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Questions in genomic selection

• SNP are genes, markers or something else?

• Good accuracy at 30k SNP , standard 50-60k, a bit better at 700k 
• What is magic with 50K?
• Why not more noise at 600K
• Causative SNP?

• Stability problems with GRM
• At about 5k, usually blended with A

• OK accuracy with few genotyped animals 1k-2k
• Good in farm
• Rise with extra genotypes slow
• Discrepancy between simulation and field-data results 



Inversion by recursion
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Generic recursion

Cost low only if P sparse
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For pedigree relationships (Henderson, 1976): 

Is limited recursion applicable to genomic relationships?



Algorithm for proven and young animals (APY)
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Linear cost for young animals

Misztal et al. (2014)



Tests with Holsteins (Fragomeni et al., 2015)

G needed G-1

APY inverse

Regular inverse

Correlations of GEBV 
with regular inverse

23k bulls
as core

17k cows as 
core

> 0.99

> 0.99

20k random 
animals as 
core

> 0.99



Impact of recursion size in Holsteins and 
chicken

Holstein

broiler

15,0003000

Corr(GEBV, GEBV APY)

Number of randomly-chosen animals in recursion



Theory of junctions

…………

Heterogenetic and homogenic tracts in genome (Stam, 1980)

Called independent chromosome segments Me 
(Goddard et al., 2009; Daetwyler et al., 2010)

E(Me)=4NeL (Stam, 1980)
Ne – effective population size
L –length of genome in Morgans

Need 12 Me SNPs to detect 90% of junctions 
(MacLeod et al., 2005)



Haplotype blocks = Independent chromosome segments

• E(Me) = 4NeL       Stam (1980)

• Ne – Effective population size

• L – Length of  genome in Morgans

2NeL                      Hayes et al. (2009)

• Me 2NeL/[log(NeL)]   Goddard et al. (2011)

Many more Brard and Ricard (2015)

Cuppen (2005)



Choose core “c” and noncore “n” animals

 n nc c nu P u ε

u Ts
chromosome segments

 c cs Qu ε

Theory of APY based on segments

Breeding value

small if number of core animals > number of segments
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Choose core “c” and noncore “n” animals

 n nc c nu P u

The inverse

Unknown matrices from 
conditional expectation

BV of noncore animals linear function 
of core animals

Matrix notation

Var(u)

Misztal&Legarra&Aguilar (2014)



's s sG  =   U D U' = U D U

U – eigenvalues

D – eigenvectors

Eigenvalues sum to 100%

What % is useful, 95%? 98% 99%, 99.999%?

Finding dimensionalities by eigenvalues



2 NeL

NeL

4 NeL

99%

98%

95%

90%



True accuracies as function of number of eigenvalues 
corresponding to given explained variance in G 

Ne=200

Ne=20

Approximate number 
of animals / segments NeL 2NeL           4NeL

Accuracies maximized by 98% “information in G, 95% almost as good
Last 2% of information in G noise

Pocrnic et al., 2016a





Number of eigenvalues in G to explain 
given fraction of variability

Holstein
Jersey
Angus

Pigs
Chicken



Reliabilities – Jerseys (75k animals)

Milk 

Protein

Fat

3300                                6100               11,500                  assumed dimensionality
≈NeL ≈2NeL ≈4 NeL

(number of core animals)

100% = full inverse  lower accuracy

Pocrnic et al., 2016b



Estimated dimensionality, effective 
population size and optimal number of SNP

Specie Approx Me
(98%)

Effective 
population 
size (L=30M)

Optimal 
number of 
SNP
(12 x Me)

Holsteins 14k 149 170k

Jerseys 10k 101 120k

Angus 11k 113 130k

Pigs 4k 43 (L=20M) 50k

Chicken 4k 44 50k

Pocrnic et al. (2016b)



Side effects of reduced dimensionality

• Number of segments
• 800k in humans

• 5-15k in animals

• Impact on SNP selection and GWAS



Theory of limited dimensionality

……

Number of haplotypes: 4 Ne L
Ne within each ¼ Morgan segment

¼ Morgan

Ne haplotypes within each ¼ Morgan segment

QTLs
Genome haplotypes 

Dimensionality of ¼ Morgan case: Ne or number of identified QTLs
 Reduced dimensionality with weighted GRM



Eigenvalue profile

10% should be 300 

segments
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Which core animals in APY?

Bradford et al. (2017)

 Simulated populations (QMSim; Sargolzaei and Schenkel, 2009)
 Ne = 40
 #genotyped animals = 50,000

 Core animals:
 Random gen 6  ||   gen 7  ||  gen8  ||   gen9  ||  gen 10 (y)
 Random all generations
 Incomplete pedigree
 Genotypes in gen 9 and 10 imputed with 98% accuracy



Which core animals in APY?
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Persistence over generations

Generations

R
el

ia
b

ili
ty

1.0

BLUP

GBLUP - small

BayesB - small

GBLUP – very large

GBLUP – very large
80% genome

Very large – equivalent to 4NeL animals with 99% accuracy
Are SNP effects from Holstein national populations converging 



Multitrait ssGBLUP: Is SNP selection 
important? Causative SNPs?

• SNP selection/weighting (BayesB, etc.) 
• Large impact with few genotypes

• Little or no impact with many



ssGBLUP accuracies using SNP60K and 100 
QTNs – simulation study

0 10 20 30 40 50 60 70 80 90 100

BLUP

ssGBLUP - unweighted SNP60k

   unweighted SNP60k + 100 QTN

    SNP60k + 100 QTN weighted by GWAS

    SNP60K + 100 QTN with "true" variance

    plus by APY

only 100 QTN unweighted by APY

Fragomeni et al. (2017)

Rank (98%)

19k

5k

98



QTL

Accuracy and distance from markers 
to QTL

Fragomeni et al. (2017)



Nothing can be more fatal to progress than a 

too confident reliance on mathematical 

symbols; for the student is only too apt to take 

the easier course, and consider the formula not 

the fact as the physical reality.”

Kelvin
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Development of the combined matrix
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Comprehensive (Legarra ,2009)

Inverse of Comprehensive (Aguilar et al., 2010)

Christensen and Lund, 2010
Boemcke et al., 2010



Implementation at UGA

• Module genomic in BLUPF90 package (Aguilar et al. 2011)  

• Option SNP_File xxx in RENUMF90

• Lots of options with defaults

• Creation of G-1: minutes for 10k 

genotypes, hours for 50k genotypes 



Prediction in 2004 DD2009

R2 (%) Inflation (%)

Parent Avg 24 31

Multistep

(VanRaden)
+16 16

Single-step  

Regular +17 31

Refined +17 4

Predictions for US final scores in Holsteins (Aguilar et 

al., 2010)

1 1

22G -A              

1 1

221.5G -0.6A            





• US Holsteins (10 million animals)

• 18 traits

• Almost 50,000 genotypes of bulls and cows

• 2 days computing

Multitrait national genomic evaluation for type 
(Tsuruta et al., 2010)



Genomic evaluations of broiler chicken (Chen et al., 
2010)

• 180k broiler chicken 

• 3 k genotyped with SNP60k chip

• 3 methods
– BLUP- full data

– BayesA – genotyped subset

– Single step – subset and full data set



Trait Accuracy*100

BLUP
BayesA

Subset

Single-step

Subset

Single-step

Full

Body 

Weight
56 +4 +11 +12

Breast 

Meat
35 +1 +0 +6

Leg Score 29 -20 -23 +7

Accuracies for broiler chickens

Next cycle of selection

Body 

Weight
38 +13 +22 =

Breast Meat
39 +10 +26 +29

Leg Score 28 -21 +6 =

Multiple trait

BayesA – days of 
computing + errors

Single-step –
2 minutes
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• Large research interest in GWAS
• Limitations if Bayesian methods

– Simple models
– Single trait
– Complicated if not all animals genotyped

Can ssGBLUP be used for GWAS?

ssGBLUP for Genome Wide Association Studies



Three Methods for GWAS – chicken

ssGBLUP
Iterations on SNP (it5)

Classical GWAS

BayesB



Can large QTL exist despite  selection?

• Genetics and genomics of mortality in US 
Holsteins

• (Tokuhisa et al, 2014; Tsuruta et al., 2014)

• 6M records, SNP50k genotypes of 35k bulls



Milk – first parity

Mortality – first parity



R2 in Israeli dairy – 1400 genotypes
(Lino et al., 2012)
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Why unknown parent groups

• Different lines or breeds (Harris and Johnson, 2012)

• Unrecorded parents across generations



Pedigree depth for young animals

1950       1960        1970        1980           1990          2000      2010

g1 g5 g11 g18 g24 g31



Pedigree length and convergence
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Cut pedigree and data?

1950       1960        1970        1980           1990          2000      2010

g1 g5 g11 g18 g24 g31



US Holsteins – final scores



Realized broiler accuracies with male, female or 
both genotypes – Trait A
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196,000 birds with phenotype
~13,000 genotypes

(Lourenco et al., submitted)
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Realized accuracies with male, female or both 
genotypes – Trait D
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Why realized accuracies differ by sex?

parents

Bigger selection pressure on females

Selection graph for GEBV; possibly more differential selection EBV from BLUP



Why realized accuracies differ by traits for similar h2

h2=0.25 h2=0.22



Decomposition of GEBV in Single-step

GEBV = w1CD+w2PA+w3PC +w4DGV +w5PI
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CD – contemporary 
deviation
PA – Parent average
PC – Progeny 
Contribution

DGV – direct genomic 
value
PI – Parental Index

w1 =1å

No genotype, no extra accuracy



GEBV for young animals

GEBV = w2PA+w4DGV +w5PI

GEBV = DGV

GEBV = PAIf no genotype

If genotype via SNP only

Complete

Little improvement with genomics if animal not genotyped





New studies

• Unbiased evaluations of US Holstein with > 2 M genotypes of varying 
quality

• Helping Interbull survive
• Unbiased pseudo-observations for bulls
• GBLUP MACE

• Crossbreeding evaluation without reduction of accuracy

• Resilience and genomic selection



Programming/methodology

• Better approximations of accuracy

• Better GWAS 

• GUI?



Applied studies

• Pigs
• Mortality, survival, changing correlations

• Chickens
• Sexual dimorphism,…

• Dairy

• Beef
• Altitude, GxE

• Fish

• Heat stress

• GxE

• Resilience

• Theory 



Production (high h2)

Raw fitness (low h2)

Management

Realized fitness 

Genomic selectionTrends



Is UGA a good place to come?

• Good place for Science

• Improving South

• Politics small at universities

• Funding available

• Interesting projects

• Data from biggest animal institutions across species



Asch (1951) experiments

A, B or C?


