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Preface

These notes originated as class notes for a graduate-level course taught at the University of
Georgia in 1997.  The goal of that course was to train students to program new ideas in animal
breeding. Programming was in Fortran because Fortran programs are relatively easy for
numerical problems, and many existing packages in animal breeding still useful at that time were
written in Fortran. Since the computer science department at UGA does not teach courses in
Fortran any longer, the first few lectures were devoted to Fortran 77 and then to Fortran 90. All
programming examples and assignments were in Fortran 90. Because the students had only
limited experience in programming, the emphasis was on generality and simplicity even at some
loss of efficiency.

Programming examples from the course led to an idea of a general yet simple BLUP program
that can be easily modified to test new methodologies in animal breeding. An integral part of that
program was a sparse matrix module that allowed for easy but efficient programming of sparse
matrix computations.

The resulting program was called BLUPF90 and supported general multiple trait models with
missing traits, different models per trait, random regressions, separate pedigree files and
dominance.  An addition of a subroutine plus a minor change in the main program converted
BLUPF90 to REMLF90 - an accelerated EM variance-component program, and BLUP90THR - a
bivariate threshold-linear model. An addition of subroutines created a Gibbs sampling program
GIBBSF90. I greatly appreciate collaborators who contributed to the project. Tomasz Strabel
added a dense-matrix library. Shogo Tsuruta created extensions of in-memory program to
iteration-on-data. Benoit Auvray added estimation of thresholds to the threshold model programs. 
Monchai Duanginda, Olga Ravagnolo, and Deuhwan Lee worked on adding threshold and
threshold-linear model capability to GIBBSF90.Shogo Tsuruta and Tom Druet worked on
extension to AI-REML. Tom Druet wrote an extension to Method R, which can work with large
data sets.... Indirect contributions were made by Andres Legarra and Miguel Perez-Enciso.
Lately, lots of contributions have been made by Ignacio Aguilar, whose goals was to speed the
programs for random regression models and adapt them for genomic selection. 

Program development of BLUPF90 and the other programs was not painless. Almost every f90
compiler had bugs, and there were many small bugs in the programs. As Edison wrote, “ the
success is 1% inspiration and 99 perspiration.” Now the programs have been used for hundreds
of papers and are routinely applied for commercial genetic evaluations in many species.
However, there is always room for improvements.

The programming work took time away from the notes, so the notes are far from complete. Not
all ideas are illustrated by numerical examples or sample programs. Many ideas are too sketchy,
and references are incomplete. Hopefully the notes will become better with time..... I am grateful
to all who have reported errors in the notes, and particularly to Dr. Suzuki from Obihiro
University and his group.
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Developing good programs in animal breeding is a work for more than one person. There are
many ideas around how to make them more comprehensive and easier to use. I hope that the
ideas presented in the notes and expressed in the programs will be helpful to many of you. In
return, please share your suggestions for improvement as well as programming developments
with me and the animal breeding community.

Ignacy Misztal
July 1998 - May 2012
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Software engineering

In programming, we are interested in producing quality code in a short period of time. If that
code is going to be used over and over again, and if improvements will be necessary, also clarity
and ease of modification are important.
The following steps are identified in software engineering:

Step Purpose Example

Requirements Description of the problem to
be solved

Variance component estimation for
threshold animal models

Specifications Specific description with
detailed limits on what the
program should do             

Number of equations up to 200,000;
number of effects up to 10; the
following models are supported;
line-mode code (no graphics);
computer independent.
Generation of test examples.

Design Conceptual program (e.g., in
pseudo-code) where all
algorithms of the program have
been identified

Estimates by accelerated EM-
REML, mixed models set up by
linked list, sparse matrix
factorization. Pseudo-code (or flow
diagram) follows .

Possibly a program in very high-
level, e.g., SAS IML, Matlab or R
(prototyping).

Coding Writing code in a programming
language

Implementation in Fortran 90

Testing Assurance that the program
meets the specifications

Validation Assurance that the program
meets the requirements

In commercial projects, each of these step is documented so that many people can work on the
same project, and that departure of any single person won’t destroy the project.

For small programming projects, it appears that only the coding step is done. In fact, the other
steps are done also conceptually, just not documented.
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It is important that all of the above steps are understood and done well.  Changes to earlier steps
done late are very expensive. Jumping right into programming without deliberation on
specifications and design is a recipe for disaster!

In research programs where many details are not known in advance, programming may take a
long time, and final programs may contain many mistakes that are not discovered until after the
paper has been accepted or a degree has been awarded. 

One possible step towards simpler programing is by reduction of program complexity by using
very high-level language. In a technique called prototyping, one would first write a program in a
very high-level but possibly inefficient language (SAS, Matlab, R, AWK,..). This assures that the
problem has been understood and delivers executed examples, and in the end can cut drastically
on coding and testing! 

Another way of reducing the cost of programming is using “object-oriented” programming,
where complicated operations are defined as easily as possible, and complicated (but efficient)
code is “hidden” in application modules or classes. This way, one can approach the simplicity of
a matrix language with an efficiency of Fortran or C. This approach, using Fortran 90, is
followed in the notes and in project BLUPF90.

Literature
Roger. S. Pressman. 1987. Software Engineering. McGraw Hill.

Computational Cost

Let n be a dimension of a problem to solve, for example a size of the matrix.
If for large n cost ~ a f(n) then computational complexity is O[f(n)]

Algorithms Name Example
O(n) linear Reading data
O[nlog(n)] log-linear Sorting
O(n ) quadratic Summing a matrix2

O(n ) cubic Matrix multiplication3

O(2 ) exponential exhaustive searchn

Algorithms usually have separate complexity for memory and computations. Often a memory-
efficient algorithm is inefficient in computations and vice versa.
Desirable algorithms are linear or log-linear. A fast computer is generally not a substitute for a
poor algorithm for serious computations. 

Observation
Advances in computing speed are evenly due to progress in hardware and in algorithms. 



9

Fortran

For efficient implementation of mathematical algorithms, Fortran is still the language of choice. 
A few standards are coexisting:

Fortran 77 (F77) with common extensions,
Fortran 90 (F90).
Fortran 95 (F95)
Fortran 2003

The standard for F90 includes all F77 but not necessarily all the extensions. While F90 adds
many new features to F77, changes in F95 as compared to F90 are small although quite useful. 
Plenty of high-quality but often hard to use software is available for F77. On the other hand,
programs written in F90/F95 are simpler to write and easier to debug. The best use of old F77
subroutines is to “encapsulate” them into much-easier to use but just efficient F90 subroutines.

The next chapter provides a very basic overview of F90. The subsequent chapter is partly a
conversion guide from F77 to F90 and partly an introduction to more advanced features of F90,
F95 and F2003. There is also a chapter on converting old programs in F77 to F95. 

Only the most useful and “safe” features of Fortran are covered. For a more detailed description
of Fortran, read regular books on Fortran programming.
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Fortran 90 - Basics

Example program

! This is a simple example

program test
! program for testing some basic operations
implicit none
integer:: a,b,c
!
read*,a,b
c=a**b !exponentiation
print*,’a=’,a,’b=’,b,’a**b=’,c
! Case is not important
 PRINT*,’a**b=’,C
end

Rules:
- program starts with optional statement “program”, is followed by declarations and ends
with “end”

        - case is not important except in character strings
- text after ! is ignored and treated as comment; comments are useful for documentation

Variables
Variables start with letters and can include letters, numbers and character “_”. 
Examples: a, x, data1, first_month

Data types
integer 4 byte long, range approx. -2,000,000,000 - 2,000,000,000

Guaranteed range is 9 decimal digits

real 4 byte floating point with accuracy of about 7 digits and range of about
10  - 10 . Examples: 12.4563, .56e-10-34 34

real (r8) (r8 to be defined)
  or
double precision

8 byte  floating point with accuracy of 15 digits and range of about
10  - 10 . Examples: 12.4563, .56d-10-300 300
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logical - 4 bytes, values of .true. or .false.
character (n) - a character string n characters long. One byte = one character.

Examples: ‘abcdef’, “qef”, “we’ll”.  Strings are either single ‘’or double
quotes “ ”. If a string is enclosed in double quotes, single quotes inside are
treated as normal characters, and vice versa.

complex not used much in animal breeding; see textbooks

Initialization
Variables can optionally be initialized during declaration; without declarations, they hold
undetermined values (some compilers initialize some variables to equivalents of integer 0; this
should not be relied on).

Examples

implicit none
integer::number_effect=5, data_pos,i=0,j
real::value,x,y,pi=3.1415
character (10)::filename=’data.run2000'
logical::end_of_file, file_exists=.false.

If a line is too long, it can be broken with the & symbol:

integer::one, two, three,&
             four, five

Warning:
An undeclared variable in F90 is treated as integer if its name starts with “i-n” and as real
otherwise. A statement: ‘implicit none’ before declarations disables automatic
declarations. Always use ‘implicit none’before declaring your variables. Declaration of
all variables (strong typing) is an easy error-detection measure that requires a few extra
minutes but can save hours or days of debugging.

implicit none
integer::a,b,c....

            .....

Arrays
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integer::x(2,100) integer array with 2 rows and 100 columns
character(5)::x(10) character array of 10 elements, each 5-character long 
real:: c(3,4,5) 3-D array of 60 elements total

By default, indexing of each element of an array starts with 1. There are ways to make it start
from any other number. 

Parameter (read-only) variables

integer,parameter:: n=5, m=20
real,parameter::pi=3.14159265
! parameter variables can be used to indicate dimensions in declarations
real::x(n,m)

Operations on variables

Expressions
Numerical expressions are intuitive except that ** stands for exponentiation.
Fortran does automatic conversions between integers and reals. This sometimes causes
unexpected side effects

real::x
integer::i=2,j=4
x=i*j/10
print*,’i*j/10',x !This prints 0, why?
!
x=i*j/10.0
print*,’i*j/10.0=',x !This print 0.8
end

With matrices, operation involving a scalar is executed separately for each matrix element:
real::x(3)
x=1 !all elements of x set to 1
x(1)=1; x(2)=4; x(3)=7
x=x*5 !all elements of x multiplied by 5

Character manipulations
character (2)::a=’xy’,b
character (10)::c
character (20)::d
c=’pqrs'
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b=a
c=a//b//c//’123' !catenation
d=c(3:4) !d is equal ‘rs'

Basic control structures

IF statement

if (condition) statement ! statement is executed only if condition is true

if (condition) then ! as above but can contain many statements
 .....
endif

If statements can contain many conditions using elseif. If no condition is fulfilled, an else
keyword can be used.

if (condition1) then ! 
      ..... ! executed if condition1 is true
    elseif (condition2)
      .... ! executed if condition2 is true
    elseif(condition3)

....
            ....
    else
  .... !optional; executed when none of previous conditions are true
endif

Conditions in if

<  <=  == (equal) >= > /= (not equal)
.and. .not. .or.

! IF example
real::x
read*,x
if (x >5 .and. x <20) then
        print*,’number geater than 5 and smaller than 20'
   elseif (x<0) then
        print*,’ x smaller than 0:’,x
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endif
end

Select case statement

These statements are optimized for conditions based on integer values

select case ( 2*i) !expression in () must be integer or character
case( 10) 

print*, 10 
case (12:20,30) 

print*,'12 to 20 or 30' 
case default !everything else, optional

print*, 'none of 10:20 or 30' 
end select

Loops

Statements inside the loop are executed repeatedly, until some termination condition occurs. In
the simplest loop below, statements inside the loop below are executed for i=1,2,...,n

do i=1,n !basic do loop
               .....
enddo

   
The example below shows creation and summation of all elements of a matrix in a do loop

integer::,i,j
integer,parameter::n=10
real::x(n,n),sumx
!c
! initialize the matrix to some values, e.g., x(i,j)=i*j/10
do i=1,n
   do j=1,n
      x(i,j)=i*j/10.0
   enddo
enddo
!
! now total
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sumx=0
do i=1,n
   do j=1,n
      sumx=sumx+x(i,j)
   enddo
enddo
print*,sumx
!
!can do the same using fortran90 function sum()
print*,sum(x)

Indices in loops can be modified to count with a stride other than one and even negative

do j=5,100,5 !j =5,10,15,...,100
...
do  k=5,1,-1 !k=5,4,..,1
...

Another loop operates without any counter. An exit statement ends the loop.

do 
.....
if (x==0) exit
......

end do

x=1 
do ! no condition mandatory

x=x*2 
if (x==8) cycle ! skip just one iteration
if (x>=32) exit ! quit the loop
print*,x 

end do

Functions and subroutines

!Program that calculates trace of a few matrices
integer,parameter::n=100
real::x(n,n),y(n,n),z(n.n),tr

......
! trace calculated in a loop
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tr=0
do i=1,n
    tr=tr+x(i,i)
enddo
!
! trace calculated in a subroutine; see body of subroutine below
call trace_sub(tr,x,n)

! trace calculated in a function; see body of function below
tr=trace_f(x,n)
end

subroutine trace(t,x,n)
integer::n,i
real x(n,n),t
!
t=0
do i=1,n
    t=t+x(i,i)
enddo
end

function trace(x,n) result(t)
integer::n,i
real:x(n,n),t
!

t=0
do i=1,n
    t=t+x(i,i)
enddo
end

In a subroutine, each argument can be use as input, output, or both. In a function, all arguments
are read only, and the “result: argument is write only. Functions can simplify programs because
they can be part of an arithmetic expression

! example with subroutine 
call trace(t,x,n)
y=20*t**2+5

!example with a function
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y=20*trace_f(x,n)+5

Subroutines and functions are useful if similar operations need to be simplified, or a large
program decomposed into a number of smaller units.

Argument passing
In a subroutine, each variable can be read or written. In a program:

call trace(a,b,m)
...
subroutine trace(t,x,n)
a and t are pointing to the same storage in memory. Same with b and x, and m and n. In some
cases, no writing is possible:

call trace (a,b,5) !writing to p either does not work or changes constant 5
call trace(x, y+z, 2*n+1) ! expressions cannot be changed

Save feature
Ordinarily, subroutines and functions do not “remember” variables inside them from one call to
another. To cause them to remember, use the “save” statement. 

function abcd(x) result(y)
...
integer,save::count=0 !keeps count; initialized to 0 first time only
real,save::old_x !keeps previous value of x
....
count=count+1
old_x=x
end

Without save, the variables are initialized the first time only, and on subsequent calls have
undetermined values. 

“return” from the middle of a subroutine or function:

subroutine .....
.....
if (i > j) return
...
end
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Intrinsic (built-in) functions
Fortran contains large number of predefined functions. More popular are:

int - truncating to integer 
nint - rounding to integer
exp, log, log10
abs - absolute value
mod - modulo
max - maximum of possibly many variables
min
sqrt - square root
sin,cos,tan
len - length of character variable

INPUT/OUTPUT

General statements to read or write are read/write/print statements. The command:

print*,a,b,c
prints a,b and c on the terminal using a default format. Variables in the print statement can include
variables, expressions and constants. These are valid print statements:

print*,’the value of pi is ‘,3.14159265
print*,’file name =’,name,’   number of records =’,nrec

Formatted print uses specifications for each printed item. Formatted print would be  
print ff,a,b,c

where ff contains format specifications. For example:
print ‘(5x,”value of i,x,y =”,i4,2x,f6.2,f6.2)’,i,x,y

Assuming i=234, x=123.4567 and y=0.9876, this prints:
     value of i,x,y = 234 123.46   0.99

Selected format descriptions
 

i5 integer five characters wide

a5 character  5 characters wide

a character as wide as the variable
(character a*8 would read as a8)



19

f3.1 3 characters wide
On write, 1 digit after comma
On read, if no comma read as if last 1 digit after comma (123 read as 12.3, 1 as .1)
              if real with comma, read as is (1.1 read as 1.1, .256 read as .256)

5x On write, output five spaces
On read, skip five characters

‘text’
‘’text’‘

On write only, output string ‘text’
use double quotes when format is a character variable or string

/ Skip to next line

     
Shortcuts
       
(i5,i5,i5) / ‘(3i5)’
‘(i2,2f5.1, i2,2f5.1)’ / ‘(2(i2,2f5.1))’

Example

print ’(i3,”squared=”,i5)’,5,25

This prints:   5 squared=   25

Character variables can be used for formatting:

character(20)::ff
...
ff=’(i3,’‘ squared=’’,i5)’
print ff,5,25

Reading from a keyboard is similar in structure to writing:
read*,a,b,c !default, sometimes does not work with alphanumeric variables
read ff,a,b,c !ff contains format

Reading from files and writing to files

File operations involve units, which are integer numbers. To associate unit 2 with a file:
open(2,file=’/home/abc/data_bbx’)

Read and write from/to file has a syntax:
read(2,ff)a,b
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write(2,ff)a,b

Formats can be replaces by * for default formatting. Units can be replaced by * for reading from
keyboard or writing to keyboard. Thus:

read(*,*)a,b !read from keyboard using defaults
read*,a,b ! identical to above simplified

and 
write(*,*)a,b,c !write to keyboard using defaults
print*,a,b,c !identical to above simplified

are equivalent.

To read numerical data from file bbu_data  using default formatting
integer::a
character (2)::b
real::x
!
! open file “bbu-data” as unit 1
open (1,file=’bbu_data’)

! read variables from that file in free format and then print them
read(1,*)a,b,x
print*,a,b,x
! asterisk above denotes free format
!
! read same variables formatted 
rewind 1
read(1,’(i5,a2,f5.2)’)a,b,x

In most fortran implementations, unit 5 is preassigned to keyboard and unit 6 to console. “Print”
statement prints to console. Thus, the following are equivalent: 

write(6,’(i3,’‘ squared=’’,i5)’)5,25
and

print ’(i3,’‘ squared=’’,i5)’, 5,25

Also these are equivalent:
read(5,*)x

and
read*,x

Free format for reading the character variables does not always work. One can use the following
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from the keyboard:

read (5,’(a)’)string
or

read ‘(a)’,string

Attention: One read statement generally reads one line whether all characters have been read
or not! Thus, the next read statement cannot read characters that the previous one
has skipped. 

Assume file “abc” with contents:
1 2 3
4 5 6
7 8 9

By default, one read statement reads complete records. If there is not enough data in one record,
reading continues to subsequent records.

integer::x, y(4)
open(1,file=’abc’)

 read(1,*)x
print*,x
read(1,*)y
print*,y
end

produces the following
1
4 5 6 7

Implied loop

The following are equivalent:

integer::x(3),i
! statements below are equivalent
read*,x(1),x(2),x(3)
read*,x
read*,(x(i),i=1,3)

Implied loops can be nested

integer::y(n,m),i,j
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read*,((y(i,j),j=1,m),i=1,n)

! statement below reads by columns
read*,x
! and is equivalent to
read*,((y(i,j),i=1,n),j=1,m) !note reversal of indices; 
or
read*,((y(:,j),j=1,m)

Implied loop is useful in assignment of values to arrays

real::x(n,n),d(n)
integer::cont(100)
!
d=(/(x(i,i),i=1,n)/) !d contains diagonal of x
cont=(/(i,i=1,100)/) !cont contains 1 2 3 4 ... 100

Detection of end of files or errors

integer::status
read(...,iostat=status)
if (status == 0) then
      print*,’read correct

         else
      print*,’end of data’
endif

Unformatted input/output

Every time a formatted I/O is done, the programs performs a conversion from character format to
computer internal format (binary). This takes time. Also, an integer or real variable can use up to
10 characters (bytes) in formatted form but only 4 bytes in binary, realizing space savings. Since
binary formats in different computers and compilers may be different, data files in binary usually
cannot be read on other systems. 

Unformatted I/O statements are similar to formatted ones except that the format field is omitted.

real x(1000,1000)
open(1,file=’scratch’,form=’unformatted’)
.......
write(1)x
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....
rewind 1
read(1)x
.....
rewind 1
write(1)m,n,x(1:m,1:n) !writing and reading section of a matrix
....
rewind 1
read(1)m,n,x(1:m,1:n)
....
close(1,status=’delete’)
end

Statement CLOSE is needed only if the file needs to be deleted, or if another file needs to be
opened with the same unit number.

Reading from/to variables

One can read from a variable or write to a variable. This may be useful in creating names of
formats. For example:

character (20)::ff 
  write(ff, ‘(i2)’)i
   ff=’(‘ // ff // ’f10.2)’ !if i=5, ff=’( 5f10.2)’

The same can be done directly:
 write(ff, ‘(    “(“,   i2,   ”f10.2)”   )’ )i  ! spaces only for clarity

Reading/writing with variables always require a format, i.e., * formatting does not work.
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Compiling

Programs in Fortran 90 usually use the suffix f90. To compile program pr.f90 on a Unix system,
type: 
f90 pr.f90
where f90 is the name of the fortran 90 compiler. Some systems use a different name (e.g., ifort in
a popular Intel compiler).

To execute, type:
a.out

To name the executable pr rather than default a.out:
f90 -o pr pr.f90

To use optimization
f90 -O -o pr pr.f

Common options:
-g add debugging code
-static or -s  compile with static memory allocation for subroutines that includes

initializing memory to 0; use for old programs that don’t work otherwise.

Hints

If a compile statement is long, e.g.,
f90 -C -g -o mm mm.f90

to repeat it in Unix under typical conditions (shell bash or csh), type
!f

If debugging a code is laborious, and the same parameters are typed over and over again, put them
in a file, e.g., abc, and type:

a.out <abc

To repeat, type
!a

Programs composed of several units are best compiled under Unix by a make command. Assume
that a program is composed of three units: a.f90, b.f90 and c.f90. Create a file called Makefile as
below:

a.out: a.o b.o c.o
f90 a.o b.o c.o
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a.o: a.f90
f90 -c a.f90

b.o: b.f90
f90 -c b.f90

c.o: c.f90
f90 -c c.f90

After typing
make

all the programs are compiled and linked into an executable. Later, if only one program changes,
typing

make
causes only that program to be recompiled and all the programs linked. The make command has a
large number of options that allows for high degree of automation in programming.

Attention: Makefile requires tabs after : and in front of commands; spaces do not work!
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Advanced features in Fortran 95

This section is a continuation of the previous chapter that introduces more advanced features of
F95.  This section also has some repetitive information from the former section to also be an
upgrade guide from F77.

Free and fixed formats
Fortran 77 programs in traditional fixed format are supported, usually as files with suffix “.f”.
Fixed format programs can be modified to include features on the f90 fortran. Free format
programs usually have suffix “.f90".   

Free format (if suffix .f90)
! Comments start after the exclamation mark
! One can start writing at column 1 and continue as long as convenient
!
integer:: i1, i2, i3, j1, j2, j3,& !integer variables
             k1, k2, m, n !& is line continuation symbol

real :: xx !XX is name of the 
! coefficient matrix

&,yy !if continuation is broken by a blank or comment, use & as here

a=0; b=0 !multiple statements are separated by semicolon

Long names
Up to 32 characters

New names for operators 
== (.eq.),   /= (.ne.), <=,   =>,  <,   >

Matrix operations 
real :: x(100,100),y(100,100),z(100),v(20),w(20),p(20,20),a
...
x(:,l)=y(l,:)
p=x(21:40,61:80) ! matrix segments
v=z(1:100:5) ! stride of 5:   v=(/z(1), z(6),z(11),...,z(96)/)
v=x(10:100:10,1:10)**5 ! operation with a constant
y=matmul(z,y) ! matrix multiplication
p=x(:20,81:) ! same as x(1:20,81:100)
print*,sum(z(1,:)
x=transpose(y) !x=y’
print*,dot_product(v,w) !v’w
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a=maxval(x) ! maximum value in x
print*,count(x,x>100) ! number of elements in x that satisfy the condition
a=sum(y) ! sum of all elements of y
print*,sum(y,dim=1) ! vectors that contains sums by row
print*,sum(y,mask=y>2.5) ! sum of all elements > 0.5

See other functions like maxloc(), any(), all(),size....

Vector and matrix operations involve conformable matrices 

Constructors
real :: x(2),y(1000),g(3,3)
...
x=(/13.5,2.7/) !x(1)=3.5, x(2)=2.7
y=(/ (i/10.0, i=l,l000) /) !y=[.1 .2 .3 ... 99.9 100]
...
i=2; j=5
x=(/i**2,j**2/) ! constructors may include expressions; x=[4  25]
y(1:6)=(/x,x,x/) ! constructors may include arrays

g(:,1)=(/1 2 3/); g(:,2)=(/4,5,6/); g(:,3)=(/7,8,9/) ! matrix initialized by columns
g=reshape(  (/1,2,3,4,5,6,7,8,9/), (/3,3/) ) ! matrix initialized by reshape() 

Constructors can be used in indices!

integer::i(2), p(10)
...
i=(/2,8/)
...
p(i)=p(i)+7 !p(2)=p(2)+7, p(8)=p(8)+7

New declarations with  attributes 
integer,parameter::n=10,m=20 ! parameters cannot be changed in the program
real,dimension(n,m)::x,y,z ! x, y and z have the same dimension of n x m

real::x(n,m),y(n,m),z(n,m) ! equivalent to above

real (r4),save::z=2.5 ! Real variable of precision r4 with value saved (in a subroutine)
character (20):: name ! character 20 bytes long
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New control structures
select case ( 2*i) !expression in () must be integer or character

case( 10) 
print*, 10 

case (12:20,30) 
print*,'12 to 20 or 30' 

case default 
print*, 'none of 10:20 or 30' 

end select

x=1 
do ! no condition mandatory

x=x*2 
if (x==8) cycle ! skip just one iteration
if (x>=32) exit ! quit the loop
print*,x 

end do

real:: x(100,1000) 
where (x >500) 

x=0 !done on all x(i)>500
   elsewhere 

x=x/2 
end where

Allocatable arrays

real,allocatable::a(:,:) ! a declared as 2-dimensional array
allocate (a(n,m)) ! a is now n x m array
..
if (allocated(a)) then ! the status of allocatable array can be verified 

deallocate(a) ! memory freed
endif

Pointer arrays
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real,pointer::a(:,:),b(:,:),c(:,:),d(:) ! a-c declared as 2-dimensional arrays
allocate (a(n,m)) ! a is now n x m array

b=>a ! b points to a, no copy involved
c=>a ! a-c point to the same storage location

allocate(a(m,m)) !a points to new memory; 
nullify (b) !association of b eliminated
b=null() ! same as above

allocate(b(m,m)
b=a !b copied to a

deallocate(c)     !deallocate memory initially allocated to a
c=>b(1:5,1:10:2) !pointer can point to section of a matrix
d=>b(n,:) !vector pointer pointing to a row of a matrix

if (associated(b)) then ! test of association 
deallocate(b) ! memory freed and b nullified

endif

real,target::x(2,3) !pointer can point to non-pointer variables with target attribute
real,allocatable,target::y(:,:)
real::pointer::p1(:,:,p2(:,:)
...
p1=>x
p2=>y

Read more on pointers later.

Data structures 
type animal 

character (len= 13) :: id,parent(2) 
integer :: year_of birth 
real :: birth weight,weaning weight 

end type animal

type (animal) :: cow
...
read( 1 ,form)cow%id,cow%sire,cow%dam,cow%yob,cow%bw,cow%ww

To avoid typing the type definitions separately in each subroutine, put all structure definitions in a
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module, e.g., named definitions

module aa 
type animal
...
end type
type ...
...
end type

end module

Program main
use aa !use all definitions in the module 
type(animal): :cow
...
end

subroutine pedigree
use aa
type(animal): :cow
...
end

To include modules in the executable file:
       1) compile files containing those modules,
       2)  if modules are not in the same directory as programs using them, use appropriate compile

switch,
       3) if modules contains subroutines, the object code of the modules needs to be linked.

Elements of data structures can be pointers (but not allocatable arrays) and can be initialized.

type sparse_matrix
   integer::n=0
   integer,pointer::row(:)=>null(),col(:)=null()
   real,pointer::val(:)=>null()
end type

Automatic arrays in subroutines
real:: x(5,5)
..
call sub1(x,5)
...
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subroutine sub1(x,n)
real:: x(n,n),work(n,n) !work is allocated automatically and deallocated on exit
..
end

New program organization - internal functions/subroutines and modules
Functions and subroutines as described in the previous section are separate program units.  They
can be compiled separate from main programs and put into libraries. However, there are prone to
mistakes as there is no argument checking, e.g., subroutines can be called with wrong number or
type of arguments without any warning during compilation.

Fortran 90 allows for two new possibilities for placement of procedures: internal within a program
and internal within a module.

! This is a regular program  with separate procedures
program abcd
...
call sub1(x,y)
...
z=func1(h,k)
end program

subroutine sub1(a,b)
....
end subroutine

function func1(i,j)
....
end function

! This is the same program with internal subroutines
program abcd
...
call sub1(x,y)
...
z=func1(h,k)

   contains ! end  program is moved to the end and “contains” is inserted

   subroutine sub1(a,b)
   ....
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   end subroutine
   function func1(i,j)
   .....
   end function

end program

Internal procedures have access to all variables of the main program. Procedures internal to the
program cannot be part of a library.

! This program  uses modules
module mm1
   contains
   subroutine sub1(a,b)
   ....
   end subroutine
   function func1(i,j)
   .....
   end function
end module

program abcd
use mm1 !use module mm1
...
call sub1(x,y)
...
z=func1(h,k)
end program

An example of internal functions or subroutines
program abc
integer :: n=25
real :: x(n)
...
call abc(i)

contains

   subroutine abc(i)
   integer ::i
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    ...
   if (i<=n) x(i)=0   !variables declared in the main program need not 

!  be declared in internal subroutines
   end subroutine
...
end program

Procedures that are internal or contained within modules can have special features that make them 
simpler or more convenient to use.

Deferred size arrays in subroutines or functions 
real:: x(5,5)
..
call sub1(x)
...

subroutine sub1(x)
real:: x(:,:) !size is not specified; passed automatically
real::work(size(x,dim=1),size(x,dim=2)) !new variable created with dimension of x()
..
end subroutine

This works only if the program using the subroutine sub1 is informed of its arguments, either 
by (1) preceding that program by an interface statement, (2) by putting sub1 in a module and using
the module in the program, or 3) by making the subroutine an internal one. .

(1)
interface
   subroutine sub1(a)
   real::a(:,:)
   end subroutine
end interface
real::x(5,5)
....

(2)
module abc
 interface
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   subroutine sub1(x)
   real:: x(:,:)
   real::work(size(x,dim=1),size(x,dim=2))
   ..
   end
end module

program main
use abc
real::x(5,5)
.....
end program

(3)
program main
real::x(5,5)
.....
  contains

  subroutine sub1(x)
   real:: x(:,:)
   real::work(size(x,dim=1),size(x,dim=2))
   ..
   end subroutine
end program

Use of interface statements  results in interface checking, i.e., whether arguments in subroutine
calls and actual subroutines agree.

The module can be compiled separately from the main program. The module should be compiled
before it is used by a program.

Function returning arrays

A function can return an array. This array can be either deferred size if its dimensions can be
deduced from the function arguments, or it can be a pointer array.

function kronecker1(y,z) result(x)
!this function returns y “kronecker product” z
real::y(:,:),z(:,:), z(size(y,dim=1)*size(z,dim=1), size(y,dim=2)*size(z,dim=2))
...
end function
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function kronecker2(y,z) result(x)
!this function returns y “kronecker product” z
real::y(:,:),z(:,:)
real,pointer:: z(:,:)
..
allocate(z(size(y,dim=1)*size(z,dim=1), size(y,dim=2)*size(z,dim=2))
...
end function

function consec(n) result (x)
! returns a vector of [1 2 3 ... n]
integer::n,x(n),i
!
x=(/(i,i=1,n)/)
end function 

Functions with optional and default parameters
subroutine test(one,two,three)
integer, optional::one,two,three
integer :: one1,two1,three1     !local variables
 !
if (present(one)) then
   one1=one
  else
   one1=1
endif
if (present(two)) then
   two1=two
  else
   two1=2
endif
if (present(three)) then
   three1=three
  else
   three1=3
 !
endif
print*,one1,two1,three1
end

.....
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call test(15,6,7)
call test(10) !equivalent to call test(10,2,3)
call test(5,three=67 ) !parameter three out of order

Subroutine/Function overloading
It is possible to define one function that will work with several types of arguments (e.g., real and
integer). This is best done using modules and internal subroutines.

module prob
!function rand(x) is a random number generator from a uniform distribution. 
! if x is real - returns number in interval <0-x)
! if x is integer - returns integer between 1 and x.

   interface rand
     module procedure rand_real, rand_integer
  end interface

      contains

  function rand_real(x) result (y)
  real::x,y
 !
  call random_number(y) !system random number generator in interval <0,1)
  y=y*x
  end function
  
function rand_integer(x) result (y)
  integer::x,y
  real::z
 !
  call random_number(z) !system random number generator in interval <0,1)
  y=int(y*z)+1
  end function

end module

program overload
!example of use of function rand in module prob
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use prob !name of module where overloaded functions/subroutines are located
integer::n
real::x

! generate an integer random number from 1 to 100
print*,rand(100)

! generate a real random number from 0.0 to 50.0
print*,rand(50.0)
end

Operator overloading
Arithmetic operators (+ - / *) as well as assignment(=) can be overloaded, i.e., given different
meaning for different structures.

For example,

Type (bulls):: bull_breed_A,&
bull_breed_B,&
bull_combined,& 
bull_different,& 
bull common

...
!The following operations could be programmed

bull_combined = bull_breed_A + bull_breed_B 
bull_different = (bull_breed_A - bull_breed_B) + (bull_breed_B - bull_breed _ A) 
bull common = bull_breed_A * bull_breed_B

General philosophy of Fortran 90
A fortran 90 program can be written in the same way as fortran 77, with the main program and
many independent subroutines. During compilation it is usually not verified that calls to
subroutines and the actual subroutines match. i.e., the number of arguments and their types match.
With a mismatch, the program can crash or produce wrong results. Fortran 90 allows to organize
the program in a series of modules with a structure  as follows:

MODULE m1
interfaces
declarations of data structures
data declarations
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   CONTAINS
subroutines and functions
END MODULE m1

MODULE m2
interfaces
declarations of data structures
data declarations
   CONTAINS
subroutines and functions
END MODULE m2

MODULE m3
...

PROGRAM title
USE MODULE m1,m2,..
declarations
body of main program
   CONTAINS
internal subroutines and functions  
END PROGRAM title

Each set of programs is in a module. If there is a common data to all programs together with
corresponding subroutines and functions, it can be put together in one module. Once a program
(or a module) accesses a module, all the variables become known to that program and matching of
arguments is verified automatically.

It is a good practice to have each module in a separate file. Modules can be compiled separately
and then linked. In this case, the compile line needs to include a directory where modules are
compiled. 

Other selected features

New specifications of precision

integer,parameter::r4=selected_real_kind(6,30) ! precision with at least 6 decimal digits
!   and range of 1030

real(r4)::x ! x has accuracy of at least 6 digits (same as default)
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integer,parameter::r8=selected_real_kind(15) ! as above but 15 decimal digits 
real(r8)::y ! y has accuracy of at least 15 decimal digits (same as double precision)

integer, parameter :: i2 = selected_int_kind( 4 ) ! integer precision of at least 4 digits
integer, parameter :: i4 = selected_int_kind( 9 ) ! integer precision of at least 9 digits

 To avoid defining  the precision in each program unit, all definitions can be put into a module. 

module kinds
  integer, parameter :: i2 = SELECTED_INT_KIND( 4 )
  integer, parameter :: i4 = SELECTED_INT_KIND( 9 )
  integer, parameter :: r4 = SELECTED_REAL_KIND( 6, 37 )
  integer, parameter :: r8 = SELECTED_REAL_KIND( 15, 307 )
  integer, parameter :: r16 = SELECTED_REAL_KIND( 18, 4931 )
  integer, parameter :: rh=r8
end module kinds

Variable i2 denotes precision of an integer with a range of at least 4 decimal digits or -10000 to
10000. It usually can be a 2-byte integer. The variable i4 denotes precision of an integer with a
range of at least 9 decimal digits. It can be a 4-byte integer. The variable r4 denotes precision of a
real with the precision of at least 6 significant digit and a range of 10 . It can be a 4-byte real. The37

variable r8 denotes precision of a real with the precision of at least 15 significant digit and a range
of 10 . It can be a 8-byte real. Finally rh is set to r8.307

In a program

program test
use kinds
real (r4):: x
real (rh)::y
integer (i2)::a
...
end

Variables x,y, and a have appropriate precision. If  variable y and other variables of precision rh
need to be changed to precision r4 to save memory, all what is needed is a change in the module
and recompilation of the remaining programs.

Lookup of dimensions 

real x(100,50)
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integer p(2)

..
print*,size(a) ! total number of elements(5000)
print*,size(x,dim= 1) ! contains size of the first dimension (100) 
print*,size(x,dim=2)  ! contains size of the second dimension (50)
p=shape(x) ! p=(/100,50/)

Functions  with results and intents

subroutine add (x,y,z)
real, intent(in):: x ! x can be read but not overwritten
real, intent(inout):: y ! y can be read and overwritten, this is default
real, intent(out):: z ! z cannot be read before it is assigned a value
....
end subroutine

Pointers II

The following example shows how a pointer variable can be enlarged while keeping the  original
contents and with a minimal amount of copying

real,pointer::p1(:),p2(:)

allocate(p1(100)) !p1 contains 100 elements
.....
! now p1 needs to contain extra 100 elements but with initial 100 elements intact
allocate(p2(200))
p2(1:100)=p1
deallocate(p1)
p1=>p2 ! now p1 and p2 point to the same memory location
nullify(p2) ! p2 no longer points to any memory location
...
end

If deallocate is not executed, memory initially assigned to p1 would become inaccessible. Careless
use of pointers can result in memory leaks, where the amount of memory used is steadily
increasing.

real,pointer::x(:)
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do i=1,n
   
   x=>diagonal(y)
    ...
   deallocate(x) !memory leak if this line omitted
enddo

Pointers can be used for creation of linked lists, where each extra element is added dynamically.

type ll_element
   real::x=0
   integer::column=0
   type (ll_element),pointer::next=>null()
end type

type ll_matrix
   type(ll_element),pointer::rows(:)=>null() !pointer to each row of linked list
   integer::n=0 ! number of rows
end type

program main
type (ll_matrix)::xx !declaration
...

Subroutine add_ll(a,i,j,mat)
! mat(i,j)=mat(i,j)+a
type (ll_matrix)::mat
real::a
integer::i,j
type (ll_element)::current,last
!
current=>mat%rows(i) !points to first element in row i
do

if (.not. associated(current) exit !exit loop to create new element
if (current%column == j) then

           current%x=current%x+a !found element; add to it
return !return from subroutine

   else
current=>current%next ! switch to next element and loop

enddo

!element not found
allocate(last)
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current%next=>last !set link from the previous element
last%column=j; last%x=a !set values
end subroutine

Interfaces

operators (+,*,user defined)

One can create interfaces so that operations could look as
a+b
where a and b are structures of, say, type matrix.

The following would make it possible

interface operator (+)
   Module procedure add
end interface
   contains

function add(x,y) result (z)
type(matrix)::z
type(matrix), intent(in)::x,y
...
end function

In this case
a+b
have the same effect as
add(a,b)

Please note that matrices being arguments of this function have “intent(in)”, i.e., the arguments of
the function are defined as non-changeable. User defined operators need to be characters within
points, e.g.   .add.   or   .combine. .

equal sign

To create an assignment that would be
a=b
create the following interface and function

interface assignment(=)
   Module procedure equalxy
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end interface
   contains

subroutine equalxy(x,y)
type(matrix),intent(out)::x
type(matrix), intent(in)::y
...
end function

Please note locations of intent(in) and intent(out). In this case, 
a=b

and
call equalab(a,b)

will result in identical execution.

Differences between Fortran 90 and 95

Fortran 95 includes a number of “fixes “ + improvements to F90. Some of them are shown here.

Timing function

The CPU timing function is now available as :

call cpu_time(x)

Automatic deallocation of allocatable arrays

Arrays allocated in procedures are automatically deallocated on exit.

Pointer and structure initialization

Pointers can be nullified when declared; most compilers but not all do it automatically.

real,pointer::x(:,:)=>null()

Elements of the structure can be initialized
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type IJA
integer::n=0
integer,pointer::,ia(:)=null(),ja(:)=null
real,pointer::a(:)=null()

end type

Elemental subroutines

A subroutine/function defined as elemental for a scalar argument, can be automatically used with
arrays. In this case, the same operation is performed on every element of the array.

real::x,y(10),z(5,5)

call pdf(x)
call pdf(y)
call pdf(z)
..
contains

elemental subroutine pdf(x)
real::x
x=1/(2*sqrt(3.14159265))*exp(-x**2/2)
end subroutine

end program

In the program above, one can precalculate 1/(2*sqrt(3.14159265)) to avoid repeated calculations,
but optimizing compilers do it automatically.

Many functions in Fortran 90 are elemental or seem to be elemental. This may include a uniform
pseudo-random number generator. 

real::x,y(12)
!
call random_number(x) ! x ~ un[0,1)
call random_number (y) ! y(i)~un[0,1), i=1,12
x=sum(y)-6 ! x ~ approx  N(0,1)

Including the random_number subroutine as part of another elemental routine works well with
some compilers and generates errors (not pure subroutine) with others. In this case,
random_number may be implemented as overloaded.   
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Fortran 2003

Specifications for Fortran 2003 are available, however, as of 2008 only some features of it are
implemented in selected compilers. Those described below are untested and should serve as 
general ideas. For a more complete description, search for “Features of Fortran 2003" on the
Internet.

Automatic (re)sizing of allocatable matrices in expressions

real, allocatable::a(:,:), b(:,:),c(:,:),v(:)
allocate (b(5,5),c(10,10))
...
a=b !a initialized as a(5:5)
a=c !a deallocated and allocated as a(10,10)
v(1:10)=b(1:2,1:5) ! V is allocated v(10)

 New features for allocatable arrays

allocatable(a,source=b) !a gets attributes of b
call move_alloc(c,d) !c=d; d deallocated

“Stream” write/read. Variables are written as a sequence of bytes; reading can start from any
position using the keyword POS.

open(1,access=’stream’)
write(1)a,b,c,d !write variables as stream of bytes
rewind 1
read(1,pos=35)q !read starting from the byte 35 
read(1,pos=10)z !read starting from byte 10

Asynchronous I/O. The program continues before the I/O is completed.

open(1,...,asynchronous=”yes”)
do i=1,p

x=...
write(1)x !no wait for write to finish

enddo
wait(1) !wait until all writing to unit 1finished

Many features of Fortran 2003 are for compatibility with the C language and for dynamic
allocation of data structures and subroutines. For example, there is an ability to declare data
structures with variable precision.

type mat(kind,m,n)
integer, kind::kind
integer,len::m,n

  real(kind)::x(m,n)
end type



46

type (mat(kind(0.0),10,20))::mat1 !mat1 is of single precision
type (mat(kind(0.d0),10,20))::mat2 !mat2 is of double precision
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Parallel programming and OpenMP

If a computer contains multiple processors, a program could potentially run faster if it is modified
to use several processors. For any gains with parallel processing, the program needs to contain
sections that can be done in parallel. If a fraction of serial code that cannot be executed in parallel
in a program is s, the maximum improvement in speed with parallel processing is 1/s. 

A program running on several processors spends time on real computing plus on overhead of
parallel processing, which is data copying plus synchronization. When converting to parallel
processing its is important that:

* The program still runs on a single processor without much performance penalty
* Additional programming is not too complicated
* Benefits are reasonable, i.e., small amount of time is spend in copying/synchronization
* Extra memory requirements are manageable
* Results are the same as with serial execution. 

The parallel processing can be achieved in two ways:
 - automatically using a compiler option,  
-  use of specific directives.

Both options require an appropriate compiler. The first option is usually quite successful for
programs that operate on large matrices. For many other programs, the program needs to be
modified to eliminate dependencies that would inhibit the possibility of parallel processing.

OpenMP

One of the most popular tools to modify an existing program for parallel processing is OpenMP.
In this standard, extra directives (!$OMP....)  are added to programs. In compilers that do not
support OpenMP, these directives are ignored as comments. Several OpenMP constructs are
shown below. Threads mean separately running program units; usually one thread runs on one
processor. 

Everything inside these two directives is executed by all processors available. 

!$OMP parallel
print*,”Hi” !will be printed many times, once per processor
!$OMP end parallel

Any variable appearing in private() will be separate for each processor

!$OMP parallel private (x)
call cpu_time(x)
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print*,x !will be printed many times once per processor
!$OMP end parallel

The loops will be distributed among processors available

!Variable i and any other loop counter are treated as separate
! variables per processor
!Each loop is assumed independent of each other; otherwise the
! results may be wrong 
!$OMP do
do i=1,1000
 ...
end do
!$OMP end do

Keyword “nowait” allows the second do loop section to execute before the first one is complete

!$OMP parallel
!$OMP do
   do i=1

...
   enddo
!$OMP end do nowait

!$OMP do
   do i=1,...

...
!$OMP end do

Statements in each section can be executed in parallel

!$OMP sections
!$OMP section
...
!$OMP section
...
!$OMP section...
...
!$OMP end section

Only the first thread to arrive executes the statements within while the other threads wait then skip
the statements.

!$OMP single
...
!$OMP end single

Only one thread can execute the statements at one time; the other threads need to wait before they
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can execute them

!$OMP critical
...
$OMP critical

No thread can proceed until all threads arive at this point

!$OMP barrier

Only one thread at a time can execute the statement below 

!$OMP atomic
x=x+....

Separate x are created for each thread; they are summed after the loop is complete. 

$OMP do reduction (+:x)
do i=...
...
   x=x+...
end do
$OMP end do

Execute the following statements in parallel only if condition met; otherwise execution serial 

!$OMP parallel if(n>1000)
!$OMP...
...

OpenMP includes a number of subroutines and functions. Some of them are:

call MP_set_num_threads(t) - set number of threads to t
OMP_get_num_procs() - number of processors assigned to program 
OMP_get_num_threads() - number of different processors actually active
OMP_get_thread_num() - actual number of thread (0 = main thread)
OMP_get_wtime() - wall clock time

For example:

program test
use  omp_lib
integer::i,nproc
real::x
!
nproc=OMP_get_num_procs()
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!
print*,nproc,” processors available”
nproc=min(3,nproc) !use maximum 3 processors
!
call MP_set_num_threads(nproc) - set number of threads to nproc

!$OMP do
do i=1,10
   print*,”iteration”,i,” executed by thread”,get_thread_num()
enddo
!$OMP end do
end

Converting program from serial to parallel can take lots of programming and debugging.
Additional issues involved are load balancing - making sure that all processors are busy- and
memory contention - that speed is limited by too much memory access. A useful information is
given by compiler vendors, e.g., see PDF documents on optimizing and OpenMP of the Intel
Fortran compiler (http://www.intel.com/cd/software/products/asmo-na/eng/346152.htm) .

Given programming time, improving the computing algorithm may result in a faster and a simpler
program than converting it to parallel. For examples, see Interbull bulletin 20 at
http://www-interbull.slu.se. 
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Rewriting  programs in F77 to F95

The purpose of the rewrite is primarily simplification of old programs and not computing speed.
In F77 it is very easy to make simple but hard-to-find programming mistakes while in F95 it is
much more difficult. One can consider a rewrite or a “touch-up” when upgrade or fixes to an old
program are too time consuming or seem impossible. 

The computing time in F95 may be longer due to management of memory allocation. However, if
a simpler program  allows easy upgrade to a more efficient algorithm, the program in F95 may
end up being faster.

The complexity of the program is roughly the number of subroutines in a program times the
number of arguments per subroutine,  plus the number of declared variables times the size of code
(excluding comments). A program can be simplified by:

1. deceasing the number of variables
2. decreasing the number of subroutines
3. decreasing the number of arguments per subroutine/function. 
4. decreasing the length of the code (without using tricks)

The rewrite may be done at a few levels.

Simplest 

Eliminate some loops by a matrix statement or a built-in functions 

Old code New code

          p=0
     do i=1,n

p=p+x(i)
     enddo

 p=sum(x(:n))

Compound functions

! x~MVN(y,inv(z*p))
.... ! multiply
.... ! invert
.... ! sample MVN(0,..)
.... ! add constant 

x=normal(y,inv(mult(z,p))

Replace all work storage passed to subroutines with automatic arrays
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real::work(n)
...
call mult(x,y,z,work,n)
...
subroutine mult(a,b,c,n)
real::work(n) !work is used as

scratch

call mult(x,y,n)
...

subroutine(x,y,n) 
real::work(n)

Possibly initialize variables in the declaration statement; beware of consequences

real::a,b(20)
integer::j
a=0
do i=1,20
   b(i)=0
end do
j=0

real:a=0,b(20)=0
integer:j=0
!values initialized once

Use memory allocation to have matrices the right size and then eliminate separate bounds for
declared and used indices

real:x(10000)
m=2*(n+7) ! used dimension of x
call comp(x,m,n)

real,allocatable:x(:)
allocate (x(2*(n+7))
call comp(x)

Level II

Simplify interfacing with old subroutines either by rewriting (if simple) or by reusing (writing a
F95 interface); the rewritten subroutine as below must be either internal or in a module.

call fact3dx(x,,n,m,w)
...
subroutine fact3dx(mat,n,m,work)
! mat=fact(mat)
integer::n,m
real::mat(n,n),work(n)
...

call factor(x)
......
subroutine factor(mat)
real::mat(:,:),w(size(mat,dim=1))
interface 
    subroutine fact3dx(mat,n,m,work)
    integer::n,m
    real::mat(n,n),work(n)
end interface
call fcat3dx(mat,size(w),size(w),w)
end subroutine

Replace all “common” variables by a module
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program
integer p(n)
real x(m,m),z(n,n)
common  //p,x,z
....
subroutine aa...
integer p(n)
real x(m,m),z(n,n)
common  //p,x,z
....

module stor
  integer p(n)
  real x(m,m),z(n,n)
end module

program ..
use stor

subroutine ..
use stor

Change subroutines into internal subroutines (if specific to a program) or put them into module (if
subroutines useful in other programs).

Level III

Replace old libraries by new, simpler to use
Overload  whatever makes sense
Organize variables into data structures

Level IV

Rewrite from scratch. The old program is utilized as a source of general algorithms and examples.
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Setting-up mixed model equations

Good references on setting up models of various complexity are in Groeneveld and Kovacs
(1990), who provide programming examples,  and in Mrode (1996), who provides many
numerical examples and a large variety of models. The approach below provides both numerical
examples and programming. Almost all programming is in fortran 90, emphasizing simplicity
with programming efficiency.
 
Fixed 2-way model

Mixed model: y = Xâ + e. Assuming E(y)=Xâ, V(y)=V(e)=Ió , the estimate of â is a solution2

to normal equations:

Because X contains few nonzero elements and matrix multiplication is expensive (the cost is
cubic), matrices X’X and X’y are usually created directly.

Data

iji j y
1 1 5
1 2 8
2 1 7
2 2 6
2 3 9

ij i j ijWrite the model as y  = a  + b  + e

The mixed model for the given data:

or
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1 2 3    y    =   ( X                    +            X         +          X           + ...    )      â   + e

Observation:     first       second        third    

One can write:

    
For the first two observations:

For a two-factor model, the contribution to X’X from one observation is always 4 elements of
ones, in a square. 
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The contribution to X’y from one observation is always two elements with the values of the
current observation.

Rules

Define a function address(effect) that calculates the solution number corresponding to the i-th
effect and the j-th level

Effect Address(effect)

1a 1

2a 2

1b 3

2b 4

3b 5

ij i j ijIn the model y  = a  + b  + e , the contribution to X’X (also called the Left Hand Side or LHS)

ijfrom observation y  are 4 ones on positions:

i i i j[address(a ), address(a )] [address(a ), address(b )] 

j i j j[address(b ), address(a )] [address(b ), address(b )]

ijThe contributions to X’y (also called the right-hand side or RHS) are 2 values of y  on positions:

iaddress(a )

jaddress(b )
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If the number of levels were large, say in the thousands, the explicit calculation of X’X would
involve billions of arithmetic operations, mostly on zeros. By calculating only nonzero entries of
LHS and RHS, the number of operations is in the thousands.

Using the rules, calculate contributions to LHS and RHS from all five observations

i j Contributions to LHS Contributions to LHS

1 1 (1,1),(1,3),(3,1),(3,3) add 5 to element 1 and 3

1 2 (1,1),(1,4),(4,1),(4,4) add 8 to element 1 and 4

2 1 (2,2),(2,3),(3,2),(3,3) add 7 to element 2 and 3

2 2 (2,2),(2,4),(4,2),(4,4) add 6 to element 2 and 4

2 3 (2,2),(2,5),(5,2),(5,5) add 9 to element 2 and 5

Summing all the contributions, 

Please note the diagonal and symmetrical structure for X’X.

Extension to more than two effects   

For n effects, each observation will contribute n  ones to the LHS and n values to the RHS.2

Proceed as follows:

i1. For each observation, calculate addresses: address , i=1,n for each of the effect

i j2. Add 1 to LHS elements (address , address ), i=1,n, j=1,n

i3. Add observation value to RHS, elements (address ), i=1,n
4. Continue for all observations.
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Example 

Assume a four-effect model with the following number of levels:

effect number of levels
1 (a) 50
2 (b) 100
3 (c) 40
4 (d) 10

Assume the following observation:

11 67 24 5a , b , c , d , y=200

The addresses will be calculated as:

effect starting address for this effect address
1 0 0+11=11
2 50 50+67=117
3 100+50=150 150+24=174
4 50+100+40 190+5=195

1 would be added to the following LHS locations: (11,11), (11,117), (11,174), (11,195), (117,11),
(117,117),117,174),117,195), (174,11), (174,117), (174,174), (174,195), (195,11), (195,117),
(195,174), (195,195)

200 will be added to the following RHS locations: 11, 117, 174 and 195.
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Computer program

program lsq
implicit none
!
!This program calculates least square solutions for a model with 2 effects. 
!All the storage is dense, and solutions are obtained iteratively by
!Gauss-Seidel. 
!  This model is easily upgradable to any number of effects
!
real, allocatable:: xx(:,:),xy(:),sol(:)        !storage for the equations
integer, allocatable:: indata(:)                !storage for one line of data
integer,parameter:: neff=2,nlev(2)=(/2,3/)      !number of effects and levels
real :: y                                       ! observation value
integer :: neq,io,i,j                    ! number of equations and io-status
integer,allocatable::address(:)
 
!
neq=sum(nlev)
allocate (xx(neq,neq), xy(neq), sol(neq),indata(neff),address(neff))
xx=0; xy=0
!
open(1,file='data_pr1')
!
 
do 
   read(1,*,iostat=io)indata,y
   if (io.ne.0) exit
   call find_addresses
   do i=1,neff
       do j=1,neff
           xx(address(i),address(j))=xx(address(i),address(j))+1
       enddo
       xy(address(i))=xy(address(i))+y
   enddo
enddo
!
print*,'left hand side'
do i=1,neq
   print  '(100f5.1)',xx(i,:)
enddo
!
print  '( '' right hand side:'' ,100f6.1)',xy
!
call solve_dense_gs(neq,xx,xy,sol)      !solution by Gauss-Seidel
print  '( '' solution:'' ,100f7.3)',sol
 
contains
     
  subroutine find_addresses 
  integer :: i
  do i=1,neff
     address(i)=sum(nlev(1:i-1))+indata(i)
  enddo
  end subroutine
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end program lsq
 

subroutine solve_dense_gs(n,lhs,rhs,sol)
! finds sol in the system of linear equations: lhs*sol=rhs
!     the solution is iterative by Gauss-Seidel
integer :: n
real :: lhs(n,n),rhs(n),sol(n),eps
integer :: round
!
round=0
do
   eps=0; round=round+1
   do i=1,n
       solnew=sol(i)+(rhs(i)-sum(lhs(i,:)*sol))/lhs(i,i)
       eps=eps+ (sol(i)-solnew)**2
       sol(i)=solnew
   end do
   if (eps.lt. 1e-10) exit
end do
print*,'solutions computed in ',round,' rounds of iteration'
end subroutine 
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Model with covariables

Data

j iji x y
1 1 5
1 2 8
2 1 7
2 2 6
2 3 9

ij i j ij, Write the model as y  = a  + áx  + e where á is coefficient of regression. 

The mixed model for the given data:

For the first two observations:



62

For a two-factor model with covariables, the contribution to X’X from one observation is always
4 elements in a square, with values being one, the value of then covariable or its square. 

The contribution to X’y from one observation is always two elements with the values of the
current observation possibly multiplied by the value of the covariable.

Rules

Define a function address(effect) that defines the solution number corresponding to i-th effect
and j-th level

Effect Address(effect)

1a 1

2a 2

á 3
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ij i j ijIn the model y  = a  + b  + e , the contribution to X’X (also called the Left Hand Side or LHS)

ijfrom observation y  are 4 ones on positions:

i i1 to [address(a ), address(a )]

ij i ix  to [address(a ), address(á)] and [address(á), address(a )]

ijx to [ address(á), address(á)]2 

The contributions to X’y (also called the right-hand side or RHS) are 2 contributions:

ij  iy    to address(a )

ij ij jy x  to address(b )

Summing all the contributions, 

Nested covariable

If the covariable are nested in effect p, one estimates p regressions, one for each level of effect n.
The rules remain the same as above except that for each level of p, contributions are for the
regression specific to that covariable. If the regression were nested within the effect 1 in the
example data set, LHS and RHS would be:
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Computer program 
Changes relative to the previous program are highlighted.

program lsqr
implicit none
!

! As lsq but with support for regular and nested regressions
!
integer,parameter::effcross=0,& !effects can be cross-classified 
                   effcov=1     !or covariables
real, allocatable:: xx(:,:),xy(:),sol(:)        !storage for the equations
integer, allocatable:: indata(:)                !storage for one line of effects
integer,parameter:: neff=2,nlev(2)=(/2,3/)      !number of effects and levels

integer :: effecttype(neff)=(/effcross, effcov/) 
integer :: nestedcov(neff) =(/0,1/)
real :: weight_cov(neff)
 
real :: y                                       ! observation value
integer :: neq,io,i,j                   ! number of equations and io-status
integer,allocatable::address(:)
 
!
neq=sum(nlev)
allocate (xx(neq,neq), xy(neq), sol(neq),indata(neff),address(neff))
xx=0; xy=0
!
open(1,file='data_pr1')
!
 
do 
   read(1,*,iostat=io)indata,y
   if (io.ne.0) exit
   call find_addresses
   do i=1,neff
       do j=1,neff

           xx(address(i),address(j))=xx(address(i),address(j))+&

                        weight_cov(i)*weight_cov(j)
       enddo

       xy(address(i))=xy(address(i))+y *weight_cov(i)
   enddo
enddo
!
print*,'left hand side'
do i=1,neq
   print  '(100f5.1)',xx(i,:)
enddo
!
print  '( '' right hand side:'' ,100f6.1)',xy
!
call solve_dense_gs(neq,xx,xy,sol)      !solution by Gauss-Seidel
print  '( '' solution:'' ,100f7.3)',sol
 
contains
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  subroutine find_addresses 
  integer :: i
  do i=1,neff

     select case (effecttype(i))

        case (effcross)
           address(i)=sum(nlev(1:i-1))+indata(i)

           weight_cov(i)=1.0
        case  (effcov)
           weight_cov(i)=indata(i)
           if (nestedcov(i) == 0) then
               address(i)=sum(nlev(1:i-1))+1
             elseif (nestedcov(i)>0 .and. nestedcov(i).lt.neff) then
               address(i)=sum(nlev(1:i-1))+indata(nestedcov(i))
             else
               print*,'wrong description of nested covariable'
               stop
           endif
        case default
           print*,'unimplemented effect ',i
           stop
     end select
  enddo
  end subroutine
  
end program lsqr
 
subroutine solve_dense_gs(n,lhs,rhs,sol)
! finds sol in the system of linear equations: lhs*sol=rhs
!     the solution is iterative by Gauss-Seidel
integer :: n
real :: lhs(n,n),rhs(n),sol(n),eps
integer :: round
!
round=0
do
   eps=0; round=round+1
   do i=1,n
       if (lhs(i,i).eq.0) cycle
       solnew=sol(i)+(rhs(i)-sum(lhs(i,:)*sol))/lhs(i,i)
       eps=eps+ (sol(i)-solnew)**2
       sol(i)=solnew
   end do
   if (eps.lt. 1e-10) exit
end do
print*,'solutions computed in ',round,' rounds of iteration'

end subroutine 
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Multiple trait least squares

Asume initially that the same model applies to all traits and that all traits are recorded. The
general model is the same: 

0y = Xâ + e, but V(y)=V(e) = R = R qI

and can be decomposed into t single-trait equations with correlated residuals:

1 1 1 1y  = X â  + e

2 2 2 2y  = X â  + e
......................

t t t ty  = X â  + e

where t is the number of traits, and V(y)=V(e)=R

and the normal equations are XR X â = XR y^-1 -1

The detailed equations will depend on whether the equations are ordered by effects within traits or
by traits within effects. In the first case, assuming all design matrices are equal

0 1 2 tX  = X  = X  = ...= X

and all traits are recorded, then:

and

0where R  is a t x t matrix of residual covariances between the traits in one observation. 
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Using the direct product notation that

this system of equations could be presented as:

where as if the equations were ordered by traits within effects,

Please note that â’s in both examples are not ordered the same way. 

In the last case, the rules for creating normal equations are similar to those for single-trait models
except that :

0LHS: Instead of adding 1, add R-1

i 0 i iRHS: Instead of adding a scalar y , add R  y , where y  is a tx1 vector of data for-1

observation i. 

Example

Assume the same data as before but with two traits
Data

1ij 2iji j y        y
1 1 5          2
1 2 8          4
2 1 7          3
2 2 6          5 
2 3 9 1

and assume that the correlations between the traits are
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The mixed model for the given data:

1 2 3    y    =   ( X                    +            X         +          X           + ...    )      â    + e^

Observation:     first       second        third    
 
For the first two observations:
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The bold zeros in the last matrix are in fact 2x2 matrices of zeros.

The bold zeros are 2x1 vectors of zeros.

Rules

Let address(effect,trait) be a function returning the addresses  of level

! repeat these loops for each observation
!
do e1=1,neffect
    do e2=1,neffect
         do t1=1,ntrait
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             do t2=1,ntrait
                  i=address(e1,t1)

j=address(e2,t2)

i,j i,j                       XX =XX +rt1,t2

            enddo t2
        enddo t1
   enddo e2
enddo e1

do e1=1,neffect                   
         do t1=1,ntrait
             do t2=1,ntrait
                  i=address(e1,t1)

i i t2XY =XY  +  r * yt1,t2 

        enddo t1
   enddo e2
enddo e1

Missing traits

0If some traits are missing, the general rules apply but R  is replaced by R , a matrix specific for-1 m

meach missing-trait pattern m.  Let Q  be a diagonal matrix that selects which traits are present. For

example, this matrix selects traits 1, 3 and 4.  If some traits are missing, for each pattern of
missing traits m, replace 

0 m o mR by R  = (Q  R  Q )-1 m -1

m o m oQ  R  Q  can be created by zeroing rows and columns of R  corresponding to missing traits. 

Because then contributions due to missing equations to LHS and RHS are always zero, a
computer program may be made more efficient by modifications so that the zero contributions are

mnever added. Also,  R ’s can be precomputed for all combinations of missing traits. This is
important if the number of traits is large.



71

Different models per trait

There are two ways of supporting such models:

1. By building the equations within models.
This is the most flexible way but does not allow for easy utilization of blocks for same
effects within traits. Makes iterative methods to solve MME (mixed model equations)
slow. 

2. By building the equations within traits, i.e., declaring same model for each trait and then
selectively nulling unused equations

This is more artificial way but results in simpler programs and possible more efficient
CPU-wise (but not memory-wise).

Example of ordering by models and by traits

Assume the following models for the three beef traits:

Birth weight = cg + á  age_dam + an + mat +e 

                                      (150)     (1)              (1000)                (1000)
Weaning weight = cg + an + mat +e
                                      (100)    (1000)     (1000)
Yearling weight = cg + an +e
                                       (50)   (1000)

where á is a coefficient of regression on age of dam and cg is contemporary group, an is animal
direct and mat is animal maternal, and number of levels are in () .

i,jLet x  be the j-th level of i-th trait of effect x. The order of the equations would be as follows:

Ordering within
traits

Ordering within models



72

1,1cg

2,1cg

3,1cg
...

1,150cg

2,150cg

3,150cg  

1á

2á

3á  

1,1an

2,1an

3,1an
...

1,1000an

2,1000an

3,1000an

1,1mat

2,1mat

3,1mat
...

1,1000mat

2,1000mat

3,1000mat

1,1cg

1,2cg
...

1,150cg
á

1,1an

1,2an
...

1,1000an  

1,1mat

1,2mat
...

,1000mat  

2,1cg

2,2cg
...

2,100cg

2,1an

2,2an
...

2,1000an  

1,1mat

1,2mat
...

,1000mat

3,1cg

3,2cg
...

3,50cg

3,1an

3,2an
...

3,1000an  

Please note that with ordering within models, only existing effects are defined. With ordering
within effects, for regularity all 3 traits have 150 levels of cg and all have the maternal effect
defined.
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Computer program 

This program supports multiple-trait least squares with support for missing traits and missing
effects. Lines changed from the previous program are highlighted.

program lsqmt
implicit none
!
! As lsqr but with support for multiple traits
!
integer,parameter::effcross=0,& !effects can be cross-classified 
                   effcov=1     !or covariables
real, allocatable:: xx(:,:),xy(:),sol(:)        !storage for the equations
integer, allocatable:: indata(:)                !storage for one line of  effects
 
integer,parameter:: neff=2,&                    !number of effects
                    nlev(2)=(/2,3/),&           !number of levels

                    ntrait=2,&                  !number of traits

                    miss=0                      !value of missing trait/effect

real  :: r(ntrait,ntrait)=&                     !residual covariance matrix

                reshape((/1,2,2,5/),(/2,2/)),&  !    values 1, 2 ,2 and 5
                rinv(ntrait,ntrait)             ! and its inverse
integer :: effecttype(neff)=(/effcross, effcov/)
integer :: nestedcov(neff) =(/0,0/)

real :: weight_cov(neff,ntrait)
 

real :: y(ntrait)                         ! observation value
integer :: neq,io,i,j,k,l               ! number of equations and io-status

integer,allocatable:: address(:,:)      ! start and address of each effect
 
!

neq=ntrait*sum(nlev)

allocate (xx(neq,neq), xy(neq), sol(neq),indata(neff*ntrait),&

          address(neff,ntrait))
xx=0; xy=0
!
open(1,file='data_pr3')
!
 
do 
   read(1,*,iostat=io)indata,y
   if (io.ne.0) exit
   call find_addresses

   call find_rinv
   do i=1,neff
       do j=1,neff

          do k=1,ntrait
             do l=1,ntrait
                xx(address(i,k),address(j,l))=xx(address(i,k),address(j,l))+&
                        weight_cov(i,k)*weight_cov(j,l)*rinv(k,l)
             enddo
          enddo     
       enddo

       do k=1,ntrait
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          do l=1,ntrait
              xy(address(i,k))=xy(address(i,k))+rinv(k,l)*y(l)*weight_cov(i,k)
          enddo 
       enddo     
   enddo
enddo
!
print*,'left hand side'
do i=1,neq
   print  '(100f5.1)',xx(i,:)
enddo
!
print  '( '' right hand side:'' ,100f6.1)',xy
!
call solve_dense_gs(neq,xx,xy,sol)      !solution by Gauss-Seidel
print  '( '' solution:'' ,100f7.3)',sol
 
contains
     
  subroutine find_addresses 
  integer :: i,j,baseaddr
  do i=1,neff

     do j=1,ntrait

        if (datum(i,j) == miss) then            !missing effect
              address(i,j)=0    !dummy address
              weight_cov(i,j)=0.0
              cycle
        endif
        baseaddr=sum(nlev(1:i-1))*ntrait+j       !base address (start)
        select case (effecttype(i))
           case (effcross)
              address(i,j)=baseaddr+(datum(i,j)-1)*ntrait
              weight_cov(i,j)=1.0
           case  (effcov)
              weight_cov(i,j)=datum(i,j)
              if (nestedcov(i) == 0) then
                  address(i,j)=baseaddr
                elseif (nestedcov(i)>0 .and. nestedcov(i).lt.neff) then
                  address(i,j)=baseaddr+(datum(nestedcov(i),j)-1)*ntrait
                else
                  print*,'wrong description of nested covariable'
                  stop
              endif
           case default
              print*,'unimplemented effect ',i
              stop
        end select

     enddo 
  enddo
  end subroutine
 

  function datum(ef,tr)

  real::datum
  integer :: ef,tr
  ! calculates the value effect ef and trait tr
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  datum=indata(ef +(tr-1)*neff)
  end function

 
  subroutine find_rinv

! calculates inv(Q R Q), where Q is an identity matrix zeroed for 
! elements corresponding to y(i)=miss
  integer :: i,irank
  real:: w(10)
  rinv=r
  do i=1,neff
     if (y(i) == miss) then
        rinv(i,:)=0; rinv(:,i)=0
     endif
  enddo
  call ginv(rinv,ntrait,1e-5,irank)
  end subroutine
  
end program lsqmt

 
subroutine solve_dense_gs(n,lhs,rhs,sol)
! finds sol in the system of linear equations: lhs*sol=rhs
!     the solution is iterative by Gauss-Seidel
integer :: n
real :: lhs(n,n),rhs(n),sol(n),eps
integer :: round
!
round=0
do
   eps=0; round=round+1
   do i=1,n
       if (lhs(i,i).eq.0) cycle
       solnew=sol(i)+(rhs(i)-sum(lhs(i,:)*sol))/lhs(i,i)
       eps=eps+ (sol(i)-solnew)**2
       sol(i)=solnew
   end do
   if (eps.lt. 1e-10) exit
end do
print*,'solutions computed in ',round,' rounds of iteration'
end subroutine 

Below is a generalized-inverse subroutine that needs to be compiled with the previous program.

subroutine ginv(a,n,tol,rank)
! returns generalized inverse of x(n,n). tol is working zero 
! and irank returns the rank of the matrix. rework of rohan fernando's 
! f77 subroutine by i. misztal 05/05/87-05/23/00

 implicit none
 integer n, rank
 real a(n,n),w(n),tol
 integer i,ii,j
 
 rank=n
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 do i=1,n    
    do  j=1,i-1
         a(i:n,i)=a(i:n,i)-a(i,j)*a(i:n,j) 
    enddo
    if (a(i,i).lt.tol) then
         a(i:n,i)=0.0       
      rank=rank-1
      else
        a(i,i)=sqrt(a(i,i))
        a(i+1:n,i)=a(i+1:n,i)/a(i,i)
    endif
 enddo  

 do i=1,n
    if (a(i,i).eq.0.) then
         a(i+1:n,i)=0
      else
         a(i,i)=1.0/ a(i,i)
         w(i+1:n)=0
         do  ii=i+1,n                  
             w(ii:n)=w(ii:n)-a(ii:n,ii-1)*a(ii-1,i)
             if (a(ii,ii).eq.0.) then
                 a(ii,i)=0.
               else
                 a(ii,i)=w(ii)/a(ii,ii)
             endif
         enddo
     endif
 enddo

 do j=1,n
    do i=j,n
  a(i,j)=dot_product(a(i:n,j),a(i:n,i))
    enddo
 enddo

 do i=1,n
    a(i,i+1:n)=a(i+1:n,i)
 enddo
 
 end
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Mixed models

The traditional notation 
y = Xâ + Zu +e, E(y)= Xâ, V(y)=ZGZ’ +R,   V(u)=G, V(e)=R
gives little detail on differences betwen least squares and mixed models. The mixed model
equations (MME) are:

and sometimes are presented as

The only difference between mixed and fixed model equations is the inclusion of G .  Otherwise-1

W’s are created the same way as X before. The main problem in mixed model equations is
figuring out what G  is and how to create it. -1

Usually,  G  can be decomposed into contributions from each effect or a combination of a few-1

effects. For example, let the random effects be u = [p, a, m, h]’, where p is permanent
environment, a is animal direct, m is animal maternal, and h is herd by sire interaction. Then:

and contributions to G  can be calculated for each individual effect or groups of effects-1

separately.

Popular contributions to random effects - single trait

1. Effects are identically and independently distributed (IID)

i i i i iG = Ió , where ó  is variance component for trait i. Then G I 1/ó . In this case, scalars2 2 -1 = 2

i1/ó  are added to each diagonal element of LHS corresponding to effect i.2

Popular IID effects are permanent environment and sire effect if relationships among sires
are ignored.
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2. Numerator relationship matrices
- animal additive effect

i i i iG = Aó ,     G A  1/ó2 -1 = -1 2

- sire additive effect

i s i i s iG = A ó ,     G A  1/ó2 -1 = -1 2

- nonadditive genetic effects

3. Autoregressive structure matrix
When adjacent levels of a random effect are correlated to the same degree, that effect may
have an autoregressive structure (Wade and Quaas, 1993):

i i i iG = Hó ,     G H  1/ó2 -1 = -1 2

This structure is useful for smoothing trends, e.g.,  in genetic groups, or accounting for
correlations among observations in adjacent management levels. 

4. Nonadditive effects. 
Formulas are available to obtain the inverse of the dominance (VanRaden and Hoeschele,
1991) and additive x additive (Hoeschele and VanRaden, 1991) relationship matrices. 

5. IBD

Distributions involving the I and A matrices are most popular. 

Numerator relationship matrix A

For each individual i with sire s and dam d, the following recursive equation applies

i s d ia  = ½(a  + a ) + m

i i awhere m  is mendelian sampling and var(m )=½ ó (1-F)2

i p i i aIf only parent p is known: a  = ½a  + m , var(m )=¾ ó2

i i i aIf neither parent is known: a  =  m , var(m )= ó2

In a connected population, the matrix A has all elements different from 0, and it is impossible to
create directly. For example, A with 1,000,000 elements would have approximately 10  nonzero12

elements, too many to store anywhere. Fortunately Henderson (1985) has found that A  has very-1

few nonzeros (at most 9 times the number of animals) and that it can easily be created. 
For all animals
a= P a + m
where P is a matrix containing ½ and 0 that relates animals and parents, and m is the diagonal
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a a amatrix containing ½ó ,  ¾ ó  and ó  dependent on how many parents are known. 2 2 2

(I-P) a = m, a = (I-P)  m,-1

avar(a) = A ó  =(I-P)  Var(m) [(I-P) ]’2 -1 -1

and

a   A  = ó  (I-P)’ Var(m)  (I-P)-1 2 -1

The only matrix left to invert is a diagonal matrix Var(m)

Rules to create A  directly-1

or the whole A  can be calculated from separate contribution from each animal in the pedigree.-1

i s dLet address(a ) point to the equation number of animal i, , address(a ) and address(a ) to equation

pnumbers of sire and dam of animal i if present, and address(a ) point to equation number of parent
p if the other parent is unknown. The contributions to A  from each animal would be-1

Please note that these contributions are results of (I-P) Var(m)  (I-P)’ for one animal:-1

i a awhere the coefficient 2 comes from var(m )  = (½ó )  = 2/ó .-1 2 -1 2
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When only one parent is known, the contributions are:

Finally, for animals with no parent known, the contribution is:

The contributions are done for each and every animal in the pedigree. For example, if one animal
is present in the pedigree as a parent only, a separate equation should be created for this animal
and a contribution to it added.
 
Question: explain why the largest contributions are 2, 4/3 and 1!

Unknown parent groups

i s d ia  = ½(a  + a ) + m

If one or two parents are unknown, the merit for the unknown parent is assumed to be 0 and equal
for all unknown animals, regardless in what year their progeny was born, sex and origin of genes

p(domestic or international). Let’s assume that the genetic merit of unknown parent p is g , and that
now the animal effect accounts for unequal merit of unknown parents. Now:

i s d i i a s du  = ½(u  + u ) + m ,  var(m )=½ ó (1-F /2  - F /2 )2

where F are coefficients of inbreeding.

1 i p1 p2 i i aIf only parent p  is known: u  = ½(u  + g ) + m , var(m )=¾ ó2

i p1 p2 i i aIf neither parent is known: u  = ½(g  + g ) + m , var(m )= ó2
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The contributions with the unknown parent groups are simpler than without the groups:

where k=2/ (4- number of known parents)

Groups have equations in the animal effect but are not treated as animals, i.e., they have no
parents and 1 is not added to their diagonal as for animals without known parents.

Numerator relationship matrix in the sire model

The derivations below assume the absence of inbreeding, which cannot be calculated accurately in
the sire model. 

  For each bull i with sire s and maternal grandsire (MGS) t, the following recursive equation
applies

i s d i i s1) If sire and MGS known: s  = ½(s  + ½s ) + m , var(m )=11/16ó2

i s i i s2) If only sire s is known: s  = ½s  + m , var(m )=¾ ó2

i d i i s3) If only MGS is known: s  = ¼s  + m , , var(m )=15/16 ó2

i i i s4) If neither parent is known: s  = m , var(m )= ó2

sThe contributions to A  are done as for A-1  except that the values are:-1

These ratios are the result of multiplication of 
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where k is 16/11, 4/3, 16/15 and 1 for cases 1-4, respectively.

Autoregression

For t generated by a first-order autoregressive process:

with
 

 

kwhere -1<ñ<1 is coefficient of autocorrelation and å  is error term. Similar to the additive effects,
the recurrence equations can be established as:

t =Pt + å 

where P is a matrix containing 1 and 0 that relate subsequent levels of t. Then:

(I-P) t = å, t = (I-P)  å,-1

tvar(t) = Hó  =[(I-P) ]’ Var(å) (I-P)2 -1 -1

and

t   H  = ó   (I-P)’ Var(å)  (I-P)-1 2 -1

The only matrix left to invert is a diagonal matrix Var(å). While the matrix H has all nonzero
elements:
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where n is the number of levels in t, its inverse has a tridiagonal structure:

 

The autocorrelation structure has been used to smooth effects such as unknown parent groups or
year-months within each herd. In the case of year months, there may be observations only in very
few year-months. Then, the matrix H  = { h } can be constructed in such a way so that all-1 ij

unneeded levels are skipped, by using the following rules:

where:

kand d  is the distance between levels k and k+1. 

   

Variance ratios

In single trait MME, the residual variance can be factored out from the equations:
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= =

= =

iIf in the original MME, components of  G had the form of -1 

i i1/ó  I or 1/ó  A2 2

after the premultiplication, they will have the form of

e i i e i ió /ó  I = k  I or ó /ó  A = k  A 2 2 2 2

iwhere  k  are variance ratios. Thus only variance ratios are necessary to set up the MME and not
the absolute variances.

Examples of calculation of the variance ratios

Assume that there is only one random effect in the model, either the sire effect or the animal
effect. Let us calculate the variance ratios given the heritability h .2

animal model

sire model

a sFor h  = .25, k =3 and k =15.2
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Covariances between effects

Sometimes two random effects are correlated, for example direct additive and maternal additive. 

Let the variance and covariances for animal i between its direct and maternal effects be:

The variance for all animals will be

The inverse will be

The algorithm to add relationship contributions to these two correlated effects would be as
follows:

01. Invert co-variance matrix between the effects G  ,
2. Add A multiplied by:-1 

a) g  to the block corresponding to the direct effect,aa

b) g  to the block corresponding to intersections of direct and maternal effectsam

c) g  to the block corresponding to the maternal effectmm

Random effects in multiple traits

iLet a  be a solution for trait i, i=1,,.,t, and let

i ii i, j ijVar(a  )=g , Var(a  a  )=g
The variance covariance matrix for a’s is similar to that of correlated effects above:
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(54)

The inverse will be

The algorithm to add distribution contributions to correlated traits would be similar to that for
correlated effects:

01. Invert co-variance matrix between the traits G  ,
2. Add A multiplied by:-1 

a) g  to the block corresponding to trait i,ii

b) g  to the blocks on intersections of traits i and j.ij

Multiple traits and correlated effects

For simplicity, assume only two traits: 1 and 2,  and two effects: a and b.

i,jLet a  be a vector of random effect  i, i=a,b,... and trait j=1,2,.... Assume that all effects have the
same number of levels, 

i,j ij,ijvar(a )=g A, and

i,j kl ij,klvar(a , a )=g A

The variance covariance matrix for a’s is similar to that of correlated effects above:
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The remaining steps are similar as in the previous two sections.

0Please note that for t traits and f correlated efects, the size of  G  will be tf x tf. For example for
t=4 and f=2, the dimension will be 8 x 8 or 36 variance components.
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Computer pseudo-code
Let add(i,j,k) be address of an equation of i-th effect, j-th level and k-th trait

Let a  be the value of A  for the i row and j-th column.ij -1

ijkl 0Let g  be the value of G  corresponding to i-k effect and j-k trait. -1

The following code would create corresponding contributions to the LHS of the MME.

do t1=1,ntrait
   do t2=1,ntrait
      do e1=”correlated effects”
          do e2=”correlated effects”
               LHS(block t1,t2,e1,e2) = LHS(block t1,t2,e1,e2) + A  *g-1 e1,t1,e2,t2

          enddo
      enddo
   enddo
enddo

Below is a more detailed program for adding the animal relationship matrix. “Number of
correlated effects” will be 1 for effects uncorrelated with other effects, 2 if the currently processed
effect is correlated with the next one, etc.

real, parameter::w=(/1, -.5, -.5/) !matrix generating contributions to A-1

...........................
do 
   read animal, sire, dam and npar !npar=number of parents known
      if end of file then quit loop
      p(1)=animal; p(2)=sire;  p(3)=dam
      do i=0,number of correlated effects - 1
           do j=0,number of correlated effects - 1 
                do t1=1,ntrait
                    do t2=1,ntrait
                        do k=1,3
                            do l=1,3
                                  m=address(effect+i,t1,p(k))
                                  n=address(effect+j,t2,p(l))
                                  xx(m,n)=xx(m,n)+g(effect+j,t1,effect+k,t2)* w(k)*w(l)*4./(4.-npar)
                             enddo
           ............................           
        enddo
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Computer program 

Program LSQMT was modified to Program BLUP by including contributions for random effects.
The following conventions apply:

       - g(i,:,:) contains variances for effect i

       - randomtype(i) contains types of random effects, as shown below

       - randomnumb(i) shows how many successive random effects are correlated. For example,
if randomnumb(3)=2, then contributions will also be made to effect 4 and blocks of effects
3 and 4. If randomnumb(i)=p>1, then g(i,:,:) should have a rank of p*ntrait; the ordering of
g(i,:,:) is then within traits and by effects.

program BLUP1

! As lsqmt but with support for random effects
......................
......................
!        Types of random effects
integer,  parameter ::  g_fixed=1,&       ! fixed effect
                        g_diag=2, &       ! diagonal
                        g_A=3, &          ! additive animal
                        g_As=4            ! additive sire
 
integer ::  randomtype(neff),&     ! status of each effect, as above
            randomnumb(neff)       ! number of consecutive correlated effects
real :: g(neff,20,20)=0              ! The random (co)variance matrix for each trait
                     !   maximum size is 20 of trait x corr. effect combinations

........................

........................ 
!         Assign random effects and G and R matrices
randomtype=(/g_fixed, g_A/)         !types of random effect
randomnumb=(/0, 1/)                 !number of correlated effects per effect
g(2,1,1)=2; g(2,1,2)=-1; g(2,2,1)=g(2,1,2); g(2,2,2)=1
r(1,1)=1; r(1,2)=0; r(2,1)=0; r(2,2)=1

call setup_g                    ! invert G matrices
open(2,file='pedname')          !pedigree file
open(1,file='data_pr3')         !data file
!
........................
........................ 
!     Random effects' contributions
do i=1,neff
   select case (randomtype(i))
     case (g_fixed)
        continue                ! fixed effect, do nothing
     case (g_diag)
        call add_g_diag(i)
     case (g_A, g_As)
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        call add_g_add(randomtype(i),i)
     case default
       print*,'unimplemented random type',randomtype(i)
   endselect
enddo
........................
........................ 
 
  function address1(e,l,t)
! returns address for given level l of effect e and trait t
  integer :: e,l,t, address1
  address1= sum(nlev(1:e-1))*ntrait+(l-1)*ntrait+t
  end function

........................

........................ 
  subroutine setup_g
! inverts g matrices
  real :: w(20)
  integer :: rank
  do i=1,neff
     if (randomnumb(i).ne.0) then
         call printmat('original G',g(i,:,:),20,randomnumb(i)*ntrait)
         call ginv(g(i,:,:),20,1e-5,rank)
         call printmat('inverted G',g(i,:,:),20,randomnumb(i)*ntrait)
     endif
  enddo
  end subroutine

  subroutine add_g_diag(eff)
! adds diagonal (IID) contributions to MME
  integer :: eff, i,j,k,l,m,t1,t2
  do i=1,nlev(eff)
     do j=0,randomnumb(eff)-1
        do k=0,randomnumb(eff)-1
           do t1=1,ntrait
              do t2=1,ntrait
                 m=address1(eff+j,i,t1); l=address1(eff+k,i,t2)
                 xx(m,l)=xx(m,l)+g(eff,t1+j*ntrait,t2+k*ntrait)
              enddo
           enddo
        enddo
     enddo
  enddo
  end subroutine
  subroutine add_g_add(type,eff)
! generates contributions for additive sire or animal effect
  integer :: type,eff,i,j,t1,t2,k,l,m,n,io,animal,sire,dam,par_stat,p(3)
  real ::w(3),res(4)
!
  select case (type)
     case (g_A)
        w=(/1., -.5, -.5/)
        res=(/2., 4/3., 1., 0./)
     case (g_As)
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        w=(/1., -.5, -.25/)
        res=(/16/11., 4/3., 15/15., 1./)
  end select

  do
     read(2,*,iostat=io) animal, sire, dam,par_stat    !status of parents
     if (io /= 0) exit
     p(1)=animal
     p(2)=sire
     p(3)=dam
     print*,p
     do i=0,randomnumb(eff) - 1
        do j=0,randomnumb(eff) - 1
           do t1=1,ntrait
              do t2=1,ntrait
                 do k=1,3
                    do l=1,3
                        if (p(k)/=0 .and.p(l)/=0) then  
                           m=address1(eff+i,p(k),t1)
                           n=address1(eff+j,p(l),t2)
                           xx(m,n)=xx(m,n)+g(eff,t1+i*ntrait,t2+j*ntrait)*&
                                             w(k)*w(l)*res(par_stat)
                        endif
                    enddo
                 enddo
              enddo
            enddo
        enddo
     enddo
  enddo
  end subroutine

end program blup1
.....................
.....................
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A new function address1 that returns an address of an equation for effect e, level l and trait t
allowed for a large reduction of complexity of subroutine find_addresses although the
functionality of that subroutine remained unchanged.

  subroutine find_addresses 
  integer :: i,j,baseaddr
  do i=1,neff
     do j=1,ntrait
        if (datum(i,j) == miss) then            !missing effect
              address(i,j)=0    !dummy address
              weight_cov(i,j)=0.0
              cycle
        endif
        select case (effecttype(i))
           case (effcross)
                address(i,j)=address1(i,datum(i,j),j)
              weight_cov(i,j)=1.0
           case  (effcov)
              weight_cov(i,j)=datum(i,j)
              if (nestedcov(i) == 0) then
                  address(i,j)=address1(i,1,j)
                elseif (nestedcov(i)>0 .and. nestedcov(i).lt.neff) then
                  address(i,j)=address1(i,datum(nestedcov(i),j)
                else
                  print*,'wrong description of nested covariable'
                  stop
              endif
           case default
              print*,'unimplemented effect ',i
              stop
        end select
     enddo 
  enddo
end subroutine

  function address1(e,l,t)
! returns address for given level l of effect e and trait t
  integer :: e,l,t, address1
  address1= sum(nlev(1:e-1))*ntrait+(l-1)*ntrait+t
  end function
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Storing and Solving Mixed Model Equations

Let n be the number of mixed model equations. The straightforward way to store the mixed model
equations would be in a square matrix, and the straightforward way to solve them would be to use
one of general methods such as Gaussian elimination or LU decomposition. These methods would
cost:

memory . n  of double precision (8 bytes) numbers2

arithmetic operations . n3

Assuming a large 800 Mbyte memory, the memory limit would be approached at  n . 10,000.
Computing the solutions would take arithmetic operations . 10 , or 11 hrs for a computer with a12

speed of 25 MFLOPS (million of floating point operations per second). For every problem two
times larger, the memory requirements would quadruple and the computer time demands would
increase 8 times! 

Let count the number of nonzero elements in MME. Let the model has e effects, t traits, and let
the only random effects be additive animal direct and maternal. Let the number of records be r,
and let the total number of animals including ancestors be a. The number of nonzero contributions
to the LHS of MME N would be:

N < (et) r                      + 4*9 a t 2 2

Maximum number of
contributions due to records

Maximum number of
contributions due to
pedigrees

Thus the number of nonzero coefficients depends linearly on the number of animals and records.
Assume that the number of records is equal to the number of animals:

r= a
and the number of equations is a function of the number of animals, say

n=4at
Then, the number of nonzero elements per one row of LHS would be:

N/n < (36+ e )t a/ (4at) = t (e /4 + 9)2 2 2

For e=5 and t=3,  N/n < 45.75. Assuming that each nonzero number is stored as three numbers:

ij ij(a , i,j) or in 16 bytes assuming that a  is double precision, the 800 Mbyte computer can now store
over 1 million equations, an increase of 100 fold! Further storage optimizations can increase that
number of few times.

Efficient computation of solutions to MME involves storing only nonzeros and doing arithmetic
operations on nonzeros only.
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Storage of sparse matrices

Low storage requirements for MME can be achieved in several ways:
- Exploiting the symmetry by storing upper- or lower-diagonal elements only (savings . 50%)
- Storing only nonzeros (savings in the thousands)
- Coding of repetitive fragments of MME

The following storage structures are popular:

ij1. Ordered or unordered triples: (a , i, j)
For a sample matrix of 

the lower-diagonal storage by triples could be stored in a 3-column real matrix or one real vector
and 2-column integer matrix. 

Triples is the simplest form of storing sparse matrices. It is not the most memory efficient, and
matrix organization cannot be easily deduced. 

2. IJA where i-indices would point to elements with new rows. 
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Please note that now rows must be ordered.

In large matrices, IJA storage reduces the amount of memory necessary to store the row
information to a negligible amount.

IJA is an efficient method with fast access to rows although searching for a particular column
could be time consuming. Insertion of new elements is not easy with IJA and therefore this
storage would mainly be used as a final form of storage, after conversion from other formats.

3. Linked lists
In linked lists, the row pointer points to the first element of each row, and each element

points to the next element, or “null” if it is the last element
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Linked list can be implemented by “pointers”, i.e., using real dynamic memory allocation, or by
using vectors as below

Element Row
Pointer

Column Value Next
element
pointer

1 1 1 101 5

2 2 2 102 3

3 4 3 40 0

4 3 103 0

5 3 20 6

6 2 30 0

Linked list is not as memory efficient as IJA but it allows for easy insertion of new elements.

4. Trees
 Trees allow for fast access to particular element but are more complicated. Each node of a tree
contains three items:
a) Data point

- index
- data



97

b) link to smaller node (null if node absent)
c) link to larger node (null if node absent)

Tree is a flexible structure where extra elements can easily be added or eliminated. A
disadvantage is memory overhead for pointers, and more complicated programming. 

Summing MME

The loops to generate the MME create LHS elements unordered. At least 50% of all the elements
are repeated. Solving algorithms mostly require the repeated coefficients summed and then sorted
by row. The simplest way to do it is by sorting and summing:
- store all the unsummed and unordered coefficients on disk,
- sort by row and column
- sum repeated contributions and store them in a way convenient for obtaining the solutions.

The number of unsummed contributions can be a few times larger than the number of summed
coefficients. Sorting requires scratch space of 2-3 times larger than the sorted file. Therefore this
approach may requires a large temporary disk space up to 10 times the final coefficient file. Also
it can be slow because sorting of large files on disk is slow. Therefore this approach should be
avoided if alternatives are available. 

If LHS is created directly in memory in a sparse form, for each k-th contribution to row i and

ijkcolumn j c  one needs a method to quickly search whether the storage for i-j was already created.
If yes, that contribution is updated. If no, it is created. Therefore, fast searching algorithms are
critical to the efficiency of setting up the MME. 
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Searching algorithms

For simplicity, searching methods below would search for one element a out of n element vector
b. 

1. Linear unsorted list

Algorithm: check each entry sequentially  
Average cost:  n/2 searches

2.  Linked list

Linked list as shown above is many unsorted lists. 
The cost would be as above, but the n would be smaller (the average number of nonzero columns)

3. Binary search 

Done on a sorted vector. One divides each vector in half, and finds which half has the searched
element. The division continues until the final half has only 1 element. The average cost 

2is log (n), but one cannot insert new elements easily.

4. Tree

Properties of the trees are like those of a sorted vector but with capability of insertion and
deletion.

2The best case cost (balanced tree) is log (n). The worst case cost (completely unbalanced tree) is
n/2. Trees have higher overhead.

5. Hash

There are many hash methods. The most popular one is presented here. 
Let hash(a) be a function that :

a) returns values being addresses to elements of vector b
b) for similar arguments returns very different addresses

The hash method works in the following way:
a) calculate hash(a)
b) check if that location in vector b contains the searched item

- if yes, exit
- if that location is empty, return that location with status “empty”
- if that location contain another item, add p and return to b)

The average cost of hash search is 1/ç, where ç is fraction of already filled elements in b. The cost
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is indepenedent of the number of elements. Hash allows for fast addition of elements but not for
deletions. 

For a scalar argument, the hash function can have a form 
hash(a)=mod(a*á, n)+1, 

where á is a large prime number. In this function, a unit of change in a causes an á change in hash.
For multidimensional a, á would be a vector of large primes. 
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Numerical methods to solve a linear system of equations

Let Ax=b be the system of n linear equations.
 
This section will assume, wherever applicable, that A is LHS of MME and therefore symmetric
and semipositive definite, i.e., all eigenvalues of A are nonnegative. 

The methods can be partitioned into:

1. Finite, where exact solutions are obtained in finite stages
- dense matrix
- sparse matrix

2. Iterative, where each similar step improves the accuracy of all solutions

Gaussian elimination

In Gaussian elimination the number of equations is reduced one by one, until there is only one
left. After solving this equation, the remaining solutions are calculated by backsolving. Gaussian
elimination is non competitive with the other methods and is rarely utilized. In the past, it was
used to eliminate one (and sometimes two) effects with the most numerous levels (CG) so that
only a handful of equations could be solved. Absorption was useful with the sire model when the
number of sires was much lower than the number of contemporary groups and when memory was
limited but with the animal model the savings are limited and sometimes negative (because the
number of nonzero coefficient can increase --see fill-in sparse methods). One specific application
of Gaussian elimination was absorption, i.e., Gaussian elimination of one effect when setting up
MME.

Assume a single trait model 
y = Hf + Wt + e
where f is vector of a fixed crossclassified effect to be absorbed and t is vector of all the remaining
effects. The MME are:

Since 

the equation after the absorption is:
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The computations are as follows:
a) sort the data by effect to be absorbed,
b) read the data one level effect f at a time creating W’W, W’y, and accumulating:

iid = (H’H)  - number of observations in the current level i

iyt = (H’y) - total for all observations in level i

i i hw = (H’W)   - vector of counts between f  and t
c) subtract 

i(H’W) ’ yt/d   from   W’y

i i(H’W) ’ (H’W) /d   from   W’W
d) continue to b) until end of data
e) add G  and solve-1

LU decomposition (Cholesky factorization)

Decompose A= LU, where L is lower and U is upper diagonal, and solve in 2 stages:
LU x = b    as    Ly = b    and Ux = y
Solving triangular systems of equations is easy.

For symmetric matrices, L=U’ such that LL’=A is called the Cholesky factorization.

L is easy to derive from the recursive formulas. 
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The computations may be done by columns or by rows

!by columns
do i=1,n

   

 do j=i+1,n

   

         end do
end do

!by rows
do i=1,n
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 do j=1,i-1

   

         end do

end do

If L is replaced by X, contents of X are replaced by L (only lower diagonal).

The computations above fail when the system of equations is less than full rank. To make it work,

iil  would be set to zero if the expression inside the square root is zero or close to zero. Computer
programs that implement the Cholesky decomposition are available with the other programs as
chol.f90 (by column) and cholrow.f90 (by row). 

The cost of the Cholesky factorization is approximately n /3.3

iiCholesky factorization can be presented in a form where l =1
A = LDL’

where the root-squaring operation is not necessary. 

The factorization can be used to obtain the determinant of a matrix

ii|A| = |LL’| =|L||L| = Jl 2

and the inverse by solving n systems of equations, each with same LHS:

LL’ A  = I-1

Storage

Triangular
Because in the Cholesky factorization only the lower diagonal elements are used and updated,
storage can be saved by using only the “triangular” storage. Unfortunately the matrix can no
longer be addressed plainly as l(i,j) but as a[(i-1)i/2+j]. Despite a multiplication and the addition
in the indices, this would not slow the computations much if access is by rows and (i-1)i/2 is
computed just once per row.
 
Sparse
If the matrix A is sparse, some of the L elements can be sparse too.
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Theorem
If a(i,j)#0 and a(i,k)#0 for j,k>i, then l(j,k)#0 even if a(j,k)#0

An element nonzero in L but not in A is called fill-in. To minimize the number of fill-ins,
equations can be reordered.

Example

Calculate L for a random model for 5 sires, each with 2 observation; variance ratio = 2.

ij i ijModel I y =ì+s +e

ij i ijModel II  y =s +ì+e

The LHS denotes as A and the corresponding L are shown below

Both models resulted in LHS with the same number in zero. However, L in model 1 was
completely filled because of many fill-ins, while L in model 2 had no fill-ins and remained sparse.

In sparse matrix factorization, the following steps are performed:
a) Finding the ordering Q so that minimizes the number of fill-ins in QAQ’,
b) Preparing storage structures for L
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c) Computing the factorization LL’=QAQ’
d) Solving the system QAQ’ Qx = Qb as LL’y =c and x=Q’b

Matrix Q is a permutation of the identity matrix. Thus it can be stored as a vector, and all vector
multiplications will involve a vector.

Steps a) and b) need to be done just once for each nonzero structure of A. If only values of A
change, only step c) and d) need to be repeated. If only RHS changes, only step d) need to be
repeated.

cost(sparse L) -n [z(1+ f)]  2

where z is the average number of nonzeroes per row, and f is the fraction of fill-ins. For animal
model problems, sparse factorization allows to work with matrices about 10-50 times larger than
the dense-matrix factorization.

Ordering is a complicated process. Excellent coverage of sparse methods is in books by George
and Liu (1981) and Duff et al. (1989). Packages for sparse matrix operations include commercial
SPARSPAK, SMPAK, MA 28,  or public domain FSPAK (anonymous ftp at num.ads.uga.edu,
directory FSPAK). 

Sparse matrix inversion

Even if the LHS is sparse, usually the inverse of the LHS is dense. Therefore, storage of such a
complete matrix would be impossible for dimensions over 10,000-20,000! (why?). For operations
such as variance components by REML or accuracies (PEV), only selected animals of the inverse
are required. If sparse factorization is available, one can obtain inverse elements corresponding to
nonzeros of the factorization at a cost of twice the factorization, using the Takahashi algorithm.
Clarification: for the purpose of the inversion, nonzeros in L mean elements that were created but
could have values of zero due to numerical cancellation.

For the diagonal factorization: A= LDL’

A  = D L  + (I-L’)A-1 -1 -1 -1

By starting the computations from the last row/column, it is possible to avoid the computations of
L  explicitly.-1

The drawing below shows the progress of computations of a sparse inverse. The computation
requires a access to L by columns or row access to L’. Please note that the computations start with
the last diagonals and progress up to the first row. The sparse inverse, as computed, replaces the
factorization without the need for much extra memory.
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The operations on rows of sparse matrices require sparse vector by sparse vector multiplication.
Since two sparse vectors generally need not share the same nonzero structure, the multiplication is
hard to do directly. Therefore this is done in several steps
a) zero a work dense vector,  
b) uncompress the first sparse vector to the dense vector
c) multiply the second sparse vector by the dense vector (easy),
d) zero elements of the dense vector changed in step b)
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Example: define the sparse vector p as triple (pn  pia pa) 
pn - size of vector
pia - vector of nonzero columns
pa - vector of nonzero values

Let the work dense vector be w. This program would multiply x by y

! sum=x*y
! uncompress x
do i=1,xn
   w(xia(i))=xa(i)
enddo
!       w*y
sum=0
do i=1,yn
   sum=sum+w(yia(i))*ya(i)
enddo
! nullify changed elements of w
do i=1,xn
   w(xia(i))=0
enddo

Numerical accuracy

Usually, dense matrix operations use double-precision numbers to avoid numerical inaccuracies.
Errors usually propagate in finite methods, i.e., an error done during the computations of one
matrix element is usually compounded during the computations of the following elements. One
critical point in Cholesky factorization of matrices of not full rank is the detection of unnecessary
equations, which may be less than perfect. Making LHS full-rank by eliminating the unnecessary
rows explicitly solves the problem. Sparse factorization results in more accurate computations
because of fewer computations and therefore fewer rounding errors.
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Iterative methods

In iterative methods, a sequence of solutions is produced

x , x , x ,...,  x , 0 1 2 i

where each subsequent solution is more accurate than the previous one. The two simplest
iterations are Jacobi and Gauss-Seidel. They originate from a family of stationary iteration
methods where iteration parameters stay constant during all rounds of  iteration.
Decompose A into a part that can easily be inverted M and the remainder N

A=M+N

and write

Ax=b,
(M+N)x = b,
Mx = -Nx +b

In the iteration:

Mx =-Nx  +b(n+1) (n)

the iterative solution is obtained as

x = M (-Nx  +b)-1(n+1) (n)

Let A be decomposed as

where for symmetric matrices 
U = L’
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Jacobi
In the Jacobi method, M=D, and N=L+U

x = x  +   D  (b  - A x )(n+1) (n) -1 (n)

where D=diag(A) is a diagonal matrix 

or

do i=1,n

   

enddo   
   
In the Jacobi iteration, newly computed solutions are not used until all the new solutions are
known.

Gauss-Seidel and SOR

In Gauss Seidel the computations are similar to Jacobi but the newly computed solutions are used
immediately

do i=1,m

   

enddo   

The GS iteration can be rearranged to

Thus, this iteration is equivalent to obtaining (L+D)  which better approximates A  than D in-1 -1 -1 

the Jacobi iteration and therefore can be expected to have better properties.

The computer program for the Gauss-Seidel iteration is very easy, assuming that new solutions
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immediately replace the old solutions

do i=1,n

   

enddo

or

do i=1,n
    diff=b(i)-matmul(a(i,:),x)
    x(i)=x(i)+diff/a(i,i)
enddo

The successive overrelaxation (SOR) is modified GS                                

do i=1,n

   

enddo

where ù is the relaxation factor. For complicated LHS, a good choice of ùå(1,2) results in a better
convergence rate.

GS can be implemented with half- upper-stored A at a cost of storing an adjusted right hand side.
When solution i is computed, the right hand side for equations i+1,..., can be adjusted for that
solution. The program (one round only) would be

c=b
do i=1,n
   diff=c(i)-matmul(a(i,:),x)
    x(i)=x(i)+diff/a(i,i)
    c(i+1:n)=c(i+1:n)-matmul(a(i,i+1:n), x(i+1:n)
enddo
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Preconditioned conjugate gradient

The method of preconditioned conjugate gradient (PCG), as used in ITPACK, Berger et al. (1989) 
and by Lidauer et al. (1999), converges much faster for complicated models than either Gauss-
Seidel, SOR or Jacobi. Good overview of the theory of PCG is in Meurant (1999)

PCG has some similarities to the second-order Jacobi, which is:

x = x  + á(x  -x )  + â D  (b  - A x )(n+1) (n) (n) (n-1) -1 (n)

PCG uses a similar formula except that á and â are recomputed every round for orthogonal (b  - A
x ), and D is replaced by M, which is now called the preconditioner. M may equal to diag(A) or(n)

any other approximation of A that is easily invertable. 

The complete pseudo code for the PCG iteration is:

x=0 ; r=b-Ax; k=1
do while (r’r “not sufficiently small”)
  z=M  r-1

k-1  ô =z’r
  if (k==1) then
       â=0; p=z
   else

k-1 k-2       â=ô /ô ; p=z+â p
  endif
  w=Ap

k-1  á=ô  /(p’w)
  x=x+áp
  if (mod(k,100) /=0) then
           r=r-áw
       else
          r=b-Ax
  endif
  k=k+1
enddo

Despite a seemingly complicated code, PCG is very easy to implement because the only compute-
intensive operations are Ax or Ap. As presented, the PCG algorithm needs 7 variables, but two of
them: b and z can be eliminated, for a total of 5. This algorithm lacks the self-correcting
properties of Gauss-Seidel, SOR or second-order Jacobi iterations, and may diverge with large
data sets if the variables are not in double precision.
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Other methods

For more information on a number of iterative methods, see a book available on line at
http://netlib.org/templates/Templates.html. A number of popular iterative methods are
implemented in a public-domain package ITPACK. This package not only calculates the solutions
but also determines optimal parameters and approximate accuracy of solutions.

For the MME, variants of Jacobi and GS have very desirable properties for MME including fast
convergence rate for some models and small memory use. These basic iteration schemes can be
“improved” or “accelerated” for increased convergence. However, there is increased evidence that
other methods, especially the PCG, while less obvious and more memory intensive, can provide
faster and more reliable convergence for a larger set of models.

Convergence properties of iterative methods

A “good” iterative method would converge fast and would have small computational
requirements.

tThe “true” convergence criterion C  can be described by  a measure of distance from converged
solutions

Because converged solutions are not available during the iteration process, the following criteria
are used instead:

- based on differences between consecutive solutions

- based on differences between the RHS and LHS

For convergence, C < C  . Usually, C=10  corresponds to changes on the k-th significant digit.(i) (i-1) -k

The typical convergence curves for stationary methods  are:
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In a typical convergence curve, a seemingly rapid convergence is followed by a steady rate of
convergence, finally changing into random fluctuations. The convergence criteria based on
differences between the consecutive solution show much better convergence than the “true”
criterion. However, both are parallel during the period of steady convergence. Let’s determine the
necessary conditions for convergence and calculate the convergence rate based on a particular
method of iteration.

A typical curve for a solution is
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Lte’s determine why solutions are converging so smooth in later rounds of iteration. 

The stationary iteration can be presented in a form

x = B x  +   c (n+1) (n)

Decompose B into eigenvalues and eignevectors. For nonsymmetric  B, these are complex

B = VE’, 

ii iwhere E is diagonal, e  are eigenvalues, and rows of V: v  are eigenvectors, which are orthogonal
and normalized only for symmetric B

The successive stages of the iteration can be presented as:

x = B x  +   c (1) (0)

x = B x  +   c =B (B x  +   c) +c = B x  +Bc + c(2) (1) (0) 2 (0)

x = B x  +   c =B (B x  +Bc + c) +c = B x  +B c + Bc + c2(3) (2) 2 (0) 3 (0)

...
x =B x  +B c +..+ Bc + c(n) n (0) n-1

and, assuming that x  = 0(0)

x  - x  = B c(n) (n-1) n-1

Because the product B  isn

VE V  VEV  ... VE V  =  V E V- - - n -
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therefore

Arrange VEV so that the absolute values of the eigenvalues are ordered in the descending order

1 2 m|e | $ |e | $ ... $ |e |

1 2If we assume |e |>|e | then for sufficiently large n

and

1 1 1B c . e  v  v '1'c = |e |  fn n 1 n

Then

1x  = x  + B c = x  + |e |  f(n) (n-1) n-1 (n-1) n-1

1 1 1The last expression shows for convergence |e | < |e | Y |e | < 1, or that the largest eigenvaluen+1 n

must be smaller than one. 
It also shows that for large n the changes in the solutions will be predictable, where the same

1vector f is added with a coefficient becoming e  times smaller every next round. That predictable
change is the reason for a relatively flat convergence curve for larger n. We can rewrite the
formula for covergence criterion based on differences between the consecutive solutions

and

Thus, the slope of the convergence curve for larger n is constant and determined by the largest
eigenvalue of the iteration matrix. 

Since for large n the solutions increase predictably, one can approximate x . From(4)

1x  = x  + B c = x  + |e |  f(n) (n-1) n (n-1) n-1

the formula for x  will be(4)
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1 1We can estimate e  and e  f directly from the iterationn

and 

1|e  | f = x  - x  n -1 (n) (n-1)

so the formula for x  becomes(4)

This formula may not work when eigenvalues are too close or when x  - x  is very small and(n) (n-1)

theorfore contains large rounding errors. However, it is usually accurate enough for determination
of the true convergence criterion

Example

d dLet C  =1.105*10 , C  =1.008*10 , indicating three significant digits. The real accuracy is(100) -3 (101) -3

close to

t d dC  .1/(1-1.008/1.105) C   . 11 C(101) (101) (101)

dso it is 11 times lower than that indicated by C .(101)

Conclusions
1. Initial convergence is fast because all eigenvalues contribute to the convergence,
2. In later rounds, the convergence is determined by the largest eigenvalue of the iteration matrix,
3. After many rounds, the convergence reaches the limit of accuracy of computer floating point
numbers.
4. Good convergence rate is determined by steep slope of the convergence criterion and not by its
absolute value,
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5. The criterion based on differences in solutions between consecutive rounds of iteration can
grossly overstate the accuracy.

Properties of the Jacobi iteration

The Jacobi iteration leads to very simple programs because the expression
b-Ax 

is easy to obtain for any format of A. In general, Jacobi converges for matrices diagonally

ii ijdominant, where a  > a , but usually the MME do not satisfy this condition. In practice, Jacobi
diverges with more than one fixed effect and with animal-additive or dominance effect. 

To converge with many fixed effects, the following modifications are generally successful:

     - impose constrains on fixed effects, for example by forcing the sum of solutions for each
fixed effect except the first one to 0; the constrain by setting unnecessary equations to zero
results in poor convergence, or

     - update only one effect at a time

To converge with animal-additive or dominance effect, extend Jacobi to second-order Jacobi (also
called Chebyshev-accelerated)

x = x  + á(x  -x )  + â D  (b  - A x )(n+1) (n) (n) (n-1) -1 (n)

where á and â are iteration parameters, which are adjusted for the best convergence. In the animal
model, the good parameters are  á=.7-.9 and  â=1. In the dominance model, additionally â = .4-.6.

The Jacobi iteration is of interest only when the LHS is not available explicitly, as with iteration
on data.                      

Properties of the Gauss-Seidel and SOR iterations

The GS and SOR iterations converge for all symmetric semipositive-definite matrices. No
constrains are necessary for redundant equations or fixed effects. The disadvantage is that
elements of A must be available sequentially, row by row. As will be shown later, SOR has
advantage over GS only for effects with nondiagonal blocks.

Practical convergence issues
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Predictions of breeding values for genetic evaluation need to be calculated with very limited
precision, no more than 2 decimal digits. Such precision is obtained with 5-15 rounds in a single-
trait sire model, 30-100 rounds in a single-trait animal model. With models with multiple traits
and the maternal effect,   the number of rounds can increase to > 500. One way of increasing the
convergence rate for multiple traits is to set the MME within traits and decompose

A = L + D + L’
so that D would include diagonal blocks of traits, and possible blocks of direct and maternal
effects. Such a modification described by Dwyer and VanVleck (JDS, 1985?). Then, the
convergence rate with multiple traits is comparable to that with a single-trait. 

Jacobi by effects, where only one effect is solved at a time, would be equivalent to a mixed
iteration where the outer iteration is GS and the inner iteration is Jacobi. Note that for fixed
effects where the diagonal blocks for effects are diagonal, Jacobi by effects is equivalent to Gauss-
Seidel. A disadvantage of block iteration is increased storage for diagonal elements.

MME are usually not of full rank. While regular Jacobi iteration requires  “sum to zero” for all
fixed effects but one, Jacobi-by-effect, GS and SOR handle the MME well and do not need any
constrains. 

Determination of best iteration parameters
Some iterations, including SOR and second order Jacobi, require the choice of quasi-optimal
iteration parameters. Those parameters can be selected in a few ways, by
     1. setting the iteration matrix B for several parameters, calculating eigenvalues, and selecting

1parameters corresponding to the smallest e ; hard to do for large systems of equations
     2. running the iteration many times with different parameters and selecting the parameter

1with the best convergence rate in later rounds of iteration (lowest e ),
     3. updating the parameters during the course of iteration, as in Hageman et al. (1981?) or

ITPACK.
Usually parameters quasi-optimal for one data set remain quasi-optimal for similar data sets. 

Strategies for iterative solutions

Solving by effects

Consider a model

i where f may be either random or fixed effect. The MME assuming for simplicity R=I are
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This system of equation is equivalent to block equations

................................................................................

iwhere y  is vector of observations adjusted for all effects but i. Instead of solving the full MME(*)

iteratively, it is possible to solve each block separately by any method, and repeat the solving by
blocks until convergence.

Creating the adjusted observations is simple. For example, if a model for one observation is

1 20 155.2 = c  + a  + p  + e

and if

 

the value of y adjusted for all effects except a would be
5.2 - 1.4 - 3.8 = 0.0

Iteration on data (matrix-free iteration)

If MME cannot be stored in memory but can be created on disk, the system of equations can be
solved by repeatedly reading the MME from disk.  However, reading from disk is relatively slow.
The size of the LHS of MME can be 10 times or larger than the size of data, with difference
increasing with the number of traits and effects. Therefore instead of reading the MME from disk
it may be faster (and simpler) to read the much smaller data from disk and recreate necessary parts
of MME each round. 
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Iteration on data (I.D.) is very simple when the iteration method involves A only in the expression

Ax(n)

This expression can be created as follows:

Original program I.D. program

...

A(i,j)=A(i,j)+z
...

call solve(A,b,x)

...
do round=1,p
   AX=0; D=0
  ...
  ...
      if (i == j) D(i)=D(i)+z
      AX(i)=AX(i)+z*x(j)
  ...
  ...
  ! This is for Jacobi iteration only
  do i=1,neq
     x(i)=x(i)+(b(i)-AX(i))/D(i)
  end do 
end do
.....

The statements to set-up D and AX are added for parts of the program corresponding to
contributions due to records and to contributions due to relationships.

When the iteration updates only one effect in one round, the modifications would be

do round=1,p
 AX=0; D=0
  do e1=1,neff
     ...
     ...
         if (i == j) D(i)=D(i)+z
         AX(i)=AX(i)+z*x(j)
     ...
     ...
     ! This is for Jacobi iteration only
     do i=sum(nlev(1:e1-1)+1,i=sum(nlev(1:e1) 
        x(i)=x(i)+(b(i)-AX(i))/d(i)
     enddo
  end do 
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end do

Please see that the program statements related to relationship contributions are not shown above
separately. For the iteration that needs only the matrix-vector product Ax, the data and pedigree
files need not be in any particular order. For multiple-trait block iteration, the programs would be
modified to create block-diagonal D.

The same strategy can be used in PCG except that the product to dervive can be either Ax or Ap.

The implementation of the Gauss-Seidel or SOR iteration is more difficult because LHS needs to
be available one row at a time. To do so:
      - for e effects, create e copies of the data file, each sorted for different effect
      - for pedigree file, create 3 copies, sorted by animal, sire and dam, respectively.
      - solve as follows:

do e=1,neff
     rewind i
    .....

.....
    do l=1,nlev(i)
      d=0
        ax=0
          current=address(e,l)

.....

.....
        do
 “read file sorted by level l until the end of level l”

.....

.....
   if (i == current) then
          if (i==j) d=d+z
            ax=ax+z*x(j)

       endif
  end do !of reading the level l
!

if (e is animal effect) then
do 

read pedigree line with animal l &
as either animal, sire or dam

....

....
if (i == current) then

          if (i==j) d=d+z
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            ax=ax+z*x(j)
       endif

enddo
endif

if (e is other random effect then)
“create other random effect contributions’

            endif

!   solve for level l of effect e
  x(current)=x(current)+ (b(current)-ax)/d

.....

.....
enddo
......
......           

enddo

Schaeffer and Kennedy (1996) have shown a technique where for e effects one needs only e-1
sorted files. Another technique that reduces the need for sorted files is to solve small effects by a
finite method. This technique is used in PEST. For effects where diagonal blocks for effect are
diagonal matrices, Jacobi_by_effect is equivalent to GS, and no sorting is required.

Indirect representation of mixed-model equations

The mixed model equations, especially those simpler ones, can be solved without the use (and
knowledge) of any matrices (Misztal and Gianola, 1987). The indirect iteration gives insight into
the workings of GS and J methods. 

Assume a single-trait  model

ijkl i j k ijkl e sy  = h  + g  + s  +e ,  ó  /ó  = á2 2

ijklwhere y  is a yield of a cow in herd i, genetic group j and sire k. The contribution of one record

ijkly  to LHS and RHS is
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iAll the contributions corresponding to the row of h  result in an equation

iThe GS iteration for h  would be

or

i iThe solution for h  is an average of observations that include h  adjusted for all the other effects.

j kSimilarly, we can derive equations for  g  and s
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kThe regression towards the mean in the last equation is due to s  being the random effect.

i j kIn the GS iteration, h  will be solved first, followed by g  and then by s . In the Jacobi iteration, all
effects will be solved simultaneously.

Example

ijkli j k y

1 1 1 17

1 1 2 10

1 2 1 12

1 2 2 7

2 1 1 14

2 1 2 9

2 2 1 11

2 2 2 4

Assume that á=8 and that the initial solutions are 0. The first round solutions by GS are

1h  = (17+10+12+7)/4 = 11.5

2h  = (14+9+11+4)/4=9.5

1g  = [(17-11.5) + (10-11.5) + (14-9.5) + (9-9.5)]/4=2

2g  = [(17-11.5) + (7-11.5) + (11-9.5) + ((4-9.5)]/4=-2

1s  = 4/(4+8) [ (17-11.5-2) + (12-11.5 -(-2)) + (14-9.5-2) + (11-9.5-(-2))]=1

2s  = -1

The solutions will remain identical the next round so the convergence for this special balanced
case was reached in 1 round.

In Jacobi
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1h  = (17+10+12+7)/4 = 11.5

2h  = (14+9+11+4)/4=9.5

1g  = (17 + 10+ 14 + 9)/4=12.5

2g  = (17+7+11+4)/4=8.5

1s  = 4/(4+8) (17+12+14+11)/4=4.5

2s  = 4/(2+8) (10+7+9+4)/4 = 2.5

During the next round the solutions will diverge. However, J will converge if the system of
equations is made full rank by setting the sum of all g solutions to 0. Id additionally the sum of s
solutions is set to 0, J will converge in one round.

That convergence in one round is a special property of GS and constrained J, and it is missing
from other methods. This is why J and GS and their modifications are naturally suited to MME.
Note that second-order Jacobi and SOR won’t converge in one round in the example. One way to
make them do it is not to use any relaxation factors for fixed effects and for random effects with
the diagonal (co)variance matrix.

Animal model

In the model with groups, the contributions to the left hand side are:

i i ia , s and d  are animal, and sire and dom solutions, respectively, g’s are unknown parent groups if
sire or dam are missing, á is variance ratio and 

iv  = 2 /(4- number of known parents)

Calculate the quantity
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i i i iz = - á v ( 2 a  - d - s  )
The contribution to the adjusted right hand side (b-AX) from each pedigree line is:
to animal 

i i i i - á v ( 2 a  - d - s  ) = z
to sire (or sire unknown parent group)

i i i i á v ( 2 a  - d - s  )/2 = -z/2
to dam (or dam unknown parent group)

i i i i á v ( 2 a  - d - s  )/2 = -z/2

The corresponding changes to the diagonal would be:
to animal 

i 2 á v
to sire (or sire unknown parent group)

i  á v /2
to dam (or dam unknown parent group)

i á v  /2

Example

Consider the “dairy” repeatability model

ijkl i j k ijkly  = m + p  + a  + e

ijkl i kwhere y  is yield of cows in management groups m , with additive value a  and permanent

jenvironment p , and

p a e a e pvar(p)=Ió ,    var(a)=Aó ,    ó /ó =á,     ó /ó =&2 2 2 2 2 2

The matrix-free equations are

kl klwhere pr  and mate  are the progeny and mate of the l-th mating of the k-th animal, respectively,
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kl  and v is the corresponding residual (=.5 if mate is known and 1/3 if mate is replaced by unknown
parent group).

The extension of these rules to multiple traits, maternal effects etc. can be done following the
above methodology. For GS iteration, it was done by Kennedy and Schaeffer (1986, WCGALP). 

Summary of iteration strategies

The GS and SOR iterations are the methods of choice when the coefficient matrix can be stored in
memory and simplicity is important.  This would usually require memory of 100-1000
bytes/equations. The iteration on data by modifications of Jacobi would be the next choice for
simpler models, with memory requirements of 12-16 bytes/equation. However, the method of
choice nowadays seems to be PCG. Despite a seemingly complicated code, PCG is very easy to
implement because the only compute-intensive operations are Ax or Ap, especially with Fortran
90 with vector instructions. PCG with diagonal preconditioner converged for all attempted
models, including multiple trait, random regressions, with maternal effect and dominance. The
convergence rate was as good or better as J or SOR.  Also, there are no acceleration parameters to
determine. One disadvantage of PCG is that it requires more memory: 36-56 bytes/ equations, but
this is not as much of a problem as it used to be. 
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Variance components

Out of very many methods for estimating variance components, three types are in popular use
today (1998). They are:

1. REML
2. Bayesian methods via Gibbs-sampling, also called Markov Chain Monte Carlo (MCMC),
3. Method R.

REML is popular because of resistance to selection bias and  the estimates are always  within the
parameter space. Its disadvantages include high cost for large models and relatively difficult
programming especially for nonstandard models although various implementations of REML
differ widely in their computing properties.

Bayesian methods via Gibbs-sampling result in simple programs even for complicated models,
and have good theoretical properties.  Their disadvantage include slow convergence because of
the Monte-Carlo origin and therefore very long running time for larger problems.

Method R is applicable to very large systems of equations and is simple to implement for common
models. However, the sampling error is higher than in the above methods, and incorrect fixed
effects can result in drastically biased estimates. Also, for multiple traits there are only
approximations. 

 REML

Let the model be 
y = Xâ + e

where the distribution of y is multivariate normal with mean Xâ and variance V,
y ~ MVN(Xâ, V)

or
Var(e) = V  and  E(y) =Xâ 

Following Quaas (1990), the likelihood of â and  V is

where ö is a vector or a matrix of variance components in V.  This can be simplified to
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The maximum likelihood (ML) estimates can be obtained by maximizing ln L. The ML estimates
of variance components depend on fixed effects because the degrees of freedom due to estimating
the fixed effects are not taken into account. In restricted maximum likelihood, y is replaced by My
such that

MX= 0   Y   My = Me

which is equivalent to integrating the fixed effects from the ML likelihood. In subsequent
derivations M cancels out, and the log of the restricted maximum likelihood becomes

Most of the research in REML went into simplifying the above likelihood for particular models
and into maximizing that likelihood. For mixed models,  the log likelihood is proportional to

where C* is the coefficient matrix of the MME converted to full-rank; the determinant of a
singular matrix is 0.

For

i jwhere R is the residual (co)variance matrix for observation i, and G  is the (co)variance matrix for
random effect j, the components of the likelihood can be further simplified to

In particular, for specific G’s,

a iwhere n  and n  are the number of levels.

The REML estimates are derived by maximization

by one of the many maximization algorithms for nonlinear functions.
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i0iREML is relatively easy to evaluate.  Matrices R  and G  are small.  ln|C*| can be calculated from
the Cholesky decomposition of LHS. Also, solutions can be obtained by Cholesky decomposition. 

The simplest maximization is derivative-free:

   a) choose a derivative-free maximization subroutine from a library (IMSL, “Numerical    
Recipes”,”www.netlib.org”,..) 

   b) write a function L(variance components)
   c) apply a) to b)

The computational constrain in derivative free methods would be time to calculate the
determinant.

The alternate way to maximize the REML would be by using the first derivative,

which is a problem of finding zeroes of a multidimensional nonlinear function. In single traits,
this leads to the following equations

i i iwhere n  is the number of levels of random effect i, ó A  is its (co)variance matrix, and C  is a2 ii

diagonal block of the inverse of C corresponding to effect i.  This formula can be derived
differently as EM REML. A faster converging  version of the same formula is

i  where n is the number of levels in the i-th random effect. The residual is estimated as 

rwhere n  is the number of records and r(X’X) is the rank of the fixed-effect part of the MME. In
the first-derivative REML, the largest expense is in calculating the inverse of C. The trace can be
computed as
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i ior as the sum of A  and C   multiplied directly, element by element. When A  is sparse, one-1 ii -1

does not require all elements of C  but only those that are nonzero in C , or a small fraction of allii ii

inverse elements of C. The sparse inverse described before contains all the inverse elements

inonzero in A . Computing that inverse from sparse factorization costs twice more than-1

computing the factorization alone, and almost no extra memory. Thus, the most compute-
intensive operation in one step of first-derivative REML is three times more expensive than a
similar operation in derivative-free REML.

For multiple traits, denote G as 

and let the system of equations be

ijklwhere A  can either be a numerator relationship matrix or an identity matrix for a block
corresponding to effects i and j and traits k and l. Denote

ijklA  = Aijkl -1

In multiple traits and the first-derivative REML,  computations are similar to single-traits for
random effect variances

ij ik ik jlwhere ä  =1 if i=j and 0 otherwise, and n  is the number of levels for effect i and trait k (n  = n ).
The formula for the residual variances when all traits are recorded is

rwhere n  is the number of records. With missing traits, the formulas are more complicated to write
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(but not to compute) and can be found for example in Mantysaari and VanVleck (1989).

Let 

kbe a matrix of residual variances for observation k, where P  is a diagonal matrix with 1 in

ijdiagonals corresponding to present traits and 0 otherwise.Define E  as matrix with 1 in position
(i,j) and (j,i) and 0 elsewhere. Then compute the following:

Using the notation:

next round estimates are obtained by solving the system of equations:

Caution: blocks of inverse C  and C  for covariance are not necessarily symmetric. This mayij ijkl

create computing problems if sparse matrix software operates on symmetric matrices only.

Second derivatives of REML or their expectation cannot be easily computed computed using
sparse matrix computations because they require computations of off-diagonal blocks of C.
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Jensen et al. (1996-7) have shown that the average of second derivatives and their expectations
results in cancellation of terms that are hard to compute. Their method based on the ideas of R.
Thompson was called “Average Information” REML.  In this method, the most important
computation is of matrix F defined by n x p, where n is the number of observations and p is the
number of different variance components including the residuals. Matrix F is composed of 
weighted solutions or residuals. Then the matrix of Average Information, which is used later as
the approximation of the matrix of second derivatives, is:

    

where T is solution to the mixed model equations with cluster of T substituting for y. Although

athis algorithm is fast when it converges, it requires heuristics when I  is not positive definite and
its implementation is quite complex.
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General Properties of Maximization Algorithms

The problem is to find 

where f(x) is a nonlinear function. The algorithms for the maximization can be categorized by
their use of derivatives of f(x):

Derivative-free  - Only function values available, no derivatives available.
First-derivative  - df(x)/dx available
Second-derivative  -  d f(x)/dx  and df(x)/dx available22

The underlying mechanisms of these three methods are presented below for a one-dimensional
case. It is assume that the function to be maximized has exactly one maximum.

The example below shows two points that could be made available in a derivative free method.
Each point provides the value of the function but does not indicate the direction of the maximum.
Two points can show the direction of the increase, and three point can bracket the maximum.

In the first-derivative method, each derivative shows the direction of the maximum. Two
evaluation of the derivatives may bracket the maximum.
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In a second-derivative method, each point contains the quadratic approximation of the function
from that point. Thus one point is sufficient to obtain the first approximation of the maximum.
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Unless the function is quadratic, in which case the second-derivative methods converge in one
step, all methods need to be applied iteratively.

In general, the more derivatives are available, the faster the method. However, if the function is
far from quadratic and a second-derivatives are used, next-round estimates may be far from
optimum or even out of bounds.

Derivatives may be hard to calculate. In that case, the higher derivative methods can be derived by
numerical differentiation

  

and

  

iwhere p  is the i-th column of the identity matrix.  Unfortunately, the derivatives thus obtained
have a lower accuracy than those obtained analytically. According to Press et al. (1986), the
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number of significant digits in the derivatives calculated numerically cannot be higher than half
the number of significant digits in the original function. In general the selection of Ä is not an easy
one.

Some popular maximization algorithms
Downhill simplex (derivative-free)

One of the most popular derivative-free maximization algorithms is downhill simplex. It is
described in the animal breeding context by Boldman et al (1995) in the MTDFREML manual.
Let n be the number of parameters to find. Initially create n+1 vectors

0 1 nx , x ,.., x

i iand calculate the functions f(x )=f  ordered so that

0 1 nf >f >...>f

Choices on the maximization for one dimension are shown below.
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The general algorithm is

do until convergence
  Calculate the mean point:

m 1 m  x = ave(x ,..,x )

  Calculate a reflection of the worst point against the center point:

r m m p  x  = x +á(t -t )

  case
The new point is best!

r 0f  > f
Try even a better point

b m r mx =x +ã(x -x )

n r bx =better(x ,x )
The new point is neither worst nor best

0 r pf  >f  >f
Replace the worst point

p rx ==x
The new point is almost worst

p-1 r pf  >f  >f
Contract to the opposite side of the worst point

p m r mx =x +â(x -x )
The new point is worst or equal

r pf #f
Try contracting first to the worst point

r m p mx =x +â(x -x )
New point better

r pf  > f

p rx =x
New point worse

pfr <= f
Contract in every direction towards the best point

i i 0x =(x +x )/2 for i=1,..,n
  end case
end do

Sample constants: á=1; â=.5; ã=2

Powell (derivative-free)          
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baseSet the initial point x
do until convergence
  Find the “best” direction d by probing n dimensions
  Find á such that:

new basex  = x  + dá
enddo   

Fixed point (first derivative)

Rearrange the equation
df(x)/dx = 0

to
x = g(x)

and solve as
x  = g(x )( (n+1) n)

The choice of g is critical to convergence. For example, the rearrangement of

results in divergence, but a similar expression converges rapidly

Newton (second derivative)

x  = x  - [d f(x)/(dx) ]  df(x)/dx ( ( 2n+1) n) 2 -1

Quasi-Newton (first derivative)

When second derivatives are difficult to compute, they may be approximated from first
derivatives. A method that approximates the second derivatives by finite differences is called
secant. For more information, see More and Wright (1993) or Woodford (1992)
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Acceleration to EM (fixed point) estimates

The convergence rate in the EM algorithm can be slow, especially when the number of equations
relative to records is high. Denote the EM algorithm as

In the single trait, the iteration would be  similar to 

And the convergence curve would be similar to
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Thus in later rounds, the convergence would be predictable, similar to convergence of stationary
methods in the linear system of equations. Little (1987) has shown that the convergence rate in the
EM algorithm is inversely proportional to the fraction of missing data. That fraction like the
largest eigenvalue of the iteration matrix is hard to compute analytically but can be approximated
during the progress of iteration. 

For a single component, Schaeffer (1979) showed how results from two separate cycles of the EM
iteration can be used to extrapolate almost to the converged solutions. Misztal and Schaeffer
(1986) have shown that the em(x) approximately follows the geometric progression, and that the
final value can be extrapolated from estimates of successive rounds of EM iteration. Laird et al.
(1987) presented similar ideas for multiple dimensions.

Function em(x) is locally linear near the convergence point. Therefore, for large n, we can write 

Then
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and finally

The extrapolation is beneficial only when the expression

becomes stable. Otherwise the extrapolation can deteriorate the convergence. Various types of
accelerations of the EM algorithm have been used successfully in packages DMUEM, and
REMLF90, with the reduction in the  number of rounds by 2-10 times. Quasi-Newton
implementation in VCE, where only the first derivatives of the restricted likelihood are computed,
can be regarded as either approximated second-derivative algorithm, or accelerated EM. 
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Convergence properties of maximization algorithms in REML

Examine the cost of derivative and derivative-free algorithms in REML following Misztal (1995).
Convergence rate can be described in terms of accuracy as a function of the number of rounds of
iteration (Minoux 1986). Linear convergence means linear relationship between accuracy and
round of iteration, i.e., constant number of rounds is required for a gain of one extra digit of
accuracy. The fixed point iteration (EM algorithm) seems to have a linear convergence. In a
superlinear convergence, each round of iteration results in increasingly larger gains in accuracy.
Finally, in a n-step convergence, n steps are required to implement one round of iteration. 

The convergence rate of maximization algorithms for general functions cannot be derived easily.
However, it could be derived for quadratic functions, and any twice-differentiable function,
including L, is locally quadratic. Then, the convergence of better derivative-free (DF) algorithms
such as Powell or Rosenbrock is n-step superlinear (Minoux 1986), and  is dependent on n, the
dimension of the function being maximized.  For better derivative (D) algorithms, such as quasi-
Newton  (first-derivative) or Newton-Raphson (second-derivative), the convergence is superlinear
and does not depend on n (Bazaraa 1993; Minoux 1986). This leads to conjecture that better DF
algorithms converge, in general, n times slower than better D algorithms. N can  be expressed in

r tterms of  number of random effects, n , and number of traits, n , as:

r t tn = (n  +1)n (n +1)/2 (4)

where the extra 1 is for the residual.

This difference in convergence rate is only approximate because differences exist within better D
or DF algorithms, and L is not quadratic. Also, more sophisticated methods may fail when the
starting point is far away from the maximum.

Cost of one step of D and DF in multiple traits
Let C be a coefficient matrix of the mixed model equations  Assume that in DF, all computing
resources are spent in computing |C|. Also assume that in D, all computing resources are spent in
finding elements of C  corresponding to nonzero elements in C, or a sparse inverse of C. In dense-1

matrices, computing the inverse requires 3 times more arithmetic operations than computing the
determinant alone (Duff et al. 1989). Both operations require an equal amount of storage. 
Approximately the same applies to the number of arithmetic operations in sparse matrices
(Misztal and Perez-Enciso 1993). The amount of storage required is 3 times larger for sparse
inversion if the inverse elements are computed by columns. Both options are supported under
FSPAK.

In multiple traits, assuming that almost all traits are recorded, the coefficient matrix of the

t  tmixed model equations has n times more equations and an average equation has n  times more
nonzero elements than in single traits. In dense matrices, the memory and computing requirements

t t tfor inversion or computing the determinant for a matrix n  larger increase as n  and n ,2 3

respectively.  The same applies to sparse matrices, where memory and computing requirements
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increase approximately as pq and pq , where p is the number of equations and q is the average2

number of nonzeroes per equation (Duff et al. 1989). 

Cost of one unit of convergence relative to single trait estimation

dLet C  be the cost of one step of D in a single trait estimation. Let us compute costs of the same1

t df dlevel of convergence in n  traits for the DF and D algorithms: C  and C . If the DF convergencen n

tis n times slower, computations for the matrix operations increase as n , and computing the3

determinant costs a third of computing the inverse, the following formulas can be derived:

d t dC  =  n   C (1)n 3 1

df r t t t dC   = a (n  +1)n (n +1)/2 n  C  n 3 1

r t t d         =  (n  +1) n (n +1 )C / 6 (2)4 1

and the relative costs are:

d d tC  /C  =  n   (3)n 1 3

df d r t tC  / C  = (n  +1) n (n +1 )/6 (4)n 1 4

r t   . (n  +1) n /6 (5)5

df d r t tC  /C  = (n  +1) n (n +1 )/6 (6)n n

r t  . (n  +1) n /6 (7)2

According to equation (3), the number of numerical operations in D increase cubically with the
number of traits. In equation (4), the cost of DF increases with the fifth power of the number of
traits. From equation (1) one can find that the costs of  DF and D in models with 2 random effects
are similar in single trait. DF is less expensive with 1 random effect, and D is less expensive with

tmore than 2 random effects. In multiple traits, DF is n  more expensive than D.2

Relative costs of multitrait DF REML evaluation using DF and D algorithms, computed
with formulae (3) and (4) are presented below

Number of traits Number of arithmetic operations Memory
requirements

DF D

1 1 1 1

2 24 8 4

3 162 27 9

4 640 64 16

5 1875 125 25
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6 4536 216 36

The table below shows time to calculate multiple trait REML estimates assuming that  D and DF
both took a minute in single traits.

Number of traits Approximate CPU Time

DF D

1 1 min 1 min

2 ½ hr 8 min

3 2½ hrs ½ hr

4 11 hrs 1 hr

5 > 1 day 2 hrs

6 3 days 3½ hrs

Accuracy of the D and DF algorithms

In DF, if L(È) is computed with r significant digits, then È can be bracketed with at most r/2
significant digits (Press et al. 1989). Such a limit does not exist in D. Worse numerical accuracy
of the DF maximization is illustrated with in the Figure below, which shows a quadratic function
and its derivative.  
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                                      y = -x  + 2x - .62

    

dy/dx = -2x+2

       

 

 
The function is very flat, and the maximum of the function cannot be determined accurately by
looking at the function alone. The maximum  can be determined much more precisely by finding a
zero of the function's first derivative.

Loss of accuracy in DF does not appear a problem at first. Most computations are done with
double precision, which corresponds to 15-17 significant decimal digits, and estimates with 1% or
2 significant digits of accuracy are considered sufficiently accurate in practice. However,  the
likelihood function can have low accuracy for a variety of reasons. Some accuracy is lost due to a
roundoff error when summing all components of  L. Components of that function may have
reduced accuracy. This particularly applies to the determinant, where the loss of accuracy could
result from lack of pivoting in Cholesky decomposition-based packages, poor conditioning of the
coefficient matrix and rounding errors associated with computing in large matrices. In multiple

0 i0traits, the coefficient matrix of the mixed model equations is composed of R and G  - -1 -1

covariance matrices between traits for residual and random effect i, respectively. Poor
conditioning of  these matrices results in poor conditioning of W and subsequently low accuracy

0 i0of determinants and traces. R and G  would be poorly conditioned numerically when traits are-1 -1

highly correlated or linearly dependent.  The loss of accuracy due to poor conditioning of C is also
present in derivative maximization, but it has smaller effect on the estimates because of better
numerical properties of the derivative maximization.
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Another source of inaccuracy could arise in algorithms where derivatives are obtained numerically
by differentiation. For example, the Quasi-Newton algorithm can be so implemented in DF, and
one can regard other DF algorithms as using the numerical differentiation implicitly. The accuracy
of such differentiation is dependent on the step side and could be very low for steps too large or
too small.  Subsequently, the accuracy would be dependent on parameters that define the step size,
and in particular could be good for some problems but poor for others.  
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Method R

The Method R was proposed by Reverter et al. (1994) and can be summarized as follows.  

i i iLet u  ~N(0, G ó ),2

i i i  be a BLUP of u  based on ap
i Let û  be a BLUP of u  based on all the data available, and let û

partial data.  Then

iDefine r  as the regression of predictions based on full data from those based on a partial data:

i e i eDefine r = { r  } and s = {ó    /  ó   }, where ó    is  residual variance and s is  vector of variance2 2 2

ratios. Reverter et al. showed that for true variances, 

E[r(s)] = 1.

For arbitrary x and one component  

i r (x)  >  1    Y  too small variance 

ir (x)   <  1   Y too large variance. 

For several components, the relationships between s and r are more complex. The problem of
finding  such 

ŝ  :  r(ŝ) = 1, 
or

r(ŝ) - 1 = 0 

becomes a problem of solving a system of a nonlinear equations. It can be solved by a fixed point
iteration, Newton or quasi-Newton methods.

ij ijMethod R can be generalized to multiple traits. Let û  be a BLUP of u  based on all the data

j ij be a BLUP of u  based on a partial data, where i spans the random effectsp
i available, and let û

and j spans different traits. 

ijklDefine r  as the regression of predictions based on full data from those based on a partial data for

j effects i an d and traits k and l, using terminology similar as in formula for multivariate REML
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For arbitrary x and one component  

ijkl ijkl r (x)  >  1    Y  ó too small2

ijkl ijkl r (x)   <  1   Y ó too large.2

No exact formulas are available for the residual variance but quasi-REML approximations were
used by Reverter et al. (1994) as follows

riwhere n  is the number of records in trait i, and

rijwhere n  is the number of records with both traits i and j recorded.

Method R is potentially less expensive than other methods because it only requires solutions to
the mixed model equations. Aside from being feasible computationally, Method R has several
other desirable properties. First, at least in single traits it returns estimates within the parameter
space. Second, it is resistant to bias caused by assortative mating because it considers the
relationship matrices. Also, it has been shown to be as resistant as REML to selection caused by
non-random replacements (Snelling, 1994) and incomplete reporting (Kaiser et al., 1996); Cantet
and Birchmeier (1998) initially reported bias under selection but later discovered that it was due to
an error in programming. Disadvantages of Method R would include a larger sampling variance
than other methods for the same data set, however, this disadvantage can be compensated by the
ability of Method R to consider much larger data sets. 

ijklRecently, Druet et al.(2001) has found that r  for covariances has a discontinuity because both its
nominator and the denominator can have a value of 0. They suggested alternative formulas. Exact
formulas for Method R in multiple traits are unknown.  

Selection of partial data

The regressions do not specify which subset of data is selected. If subset is either a very small or a

pvery large percentage of the complete data set, u ’s will either be close to 0 or to u’s, and the
regressions will have very large sampling error. Thus a size of 50% seems to be the a good choice.
Also by inappropriate selection of records, one can create bias for the model with the reduced data
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set. A few types of subsets can be considered:
a) random,
b) by truncation over time
c) by truncation over later records with repeated records.

Random selection seems to be attractive, especially that subsets can be easily changed by
changing seed in a random number generator, and sampling variance can be approximated as
variance of the samples.

Method R can have poor properties when the model does not contain all fixed effects. For
example, in the study by Misztal et al. (1997), heritability for stature with single record per animal
was 44%. When multiple records were considered, the heritability has increased to almost 70%.
After adding the adjustment for age, the heritability dropped to 45%.

In simple models (Duangajinda et al., 2001), Method R has been shown to be mostly unbiased.
Biases were present with small data sets and with phenotypic selection across but not within
contemporary groups.

Numerical considerations

When the problem is small enough so that LHS can be factorized, REML would provide better
estimates than Method R. Therefore the value of Method R is in larger problems where solutions
can be obtained only by iteration. For calculation of breeding values, the accuracy of solutions is
usually not critical, and an accuracy of 2 decimal digits is more than satisfactory. For method R,
convergence to                                       

r=1±0.0001 
was found to be corresponding to the accuracy of the estimates of

s±5%
Thus, r=1±0.0001 or calculated with at least 4 decimal significant digits should be considered the
minimum. To get that accuracy, the solutions to MME should be calculated with even higher
accuracy, 5 to 6 significant digits. Otherwise convergence of Method R may not be achieved.

Because Method R results in a problem of solving the nonlinear system of equations, the
convergence of this method is more similar to D than to DF.

Solution of the nonlinear system of equations by Secant

The problem of finding
s :  r(s) = 1

was solved by the secant method, which initially is equivalent to the Newton method, where
derivatives are computed by numerical differentiation. This algorithm is equivalent to assuming
that



151

r = As +b
Consequently, approximate solutions are obtained setting r =1

A and b can be found when n+1 pairs of {s ,r(s )} are available. Then, (i) (i)

r(s ) - r(s )=  A [s s ](i+1) (i) (i+1) - (i)

denoting
Äs  = [s - s , s - s , ..,s -  s ](1 ) (0) (2 ) (1) (n  ) (n-1)

Är = [r(s ) - r(s ), r(s ) - r(s ), ..,r(s ) - r(s )](1) (0) (2) (1) (n) (n-1)

the equation can be written as
Är = A Äs

Thus
A = Är (Äs)-1

b can be computed from the last point
b = r(s ) - A s(n) (n  )

which will result in

The algorithm contains heuristics to ensure the convergence of the algorithm that would otherwise
result in estimates out of the parameter space or in a slower convergence rate. 

1. Choose an initial guess s ;(0)

2. Assign n extra points as follows:

1s  =  s   +  [ä ,0,...,0]’(1) (0)

2s  = s   +  [0,ä ,0,..,0]’(2) (1)

......

   ns =  s   +  [0,0,..,ä ]’.(n) (n-1)

3. Compute 
{r(s )},  i = 0,  n;(i)

4. Compute differences:
Äs  = [s - s , s - s , ..,s -  s ](1 ) (0) (2 ) (1) (n  ) (n-1)

Är = [r(s ) - r(s ), r(s ) - r(s ), ..,r(s ) - r(s )].(1) (0) (2) (1) (n) (n-1)

5. Compute next-round solutions
s =  s  + Äs (Är)  [1 -  r(s )](n+1) (n) -1 (n)

5. Limit changes if too large:
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i i imaxchange = max( |s - s | / |s |)(n+1) (n) (n)

 I

if maxchange >ã then s  = s  +ã/maxchange (s  - s ).(n+1) (n) (n+1) (n)

6. If change large, compute n new points as before; if changes small, use all but one last point.

iif max{|r (s ) - 1|} > å then(n+1)

                  i

i i i    if max|s - s | / |s |  >  ë (n+1) (n) (n)

                               I

 set s = s(0) (n+1)

goto 2
    else
            s = s , s = s , ..,s = s , s = s  (0) (1) (1) (2) (n-1) (n) (n) (n+1)

    goto 3.
7. Optionally, refine s using previously computed matrices

s  =  s  + Äs (Är)  [1 - r(s )].(n+1) (n+1) -1 (n+1)

iIn program JAADOM, changes between samples ä  were chosen to correspond to a change of

evariance of ó /200, maximum relative changes were limited to ã = 0.7, the stopping criterion was å2

= 0.0001, and changes were regarded as small for  ë = 0.1.

Numerical example
 s  = [ 0.6, 0.9]’(0)

 s  = s  + {-0.0017946 ,0,...,0} = [0.5982054, 0.9]’(1) (0)

 s  = s  + {0,-0.00403189 ,0,..,0} = [ 0.5982054, 0.89596811]’(2) (1)

r(s ) = [1.008687, 1.009935](0)

r(s ) = [1.008587, 1.009897](1)

r(s ) = [1.008552, 1.009800](2)

 
 s  = [ 0.4940763   0.5808855]’(n+1)

r(s  ) = [1.000021  0.9973247]’.(n+1)

Because 
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1 - 0.9973247 =  0.0026753 > 0.0002, 
s  is set to s , and computations are repeated from step 2. After that, the procedure converges at (0) (n+1)

s =   [0.4791, 0.6592]’(n+1) 

 where 
 r(s ) = [1.00008, 0.99981](n+1)

It would be worthwhile to find out whether better performance could be obtained by quasi-Newton
methods..
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Bayesian methods and Gibbs sampling

Following Wang et al. (1993), in the single-trait model

the conditional distribution which generates the data is

with the density

  

One can specify distributions for â, u’s and ó’s. The distribution of â is flat
p(â) % constant

The distribution for u’s is multivariate normal

with the density

and for the variance components, it can be scaled inverted ÷2

.. .. ..where s is the prior value and í can be viewed as the degree of belief (uniformative prior for í =0).2 

The joint posterior density with flat priors is

or
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Information about variance components could be obtained from marginal distributions by
integrating all unnecessary effects/parameters out

From the marginal posterior distribution one can calculate mean, mode, standard deviation or
confidence intervals. 

For realistic models, the analytical integration is hard or impossible. 

Gibbs sampling (Geman and Geman, 1984) is an easy although computationally-intensive method
of numerical integration of likelihoods whenever conditional distributions are easy to compute. The
method would progress as follows:

1. Assign priors to 

2. Sequentially calculate samples from conditional distributions

...........................

...........................
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...........................

Elements of â or u can be sampled either as by vector or by individual elements.

3. Calculate 2. repeatedly. After a period of burn-in, samples generated above will be from their
respective marginal distributions. 

The conditional distributions are constructed by assuming the conditional parameters fixed and by
dropping terms from the posterior density that are dependent on conditional parameters only. Thus,
the conditional posterior density for â is 

This corresponds to the distribution

or

and finally

i Similarly, for the i-th random effect u the distribution is

where

For  the residual variance, the full conditional density is a scaled inverted ÷2
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with the distribution

where

and

For the other variance components, the distributions are similar

with the distribution

where

and

A multivariate distributions for a complete fixed or random effect is  hard to obtain. However, a
distribution for a single level of a fixed or random effect is simple. Let 

iâ = {â }, i=1,m
and

iThe conditional marginal density for â  is
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i jwhere y  are records containing â  only, and Z  corresponds to  y . The corresponding(âi) (âi) (âi)

distribution is

or

which can be further simplifying by expressing the last equation in terms of RHS and LHS of the
MME

The expression for the mean is a solution in the Gauss-Seidel iteration. A similar distribution can be

ijobtained for j-th level of random effect i: u

Example

Consider the sire model

ijk i j ijky  = g + s  + e
and the data
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ijki j y

1 1 3

1 1 4

2 1 5

2 1 6

2 2 7

Assume priors:

e sg=s=0, ó  =1,  ó =.12 2

The mixed model equations are:

The initial distributions are

g1|... ~ N(7/2, 1/2), for example sampled as 4
g2|... ~ N(18/3, 1/3), for example sampled as 6
s1|... ~ N[(18-2*4 -2*6)/14,  1/14], for example sampled as -.2
s2|... ~ N([(7-1*6)/11, 1/11], for example sampled as .3

e’ = [ (3-4- -.2), (4-4- -.2), (5-6- -.2), (6-6- -.2), (7-6-.3)] = (-.8, .2, -.8, .2, .7)
e’e=1.85

e 5ó |... ~ 5 * 1.85/5 ÷ , for example sampled as 1.12 -2

u’u=.13

u 2ó |... ~2 * .13/2 ÷ , for example sampled as .052 -2

The next round distributions will be
g1|... ~ N[(7-2*-.2)/2, 1.1/2], for example sampled as 3.5
g2|... ~ N[(18-2*-.2-.3)/3, 1.1/3], for example sampled as 5.5
s1|... ~ N[(18-2*3.5 -2*5.5)/15,  1/15], for example sampled as .1
s2|... ~ N([(7-5.5)/12, 1/12], for example sampled as .2

and so on.
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Using the Gibbs sampler

Typically, samples from the Gibbs sampler would show an initial period of burn-in, followed by a 
repetitive pattern. This is shown in the idealized chart below; the real curve would not be as smooth.

 

The burn in period lasts usually between 500 and 10000 samples, although for slowly converging
sampler that number could be considerably higher. One way to determine the burn-in period is to
start two chains with the same random number generators but different priors. 

Convergence of the two chains indicate the end of the burn-in. Repetitive pattern that follows the
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burn-in period is due to the largest eigenvalue of the iteration matrix, and its length is dependent on
the model and data structure. Because of repetitions, the subsequent samples are correlated, and in
order to make inferences about parameters of the model, it makes sense to analyze only every n
sample, where n can be from 10 to 1000. Selected samples can be used to create an approximate
marginal density, where the accuracy of the approximation will depend on the number of samples
and on the correlation of subsequent samples. The approximate density could look as follows 

The total number of samples necessary to plot a density could be as high as 1 million. Fewer
samples are needed to estimate a mean or a mode of the distribution.

Multiple-traits

In multiple traits, the marginal distributions for u’s and â’s can be obtained as in single traits, by
using an analogous of the Gauss-Seidel iteration. For variances, a univariate inverted chi-square
distribution becomes a multivariate inverted Wishart distribution.

i i For simplicity, assume a t trait model with a single random effect. Denote u and e as i-th trait
random samples for the random effect and the residual, respectively.  The distribution for the
variance components of the random effect is

g gwhere n  is number of levels in the random effect, í  is degrees of belief (equal to -t-1 for flat
priors), and
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The distribution for the residual variance components is

ewhere n is the maximum number of records (including missing), í  is degrees of belief (equal to -t-1
for flat priors), and

If some records are missing, they are predicted from the distribution

“missing records”|u,â, R,G,”known records”

each round and then used as if they were known. Let subscript m denote quantities associated with
missing traits, and p associated with present traits. The missing records can be predicted as:

m m my  ~ MVN[E(y |....),Var(y |...)]

with

m m m mp pp p p pE(y |...)=X â + Z u +R R (y -X â + Z u)-1

m mm mp pp pmVar(y |...)=R -R R R-1

Convergence properties

The Gibss sampler’s convergence is tied to the convergence of the method of Gauss-Seidel, and to
priors. When the corresponding convergence of Gauss-Seidel is slow,  the convergence of the Gibbs
sampler will be slow too. One way to increase the convergence speed in multiple traits is to use
block iteration, where samples are generated by block of traits.

The Gibbs sample may diverge with certain priors. For example, uninformative priors for variance
components (í=0) are often worse than flat priors (í=-t-1).
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Computing implementations 

The Gibbs sampler require a large number of rounds. Therefore, its efficiency is quite important. In
the most obvious implementation, the LHS is recreated each round, with procedures to set up the
equations taking perhaps as much as 95% of computing time. Also, memory requirements may be
fairly steep. Several algorithms to cut time and memory are possible although some of them are hard
to implement for complicated models. In all cases, the data can be stored in memory or read by fast
routines.

Single trait models

In single traits, when working with variance ratios, only the part of the LHS due to (co)variance
matrices changes. If the part of LHS due to records and the relationship matrices are kept in memory
separately, each equation can be reconstructed by combining these matrices and the current variance
ratios, without recomputing the LHS. 

Multiple trait models with same model per trait

In this case, only the structure of the LHS for single trait needs to be stored, and the multiple-trait
LHS is reconstructed dynamically using the current (co)variance matrices, as in the previous case. If
some traits are missing, the data needs to be read every round to recreate the missing traits, but the
LHS is not affected.

Other multiple trait models

In large multitrait models, contribution from relationship matrices can be much larger than
contributions from records because single-trait numerator relationship matrices need to be
duplicated over for all combinations of traits and possible sets of correlated effects. To reduce
storage and computations, only the contributions from records can be stored, and contributions from
pedigrees can be recreated from a single-trait copy of the numerator relationship matrix. 

Alternately, the model can be redefined so as to have the same model per trait. For example, let the
model be identical except for different fixed management effect m in the i-th trait:

i i iy  = X m +.... 

Redefine that model so that for each trait management effects from all traits are present:

i 1 1i 2 2i i iiy  = X m  + X m  +  X m   .... 

and treat the effects as random with (co)variances:
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Variance close to 0 cause an effect to disappear while variance of infinity makes an effect fixed; In
practical implementation, values of a should be very high and b very small but in a range so that
numerical errors can be avoided. Also, the Gibbs sampler need to be modified not to sample
variances of m.  

Large models

One possibility with large data is by iteration-on-data by Gauss-Seidel, as discussed in an earlier
chapter. Several copies of the data and relationship files may be needed. Programming may become
quite complicated for complex models but is simple for simple models. 

General models

Updating MME in linked-list form may be time consuming. Matrices in HASH format are faster to
set up, but they need to be converted to IJA format so that rows of the LHS are available
sequentially. Both creation of the hash matrix for the first time and conversion to the IJA format
take time. Schnyder (1998, personal communication) noticed that, after the first round, the structure
of the matrices in the IJA and HASH does not change; only values change. He suggested the
following algorithm:

a) after the first round, create links to facilitate fast conversion between HASH and IJA
structures,
b) before every consecutive round, only zero HASH values but not indices. 

In the end, the creation of the LHS can be 2-3 times faster without sacrificing any modeling
flexibility. 
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Ways to reduce the cost of multiple traits

In t traits, the computing costs increase as follows

Approximate Cost

Arithmetic Operations Memory

solutions
   iterative
   finite

>t2

t3

t  2

t2

REML
   Derivative-free
   Derivative

t5

t3

t  2

t2

The cost of obtaining iterative solutions includes the cost of increased number of rounds because of
a lower convergence rate, which is especially low when traits are missing. 

Canonical transformation

Let the t-trait model be

with 

0 0where G and R  are the t x t variance-covariance matrices. For individual trait i, the model is

where X and Z  are single-trait design matrices, same for all traits. The covariances between the* *

traits are

0 0For any symmetric semi-positive-definite G  and R  there is a transformation M such that

0 0M G  M’ = D and M R  M’ = I
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where D is the diagonal matrix. For each record j, the vector of observation is

Multiply each vector of observation by M

which for all observations can be written as

Then, the model becomes

with variances

where the transformed traits are uncorrelated. For each transformed trait i

with covariances between the traits

and the mixed model equation for each trait i are

Thus, the single-trait equations after the canonical transformation are uncorrelated and can be
solved by single trait procedures. To compute the solutions on the original scale, back transform

Note that the canonical transformation can be performed only when the following apply:
- same model for all traits
- no missing traits for any observation
- single random effect

oThe transformation matrix can be constructed as follows. Decompose R  into eigenvectors and
eigenvalues
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Then decompose again

The transformation matrix is

For verification

Canonical transformation and REML

Estimation of REML by canonical transformation can be done by the following steps:

0 0a) Assign priors for R  and G
b) Find transformation and transform the data
c) Estimate single-trait variance components
d) Combine the estimates; the formulas below assume the first-derivative algorithm 

r g where n is number of records, n is number of levels in the random effect, and C  is them,i
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block of the inverse of the coefficient matrix corresponding to random effect i. Form

The new estimate of (co)variance components on the original scale are

e) If no convergence, repeat from b)

Contrary to general model REML, the cost of canonical transformation REML is only linear with
the number of traits, and there is no increase in memory over single-trait. However, all limitations
of the canonical transformation apply.

Numerical properties of canonical transformation

With many traits, some traits are likely to become almost linear functions of the other traits.

0 0Therefore, matrices  R  and G  may became almost singular, and the whole coefficient matrix can
become almost singular. This can easily be shown for a mixed model. The condition number of a
matrix is defined as

cond(B)=|B| |B | -1

where higher condition numbers are associate with poorer numerical properties. In a general
multiple-trait fixed model, the coefficient matrix is

with the condition number

Similar increase in condition number occurs in mixed models, where that condition is also a

0function of  G  but it is more difficult to show analytically. High condition number of a matrix leads
to numerical errors in the factorization, or to extremely low convergence rate in iterative methods.
In variance component estimation, the computed rank of the coefficient matrix may change from
round to round.

In the canonical transformation, the coefficient matrix in the fixed model is 
X’X

0and thus its condition is independent on R .

0 0 rIn canonical transformation, the near singularity R  and G  shows in elements of D and D  being
almost 0.  Computer program MTC contains the following heuristics with respect to the canonical
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transformation. For the residual eigenvalues:

and for the “random effect eigenvalues”:

While general-model REML by any algorithm for more than 3-6 traits isn’t usually stable
numerically, the canonical transformation REML was known to be successful for 32 traits! 

Extensions in canonical transformation

Multiple random effects

Extend the model to p multiple random effects

with 

We need such a transformation that

0M R  M’ = I 
and

0k kM G  M’ = D ,   k=1,p

kwhere D  are diagonal matrices. In general, such a transformation does not exist for p>1. Lin and
Smith (4) hypothesized that in practical situations an approximate equation can hold

0k kM G  M’ . D  
The algorithm to calculate M would be similar as before

i W and D in the decomposition

can be obtained approximately by the FG algorithm (Flury, 1988)
The transformation matrix is

 

0kFor a good approximation, matrices G  must be alike. In general multiple traits with t traits and p
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random effects, the total number of parameters to estimate is:
p t (t+1)/2

With the approximation, the number of parameters would be
(p-1) t +t(t+1)/2

For 2 random effects and 4 traits, the number of parameters is 20 in the first case and 14 in the
second case.

Misztal et al. (1993) has obtained very good results with the approximation for type and milk traits.
This indicates that the multiple-trait variance-covariance structure in several random effects is
similar. Reversely, in that case, general REML would estimate more parameters than necessary.

Missing traits

Ducrocq and Besbes (1993) have developed a method to apply the canonical transformation when

m má mârecords on some traits are missing. Let y  be the m-th observation partitioned as (y , y ), where

má mây  was recorded but y  is missing. Denote the model for each part as

  

 

mâLet (k) denote the current round of iteration. Missing record y  can be predicted using the equation

 

0,áâ 0 0,áá 0where R  is a block of R  corresponding to traits á and â, and R is a square block of R
corresponding to trait á.

To solve the mixed model equations, in each round predict missing records and use them for one
round of iteration as if they were known. Then, using the new estimates, predict the missing records
again. Continue until convergence. 

Canonical transformation with missing traits requires that in each round the previous round
estimates be untransformed, data read, the missing records predicted, and all the records
transformed. 

Formulas to apply the modification for missing records to REML has not been derived. Thus, the
procedure is applicable only for obtaining the solutions.
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Different models per trait

When a random effect is absent in one or more traits, one can still define that effect for all traits but
set the variance(s) for these traits very high so that this effect is practically eliminated. If there are
many random effects and the approximate diagonalization is being used, this could have a side
effect of poor diagonalization.

There are two methods to handle different fixed effects per trait. In a simple but approximate
method by Gengler and Misztal (1995), one creates a model containing all fixed effects. Then
clusters of traits with identical models are created. Then, such clusters are augmented to all traits by
predicting the missing observations, and the missing-record procedures are applied. The model for
each cluster includes all fixed effects, but effects undesirable in the given cluster are assigned
“dummy” levels. Consider the data

Cow
Fixed effects Traits

Herd-
year-
season

Herd-time of
classification

Classifier Milk Fat Stature Udder
width

1 1 1 1 6000 200 30 19

2 2 2 1 7000 225 45 37

3 2 3 2 8000 250 28 43

where herd-year season applied to milk and fat, and heard-time-of-classification applied to stature
and udder width. 

The data can be restructured to

Cow
Fixed effects Traits

Herd-
year-
season

Herd-time of
classification

Classifier Milk Fat Stature Udder
width

1 1 D D 6000 200 M M

2 2 D D 7000 225 M M

3 2 D D 8000 250 M M

1 D 1 1 M M 30 19
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2 D 2 1 M M 45 37

3 D 3 2 M M 28 43

where M denotes missing trait and D denotes the dummy effect. For example, if herd year season
had 100 levels, and herd-time-classification had 1000 levels, D=101 for herd-year-season and
D=1001 for  herd-time-classification. Because the herd effects do not overlap, they can be  joined to
reduce storage

Cow
Fixed effects Traits

Herd-year-season or
Herd-time of
classification

Classifier Milk Fat Stature Udder
width

1 1 D 6000 200 M M

2 2 D 7000 225 M M

3 2 D 8000 250 M M

1 1 1 M M 30 19

2 2 1 M M 45 37

3 3 2 M M 28 43

This method may be an approximation because the residuals of different clusters are assumed
uncorrelated. 

Another method was proposed by Ducrocq and Chapuis (1997). Define all effects for all traits. Let â
be solutions to all the fixed effects where all fixed effects are applied to all traits, and let â  bec

solutions constrained so that solutions to fixed effects that should be absent for certain traits are 0. 

Find such a transformation P so that
â  = Pâc

and then find an equivalent transformation on the canonical transformation side

Solve iteratively using all the fixed effects, and the end of each round apply the above
transformation, either on the original or on the transformed scale. 
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Implicit representation of general multiple-trait equations

Tier and Graser (1991) presented a way to drastically reduce the amount of storage for multiple-trait
mixed model equations. Initially assume that all traits follow the same model but some traits are
missing, and that there is only one random effect. For each missing trait combination i, the mixed
model can be written as

The left hand side of the mixed point equations can be written as 

   

owhere R  is the inverse of the residual (co)variance matrix for a missing trait combination i. For t(i)

traits, the memory needed to store the coefficient matrix can be close to t greater than that for single2 

traits because scalars in single trait are being expanded to txt blocks . Each txt block corresponding.

to the jk-th single-trait equation can be computed as

jk jkInstead of storing the complete coefficient matrix, it is sufficient to store C={c }. Each vector c
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contains counts of “kernels”, and it has as many elements as there are combinations of missing
effects in the data + 1. In a 5-trait situation, where there are five patterns of missing traits, each txt
block would require the storage of 15 elements, and the corresponding vector c only 6 elements.
The storage requirements can drop further if counts are kept by 2-byte or even 1-byte numbers as
opposed to 4- or 8-byte real numbers for the coefficients.

The method can be further refined if one creates a list of all txt blocks that are present in the
coefficient matrix, and each entry in the coefficient matrix is a pointer to an element in this list.

Example

Consider the model
y = Hh + Za + e
where h is the herd effect, a is the animal effect, and the data is

animal sire dam herd milk protein somatic
cell score

1 4 3 1 10,000 300 300,000

2 4 - 1 12,000 - -

2 4 - 2 13,000 - -

3 - - 2 13,000 350 -

3 - - 2 11,000 - -

4 - - 2

The data contains 3 classes of missing effects:

class missing
1 none
2 somatic cell score
3 protein and somatic cell score

The matrix C would contain the following vectors when shown upper-stored

1 0 1 0 1 0 0 0 0 0 1 0

0 1 2 0 0 0 1 0 0 1 1 0

1 0 0 2 0 0 0 -1 0 0 0 -1



175

0 0 2 1.33 0 0 0 -.66

0 1 1 1.5

0 0 0 1.86
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Because many vectors would appear more than once, one can store the matrix C as links and a list.

1 2 3

4 3 5

6 7 7

8 9

10

11

list

1 1 0 1 0

2 1 0 0 0

3 0 0 1 0

4 0 1 2 0

5 0 1 1 0

6 1 0 0 2

7 0 0 0 -1

8 0 0 2 1.33

9 0 0 0 -.66

10 0 1 1 1.5

11 0 0 0 1.86

Most likely, only a few elements in the list will occur in most of the entries.  Solutions by block

jjiteration would involve Cholesky decomposition of diagonal blocks c R . Because some of the*

blocks can occur many times, computer time may be saved by precomputing the Cholesky
decomposition for all types of blocks on the diagonal of C.

The above technique complicates when models for each trait are different. For special
considerations in such a case, see the work by Tier (1992).
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Computing in genomic selection

In genomic selection (Meuwissen et al., 2001), animals are genotyped by large panels of SNP,
effects of SNP markers or haplotytype segments based on those markers are predicted, and those
predictions are used to estimate genomic breding values for young animals based on their
genotypes. Analyzes may involve thousands of genotypes with up to 1M SNP.

As of 2011, the genomic analyzes can be of several types:

1. Estimation of SNP effects in a model that includes only genotyped animals,
e.g., BayesA, BayesB (Meuwissen et al., 2001).

2. Estimation of BV using SNP-derived genomic relationship matrix G for only genotyped animals
(VanRaden, 2008; Hayes et al., 2009). This is often called GBLUP.

3.  Regular BLUP where a pedigree relationship matrix has been replaced by combined
pedigree/genomic matrix H (Aguilar et al., 2010; Christensen and Lund, 2010). This option can be
called single-step GBLUP or ssGBLUP. 

Estimation of SNP effects 

Assume a simple model:

where y are (possibly deregreesed) proofs of high reliability animals, a are effects of individual SNP

a a e eor haplotype effects, Z is a matrix relating animals to markers; var(a)=D  or Ió , var(e)==D  or Ió ;2 2

xD  are diagonal matrices. The genomic prediction u of animals based on the predicted effects is:

awhere Z  is a matrix relating animals in a to respective SNP or haplotype effects. 

In methods like BayesA, solutions to a are obtained by Gauss-Seidel iteration. Due to a large
number of effects, a straightforward implementation of GS leads to a large number of operations.
For example, if there are 50,000 SNP effects in the model, the number of different contributions to
the system of equations resulting from one observation is 50,000  = 2.5*10  and the amount of2 9

memory required is > 10 Gbytes (half storage + double precision). 

Efficient Gauss-Seidel with SNP information

Legarra and Misztal (2008) looked at methods to compute solutions to a. One can avoid large
storage by using the iteration on data. Such iteration with the PCG algorithm is very fast. The
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iteration on data using the regular Gauss-Seidel in a straightforward implementation such as below
is very slow:

j i jwhere z  is the j-th a column of Z, a is the i-th solution and d  is variance ratio for the j-th solution; 

for simplification ì has been removed from the model and a on the right side is the most up-to-date
solution. The slowness is due to the large number of effects in the summation: typically about
50,000 rather than a typical 10 in a regular animal model. Janns and de Jong (1999) noticed that:

Subsequently, the iteration can be implemented much faster as:

but after computing every solution, the estimated residuals need to be updated:

j jwhere Äa  is the change in the value of a . 

PCG iteration on data

In the PCG iteration, the efficiency with SNP is obtained by avoiding matrix by matrix
multiplication and replacing it by successive matrix by vector operations. The left hand side of a
model with SNP is:

LHS=Z’Z +D-1

The most time-consuming operation in PCG is computing a product of LHS with a vector, say q.
The following avoid the matrix x by matrix operation:
LHS q = (Z’(Zq) +D q-1

Genomic relationship matrix

The model: 
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is equivalent to 

where G is a genomic relationship matrix. Such a model is often called GBLUP. Subsequently,
instead of estimating SNP effects, one can use G instead of A in a regular software.  With GBLUP,
existing software can be utilized. In GBLUP, D cannot be easily estimated and D=I is often used.

With REML or BLUP software, GBLUP requires G . For custom software, the GBLUP equations:-1

(I+G á)a=y-1

can be pre and post multiplied by G:

(G+Iá)a=Gy

and solutions to a can be obtained with PCG without inverting G:

LHS q=(G+Iá)=(ZDZ’+Iá)q=(Z(D(Zq)))+áq.

Joint relationship matrix H and single-step GBLUP
 
Legarra et al. (2009) presented a relationship matrix that combines A and G into H:

where index 1 refers to ungenotyped and 2 to genotyped animals.  Such a matrix can be used
indirectly, without inversion, in nonsymmetrical BLUP (Misztal et al., 2009). This is accomplished

12with PCG by successive multiplication of components of H. A product of A qcan be computed
efficiently using the Colleau et al. (2002) algorithm.

The inverse of H is simpler than H itself (Aguilar et al., 2010, Christensen et al., 2010):
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and can be used in regular mixed model software.  Success with H  depends on the ability to-1

22calculate G  and A . BLUP with matrix H is called single-step GBLUP or ssGBLUP as it-1 -1

computes GEBV from phenotypes, pedigree and the genomic information ina single step. 

Efficiency in computing can be obtained by using 1) parallel processing that utilizes multiple cores
in current computers, 2) specialized libraries that optimize computations for specific computers.

22With OpenMP structures for parallel processing and Intel libraries, computing of G  and A  for-1 -1

30,000 animals took about 2 hrs (Aguilar et al., 2011).

BLUP using H is called single-step GBLUP or ssGBLUP, as opposed to multiple steps when former
procedures like BayesB are involved. Multi-step procedures involve a few approximations:
inaccurate computing of deregressed proofs, assumptions of uncorrelated residuals in BayesB,
approximation in constructing an index that blends parent average with genomic predictions.  These
approximations are avoided in ssGBLUP, however, the inappropriate selection of G can result in

ijbiases and deterioration of accuracy. In general, the j-th genotype of animal i z  is calculated as: 

jwhere p  is j-th allele frequency. See Forni et al. (2010) on effects of different choices for p. When

22the average of G is smaller/larger than that of A , EBV of genotyped animals are biased
downward/upward compared to EBV of the rest of animals (Cheng et al., 2011). Biases can be
avoided if G is computed using current allele frequencies and then adjusted to have averages similar

22to A  ,e.g.:

22G=G+avg(offdiag(A )

STThe offset above is equivalent to a fixation index F  (Vitezica et al., 2011). If the population is
composed of mutiple lines or breeds, G needs to be adjusted separately for each line or breed
combination.

SsGBLUP has been used successfully for large multiple-trait procedures, e.g., for fertility in 3
parities (Aguilar et al., 2011) and 18 type traits (Tsuruta et al., 2011).  With careful programming
the running time can be less than twice of regular models with 10k genotypes. The convergence rate
of ssGBLUP with PCG seems to be affected negatively with a large number of young genotyped
animals and in models with many unknown parent groups.  These like many other issues in genomic
selection are currently being addressed. 

Fine tuning

The theory of H makes many assumptions, and many of these many not hold in practice. Several
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studies found  that better accuracies and lower biases of GEBV can be achieved by adjusting ô and
ù in H defined as below:

Generally, ô<1 and ù<1. Note that large ù causes H to be non-positive definite, causing slower
convergence or even divergence when MME are solved by iteration, while smaller ù will generally
cause better convergence. Another mechanism to improve the convergence rate is to remove old
pedigrees or even old data altogether, especially when the base population is heterogenous, i.e.,
parents are missing across generations.   

Large number of genotypes

22When G  and A  are computed explicitly, the cost is cubic with the number of genotypes.-1 -1

Subsequently, costs with > 50-100k genotypes are excessive.  Research in several labs (Harris and
Johnson, VanRaden, Legarra and Ducrocq) focuses on implementation of ssGBLUP where the
inverse is not needed. These methods rely on the fact that the product of Gq can be obtained with
linear time with respect to the number of genotypes as:

Gq=ZDZ’q=(Z(D(Z’q)))

when the products are computed sequentially as products of a matrix and a vector. 
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Data manipulation

So far we assumed that the data are available in an ordered way, with all effects numbered
consecutively from 1. A substantial part of data analysis is selection of records, data checks and
renumbering.

Renumbering 

Data for mixed model programs require consecutive coding. Each effect should be coded from 1 to
the last level,  without gaps. One of the more difficult renumbering is for the animal effect.
The purpose of that ordering is:

1. Detection of  discrepancies in pedigrees
- parents too young or too old than progenies
- animal as both male and female,
- too many progenies per female

2. Elimination of unnecessary animals
- animals without records and

without progeny, or
with one progeny and no parent

3. Assignment of unknown parent groups (if desired)

4. Actual renumbering in the format
animal code; sire code; dam code; parents’ code.
The parents’ code tells how many animals have been replaced by unknown parent groups. It
is desirable to code animals with records first because in that case the permanent
environmental effect (in the repeatability model) can share coding with the animal effect.

5. Renumbering the animal id in the performance file. If the maternal effect is present, it needs to be
added to the performance file and a code for missing dams assigned for a record of an animal whose
maternal information is unavailable. 

Memory consideration

If one prepares a subset of the data, e.g., for a REML analysis, the number of animals in the
pedigree file can be much larger than the number of animals in the performance file because of
many noncontributing animals. The size of pedigrees can be  limited if one considers animals in the
following order:



183

- animals with records
- parents of above animals
- parents of above animals
- .....................................

or from the youngest animal to the oldest. The removal of unnecessary animals can then proceed in
the reverse direction, from the oldest to the youngest.

There are two basic methods of renumbering:
A. by look-up tables
B. by sorting and merging    

A.  Look-up tables

Pseudo-program

Open performance file
Load all animals with records into memory
Sort pedigree file by year of birth descending
For each pedigree record

If animal in memory, load parents, year of birth, and possibly other info; accumulate #
parents and #progeny

Sort animals in memory by year of birth ascending
For each animal

If noncontributing 
Remove,
Eliminate contributions of current animal to parents and progeny

If desired, calculate inbreeding and/or unknown parent groups
Write renumbered pedigree file
Open performance file
For each record

Substitute original animal id by consecutive number
If desired, add inbreeding and/or maternal fields
Write record

For fast search, the "hash" is about the most efficient. 

Look-up approach is fast but memory intensive:
10-50 bytes of memory per animal,
10-50 Mbytes per 1 mln animals 
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B. Sort and merge 

1. From pedigree and data files, extract animal id with estimated year of birth and code, which is
one of a) has record, b) has pedigree record, c) has progeny

2. Sort by animal id

3. Summarize single entry per animal with:
number of records,
number of parents
number of progeny

4. Remove noncontributing animals
5. Assign consecutive numbers, first to animals with records
6. Sort data file by animal,
7. Sort pedigree file by animal;  merge in animal consecutive number
8. Sort pedigree file by dam,  merge in dam consecutive number
9. Sort pedigree file by sire;  merge in sire consecutive number

Sort and merge renumbering:
need very little memory but plenty of disk space
speed dependent on sorting!

Examples 
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animal a2 is redundant!

animal dam sire year of birth record
a1 a0 - 80 10
a4 a1 a3 85 15
a5 a4 - 90 12

sire pedigree file
bull dam sire year of birth
a2 - - 75
a3 a0 a2 80

Required unknown parent group allocations

year of birth of youngest
progeny

unknown parent group

<85 1

$85 2

Contents of look-up table after loading animals with records (order dependent on search algorithm)
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animal #parents #progeny #records birth #number

a1 0 0 1 80 1

a4 0 0 1 85 2

a5 0 0 1 90 3

Contents of look-up table after loading parents and parents of parents of animals with records

animal #parents #progeny #records birth #number

a1 1 1 1 80 1

a0 0 2 0 75 4

a4 2 1 1 85 2

a3 2 1 0 80 5

a5 1 0 1 90 3

a2 0 1 0 75 (none)

The last animal is noncontributing and can be eliminated. Renumbering of the pedigree done by one
pass through the pedigree file. Unknown parents initially are assigned the birth year of their oldest
progeny

animal dam sire year of birth
1 4 (80) 80
2 1 5 85
3 2 (90) 90
5 4 (80) 80

4 (75) (75) 80 year of birth predicted as year of birth of progeny - 5 

Unknown parent groups are replaced by consecutive numbers after the highest animal number, and
the code shows the number of unknown parents

animal dam sire code
1 4 6 1
2 1 5 0
3 2 7 1
5 4 6 1
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4 6 6 2

The records’ file with animal id and records is created by reading the records file again and merging
the animal id with the animal consecutive number

animal record
1 10
2 15
3 12

Sort and Merge approach

First file:

animal type of entry year of birth
a1 record&ped 80
a0 dam 80
a4 record&ped 85
a1 dam 85
a3 sire 85
a5 record&ped 90
a4 dam 90
a2 sire_ped 75
a3 sire_ped 80
a0 dam 80
a2 sire 80

After sorting by type of entry within animal:
(rec = record. pedx =  pedigree record with x known parents)
a0 dam 80
a0 dam 80
a1 dam 85
a1 rec&ped1 80
a2 sire 80
a2 sire_ped0 75
a3 sire 85
a3 sire_ped1 80
a4 dam 90
a4 reco&ped2 85
a5 rec&ped1 90
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At this point entries can be read and analyzed, one animal at a time. 

The renumber file would first be constructed with negative numbers  for animals without records,
because the maximum number of animals with records is not known until the file end:

animal #consecutive
a0 -1
a1 1
a3 -2
a4 2
a5 3

and in another pass, the same animals with records will have consecutive numbers corrected:

animal #consecutive
a0 4
a1 1
a3 5
a4 2
a5 3

The cow file is sorted by animal and merged with the animal file. The result is the data file:
animal record
1 10
2 15
3 12

and pedigree files:

1 a0 (80) (80) means unknown with animal born in 1980!
2 a1 a3
3 a4 (90)

The sire pedigree file is sorted by sire, merged with the animal file, and added to the previous
pedigree file:

1 a0 (80)
2 a1 a3
3 a4 (90)
5   a0 a2

Then the file is sorted and merged, first for dam, second for sire:
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1 4 (80)
2 1 5
3 5 (90)
5 4 (80)

After that, pedigree entries are added for animals without pedigree records (a0):
1 4 (80)
2 1 5
3 5 (90)
5 4 (80)
4 (80) (80)

Finally, unknown parents are replaced by unknown parent groups. In this case, born before 1985 are
assigned to group 6, the remaining animals assigned to group 7:

1 4 6
2 1 5
3 5 7
5 4 6
4 6 6
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Tools for data manipulation

A look-up approach requires a special program.  Such a program is likely to be very fast but can be
quite complicated because of a large number of details.   On the contrary, a sort-and-merge type
program can utilize some standard programs and therefore it could be easier to program although
the CPU time would likely to be higher. CPU time is not always important if the program is run
seldomly. What counts is cost of writing the program and ease of modification, which is directly
related to program’s complexity.

In pedigree numbering the following standard operations (“primitives”) would be almost sufficient:

1. Select records from a file based on conditions
2. Select fields from a file with many fields
3. Sort based on one or more keys
4. Join two or more files 
5. Retain unique records (or delete duplicate records)
6. Merge (catenate) two or more files
7. Number records consecutively

Consider the following data

file ped
animal dam sire code
1 4 6 1
2 1 5 0
3 2 7 1
5 4 6 1
4 6 6 2

file rec
animal record
1 10
2 15
3 12

Create a new file recm that contains all fields from rec and field dam from ped so that the data can
be analyzed with the maternal effect. In the most abstract way, this can be specified as

select animal, record, dam from ped,rec store in recm (1)

Alternatively, using the primitives
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sort ped by animal into peds (2)
sort rec by animal into recs
join rec and ped by animal into recsm
select animal record dam from recsm into recmat
delete files peds, recs, recsm

The pseudo-programs above assume that the “system” knows names of fields in file. If the system
knows the consecutive numbers of fields only, the same program would be 

sort ped by 1 into peds (3)
sort rec by 1  into recs
join rec by 1 and ped by 1 into recsm
select 1 2 4 from recsm into recmat
delete files peds, recs, recsm

If one needs to specify formats for each file separately, then the length of the program increases 
drastically and so does the chance of programming errors. For example, the line

sort ped by 1 into peds

could be equivalent to

infile ped (4)
outfile peds
input

animal 1-10
dam 11-20
sire 21-30
code 31

sort by animal

Please note that a change in the format in one file may require corresponding changes in many other
files. 

Data manipulation options 

Command in pseudo-program (1) would be typical for better databases (Mattison, 1993). In a
database, each file is defined only once. Therefore the chance of making a mistake is greatly
reduced. By using a high definition data manipulation language, e.g., SQL, details of internal
computations need not be specified. Commercial databases may be expensive and require a good
deal of knowledge to operate smoothly. Some elements of the database are present in SAS.
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Commands in (3) can be emulated by Unix utilities. 

Unix/Linux/MacOS utilities

Let fields in a file be separated by spaces.

The sort command works as 

sort f1 -o f2
or

sort f1 >f2

sorts file f1 to f2 by all fields starting from the first one. The option -o allows for the same input and
output file. Other options allow to sort by multiple keys and in a reverse order

sort +3 -4 +1 -2 -r  f1 -o f2

sorts by fields 4 (skip 3 end at 4) and 2 (skip 1 end at 2) in the reverse order (-r). The sort utility can
also be used to merge sorted files, and to test whether a file is sorted. 

Repeated fields can be removed by the uniq command 

uniq f1 >f2

An option -c prints not only the unique records but also counts of repeated lines.
Command join joins two files based on selection criteria and retains only specified fields

join -j1 1  -j2 4 -o 1.5 1.6 2.3 2.4 f1 f2 >f3

joins files f1 and f2 into f3 based on field 1 in f1 and field 4 in file 2. File f3 contains fields 5 and 6
from file f1 and fields 3 and 4 from file 2.

A selection of fields and records can be done using AWK (GAWK, NAWK). The command

awk ‘$1>125'     f1    >f2

selects records from f1 where the field 1 is greater than 125. Conditions may be more complicated

awk ‘$1>125 && $2!=”“ ||  $1==0'     f1    >f2

where either filed 1 is greater than 125 and filed 2 not blank, or field one is zero. Another variant of
awk
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awk ‘{print $1,$5,$6}’ f1 >f2

selects only fields 1, 5 and 6 from file f1. There are many special variables in AWK. NR denotes the
consecutive record number, and $0 denotes the complete record.  Thus

awk ‘{print NR, $0}’ f1 >f2

precedes each record with its consecutive number. The two variants of AWK can be used together. 

awk ‘ $5 == “May” {print $3, $4}’ f1 >f2

AWK is also a general programming language that can be used for tasks much more complicated
than shown above. Books on Unix utilities including AWK are available, e.g., Swartz (1990).

The utilities use space as a standard delimiter between fields. If ID’s contain spaces, the utilities
have options for other delimiters, e.g., “:”.

Perl is a tool more general that awk. It contains constructs like built-in hash storage. There are
reports of Perl being successful in pedigree preparation large national populations. 
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