Introduction to BLUPF90 software suite

Daniela Lourenco
Ignacio Aguilar
BLUPF90 TEAM - 05/2024
UNIVERSITY OF GEORGIA
College of Agricultural \& Environmental Sciences

BLUPF90 software suite

- Collection of software
- Fortran ≥ 90
- Fortran = Formula Translation System
- Fortran = Formula Translator
- First compiler in 1957 by IBM

FEATURE ARTICLE: SOFTWARE FOR SCIENTIFIC COMPUTING

The State of Fortran

Laurence J. Kedward © , University of Bristol, Bristol, BS8 1TH, U.K.
Bálint Aradi \top, University of Bremen, 28359, Bremen, Germany
Ondriej Čertik, Los Alamos National Laboratory, Los Alamos, NM, 87544, USA
Milan Curcic \oplus, University of Miami, Miami, FL, 33149, USA
Sebastian Ehlert ©, Institut für Physikalische und Theoretische Chemie, Universität Bonn, 53115, Bonn, Germany
Philipp Engel, Technische Universität Berlin, 10623, Berlin, Germany
Rohit Goswami ©, Quansight Austin, Austin, TX, 78735, USA
Michael Hirsch ${ }^{\text {® }}$, Boston University, Boston, MA, 02215, USA
Asdrubal Lozada-Blanco ©, University of São Paulo, São Carlos, 13566-590, Brazil
Vincent Magnin ©, Université Lille, CNRS, Centrale Lille, Université Polytechnique Hauts-de-France, IEMN, 59000 Vincent Mag
Arjen Markus ${ }^{\oplus}$, Deltares Research Institute, 2629 HV, Delft, The Netherland
Emanuele Pagone ${ }^{\text {® }}$, Cranfield University, Cranfield, MK43 OAL, U.K.
Ivan Pribec ©, Technical University of Munich, 80333, Munich, Germany
Brad Richardson ©, Archaeologic, Inc., Berkeley, CA, 94707, USA
Harris Snyder, Structura Biotechnology Inc., Toronto, ON, M5G 1S5, Canada
John Urban, High-Performance Computing Consultant, USA
Jérémie Vandenplas, Wageningen University Research, 6700 AH, Wageningen, The Netherlands

A community of developers has formed to modernize the Fortran ecosystem. In this article, we describe the high-level features of Fortran that continue to make it a good choice for scientists and engineers in the 21st century. Ongoing efforts include the development of a Fortran standard library and package manager, the fostering of a friendly and welcoming online community, improved compiler support, and language feature development. The lessons learned are common across contemporary programming languages and help reduce the learning curve and increase adoption of Fortran.

- ortran is a high-level programming language primarily used to solve scientific and engineer-
ing problems. It has been under active developing problems. It has been under active develop. ment since its inception under John Backus at IBM in 1954 to the present day. The initial goal was to ease the translation of mathematical for culas to optimized

1521-9615 © 2022 IEEE
Digital Object Identifier 10.1109/MCSE.2022.3159862 Date of publication 16 March 2022; date of current version several computer architectures such that Fortran is accepted as being the first cross-platform programming language.
The ISO Fortran Standard and its maintenance of backwards compatibility provide guarantees for

BLUPF90 software suite

Search \quad Q

Condition of use
Distribution / Download
Documentation / Manual / Tutorial

- Application program details
- Suppor
- Tricks / Tips

To Do
Sample data
Undocumented options

- History

ondition of us

Table of Contents
BLUPF90 Family of Programs Headine
Courses Courses
Ignacy Misztal and collaborators, University of Georgia
BLUPF90 family of programs is a collection of software in Fortran $90 / 95$ for mixed model computations in animal breeding. The goal of the software is to be as simple as with a matrix package and as efficient as in a programming language. For general description, see a paper from the CCB'99 workshop or see a paper on BGF90 at 7th WCGALP.

For variance component estimation, the family offers choices for simple and complicated models; see paper waze "Reliable computing in estimation of variance components" . From 2009 the programs are successively modified for genomic selection using a wingle-step approach (or shictup) by Ignacio Aguilar and Shogo Tsuruta.

For support, join Blupf90 Discussion Group at Groups.io. We moved from Yahoo Groups to Groups.io on November 7, 2019, mainly because of the unavailability of key features in Yahoo Groups. We no longer maintain the old group.
Please visit $®$ our main web-site for details in research and publication

Troubleshooting

(1) If the software crashes with segmentation fault, please change settings in your operating system. See FAQ:Segmentation fault for details. Also, The FAQ pages provide useful suggestions and solutions.

Headline

- Collection of software written in Fortran
- Computations in AB \& G
- Since 1997/1998 by Ignacy Misztal
- Several developers + collaborators
- Simple, efficient, and comprehensive
- Very general models

BLUPF90 software suite

BLUPF90 Family of Programs

Now with support for genomic selection
BLUPF90 Family of Programs Headine

Ignacy Misztal and collaborators, University of Georgia
BLUPF90 family of programs is a collection of software in Fortran 90/95 for mixed model computations in animal breeding. The goal of the software is to be as simple as with a matrix package and as efficient as in a programming language. For general description, see a paper from the CCB'99 workshop or see a waper on BGF90 at 7th WCGALP.

For variance component estimation, the family offers choices for simple and complicated models; see paper araz "Reliable computing in estimation of variance components" . From 2009 the programs are successively modified for genomic selection using a wingle-step approach (or ssGBLUP) by Ignacio Aguilar and Shogo Tsuruta.

For support, join © Blupf90 Discussion Group at Groups.io. We moved from Yahoo Groups to Groups.io on November 7, 2019, mainly because of the unavailability of key features in Yahoo Groups. We no longer maintain the old group.
Please visit © our main web-site for details in research and publication.

Troubleshooting

(1) If the software crashes with segmentation fault, please change settings in your operating system. See FAQ:Segmentation fault for details. Also, The FAQ pages provide useful suggestions and solutions.

Headline

- History
- Modules
- Condition of use
- Distribution / Download
- Documentation / Manual / Tutorial
- Application program details
- Support
" SAQ
- Tricks / Tips
- To Do
- Sample data

Undocumented options

- No GUI (graphical user interface)!!!
- First idea: to solve the MME

$$
\left[\begin{array}{cc}
\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{W} \\
\mathbf{W}^{\prime} \mathbf{X} & \mathbf{W}^{\prime} \mathbf{W}+\mathbf{A}^{-1} \frac{\sigma_{e}^{2}}{\sigma_{a}^{2}}
\end{array}\right]\left[\begin{array}{c}
\widehat{\boldsymbol{\beta}} \\
\hat{\mathbf{u}}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{X}^{\prime} \mathbf{y} \\
\mathbf{W}^{\prime} \mathbf{y}
\end{array}\right]
$$

- First software: blupf90
- Second idea: VCE

$$
\left[\begin{array}{cc}
\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{W} \\
\mathbf{W}^{\prime} \mathbf{X} & \mathbf{W}^{\prime} \mathbf{W}+\mathbf{A}^{-1}\left(\frac{\boldsymbol{\sigma}_{e}^{2}}{\boldsymbol{\sigma}_{a}^{2}}\right.
\end{array}\right]\left[\begin{array}{l}
\widehat{\boldsymbol{\beta}} \\
\hat{\mathbf{u}}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{X}^{\prime} \mathbf{y} \\
\mathbf{W}^{\prime} \mathbf{y}
\end{array}\right]
$$

- Software: remlf90, airemlf90 , gibbsf90

BLUPF90 software main developers

Ignacy Misztal

Shogo Tsuruta

Andres
Legarra

Yutaka
Masuda

Matias Bermann

- + Several contributors
- Research turns into code
- Which programs?

BLUPF90 software suite

	Genomics
blupf90	preGSf90
	Processing of SNP data (QC + matrices)
BLUP with explicit equations	
	qcf90
remlf90	QC of large SNP data
Expectation Maximization REML	
	postGSf90
airemlf90	Estimation of SNP effects and GWAS
Average Information REML	predf90 *
	Prediction of GEBV based on SNP effects
gibbsXf90	seekparentf90
Bayesian Analyses - linear traits	Parentage verification (SNP and pedigree)
thrgibbsXf90	predictf90
Bayesian Analyses - categorical traits	Adjusted and predicted phenotypes
	validationf90
postgibbsf90	Perform validation of predictions

Large-scale
blup90iod2 blup90iod2OMP1 blup90iod3 cblup90iod2 cblup90iod2OMP1 accf90 accf90GS accf90GS2 accf90GS3

[^0]
nce.ads.uga.edu/wiki

Programs

Available for research (free)

- BLUPF90+ - a combined program of blupf90, remlf90, and airemlf90
- GIBBSF90+ - a combined program of gibbs1f90, gibbs2f90, gibbs3f90, thrgibbs1f90, and thrgibbs3f90
- POSTGIBBSF90 - statistics and graphics for post-Gibbs analysis (S. Tsuruta)
- RENUMF90 - a renumbering program that also can check pedigrees and assign unknown parent groups; supports large data sets
- PREGSF90 - genomic preprocessor that combines genomic and pedigree relationships (I. Aguilar)
- POSTGSF90 - genomic postprocessor that extracts SNP solutions after genomic evaluations (single step, GBLUP) (I. Aguilar)
- PREDICTF90 - a program to calculate adjusted y, y_hat, and residuals (I. Aguilar)
- PREDF90 - a program to predict direct genomic value (DGV) for animals based on genotypes and SNP solution
- QCF90 - a quality-control tool on genotypes and pedigree information (Y. Masuda)
- INBUPGF90 - a program to calculate inbreeding coefficients with incomplete pedigree (I. Aguilar)
- SEEKPARENTF90 - a program to verify paternity and parent discovery using SNP markers (I. Aguilar)

No longer updated (as of May 2022)

[^1]
BLUPF90 software suite

- $1,684,059$ accesses to the nce server
- 1074 true binaries downloads (without duplicates)
- 239 users (IP with at least one binary download)
- BLUPF90+ has the most downloads
- Brazil is the countries with the most users
- Windows is the most used OS

BLUPF90 software suite

Users around the world

BLUPF90 software suite

Windows	114
Linux	109
MacOS	16
Total	239

BLUPF90 software suite

Program downloads

blupf90+

- blupf 90: MME solver
- airemlf90: variance components using Average Information REML
- remlf 90: variance components using Expectation Maximization REML

Mixed Model Equations Solver

Variance Components Estimation

$$
\left[\begin{array}{cc}
\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{W} \\
\mathbf{W}^{\prime} \mathbf{R}^{-1} \mathbf{X} & \left.\mathbf{W} \mathbf{R}^{-1} \mathbf{W}+\mathbf{A}^{-1} \otimes \mathbf{G}_{0}^{-1}\right]
\end{array}\right]\left[\begin{array}{l}
\widehat{\boldsymbol{\beta}} \\
\hat{\mathbf{u}}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{y} \\
\mathbf{W}^{\prime} \mathbf{R}^{-1} \mathbf{y}
\end{array}\right]
$$

blupf90+

1

MME Solver

Default

\sum

VC Estimation

- AI-REML:

OPTION method VCE

- EM-REML:

OPTION method VCE
OPTION EM-REML

blupf90+

- Supports virtually any model used in $A B \& G$:
- animal model
- models with maternal effect
- MPE
- PE
- Random Regression
- Social interaction
- Multiple traits
- up to 70 if no correlated effects
- up to [70/number of correlated effects]

blupf90+

- How to use:

[dani@dodo5 examples]\$ blupf90+ name of parameter file?

```
[dani@dodo5 examples]$ blupf90+ --help
*****************
* BLUPF90+
*****************
Computation of variance components, solutions, and s.e
Default behavior avoids variance components estimation
For help about genomics, use blupf90+ --help-genomic
    * OPTION SNP file snp
    Specify the SNP file name to use genotype data.
* OPTION method VCE (default BLUP with blupf90 options)
    Run airemlfg0 for variance component estimation (default running blupf90)
* OPTION conv_crit ld-12
    Convergence criterion (default ld-10)
```


blupf90+

- Input files
- Free format (minimum one space to separate columns)
- TAB is not a valid separator
- Only numbers: integer or real
- Decimal separators "." not ","
- One ". " is not a missing value as in SAS
- All effects need to be renumbered from 1 (consecutively)

blupf90+

- Computes generalized solutions by several methods:
- Preconditioner Conjugate Gradient (PCG)
- Default Iterative method (fast)
- Successive over-relaxation (SOR)
- an iterative method based on Gauss-Seidel
- Direct solution using sparse Cholesky factorization
- FSPAK or YAMS (greater memory requirements)
- Can provide PEV
- Solutions change among methods, but estimable functions should be the same

blupf90+ with PCG

Animal Breeding and Genetics Local Wik

Iteration on data with preconditioned conjugate gradient (PCG)

Table of Contents

 teration on data with preconditioned conjugate gradient (PCG)- Algorithm
- Programs
-Files and analysis
-Options

Intermediate status is kept in only 4 vectors and the ive iteration will be the linear equations. This method is easily harmonized with the iteration of data technique will Intermediate status is kept in only 4 vectors and the one iteration will be done updating the vectors. BLUP901OD2 is a program implementing the algorith introduce a basic idea needed to understand what the program does. See Stranden and Lidauer (2000) and Tsuruta et al. (2001) for detailed algorithm.

The mixed model equations can be written as

$$
\mathbf{C x}=\mathbf{b}
$$

where \mathbf{C} is the left-hand side matrix, \mathbf{x} is the solution vector and \mathbf{b} is the right-hand side vector. If we have a matrix \mathbf{M} which is an approximation of \mathbf{C}, above equations are equivalent to

$$
\mathbf{M}^{-1} \mathbf{C x}=\mathbf{M}^{-1} \mathbf{b} .
$$

This matrix \mathbf{M} is called preconditioner. If $\mathbf{M}=\mathbf{C}$, the equations are immediately solved. BLUPF90 uses $\mathbf{M}=\operatorname{diag}(\mathbf{C})$ so its inverse is easily calculated.
The residual is expressed as

$$
\mathbf{r}=\mathbf{b}-\mathbf{C x}
$$

and the algorithm tries to reduce with a statistics containing the residual. The convergence criterion is

$$
\varepsilon=\frac{\|\mathbf{b}-\mathbf{C x}\|^{2}}{\|\mathbf{b}\|^{2}}
$$

where II • \| means the norm.

Parameter file for blupf90+

```
# BLUPF90 parameter file created by RENUMF90
DATAFILE
../renf90.dat
NUMBER_OF_TRAITS
NUMBER_OF_EFFECTS
OBSERVATION (S
    1 2
WEIGHT (S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
    3440593 cross
    5 5 2 cross
    6 0 4 cross
                                8 cross
918111 cross
RANDOM RESIDUAL VALUES
    2.5300 1.3425
    1.3425 29.714
RANDOM GROUP
    5
RANDOM_TYPE
    add an upginb
FILE
../renadd05.ped
(CO) VARIANCES
    0.7600 2.2391
    2.2391 30.609
```


Parameter file for blupf90+

```
# BLUPF90 parameter file created by RENUMF90
DATAFILE
../renf90.dat
NUMBER_OF_TRAITS
NUMBER_OF_EFFECTS
OBSERVATION(S) Number of levels
WEIGHT (S)
EFFWCNS: POEIrIIQNS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
    40593 cr्ross
                        2 cross
                                4 \text { cross}
                                cross
                                    Type of effect
        918111 cross
8 SOM RESIDUAL VALUES
NANDM_RESIDUAL VALUES
    1.3425 29.714
RANDOM_GROUP
    5
RANDOM_TYPE
    add an upginb
FTIE
../renadd05.ped
(CO) VARIANCES
    0.7600 2.2391
    2.2391 30.609
- As many rows as the NUMBER_OF_EFFECTS
- Model definition for each trait
- Different models per trait are supported
- If an effect is missing for one trait use 0
add an upginb
renaddo5.ped
\(0.7600 \quad 2.2391\)
\(+30.609\)
```


Parameter file for blupf90+

```
# BLUPF90 parameter file created by RENUMF90
DATAFILE
../renf90.dat
NUMBER_OF_TRAITS
NUMBER_OF_EFFECTS
OBSERVATION (S)
    1 2
WEIGHT (S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
    3 4 40593 cross
    5 5 2 cross
    6 0 4 cross
                                4 cross
918111 cross
RANDOM RESIDUAL VALUES
    2.5\overline{3}00 1.3425
    1.3425 29.714
RANDOM GROUP
    5
RANDOM_TYPE
    add an upginb
FILE
../renadd05.ped
(CO) VARIANCES
    0.7600 2.2391
    2.2391 30.609
        Should be a square matrix with dimension
        equal to the number of traits
```

- Use zero (0.0) for uncorrelated residual effects between traits
- e.g., for a 3-trait model:
$43.1 \quad 0.0 \quad 0.0$
$\begin{array}{lll}0.0 & 5.1 & 3.2\end{array}$
$\begin{array}{lll}0.0 & 3.2 & 10.3\end{array}$

Parameter file for blupf90+

```
# BLUPF90 parameter file created by RENUMF90
DATAFILE
../renf90.dat
NUMBER_OF_TRAITS
NUMBER_OF_EFFECTS
OBSERVATION(S)
    1 2
WEIGHT (S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
    34 40593 cross
    5 5 2 cross
    6 0 4 cross
                                8 cross
    9 1 8 1 1 1 ~ c r o s s
RANDOM RESIDUAL VALUES
    2.5\overline{300 1.3425}
    1.3425 29.714
RANDOM_GROUP
    5
RANDOM_TYPE
    add an upginb
FILE
./renadd05.ped
(CO) VARIANCES
    0.7600 2.2391
    2.2391 30.609
```



```
Definition of random effects
RANDOM GROUP
RANDOM TYPE
FILE
(CO) VARIANCES
```


Definition of random effects

- RANDOM_GROUP
- Number of the effect(s) from list of effects
- Correlated effects should be consecutive e.g., Maternal effects, Random Regression
- RANDOM_TYPE
- diagonal, add_animal, add_sire, add_an_upg, add_an_upginb, add_an_self, user_file, user_file_i, or par_domin
- FILE
- Pedigree file, parental dominance, or user file
- (CO)VARIANCES
- Square matrix with dimension equal to the number_of_traits*number_of_correlated_effects

(CO)VARIANCES

- Assuming 3 traits (T1-T3)

	T1	T2	T3
T1			
T2			
T3			

(CO)VARIANCES

- Assuming 3 traits (T1-T3) and 2 correlated effects (E1-E2)

		Direct			Maternal		
		T1	T2	T3	T1	T2	T3
$\begin{aligned} & \ddot{0} \\ & \stackrel{訁}{0} \end{aligned}$	T1						
	T2						
	T3						
	T1						
	T2						
	T3						

RANDOM_TYPE

- Diagonal
- for permanent environmental effects
- assumes no correlation between levels of the effect
- add_sire
- To create a relationship matrix using sire and maternal grandsire
- Pedigree file:
- individual number, sire number, maternal grandsire number
- add_animal
- To create a relationship matrix using sire and dam information
- Pedigree file:
- animal number, sire number, dam number

RANDOM_TYPE

- add_an_upg
- As before but using rules for unknown parent groups
- Pedigree file:
- animal number, sire number, dam number, parent code
- missing sire/dam can be replaced by upg number, usually greater than the maximum number of animals
- Parent code = 3-\# of known parents
- 1 both parents known
- 2 one parent known
- 3 both parents unknown
- add_an_upginb
- As before but using rules for unknown parent groups and inbreeding
- Pedigree file:
- animal number, sire number, dam number, inb/upg code
- missing sire/dam can be replaced by upg number, usually greater than maximum number of animals
- inb/upg code $=4000 /[(1+m s)(1-F s)+(1+m d)(1-F d)]$
- ms (md) is 0 if sire (dam) is known and 1 otherwise
- $\mathrm{Fs}(\mathrm{Fd})$ inbreeding coefficient of the sire (dam)

RANDOM_TYPE

- add_an_meta
- To create a relationship matrix using metafounders rules
- Pedigree file:
- animal number, sire number, dam number
- needs a gamma file
- add_an_self
- To create a relationship matrix when there is selfing
- Pedigree file:
- individual number, parent 1 number, parent 2, number of selfing generations
- user file
- An inverted matrix is read from a file
- Matrix is stored only upper- or lower-triangular
- Matrix file:
- row, col, value
- user_file_i
- As before but the matrix will be inverted by the program
- par_domin
- A parental dominance file created by the program RENDOM

OPTIONS for blupf90+

- Program behavior is modified by adding extra options at the end of the par file
- OPTION option_name x1 x2 ...
- option_name: each program has its own options
- x1 x2: each option has its own parameters

Options for blupf90+

Options

```
OPTION conv_crit 1e-12
```

Set convergence criteria (deault 1e-12).

OPTION maxrounds 10000

Set maximum number of rounds (default 5000).

```
OPTION solv method FSPAK
```

Selection solutions by FSPAK, SOR or PCG (default PCG)

```
OPTION r_factor 1.6
```

Set relaxation factor for SOR (default 1.4).

OPTION sol se

Store solutions and standard errors

```
OPTION store pev pec 6
```

Store triangular matrices of standard errors and its covariances for correlated random effects such as direct-maternal effects and randomregression effects in "pev_pec_bf90".

Options for blupf90+

OPTION missing -999

Specify missing observations (default 0) in integer

```
OPTION residual
```

y-hat and residual will be included in "yhat_residual".

OPTION blksize 3

Set block size for preconditioner (default 1).
OPTION use_yams

Run the program with YAMS (modified FSPAK).

```
OPTION SNP_file snp
```


New options for blupf90+

- Storing reliabilities based on PEV

OPTION store_accuracy X

$$
\text { Rel }=1-\frac{P E V}{\sigma_{u}^{2}(1+f)}
$$

Number of animal effect

- Adjusts for f (inbreeding) from \mathbf{A}, \mathbf{G}, or \mathbf{H}
- Turn inbreeding adjustment off
- OPTION correct_accuracy_by_inbreeding_direct 0
- Storing solutions with original ID if renumf90 was used to renumber the data

OPTION origID

- Only solutions.original is created

New options for blupf90+

- Storing reliabilities with original ID
OPTION store_accuracy
X orig

$$
\text { Rel }=1-\frac{P E V}{\sigma_{u}^{2}(1+f)}
$$

- Storing solutions and rel with original ID if renumf90 was used to renumber the data
- The option will save acc_bf90 with renumbered and original ID
- If want to have solutions.original as well, combine with OPTION origID

Common parameter file for blupf90+

```
# BLUPF90 parameter file created by RENUMF90
DATAFILE
    renf90.dat
NUMBER_OF_TRAITS
    1
NUMBER_OF_EFFECTS
OBSERVATION(S)
    1
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
    2 2 cross
3 12010 cross
RANDOM_RESIDUAL VALUES
    0.60000
    RANDOM_GROUP
    2
    RANDOM_TYPE
    add_an_upginb
    FILE
renadd02.ped
(CO) VARIANCES
    0.40000
```


Example

Model: $y=f a r m+\boldsymbol{s e x} \boldsymbol{+} \boldsymbol{\beta}$ age $\boldsymbol{+}$ animal $\boldsymbol{+ e}$

```
DATAFILE
data1.txt
NUMBER_OF_TRAITS
NUMBER_OF_EFFECTS
OBSERVATION(S)
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
    2 
    1 cov
5 15 cross
RANDOM_RESIDUAL VALUES
    1.0000
RANDOM_GROUP
4
RANDOM_TYPE
add_animal
FILE
ped1.txt
(CO) VARIANCES
    0.20000
```

Anim Sire Dam
phen farm sex age Anim
phen farm sex age Anim
data1.txt
$\begin{array}{llll}3 & 1 & 1 & 1\end{array}$
21218
41129
622210
32115
62221
63123
63217
83112
43224
$8 \quad 12 \quad 13$
$\begin{array}{ll}9 & 1214\end{array}$
1500
101211

1	15	14
14	0	0
2	15	14
11	0	0
3	15	11
4	15	11
5	12	13
12	0	0
6	12	11
7	15	13
13	0	0
8	12	13
9	12	14
15	0	0
10	12	11

Common problems in blupf90+

- Wrong data file and pedigree name
- Program may not stop if file name does not exist
- Check outputs for data file name and number of records and pedigree read

```
round = 4995 convergence = NaN
round = 4996 convergence = NaN
round = 4997 convergence = NaN
round = 4998 convergence = NaN
round = 4999 convergence = NaN
round = 5000 convergence = NaN
    5 0 0 1 ~ i t e r a t i o n s , ~ c o n v e r g e n c e ~ c r i t e r i o n = ~ N a N
    solutions stored in file: "solutions"
```


blupf90+

VC Estimation

EM-REML: expectation-maximization (EM) algorithm AI-REML: average information (AI) algorithm

REML

- REML = restricted/residual maximum likelihood
- Patterson and Thompson (1971)
- Most used method for VCE in AB\&G

EM-REML

- This method requires iterations:

$$
\mathbf{y}=\mathrm{X} \boldsymbol{\beta}+\mathrm{Zu}+\mathrm{e}
$$

$$
\left[\begin{array}{cc}
\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{Z} \\
\mathbf{Z}^{\prime} \mathbf{X} & \mathbf{Z}^{\prime} \mathbf{Z}+\mathbf{A}^{-1} \\
\frac{\boldsymbol{\sigma}_{e}^{2}}{\boldsymbol{\sigma}_{a}^{2}}
\end{array}\right]\left[\begin{array}{l}
{[\hat{\mathbf{\beta}}} \\
\widehat{\mathbf{u}}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{X}^{\prime} \mathbf{y} \\
\mathbf{Z}^{\prime} \mathbf{y}
\end{array}\right]
$$

1) set initial variance components
2) compute $\widehat{\boldsymbol{\beta}}$ and $\widehat{\mathbf{u}}$ via mixed model equations
3) update variance components with the following equations

$$
\begin{aligned}
& \hat{\sigma}_{a}^{2}=\frac{\hat{\mathbf{u}}^{\prime} \mathbf{A}^{-1} \hat{\mathbf{u}}+\operatorname{tr}\left(\mathbf{A}^{-1} \mathbf{C}^{u u}\right)}{N_{a}} \rightarrow \\
& \hat{\sigma}_{e}^{2}=\frac{\begin{array}{c}
\text { Inverse of LHS for } \\
\text { animal effect }
\end{array}}{N-\mathbf{y}-\mathbf{X} \hat{\beta}-\mathbf{Z} \hat{\mathbf{u}})} \text { \# animals } \\
&\text { (rank of } \mathrm{A})
\end{aligned}
$$

4) go to 1 or stop if the parameters do not change anymore

EM-REML

- Simpler equations
- More complicated equations in multiple-trait models
- Easier to understand
- Very slow convergence (looks stable but may not converge)
- Computationally demanding, especially for Cuu

$$
\left[\begin{array}{l}
\widehat{\beta} \\
\widehat{\mathbf{u}}
\end{array}\right]=\left[\begin{array}{ccc}
\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{Z} \\
\mathbf{Z}^{\prime} \mathbf{X} & \mathrm{Z}^{\prime} \mathbf{Z}+\mathbf{A}^{-1} & \frac{\sigma_{e}^{2}}{\sigma_{a}^{2}}
\end{array}\right]^{-1}\left[\begin{array}{l}
\mathbf{X}^{\prime} \mathbf{y} \\
\mathbf{Z}^{\prime} \mathbf{y}
\end{array}\right]
$$

AI-REML

Average-information algorithm uses this matrix as Hessian, $P=$ Projection or hat matrix

$$
\mathbf{H}(\theta)=\mathcal{I}_{A}(\theta)=\left[\begin{array}{ll}
-\frac{1}{2} \mathbf{y}^{\prime} \mathbf{P Z A Z} Z^{\prime} \mathbf{P Z A Z}^{\prime} \mathbf{P y} & -\frac{1}{2} \mathbf{y}^{\prime} \mathbf{P Z A Z}^{\prime} \mathbf{P P y} \\
-\frac{1}{2} \mathbf{y}^{\prime} \mathbf{P P Z A Z}{ }^{\prime} \mathbf{P y} & -\frac{1}{2} \mathbf{y}^{\prime} \mathbf{P P P y}^{\prime}
\end{array}\right]
$$

Gradient

$$
-2 \mathbf{d}(\theta)=\left[\begin{array}{c}
\operatorname{tr}(\mathbf{P Z A Z} \\
\operatorname{tr})-\mathbf{y}^{\prime} \mathbf{P Z A Z} \mathbf{Z}^{\prime} \mathbf{P y} \\
\operatorname{tr}(\mathbf{P})-\mathbf{y}^{\prime} \mathbf{P P y}
\end{array}\right]=\left[\begin{array}{c}
\frac{N_{a}}{\sigma_{a}^{2}}-\frac{\operatorname{tr}\left(\mathbf{A}^{-1} \mathbf{C}^{u u}\right)}{\left(\sigma_{a}^{2}\right)^{2}}-\frac{\hat{\mathbf{u}}^{\prime} \mathbf{A}^{-1} \hat{\mathbf{u}}}{\left(\sigma_{a}^{2}\right)^{2}} \\
\frac{N-\operatorname{rank}(\mathbf{X})}{\sigma_{e}^{2}}-\frac{1}{\sigma_{e}^{2}}\left[N_{a}-\frac{\operatorname{tr}\left(\mathbf{A}^{-1} \mathbf{C}^{u u}\right)}{\sigma_{a}^{2}}\right]-\frac{\hat{e}^{\prime} \hat{e}}{\left(\sigma_{e}^{2}\right)^{2}}
\end{array}\right]
$$

AI-REML

- Computationally demanding
- Much faster than EM-REML
- Fewer iterations
- Provides estimation of standard errors
- BUT
- For complex models and poor starting values
- Slow convergence
- Parameter estimates out of the parameter space
- In some cases, initial rounds with EM-REML may help

blupf90+

VC Estimation

- AI-REML:

OPTION method VCE

Original options for airemlf90 and remlf90
also work!

- EM-REML:

OPTION method VCE
OPTION EM-REML

OPTION EM-REML

OPTION method VCE

OPTION EM-REML
OPTION EM-REML pure

OPTION EM-REML n

OPTION EM-REML ai

Runs EM until convergence \| shows EM output = remlf90
$\longrightarrow \quad$ Runs n EM rounds | switches to Al| shows AI output = airemlf90
\longrightarrow Runs EM until convergence| switches to $\mathrm{AI}=$ airemlf90

Options for blupf90+ with VCE

OPTION se_covar_function <label> <function>

<label>

A name for a particular function (e.g., P1 for phenotypic variance of trait 1, H2_1 for heritability for trait 1, rg12 for genetic correlation between traits 1 and $2, \ldots$).
<function>
A formula to calculate a function of (co)variances to estimate SD. All terms of the function should be written with no spaces.

Each term of the function corresponds to (co)variance elements and could include any random effects (G) and residual (R) (co)variances

```
G_eff1_eff2_trt1_trt2
    R_trt1_trt1
```

Examples:
OPTION se_covar_function P G_2_2_1_1+G_2_3_1_1+G_3_3_1_1+G_4_4_1_1+R_1_1
OPTION se_covar_function H2d G_2_2_1_1/(G_2_2_1_1+G_2_3_1_1+G_3_3_1_1+G_4_4_1_1+R_1_1)
OPTION se_covar_function rg12 G_2_2_1_2/(G_2_2_1_1*G_2_2_2_2)**0.5

SE for genetic parameters

```
#genetic, permanent, residual
ahat=c(
    0.11478,
    0.13552,
    0.25290,
    )
with AI matrix:
# inverse of AI matrix (Sampling Variance)
AI=matrix(c(
    0.16799E-05, -0.96486E-06, -0.82566E-08,
    -0.96486E-06, 0.96167E-06, -0.37113E-07,
    -0.82566E-08, -0.37113E-07, 0.10864E-06)
,ncol=3)
```

```
require(MASS)
b=mvrnorm(10000,ahat,AI)
> head(b)
    [,1] [,2] [,3]
```

[1,] 0.11467380 .13576400 .2529399
[2,] 0.11638890 .13429260 .2528479
[3,] 0.11661550 .13443420 .2525161
[4,] 0.11420850 .13589280 .2534974
[5,] 0.11368350 .13611080 .2530133
[6,] 0.11404850 .13657070 .2530573
heritability and its standard deviation:

```
h2=b[,1]/(b[,1]+b[,2]+b[,3])
sd(h2)
>0.002318198
```


SE for genetic parameters

Houle and Meyer (2015):

Large-sample theory shows that maximum-likelihood estimates (including restricted maximum likelihood, REML) asymptotically have a multivariate normal distribution, with covariance matrix derived from the inverse of the information matrix, and mean equal to the estimated \mathbf{G}. This suggests that sampling estimates of \mathbf{G} from this distribution can be used to assess the variability of estimates of \mathbf{G}, and of functions of \boldsymbol{G}.

> G = additive genetic variance-covariance matrices

Does blupf90+ for VCE always converge?

- When the expected variance is very small, or the covariance matrix is close to non-positive definite, try the following starting values:
- much smaller $=0.00001$
- much bigger $=1000$
- If blupf90+ does not converge with AI-REML but converges with EM-REML with the same data set and the same model:
- run EM-REML again with a smaller starting value to check the estimate as it could be an artifact
- use OPTION EM-REML inside blupf90+ as an initial point for AI-REML:
- OPTION EM-REML xx

blupf90+ quick trick

- blupf90+ --help

dani@dodo2 dayl3]\$ blupf90+ --help

* BLUPF90+

$\underset{* * * * * * * * * * * * * * * ~}{\text { BLUPF }}$
Computation of variance components, solutions, and s.e. efault behavior avoids variance components estimatio or help about genomics, use blupf90+ --help-genomic

* OPTION SNP_file snp
specify the SNP file name to use genotype data
* OPTION method VCE (default BLUP with blupf90 options

Run airemlf90 for variance component estimation (default running blupf90)

* OPTION conv_crit ld-12

Convergence criterion (default ld-10)

* OPTION maxrounds 1000

Maximum rounds (default 5000).
when maxrounds=0, calculates BLUP without iterating REML and some statistics

* OPTION EM-REML 10

Run EM-REML (REMLF90) for first 10 rounds (default 0).

* OPTION use_yams

Run the program with YAMS (modified FSPAK). The computing time can be dramatically improved.

* OPTION tol ld-12

Tolerance (or precision) (default ld-14) for positive definite matrix and g-inverse subroutines. Convergence may be much faster by changing this value.

* OPTION sol se

Store solutions and those standard errors.

* OPTION origID

Store solutions with original IDs.

* OPTION store_pev_pec 6
tore triangular matrices of standard errors and its covariances for correlated random effects such as direct-maternal effects and random-regression effects in "pev_pec_bf90".
* OPTION residual
y -hat and residuals will be included in "yhat_residual"
* OPTION missing -999

Specify the missing value (default 0) in integer.

* OPTION constant_var 5

1: first trait number
2: second trait number
implying the covariance between traits 1 and 2 for effect 5 .

* More information:

Application program details: http://nce.ads.uga.edu/wiki/doku.php?id=application programs

gibbsf90+

gibbs 1 f 90 : stores single trait matrices once - fast for multi-trait models
gibbs 2 f 90 : gibbs1f90 with joint sampling of correlated effects - Maternal effects and RRM
gibbs $3 \pm 90:$ gibbs2f90 with heterogeneous residual variance
thrgibbs1f90: for linear-threshold models
thrgib.bs3f90: thrgibbs1f90 with heterogeneous residual variance

> Variance Components Estimation
> Mixed Model Equations Solver
> $\left[\begin{array}{ll}\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{W} \\ \mathbf{W}^{\prime} \mathbf{R}^{-1} \mathbf{X} & \mathbf{W} \mathbf{R}^{-1} \mathbf{W}+\mathbf{A}^{-1} \otimes\left(\begin{array}{c}-1\end{array}\right]\end{array}\right]=\left[\begin{array}{l}\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{y} \\ \mathbf{W}^{\prime} \mathbf{R}^{-1} \mathbf{y}\end{array}\right]$

gibbsf90+

Linear

Default

Threshold (-Linear)

OPTION cat 025

- Categories renumbered from 1
- Missing records is only 0

gibbsf90+

Bayes Theorem

- Basic idea of Gibbs Sampling:
- Numerical method to draw samples from a posterior distribution (not always explicitly available)
- Draw samples = generate random numbers following a distribution
- The results are random numbers (not theoretical formulas)
- The posterior distribution will be drawn based on the numerical values (like a histogram)

gibbsf90+

Ingredients for Gibbs sampling

1) Theoretical derivation: conditional posterior distribution for each unknown parameter
2) Software: a random number generator for a particular distribution
```
# Basic Gibbs sampling for mu (normal) and sigma2 (inverted chi-square)
y <- c(14,16,18)
N <- length(y)
n.samples <- 100
mu <- rep(0,n.samples)
sigma2 <- rep(0,n.samples)
# initial value
mu[1] <- 0
sigma2[1] <- 10
# sampling
for(i in 2:n.samples){
    mu[i] <- rnorm(1, mean=mean(y), sd=sqrt(sigma2[i-1]/N)) # using the most recent sigma2
    df <- N-2
    S <- sum((y-mu[i])^2)
    sigma2[i] <- rinvchisq(1, df=df, scale=S) # using the most recent mu
}
```


Running gibbsf90+

- Name of parameter file?
gibbs1.par
- Number of samples and length of burn-in?

1000000

- Give n to store every n -th sample?

10

- gibbsf90+ parfile.par --samples i --burnin j --interval k

gibbsf90+

- Procedure
- Run gibbsf90+ to estimate variance components
- Run postgibbsf90 to process the samples and check convergence
- Run gibbsf90+ with new variance components to compute EBV (2k to 10k samples)

```
OPTION fixed_var mean X
```

Number of the animal effect

gibbsf90+

```
OPTION cat 0 0 2 5
```

" 0 " indicate that the first and second traits are linear. " 2 " and " 5 " indicate that the third and fourth traits are categorical with 2 (binary) and 5 categories.

```
OPTION fixed_var all
```

Store all samples for solutions in "all_solutions" and posterior means and SD for all effects in "final_solutions", assuming that (co)variances in the parameter file are known.

```
OPTION fixed_var all 1 2 3
```

Store all samples for solutions in "all_solutions" and posterior means and SD for 1, 2, and 3 effects in "final_solutions", assuming that (co)variances in the parameter file are known.

```
OPTION fixed_var mean
```

Only posterior means and SD for solutions are calculated for all effects in "final_solutions", assuming that (co)variances in the parameter file are known.

OPTION fixed_var mean 123

Only posterior means and SD for solutions are calculated for effects 1, 2, and 3 in "final_solutions", assuming that (co)variances in the parameter file are known.

gibbsf90+

```
OPTION save_halfway_samples n
```

This option can help the 'cold start' (to continue the sampling when the program accidentally stops before completing the run). An integer value n is needed. In every n rounds, the program saves intermediate samples to 2 files (last_solutions and binary_final_solutions). The program can restart the sampling from the last round where the intermediate files were saved. The program also writes a log file save_halfway_samples.txt with useful information for the next run.

To restart, add OPTION cont 1 to your parameter file and run gibbsf90+ again. Input 3 numbers (samples, burn-in, and interval) according to save_halfway_samples.txt. Gibbsf90+ can take care of all restarting process by itself, so no other tools are needed.

Tips

- Small n will make the program slow because of frequent file writing. The n should be a multiple of the interval (the 3rd number you will input in the beginning of the program)
- If the program stops during burn-in, the restart will fail because gibbs_samples is not created. Recommendation is burn-in=0 (but it doesn't provide posterior mean and SD for solutions).
- The cold start may add tiny numerical errors to the samples. Samples from the cold start wouldn't be identical to samples from a non-stop analysis
- If, unfortunately, the program is killed during its saving the intermediate samples, the cold start will fail. To avoid this, you can manually make a backup for gibbs_samples, fort.99, last_solutions, and binary_final_solutions at some point and write them back if needed.

gibbsf90+

OPTION hetres_int col nlev

OPTION hetres_int 510

The position " 5 " to identify the interval in the data file and the number of intervals " 10 " for heterogeneous residual variances.

gibbsf90+

Parameter file (ex5)

Data (datasire)

```
1 - HYS
2 - sire
3 - y1
4 - heterogeneous clas
5-y2
```

cat datasire

```
6 13 317.55 1 644.26
3 10 280.44 1 563.05
37 1 270.52 5 543.63
53 10 286.43 5 579.84
```

DATAFILE
datasire
NUMBER_OF_TRAITS
NUMBER_OF_EFFECTS
OBSERVATION(S)
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE
11100 cross
2250 cross
RANDOM_RESIDUAL VALUES
500100
1001000
RANDOM_GROUP
RANDOM_TYPE
diagonal
FILE
(CO)VARIANCES
7510
10150
OPTION hetres_int 45

round	98	
209.	416.	
416.	828.	

416.828

Residual variance, interval 1 df_r 1997 ee/n 99.4738134864675 101. 202. 202. 412.

Residual variance, interval 2
df_r 1997 ee/n 146.518188769043
148. 296.
296.602.

Residual variance, interval 3
df_r 1997 ee/n 198.183671561078
198. 397.
397.806

Residual variance, interval 4
df r 1997 ee/n 232.307903786663
228.455.
455. 917.

Residual variance, interval 5 df_r 1997 ee/n 301.189371418363
311. 622.
622. $0.126 \mathrm{E}+04$

gibbsf90+ quick trick

- gibbsf90+ --help

```
[dani@dodo2 day13]s gibbsf90+ --help
******************
* GIBBSF90+
*****************
Gibbs sampler for mixed threshold-linear models involving multiple categorical
and linear variables.
Thresholds and variances can be estimated or assumed.
For help about genomics, use gibbsf90+ --help-genomic
* OPTION SNP_file snp
    Specify
* OPTION cat 0 0 2 5
    "0" indicate that the first and second traits are linear.
        " and "5" indicate that the third and fourth traits are categorical with 2 (binary) and 5 categories.
* OPTION fixed_var all
    Store al\ samples for solutions in all_solutions and posterior means and SD for all effects in final_solutions
    This assumes that (co)variances in the parameter file are known.
* OPTION fixed var all l 2 3
    Store al\ samples for solutions in all_solutions and posterior means and SD for l, 2, and 3 effects in final_solutions
    This assumes that (co)variances in the parameter file are known.
* OPTION fixed_var mean
    Only pos\overline{terior means and SD for solutions are calculated for all effects in final_solutions}
    This assumes that (co)variances in the parameter file are known.
* OPTION fixed_var mean l }2
    Only posterior means and SD for solutions are calculated for effects l, 2, and 3 in final_solutions
    This assumes that (co)variances in the parameter file are known.
```


gibbsf90+ quick trick II

- Optimizing gibbsf90+ when using genomic data

Run renumf90 with the following option:
OPTION animal_order genotypes

Run gibbsf90+ with the following option:
OPTION separate_dense

postgibbsf90

- Basic idea of post-Gibbs analysis:
- Summarize and visualize the samples drawn by gibbsf90+
- Confirm if the chain converged
- Find the most probable value = posterior mode as a "point estimate"
- Find the reliability of the estimates = the highest posterior density as a "confidence interval"

postgibbsf90

- Name of parameter file?
gibbs1.par
- Burn-in?

0

- Give n to store every n -th sample? (1 means read all samples) 10
- input files
gibbs_samples, fort. 99
- output files
"postgibbs_samples"
all Gibbs samples for additional post analyses
"postmean"
posterior means
"postsd"
posterior standard deviations
"postout"

postgibbsf90

postgibbsf90

```
-MCE = Monte Carlo error, corresponding to the "standard error" of the posterior mean of a parameter
-Mean = Posterior mean of a parameter
•HPD = High probability density within 95%, close idea to " }95%\mathrm{ confidence interval" in frequentist approach
\bulletEffective sample size = Number of samples after deducting auto-correlation among samples
-Median = Posterior median of a parameter
-Mode = Posterior mode of a parameter; just an approximation
-Independent chain size
-PSD = Posterior standard deviation of a parameter
-Mean = the same as above
-PSD Interval (95%) = Lower and upper bounds of Mean \pm1.96PSD
-Geweke diagnostic = Convergence diagnosis; could be converged if this is <1.0
```

- (according to the manual, this is almost useless because this is <1.0 in almost all cases)
-Autocorrelations = Lag-correlations with lag 1, 10 and 50; calculated for the saved samples
-Independent \# batches = The effective number of blocks after deducting the auto-correlation among samples

postgibbsf90

```
Choose a graph for samples (= 1) or histogram (= 2); or exit (= 0)
1
positions
123 # choose from the position numbers 1 through 6
If the graph is stable (not increasing or decreasing), the convergence is met.
All samples before that point should be discarded as burn-in.
print = 1; other graphs = 2; or stop = 0
2
```


postgibbsf90

postgibbsf90

```
Choose a graph for samples (= 1) or histogram (= 2); or exit (= 0)
2
Type position and # bins
120
```


postgibbsf90

Common problems for BLUPF90 family

- Wrong position or formats for observation and effects
- Misspelling of Keywords
- Program may stop
- (Co)variance matrices not symmetric, not positive definite
- Program may not stop
- Large numbers (e.g., 305-day milk yield $10,000 \mathrm{~kg}$)
- Scale down i.e., $10,000 / 1,000=10$

General output from BLUPF90 family

- Output printed on the screen is not saved to any file!
- Should use redirection or pipes to store output

```
blupf90+
blupf90+ renf90.par | tee blup.log
gibbsf90+
gibbsf90+ exmr99s1 --samples 1000 --burnin 0 --interval 1 | tee gibbs.log
```


Run in background + Save output

\$vi gibbs.sh
\#type the following commands inside gibbs.sh

```
gibbsf90+ <<AA > gibbs.log
renf90.par
1000 0
10
AA
```

\#save and exit
\$bash gibbs.sh \& \#can replace bash with sh
\$vi bp.sh
\#type the following commands inside bp.sh
blupf90+ <<AA > blup.log
renf90.par
AA
\#save and exit
\$bash bp.sh \& \#can replace bash by sh

[^0]: Post-analyses of Gibbs samples

[^1]: - BLUPF90 - BLUP in memory
 - REMLF90 - accelerated EM REML
 - AIREMLF90 - Average Information REML with several options including EM-REML and heterogeneous residual variances (S. Tsuruta)
 - GIBBSF90 - simple block implementation of Gibbs sampling - no genomic
 - GIBBS1F90 - as above but faster for creating mixed model equations only once
 - GIBBS2F90 - as above but with joint sampling of correlated effects
 - GIBBS3F90 - as above with support for heterogeneous residual variances
 - THRGIBBSF90 - Gibbs sampling for any combination of categorical and linear traits (D. Lee) - no genomic
 - THRGIBBS1F90 - as above but simplified with several options (S. Tsuruta)
 - THRGIBBS3F90 - as above with heterogeneous residual variances for linear traits

