Introduction to BLUPF90 software suite

Daniela Lourenco UGA USA

Ignacio Aguilar
INIA Uruguay

UGA TEAM - 09/2019

BLUPF90 software suite

- Collection of software for computations
- Focus on applications in Breeding and Genetics
- Fortran 90/95
- No GUI (graphical user interface) programs !!!
- Since 1998 by Ignacy Misztal
- First idea: to solve the MME

$$
\left[\begin{array}{ccc}
\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{Z} \\
\mathbf{Z}^{\prime} \mathbf{X} & \mathbf{Z}^{\prime} \mathbf{Z}+\mathbf{A}^{-1} \frac{\boldsymbol{\sigma}_{e}^{2}}{\boldsymbol{\sigma}_{a}^{2}}
\end{array}\right]\left[\begin{array}{l}
\hat{\beta} \\
\hat{u}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{X}^{\prime} \mathrm{y} \\
\mathbf{Z}^{\prime} \mathrm{y}
\end{array}\right]
$$

- First software: blupf90
- Second idea: variance components estimation
- Developers?

BLUPF90 software developers

Ignacy Misztal

Shogo Tsuruta

Andres
Legarra

Ignacio Aguilar

Yutaka Masuda

- + Several contributors
- Research turns into code
- Which programs?

Data File for blupf90 family:
a) Only numbers - Integer or real
a) All effects need to be renumbered from 1 to N

Controlled by the same parameter file!

Downloading BLUPF90

http://nce.ads.uga.edu

Set a path for the programs to work in whatever directory

> settings -> control panel-> system -> advanced ->
environment variables -> system variables

- Edit Patch
- ; D:\programs\bin

blupf90

Mixed Model Equations Solver

$$
\left[\begin{array}{ccc}
\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{Z} & \\
\mathbf{Z}^{\prime} \mathbf{X} & \mathbf{Z}^{\prime} \mathbf{Z}+\mathbf{A}^{-1} & \frac{\boldsymbol{\sigma}_{\boldsymbol{e}}^{2}}{\boldsymbol{\sigma}_{a}^{2}}
\end{array}\right]\left[\left[\begin{array}{l}
\hat{\beta} \\
\hat{u}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{X}^{\prime} \mathbf{y} \\
\mathbf{Z}^{\prime} \mathrm{y}
\end{array}\right]\right.
$$

blupf90

- Computes generalized solutions by several methods:
- Preconditioner Conjugate Gradient (PCG)
- Default Iterative method (fast)
- Successive over-relaxation (SOR)
- an iterative method based on Gauss-Seidel
- Direct solution using sparse Cholesky factorization
- FSPAK or YAMS (greater memory requirements)
- The solution values change among methods but estimable function should be the same
- Prediction error variances can be obtained using sparse inverse (FSPAK or YAMS)

Parameter file for blupf90

Parameter file for blupf90

```
DATAFILE
    ../renf90.dat
NUMBER_OF_TRAITS
    2
NUMBER_OF_EFFECTS
OBSERVATION(S)
    1 2
WEIGHT(S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
    34 40593 cros\overline{s}
    5 5 2 cross
    6 0 4 cross
    7 0 8 cross
    8 8 918111 cross
RANDOM_RESIDUAL VALUES
    2.5\overline{3}00 1.3425
    1.3425 29.714
RANDOM_GROUP
        5
RANDOM_TYPE
    add_an_upginb
FILE
../renadd05.ped
(CO) VARIANCES
\begin{tabular}{ll}
0.7600 & 2.2391 \\
2.2391 & 30.609
\end{tabular}
```


Parameter file for blupf90

```
DATAFILE
    ../renf90.dat
NUMBER_OF_TRAITS
NUMBER_OF_EFFECTS
EFREUMG: POSINIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
        5 5 2 cross
        6 0 4 cross
    7 0 8 cross
```



```
RANDOM_RESIDUAL VALUES
    2.5\overline{300 1.3425}
    1.3425 29.714
RANDOM_GROUP
    5
RANDOM_TYPE
    add_an_upginb
FILE
../renadd05.ped
(CO) VARIANCES
    0.7600 
```


Parameter file for blupf90

```
DATAFILE
    ../renf90.dat
NUMBER_OF_TRAITS
    2
NUMBER_OF_EFFECTS
OBSERVATION(S)
    1 2
WEIGHT (S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
    34 40593 cross
    5 5 2 cross
    6 0 4 cross
    7 0 8 cross
    8 8 918111 cross
RANDOM_RESIDUAL VALUES
    2.5300 1.3425
    1.3425 29.714
RANDOM_GROUP
        5
RANDOM_TYPE
    add_an_upginb
FILE
../renadd05.ped
(CO) VARIANCES
    0.7600 2.2391
    2.2391 30.609
_ Should be a square matrix with dimension
- Use zero (0.0) to indicate uncorrelated residual effects between traits
- e.g. For a 3-trait model
\(43.1 \quad 0.0 \quad 0.0\)
\(\begin{array}{lll}0.0 & 5.1 & 3.2\end{array}\)
\(\begin{array}{lll}0.0 & 3.2 & 10.3\end{array}\)
```


Parameter file for blupf90

```
DATAFILE
    ../renf90.dat
NUMBER_OF_TRAITS
    2
NUMBER_OF_EFFECTS
OBSERVATION(S)
    1 2
WEIGHT (S)
EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
    34440593 c\overline{ross}
    5 5 2 cross
    6 0 4 cross
    7 0 8 cross
    8 8 918111 cross
RANDOM_RESIDUAL VALUES
    2.5\overline{300 1.3425}
    1.3425 29.714
RANDOM_GROUP
RANDOM_TYPE
    add_an_upginb
FILE
../renadd05.ped
(CO) VARIANCES
    0.7600 2.2391
    2.2391 30.609
        Definition of random effects
    RANDOM_GROUP
    RANDOM_TYPE
    FILE
    (CO) VARIANCES
```


Definition of random effects

- RANDOM_GROUP
- Number(s) of effect from list of effects
- Correlated effects should be consecutive e.g. Maternal effects, Random Regression
- RANDOM_TYPE
- diagonal, add_animal, add_sire, add_an_upg, add_an_upginb, user_file, user_file_i, or par_domin
- FILE
- Pedigree file, parental dominance, or user file
- (CO)VARIANCES
- Square matrix with dimension equal to the number_of_traits*number_of_correlated_effects

(CO)VARIANCES

- Assuming a 3 trait (T1-T3) and 3 correlated effects (E1-E3)

		E1			E2			E3		
E1	T1	T2	T3	T1	T2	T3	T1	T2	T3	
	T2									

RANDOM_TYPE

- Diagonal
- for permanent environment effects
- assumes no correlation between levels of the effect
- add_sire
- To create a relationship matrix using sire and maternal grandsire
- Pedigre file:
- individual number, sire number, maternal grandsire number
- add_animal
- To create a relationship matrix using sire and dam information
- Pedigre file:
- animal number, sire number, dam number

RANDOM_TYPE

- add_an_upg
- As before but using rules for unknown parent group
- Pedigre file:
- animal number, sire number, dam number, parent code
- missing sire/dam can be replaced by upg number, usually greater than maximum number of animals
- Parent code = 3-\# of known parents
- 1 both parents known
- 2 one parent known
- 3 both parents unknown
- add_an_upginb
- As before but using rules for unknown parent group and inbreeding
- Pedigre file:
- animal number, sire number, dam number, inb/upg code
- missing sire/dam can be replaced by upg number, usually greater than maximum number of animals
- inb/upg code $=4000 /[(1+\mathrm{md})(1-\mathrm{Fs})+(1+\mathrm{ms})(1-\mathrm{Fd})]$
- $\mathrm{ms}(\mathrm{md})$ is 0 if sire (dam) is known and 1 otherwise
- $\mathrm{Fs}(\mathrm{Fs})$ inbreeding coefficient of the sire (dam)

RANDOM_TYPE

- user_file
- An inverted matrix is read from file
- Matrix is stored only upper- or lower-triangular
- Matrix file:
- row, col, value
- user_file_i
- As before but the matrix will be inverted by the program
- par_domin
- A parental dominance file created by program RENDOM

OPTIONS for blupf90

- Program behavior can be modified by adding extra options at the end of the parameter file
- OPTION option_name x1 x2 ...
- option_name: each program has its own definition of options
- The number of optional parameters (x1, x2...) to control the behavior depends on the option

Options for blupf90

Options

```
OPTION conv_crit 1e-12
```

Set convergence criteria (deault $1 \mathrm{e}-12$).

```
OPTION maxrounds 10000
```

Set maximum number of rounds (default 5000).

```
OPTION solv_method FSPAK
```

Selection solutions by FSPAK, SOR or PCG (default PCG).

```
OPTION r_factor 1.6
```

Set relaxation factor for SOR (default 1.4).

```
OPTION sol se
```

Store solutions and standard errors.

```
OPTION store_pev_pec 6
```

Store triangular matrices of standard errors and its covariances for correlated random effects such as direct-maternal effects and randomregression effects in "pev_pec_bf90".

Options for blupf90

Missing data

Not pedigree!

```
OPTION missing -999
```

Specify missing observations (default 0) in integer.

```
OPTION residual
```

y-hat and residual will be included in "yhat_residual".

```
OPTION blksize 3
```

Set block size for preconditioner (default 1).

```
OPTION use_yams
```

Run the program with YAMS (modified FSPAK).

```
OPTION SNP_file snp
```


Example of parameter file for blupf90

Single trait "USDA-type" animal model

$$
\mathrm{y}_{\mathrm{ijkl} 1}=\mathrm{hys}_{\mathrm{i}}+\mathrm{hs}_{\mathrm{ij}}+\mathrm{p}_{\mathrm{k}}+\mathrm{a}_{\mathrm{k}}+\mathrm{e}_{\mathrm{ijkl}}
$$

where

$$
\mathrm{y}_{\mathrm{ijkl}} \text { - production yield }
$$

hys $_{i}$ - fixed herd year season
$\mathrm{hs}_{\mathrm{ij}}$ - random herd x sire interaction
p_{k} - random permanent environment
a_{k} - random animal
and

$$
\operatorname{var}\left(\mathrm{hs}_{\mathrm{ij}}\right)=.05, \operatorname{var}\left(\mathrm{p}_{\mathrm{k}}\right)=.1, \operatorname{var}\left(\mathrm{a}_{\mathrm{k}}\right)=.5, \operatorname{var}\left(\mathrm{e}_{\mathrm{ijk}}\right)=1
$$

Model

$$
y_{i j \mathrm{kl}}=\mathrm{hys}_{\mathrm{i}}+\mathrm{hs}_{\mathrm{ij}}+\mathrm{p}_{\mathrm{k}}+\mathrm{a}_{\mathrm{k}}+\mathrm{e}_{\mathrm{ijkl}}
$$

where
$\mathrm{y}_{\mathrm{ijkl}}$ - production yield

$$
\operatorname{var}\left(\mathrm{hs}_{\mathrm{ij}}\right)=.05, \operatorname{var}\left(\mathrm{p}_{\mathrm{k}}\right)=.1 \quad \operatorname{var}\left(\mathrm{a}_{\mathrm{k}}\right)=.5 \quad \operatorname{var}\left(\mathrm{e}_{\mathrm{ijk}}\right)=1
$$

```
NUMBER_OF_EFFECTS
```


$$
\begin{array}{lllll}
1 & 1 & 1 & 1 & 3 \\
1 & 1 & 2 & 1 & 6 \\
2 & 2 & 3 & 2 & 2 \\
3 & 2 & 4 & 3 & 5 \\
4 & 3 & 5 & 4 & 1 \\
3 & 3 & 6 & 3 & 4
\end{array}
$$

renadd04.ped
Format: ani/sire/dam/code/......

2681021003
71111020038
9101420100210
31272011201
4391021006
11131430000211
51091021004
81372010019
6371021102
1013143000207

Output from blupf90

```
name of parameter file?
renf90.par
    BLUPF90 ver. 1.66
Parameter file:
Data file:
Number of Traits
Number of Effects
Position of Observations
Position of Weight (1) 0
Value of Missing Trait/Observation
Parameter file
renf90.par
renf90.dat
    1
    4
0
```

EFFECTS
\# type
position
(2) levels [positions for nested]
1 cross-classified 2
2 cross-classified 3
3 cross-classified
4
4
4 cross-classified $\quad 5 \quad 14$

Number of levels for each effect
read 11 additive pedigrees
finished peds in 6.1760999E-02 s,
Records read from pedigree file

1 convergence $=0.1435$
round $=2$ convergence $=0.3000 \mathrm{E}-01$
round $=3$ convergence $=0.1714 \mathrm{E}-02$
round $=4$ convergence $=0.2914 \mathrm{E}-03$
round $=5$ convergence $=0.1207 \mathrm{E}-03$
round $=6$ convergence $=0.1278 \mathrm{E}-03$
round $=7$ convergence $=0.1085 \mathrm{E}-03$
round $=8$ convergence $=0.1405 \mathrm{E}-03$
round $=9$ convergence $=0.1904 \mathrm{E}-03$
round $=10$ convergence $=0.1119 \mathrm{E}-03$
round $=11$ convergence $=0.1562 \mathrm{E}-04$
round $=12$ convergence $=0.6141 \mathrm{E}-05$
round $=13$ convergence $=0.4609 \mathrm{E}-05$
round $=14$ convergence $=0.1750 \mathrm{E}-04$
round $=15$ convergence $=0.8708 \mathrm{E}-04$
round $=16$ convergence $=0.2800 \mathrm{E}-03$
round $=17$ convergence $=0.1286 \mathrm{E}-04$
round $=18$ convergence $=0.2309 \mathrm{E}-06$
round $=19$ convergence $=0.2566 \mathrm{E}-08$
round $=20$ convergence $=0.1131 \mathrm{E}-09$
round $=21$ convergence $=0.2413 \mathrm{E}-12$
21 iterations, convergence criterion= 0.2413E-12
solutions stored in file: "solutions"

File "solutions"

$$
y_{i j \mathrm{kl}}=\mathrm{hys}_{\mathrm{i}}+\mathrm{hs}_{\mathrm{ij}}+\mathrm{p}_{\mathrm{k}}+\mathrm{a}_{\mathrm{k}}+\mathrm{e}_{\mathrm{ijkl}}
$$

where
$y_{\text {ivik }}$ - production yield
hys. - fixed herd vear season
hs. - random herd x sire interaction
p_{a} - - random permanent environment
a_{k} - random animal

1	1		
1	1	2	2.52240030
1	1	3	2.91017217
1	2	1	-0.00965409
1	2	2	0.00965406
1	2	3	-0.01930794
1	2	4	0.01930787
1	2	5	0.03861622
1	2	6	-0.03861599
1	3	1	-0.00000001
1	3	2	-0.00965384
1	3	3	-0.00965406
1	3	4	0.01930810
1	4	1	0.64574095
	4	2	-0.30035705
1	4	3	0.61034316
1	4	4	0.52426082
1	4	5	0.27486415
1	4	6	0.39795337
1	4	7	0.18556405
1	4	8	-0.90212661
1	4	9	0.63126003
1	4	10	-0.17807241
1	4	11	-0.17807202
1	4	12	1.25233833
1	4	13	-1.91741245
1	4	14	1.51299821

Common problem in blupf90

- Wrong data file and pedigree name
- Program may not stop if file name does not exist
- Check outputs for data file name and number of records and pedigree read

```
round = 4995 convergence = NaN
round = 4996 convergence = NaN
round = 4997 convergence = NaN
round = 4998 convergence = NaN
round = 4999 convergence = NaN
round = 5000 convergence = NaN
5 0 0 1 ~ i t e r a t i o n s , ~ c o n v e r g e n c e ~ c r i t e r i o n = ~ N a N
solutions stored in file: "solutions"
```


remlf90 and airemlf90

Variance components estimation

$$
\left[\begin{array}{cc}
\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{Z} \\
\mathbf{Z}^{\prime} \mathbf{X} & \mathbf{Z}^{\prime} \mathbf{Z}+\mathbf{A}^{-1}\left(\frac{\sigma_{e}^{2}}{\sigma_{a}^{2}}\right.
\end{array}\right]\left[\begin{array}{l}
\hat{\beta} \\
\hat{u}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{X}^{\prime} \mathbf{y} \\
\mathbf{Z}^{\prime} \mathrm{y}
\end{array}\right]
$$

remlf90 and airemlf90

- REML = restricted/residual maximum likelihood
- Patterson and Thompson (1971)
- Most used method to estimate variance components in breeding and genetics
- BLUPF90 family has 2 REML programs
- remlf90: expectation-maximization (EM) algorithm
- airemlf90: average information (AI) algorithm
- remlf90 and airemlf90 use the same parameter file as blupf90

remlf90

$$
\begin{array}{ll}
\hat{\sigma}_{a}^{2} & =\frac{\hat{\mathbf{u}}^{\prime} \mathbf{A}^{-1} \hat{\mathbf{u}}+\operatorname{tr}\left(\mathbf{A}^{-1} \mathbf{C}^{u u}\right)}{N_{a}} \rightarrow \begin{array}{c}
\text { Inverse of LHS for } \\
\text { animal effect }
\end{array} \\
\hat{\sigma}_{e}^{2}=\frac{\mathbf{y}^{\prime}(\mathbf{y}-\mathbf{X} \hat{\beta}-\mathbf{Z} \hat{\mathbf{u}})}{N-\operatorname{rank}(\mathbf{X})} & \begin{array}{c}
\text { \# animals } \\
\text { (rank of A) }
\end{array}
\end{array}
$$

- The equations contain BLUE and BLUP but those values are calculated with known variance components
- This method requires iterations:

1. set initial variance components
2. compute $\hat{\beta}$ and \hat{u} via mixed model equations
3. update and variance components with above equations
4. go to 1 or stop if the parameters do not change any more

remlf90

- Simpler equations
- Easier to understand
- More complicated equations in multiple-trait models
- Very slow convergence (looks stable but may not converge)
- Computationally demanding especially for $\mathbf{C u}^{\text {u }}$

$$
\left[\begin{array}{l}
\hat{\beta} \\
\hat{u}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{Z} \\
\mathbf{Z}^{\prime} \mathbf{X} & \mathbf{Z}^{\prime} \mathbf{Z}+\mathbf{A}^{-1} \frac{\sigma_{e}^{2}}{\sigma_{a}^{2}}
\end{array}\right]^{-\mathbf{1}}\left[\begin{array}{l}
\mathbf{X}^{\prime} \mathbf{y} \\
\mathbf{Z}^{\prime} \mathbf{y}
\end{array}\right]
$$

airemlf90

$$
\begin{aligned}
& \text { Vector of variance components } \\
& \theta_{n+1}=\theta_{n}-\mathbf{H}^{-1}\left(\theta_{n}\right) \mathbf{d}\left(\theta_{n}\right) \\
& \text { Gradient (score vector) }
\end{aligned}
$$

Average-information algorithm uses this matrix as Hessian,

$$
\mathbf{H}(\theta)=\mathcal{I}_{A}(\boldsymbol{\theta})=\left[\begin{array}{ll}
-\frac{1}{2} \mathrm{y}^{\prime} \mathbf{P Z A Z}^{\prime} \mathbf{P Z A Z}^{\prime} \mathbf{P y} & -\frac{1}{2} \mathrm{y}^{\prime} \mathbf{P Z A Z}^{\prime} \text { PPy } \\
-\frac{1}{2} \mathrm{y}^{\prime} \mathbf{P P Z A Z} \mathbf{P}^{\prime} \mathbf{P y} & -\frac{1}{2} \mathrm{y}^{\prime} \text { PPPy }
\end{array}\right]
$$

Gradient

$$
-2 \mathbf{d}(\theta)=\left[\begin{array}{c}
\operatorname{tr}\left(\mathbf{P Z A Z}^{\prime}\right)-\mathbf{y}^{\prime} \mathbf{P Z A Z} \mathbf{Z}^{\prime} \mathbf{P y} \\
\operatorname{tr}(\mathbf{P})-\mathbf{y}^{\prime} \mathbf{P P y}
\end{array}\right]=\left[\begin{array}{c}
\frac{N_{a}}{\sigma_{a}^{2}}-\frac{\operatorname{tr}\left(\mathbf{A}^{-1} \mathbf{C}^{u u}\right)}{\left.\left(\sigma_{a}^{2}\right)^{2}\right)}-\frac{\hat{\mathbf{u}}^{\prime} \mathbf{A}^{-1} \hat{\hat{u}}}{\left(\sigma_{\sigma}^{2}\right)^{2}} \\
\frac{N-\operatorname{rank}(\mathbf{X})}{\sigma_{e}^{2}}-\frac{1}{\sigma_{e}^{2}}\left[N_{a}-\frac{\operatorname{tr}\left(\mathbf{A}^{-1} \mathbf{C}^{2}{ }^{u}\right)}{\sigma_{a}^{2}}\right]-\frac{\hat{\mathbf{e}}^{\prime} \hat{e}}{\left(\sigma_{e}^{2}\right)^{2}}
\end{array}\right]
$$

airemlf90

- Much faster than EM-REML
- Provides estimation of standard errors
- BUT
- For complex models and poor starting values
- Slow convergence
- Parameters estimates out of the parameter space
- In some cases initial rounds with EM-REML help

Options for remlf90 and airemlf90

```
OPTION conv_crit 1d-12
```

Convergence criterion (default 1d-10).

```
OPTION maxrounds 10800
```

Maximum rounds (default 5000).

```
OPTION sol se
```

Store solutions and se.

```
OPTION residual
```

y-hat and residuals will be included in "yhat_residual".

```
OPTION missing -999
```

Specify missing observations (default 0) in integer.

```
OPTION use_yams
```

Run the program with YAMS (modified FSPAK). The computing time can be dramatically improved.

```
OPTION constant_var 5 1 2
```

5: effect number
1: first trait number
2: second trait number
implying the covariance between traits 1 and 2 for effect 5 .

Options for airemlf90

OPTION EM-REML 10

Run EM-REML (REMLF90) for first 10 rounds to get initial variances within the parameter space (default 0).

```
OPTION tol 1d-12
```

Tolerance (or precision) (default 1d-14) for positive definite matrix and g-inverse subroutines. Convergence may be much faster by changing this value.

```
OPTION store_pev_pec 6
```

Store triangular matrices of standard errors and its covariances for correlated random effects such as direct-maternal effects and randomregression effects in "pev_pec_bf90".

Heterogeneous residual variances for a single trait

```
OPTION hetres_pos 10 11
```

Specify the column positions of (two) covariables in the data file.

```
OPTION hetres_pol 4.0 0.1 0.1
```

Initial values of coefficients for heterogeneous residual variances using $\ln (a 0, a 1, a 2, \ldots)$ to make these values. To transform back to the original scale, use $\exp \left(a 0+a 1^{*} X 1+a 2^{*} X 2\right)$
log-residual function (Foulley and Quaas, 1995)

Options for airemlf90

```
OPTION se_covar_function <label> <function>
```

<label>
A name for a particular function (e.g., P1 for phenotypic variance of trait 1, $\mathrm{H} 2 _1$ for heritability for trait 1, rg12 for genetic correlation between traits 1 and $2, \ldots$).

<function>

A formula to calculate a function of (co)variances to estimate SD. All terms of the function should be written with no spaces.
Each term of the function corresponds to (co)variance elements and could include any random effects (G) and residual (R) (co)variances.

$$
\begin{gathered}
\text { G_eff1_eff2_trt1_trt2 } \\
\text { R_trt1_trt1 }
\end{gathered}
$$

Examples:

```
OPTION se_covar_function P G_2_2_1_1+G_2_3_1_1+G_3_3_1_1+G_4_4_1_1+R_1_1
OPTION se_covar_function H2d G_2_2_1_1/(G_2_2_1_1+G_2_3_1_1+G_3_3_1_1+G_4_4_1_1+R_1_1)
OPTION se_covar_function rg12 G_2_2_1_2/(G_2_2_1_1*G_2_2_2_2)**0.5
```


Does reml always converge?

- When the expected variance is very small or the covariance matrix is close to non-positive definite, try the following starting values:
- much smaller $=0.00001$
- much bigger = 1000
- If AIREMLF90 does not converge but REMLF90 converges with the same data set and the same model:
- run REMLF90 again but with a small starting value to check the estimate because it could be artifact
- use an option to use EM-REML inside AI-REML: OPTION EM-REML xx where $x x$ is the number of rounds of EM

gibbsf90

Bayes Theorem

- Basic idea of Gibbs sampling:
- Gibbs sampling is a numerical method to draw samples from a posterior distribution (not always explicitly available)
- Draw samples = generate random numbers following a distribution
- The results are random numbers (not theoretical formulas)
- The posterior distribution will be drawn based on the numerical values (like a histogram)

gibbsf90

Ingredients for Gibbs sampling

1) Theoretical derivation: conditional posterior distribution for each unknown parameter
2) Software: a random number generator for a particular distribution
```
# Basic Gibbs sampling for mu (normal) and sigma2 (inverted chi-square)
y<-c(14,16,18)
N <- length(y)
n.samples <- }10
mu <- rep(0,n.samples)
sigma2 <- rep(0,n.samples)
# initial value
mu[1] <- 0
sigma2[1] <- 10
# sampling
for(i in 2:n.samples){
    mu[i] <- rnorm(1, mean=mean(y), sd=sqrt(sigma2[i-1]/N)) # using the most recent sigma2
    df <- N-2
    S <- sum((y-mu[i])^2)
    sigma2[i] <- rinvchisq(1, df=df, scale=S) # using the most recent mu
}
```


gibbsXf90

- gibbs1f90: faster for multiple trait models
- gibbs2f90: better for correlated random effects
- gibbs3f90: for heterogeneous residual variance
- Name of parameter file?

gibbs1.par

- Number of samples and length of burn-in?
samples=10,000 to 100,000; burn-in=0
- Give n to store every n -th sample?

10
gibbs1f90 gibbs1.par --rounds 10000 --burnin $0--t h i n 10$

gibbsXf90

- Procedure
- Run gibbsXf90 to estimate variance components
- Run postgibbsf90 to process the samples and verify convergence
- Run gibbsXf90 with new variance components to estimate breeding values (2k to 10k rounds)

gibbsXf90

```
OPTION fixed_var all 1 2 3
```

All solutions and posterior means and SD for effects for effects1, 2, and 3 are stored in "all_solutions" and in "final_solutions" every round using fixed variances. Without numbers, all solutions for all effects are stored.

```
OPTION fixed_var mean 1 2 3
```

Posterior means and SD for effects1, 2, and 3 in "final_solutions".

```
OPTION solution all 1 2 3
```

Caution: this option will create a huge output solution file when you run many rounds and/or use a large model. All solutions and posterior means and SD for effects 1,2 , and 3 are stored in "all_solutions" and in "final_solutions" every round. Without numbers, all solutions for all effects are stored.

```
OPTION solution mean 1 2 3
```

Caution: this option will create a huge output solution file when you run many rounds and/or use a large model. Posterior means and SD for effects1, 2, and 3 in "final_solutions".

```
OPTION cont 10000
```

10000 is the number of samples run previously when restarting the program from the last run.

gibbsXf90

```
OPTION prior 5 2 -1 5
```

The (co)variance priors are specified in the parameter file.
Degree of belief for all random effects should be specified using the following structure: OPTION prior eff1 db1 eff2 db2 ... effn dbn -1 dbres
effx correspond to the effect number and $d b x$ to the degree of belief for this random effect, -1 corresponds to the degree of belief of the residual variance.
In this example 2 is the degree of belief for the 5 th effect, and 5 is the degree of belief for the residual.

```
OPTION seed 123 321
```

Two seeds for a random number generator can be specified.

```
OPTION SNP_file snp
```

Specify the SNP file name to use genotype data.

```
OPTION se_covar_function <label> <function>
```


thrgibbsXf90

- thrgibbs1f90: Gibbs sampler for mixed threshold-linear models Thresholds and variances can be estimated or assumed
- thrgibbs3f90: for heterogeneous residual variance
- Name of parameter file?

> gibbs1.par

- Number of samples and length of burn-in?
samples=10,000 to 100,000; burn-in=0
- Give n to store every n -th sample?

10
thrgibbs1f90 gibbs1.par --rounds 10000 --burnin 0 --thin 10

thrgibbsXf90

Options

```
OPTION cat 0 0 2 5
```

" 0 " indicate that the first and second traits are linear. " 2 " and " 5 " indicate that the third and fourth traits are categorical with 2 (binary) and 5 categories.

```
OPTION save_halfway_samples 5000
```

The program saves every " 5000 " samples to restart or recover the job right after the last saved samples. It is useful when the program accidentally stopped.

To restart, add OPTION cont 1 to your parameter file and run thrgibbs 1 f 90 again

```
OPTION thresholds 0.0 1.0 2.0
```

Set the fixed thresholds. No need to set 0 for binary traits.

```
OPTION residual 1
```

The residual variance can be set to 1 but not necessary for categorical traits more than 2 categories. For binary traits, the residual variance is automatically set to 1 , so no need to use this option.

postgibbsf90

- Basic idea of post Gibbs analysis:
- Summarize and visualize the samples drawn by gibbsXf90
- Confirm if the chain converged
- Find the most probable value = posterior mode as a "point estimate"
- Find the reliability of the estimates = the highest posterior density as a "confidence interval"

postgibbsf90

- Name of parameter file?
gibbs1.par
- Burn-in?

0

- Give n to store every n -th sample? (1 means read all samples) 10
- input files
gibbs_samples, fort. 99
- output files
"postgibbs_samples"
all Gibbs samples for additional post analyses
"postmean"
posterior means
"postsd"
posterior standard deviations
"postout"

postgibbsf90

at least > 10 is recommended
>30 may be better
number of independent cycles of Gibbs samples

P Lower and upper bounds tio ratio between first half and second of Mean \pm 1.96PSD
half of the samples; should be <1.0

Pos. eff1 eff2 trt1 trt2					PSD	Mean	PSDInterval (95\%)		Geweke diagnostic -0.02	Autocorrelations			Independent \# batches	
					lag: 1				10	50				
1	4	4	1	1		0.1144	0.9889	0.7648		1.213	0.853	0.188	0.049	50
2	4	4	1	2	0.1182	1.006	0.7742	1.237		-0.11	0.828	0.111	-0.066	50
3	4	4	2	2	0.1656	1.66	1.335	1.984	0.06	0.828	0.108	-0.021	36	
4	0	0	1	1	0.1967	24.47	24.09	24.86	-0.01	0.034	0.029	-0.062	450	
5	0	0	1	2	0.1643	11.84	11.51	12.16	0.03	0.032	-0.006	-0.016	450	
6	0	0	2	2	0.2429	30.1	29.62	30.57	-0.02	0.07	-0.014	0.037	180	

postgibbsf90

```
Choose a graph for samples (= 1) or histogram (= 2); or exit (= 0)
1
positions
123 # choose from the position numbers 1 through 6
If the graph is stable (not increasing or decreasing), the convergence is met.
All samples before that point should be discarded as burn-in.
print = 1; other graphs = 2; or stop = 0
2
```

postgibbsf90

postgibbsf90

Choose a graph for samples (= 1) or histogram (= 2); or exit (= 0) 2

Type position and \# bins
120
postgibbsf90

Common problems for blupf90 family

- Wrong position or formats for observation and effects
- Misspelling of Keywords
- Program may stop
- (Co)variance matrices not symmetric, not positive definite
- Program may not stop
- Large numbers (e.g. 305-day milk yield 10,000 kg) - Scale down i.e. 10,000/1,000 = 10

