x(i,j)=x(i,j)+a</td>
<td>Does not work on SPARSE_IJA</td>
</tr>
<tr>
<td>call setm(a,i,j,x)</td>
<td>sets element of matrix: x(i,j)=a</td>
<td>Does not work on SPARSE_IJA</td>
</tr>
</tbody>
</table>
y=getm(i,j,x)
find element of
matrix: y=x(I,j)
real(4) function; returns lower-diagonal elements of upper-stored matrix

x=y
Conversion
between formats
Conversion from sparse to
dense formats may require too
much storage

call printm(x)
Prints x as square
matrix
print(x,'internal') prints sparse
matrices in internal format

call solve_iterm(x,rs,sol)
Solves: x sol=rs
iteratively by SOR

call default_iter
(conv, maxround, relax,
zerosol)
Changes default
iteration
parameters
All parameters are optional;
default values are:
conv(ergence criterion)=1e-10,
max round(s)=1000,
relax(ation factor)=1.0,
zerosol(utions ar beginning of
itration) = .true.

x=block(y,i1,i2,j1,j2)
Selects block from
y:
x=y(i1:i1,j1:j2)
does not work on
dense_symm format; may not
work with unsymmetric blocks
from symmetric matrices

q=quadrf(u,x,v)
q=u'Xv
real(8) function; does not work
on dense_symm format

tr=trace(x,y)
Self explanatory
real(8) function; x and y must
be in same formats; works on
densem and sparse_ija
formats only

tr=traceblock(x,y,i1,i2,j1,j2)
tr=trace(xy(i1:i2,j1:j2))
Works as a block-trace
combination; produces correct
results when blocks of y are
nonsymmetric

1The hash matrix is allocated for a default number of elements. If the default is too small, the hash matrix is
enlarged automatically. To change the default p elements, use call zerom(x,n,p). One matrix element in hash
format takes 12 bytes, and for efficient operation there should be at least 10% more nonzero elements
available than used.

All operations assume that the densem type is general while all the other types are upperstored.

Operations tr, quadf work with both upper- and full-stored matrices but the block operation works
literally, i.e., selecting a lower block would return an empty matrix and selecting an upper block
would return only an upper-stored matrix. This could be a source of incompatibility between densem and other formats that use the block operation without taking its limitations into consideration. Potential problems can be noticed in examples by printing matrices of interest.

Storage type
Matrices in the hash or ija format are half-stored by default. To change the storage type to full, add the option ‘f’ to the addm subroutine: `call addm(a,i,j,x,’f’)`
The subsequent conversion to the ija format will also be full-stored. For conversion from half-stored hash matrix to full-stored ija, please see a documentation for the GIBBS module.

The printing and other functions/subroutines have been designed for half-stored hash and ija matrices. Results may not be correct with full-stored matrices.

Numerical accuracy
Module KINDS defines precision r4 to be equivalent to real*4, and r8 to be equivalent to r8. Precision rh can be set up to r4 or r8 dependent on whether memory or precision is more important.

Formats DENSEM, DENSE_SYMM, and SPARSE_IJA use precision r8. Format SPARSE_HASHM uses precision rh. Whenever the precision of numbers in SPARSEM functions/subroutines is not specified, it is of type rh. Setting rh to r4 is useful when memory usage needs to be reduced, e.g., for large BLUP programs. Setting rh to r8 is necessary when numerical accuracy is important, e.g., in variance component programs, and is usually a safer choice.

Diagnostics
Printing of some diagnostic messages depends on the value of an integer variable sparsem_msg. The value of 3 means maximum diagnostic messages while the value of 0 means no diagnostic messages. The default is 2. This variable can be set in any part of the application program using the module SPARSEM.

FSPAK90
FSPAK is a sparse matrix package written in F77 that performs operations on sparse matrices in format SPARSE_IJA. Operations include solving a system of linear equations by factorization, calculating a (log)determinant or finding a sparse inverse of a matrix. A sparse inverse is such a matrix that contains inverse values only for those elements that were nonzero in the original matrix. For sparse matrices, FSPAK is very efficient computationally.

FSPAK90 is a F90 interface written to simplify the use of FSPAK.

A complete call to FSPAK90 is:
```
call fspak90(operation,ija,rs,sol,det,msglev,maxmem,rank)
```
where
```
operation=    "factorize"    - calculate sparse factorization
```
"invert" - calculate sparse inverse
"solve" - solve a system of equations
"reset" - reset the storage
"det" - calculate determinant
"stat" - print statistics
"fact_mult" - multiplication by Cholesky factor of the reordered matrix (if LL=IJA; sol=L*rs)
"inv_fact_mult" - solve the system formed by the Cholesky factor of the reordered matrix (sol: L*sol=rs)

ija = matrix in SPARSE_IJA form
rs = real (r4) or (r8) vector of right hand side,
sol = real (r4) or (r8), identical to precision of rs, vector of solutions
det = real (r8) determinant or log-determinant
msglev= message level from 0 (minimum) to 3 (maximum); default=0
maxmem=maximum memory available in the system; default=infinite
rank=rank of matrix

All the arguments of fspak90 except “operation” and “ija” are optional except when they are needed in a specific “operation”. Thus, rs and sol are needed for solving and det for “det” or “ldet”.

Examples:

To solve:
call fspak90('solve',ija,rs,sol)
for both rs and sol either in single or double precision; all. Preceding steps are done automatically.

To solve using double precision right hand side and solutions:
call fspak90('solve',ija,rs8=rs,sol8=sol)

To sparse invert:
call fspak90('invert',ija)

To obtain the determinant d:
call fspak90('det',ija,det=d)

To obtain the log determinant ld:
call fspak90('ldet',ija,det=ld)

To obtain rank r with any operation:
call fspak90(.....,rank=r)

To force new factorization, when the input matrix has changed:
call fspak90('factor',ija)

To deallocate the internal memory:
call fspak90('reset')

To limit memory to a maximum of maxmem, e.g., 20,000k, with any operation call fspak90(.................,maxmem=20000)
Note that only relevant arguments for each step need to be included in calling FSPAK90. Reordering is performed the first time when FSPAK90 is called. Subsequent factorization except after the option “reset” will reuse the ordering. Subsequent solves will reuse the factorization.

Additionally:

To sample \(y \) from \(N(0,A) \) where \(x \sim N(0,1) \)

\[
\text{call fspak90('fact_mult',A,rs8=x,sol8=y)}
\]

To sample \(y \) from \(N(0,A^{-1}) \) where \(x \sim N(0,1) \)

\[
\text{call fspak90('inv_fact_mult',A,rs8=x,sol8=y)}
\]

For details of the last operations, see Appendix S2

Additional subroutines and functions:

Function

\[
y = \text{mult}(A,x) \\
y = \text{mult}(x,A)
\]

Implements the matrix by vector multiplication for all matrix formats except dense_symm, and for double precision \(x \) and \(y \).

Subroutine

\[
\text{call multmatscal(A,x)}
\]

Implements \(A=x \) for all matrix formats except dense_symm, and for double precision \(x \).

Hints on using SPARSEM

Initially all the matrices can be implemented in DENSEM format. After the program works well with an example, convert all data structures for potentially large matrices to sparse formats and verify that same results are obtained.

Compiling

Matrix types and functions subroutine are defined in module sparsem. Subroutine fspak90 is in module sparseop. Program xx.f90 can be compiled as

\[
f90 -Maa xx.f90 aa/sparsem.a
\]

where \(aa \) is the directory containing the modules and the library, and \(M \) is the option to include module directory.

Beginning in May, 1999, SPARSEM is part of a programming package that includes BLUPF90, REMLF90, GIBSF90 etc. Compilation for several Unix environments is automated by makefiles. To find details, read Readme and Installation files in the package distributions. To create application with SPARSEM and possibly other modules, create a subdirectory in the main directory of the package, and adapt a makefile from the existing directory, e.g., blup.

Sample Programs

Dense matrix solution program
program test_sparse_structures
use sparsem; use kinds type
densem::x
integer, parameter :: n=5
integer :: i, j
real (rh):: rs(n), sol(n), val

call init(x)
call zerom(x, n)

! set up a sample matrix
do i=1, n
 rs(i)=n+1-i
 val=10.0*i/i
 call addm(val, i, i, x)
do j=i+1, n
 val=10.0*i/j
 call addm(val, i, j, x); call addm(val, j, i, x)
endo
do
endo

print*, 'rs: ', rs
print*, 'matrix' ; call printm(y)
call solve_iterm(y, rs, sol) ! solve iteratively
print*, 'sol: ', sol
end

Triangular dense matrix iterative-solution program

......
type (dense_symm)::x
........
(The rest of the program remains identical)

Sparse hash matrix iterative-solution program

......
type (sparse_hashm)::x
........

Sparse IJA matrix iterative-solution program

Matrix in ija form cannot be set up directly but can be converted from hash form.

......
type (sparse_hashm)::x
type (sparse_ija)::y
...
y=x ! conversion
call reset(x) ! Optional statement to release storage
print*, 'rs: ', rs print*, 'matrix' ; call printm(y) call
solve_iterm(y, rs, sol)
print*, 'sol: ', sol
end

Sparse IJA matrix finite-solution and inversion program with FSPACK90

... use sparsem use sparseop ! fspak90 is in module sparseop
..... call fspak90('solve', y, rs, sol)
.....
! now invert call
fspak90('invert', y)
call printm(y)
end

References
Prentice-Hall, Englewood Cliffs, N.J.

Appendix S1

Definitions of structure (type)

type densem ! traditional dense square matrix
 integer :: n
 real(8) , pointer :: x(:, :)
end type densem

type dense_symm ! upper stored symmetric dense matrix
 integer :: n
 real(8) , pointer :: x(:)
end type dense_symm

type sparse_hashm
 integer :: n, &
 nel, &
 filled, &
 status &
 ! for compatibility mainly
 ! number of elements
 ! number of filled elements
 ! 1 if ready to hash, 2 if in sorted
 ! order
 real (rh), pointer :: x(:, :)
end type sparse_hashm

 integer :: n, &
 nel &
 ! number of equations
 ! number of nonzeros
integer, pointer::ia(:), ja(:) !will be ia(n+1), ja(m)
real (8), pointer::a(:) !will be a(m)
end type

Accessing structures
Structures can be accessed within the application program using the “%” symbol. This is useful, e.g., when using Fortran 77 programs. The example below shows how to use a determinant program written in F77.

type (densem):: z
integer::i,j
real (rh)::value

call init(z)
call zerom(x,2)

! initialize z
do i=1,2
 do j=1,2
 value=i**j/10.
 call addm(value, i, j, z)
 enddo
enddo

print*, det(z%n, z%x)
end

function det(n, x)
!calculate determinant for a 2x2 matrix
integer n
real (r8):: x(n, n), det!
det= x(1,1)*x(2,2)/x(1,2)/x(2,1)
end

Library
The following files are compiled into the library:

kind.f90 - definitions of precisions
sparse.f90 - type definitions + main subroutines,
sparse2.f - supporting subroutines (in f77),
fspak.f90 - f90 interface to fsapk
fspak.f - main fsapk subroutine (in f77),
fspaksub.f - supporting fsapk subroutines (in f77),
sparssub.f - low-level subroutines from the book of George and Liu (in f77),
second.f - timing subroutine specific to each computer (in f77).

Subroutines second() specific to other computers can be found in the FSPAK manual.
Appendix S2

Multiplication and solving using factors

Let A be a matrix. Factorization produced by FSPAK is L:

\[A = P'LL'P \]

where P is a reordering matrix chosen to minimize the size of L:

\[PP' = P'P = I \]

Operation “fact_mult” multiplies the factor by a vector:

\[y = P' LPx \]

Operation “inv_fact_mult” solves the system of equation:

\[P'L'Py = x \]

This is equivalent to:

\[y = P' (L^{-1}) Px \]

Both operations were programmed by Juan Pablo Sanchez. The operations are useful for generation of large random samples from a multivariate normal distribution. They may be useful in Gibbs sampler algorithms when setting up and factorization of the system of equations in each round are feasible.
Module Prob

Probability routines for use in threshold models and Gibbs sampling

Written by: Ignacy Misztal and Deukhwan Lee, University of Georgia e-mail: ignacy@uga.edu, 04/29/99-04/19/2001

Module Prob is a collection of random number generators / probabilities / truncated distributions useful for Gibbs sampling and for threshold models. The module uses features of Fortran 90 to simplify programming and high-level optimization to reduce running time, with simplicity being as important as efficiency. To understand the module fully, please read the documentation on SPARSEM and on BLUPF90.

Module prob uses high-quality generators from public domain package RANLIB for random number generators. Some low level code is from Luis Varona.

Subroutines/functions

call set_seed(n)
Sets seed for random number generator to integer n. If this subroutine is not called, the seed will be selected by the system.

x = gen_uniform(a, b)
a, b - both real (r8) or both integers or both missing.
If a, b are missing, generates samples from uniform(0,1) distribution
If a, b are real (r8), generates samples from uniform(a, b) distribution
If a, b are integers, generates random integer between a and b

x = gen_normal(mean, var)
mean - (r8) scalar or vector
var - (r8) scalar or square matrix
x - (r8) scalar or square matrix
Generates x = N(mean, Var) when mean and var are scalars, or x = MVN(mean, Var) when mean is a vector and Var is a matrix. Arguments mean and var are optional. If they are missing, sampling is from N(0,1)

x = gen_invwishart(inv_q_form, df)
inv_q_form - (r8) scalar or square matrix containing inverse of quadratic form
df - an integer containing degrees of freedom
Generates samples from inverted chi square or inverted Wishart distributions.

y = normal(x)
x - real(r8) scalar
y - real (r8) contains density(X) for N(0,1)
\[y = \text{normal}_\text{cdf}(x) \]
\begin{itemize}
\item \(x \) - real (r8) scalar
\item \(y \) - real (r8) cumulative distribution function for N(0,1)
\end{itemize}

\[y = \text{normal}_\text{invcdf}(x) \]
\begin{itemize}
\item \(x \) - real (r8) scalar in the range of \(0,1 \)
\item \(y \) - real (r8) as in: \(x = \text{normal}_\text{cdf}(y) \)
\end{itemize}

\[y = \text{generate}_\text{trunc_normal}(a,b,\text{mean},\text{var}) \]
\begin{itemize}
\item \(y \) - real (r8) scalar or vector
\item \(a,b \) - real (r8) lower and upper bound of random samples
\item \(\text{mean} \) - real(r8) scalar or vectors of mean, optional if scalar
\item \(\text{var} \) - real(r8) variance or covariance matrix, optional if scalar
\end{itemize}

If mean and var are missing, generates random samples from N(0,1) distribution truncated to interval \(<a,b> \).

If mean and var are scalars, generates random samples from N(\text{mean},\text{var}) distribution truncated to interval \(<a,b> \).
If mean is a vector and var is a matrix, generates random samples from MVN(\text{mean},\text{var}) distribution with first dimension truncated to interval \(<a,b> \).

Other functions/subroutines
New functions/subroutines are added to Module prob periodically. Please see program prob.f90 for details.