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Questions in genomic selection

SNP are genes, markers or something else?

Good accuracy at 30k SNP, standard 50-60k, a bit better at 700k
* What is magic with 50K?
* Why not more noise at 600K
e Causative SNP?

Stability problems with GRM
* At about 5k, usually blended with A

OK accuracy with few genotyped animals 1k-2k
* Good in farm
* Rise with extra genotypes slow
* Discrepancy between simulation and field-data results



Inversion by recursion
U; \ul,uz,..,u,-_l = p,-'ll + @ Generic recursion
u=Pu+®

VElI‘(ll)_1 = (I — P) 'Val‘((l))_l(l - P) Cost low only if P sparse

For pedigree relationships (Henderson, 1976):

u; = 0.5usl. +0.5u, + ¢, P very sparse

Is limited recursion applicable to genomic relationships?



Algorithm for proven and young animals (APY)

For young animals =0in GBLUP
u; | U, uy,.. Ui_ = Z il + Z piitt; &
roven'" =" young"
p J=) & Misztal et al. (2014)
-1 -1
a1 |G 0 -G, G 1 1
G PP n PP (M |:GypGpp I]
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Z,, — genotypes for proven animals

Z, — genotypes for young animals

-1
— ! !

Linear cost for young animals



Tests with Holsteins (Fragomeni et al., 2015)

G needed G1!

R - -
Correlations of GEBV
APY inverse with regular inverse
23k bulls >0.99
as core I I
17k cows as
core >0.99
20k random
animals as > 0.99
core




Impact of recursion size in Holsteins and
chicken
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Theory of junctions

Heterogenetic and homogenic tracts in genome (Stam, 1980)

Called independent chromosome segments Me
(Goddard et al., 2009; Daetwyler et al., 2010)

E(Me)=4Nel (Stam, 1980)

Ne — effective population size
L —length of genome in Morgans

Need 12 Me SNPs to detect 90% of junctions
(MaclLeod et al., 2005)



Haplotype blocks = Independent chromosome segments

« E(Me)=4N_L  Stam (1980) X Meiotic crossover

* N, — Effective population size
* L—Length of genome in Morgans

~ 2N.L Hayes et al. (2009)

Multiple generations
* Me =y 2N_L/[log(N.L)] Goddard et al. (2011) l and strain selection
— Many more Brard and Ricard (2015)

Strain 1
Strain 2
Strain 3

Strain 4

Strain 5

Cuppen (2005)



Theory of APY based on segments

Breeding value chromosome segments
u="Ts

o 7

Choose core “c¢” and noncore “n” animals

s=Qu,_+€g,

u, = Pncuc +&,

small if number of core animals > number of segments



o 7

Choose core “c” and noncore “n” animals

BV of noncore animals linear function
of core animals

Matrix notation u. _ I O] u,
un PI’IC I 81’1

The inverse Gl {I —Pcn}{chl 0 }{ | O} Misztal&Legarra&Aguilar (2014)
0 | M LI-P,. 1
Unknown matrices from P =G.G! M. = dia (2 —Piria '}
conditional expectation nc nc=cc A E18is LLi-18 i,1i-1



Finding dimensionalities by eigenvalues

G=UDU = U, D, U’
Iy ] ¢ =

' 0
U — eigenvalues Eigenvalues sum to 100%

D — eigenvectors What % is useful, 95%? 98% 99%, 99.999%?
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True accuracies as function of number of eigenvalues
corresponding to given explained variance in G
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Number of eigenvalues in G to explain
given fraction of variability
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Reliabilities — Jerseys (75k animals)

0.60 1

0.58 - Pocrnic et al., 2016b
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100% = full inverse =» lower accuracy



Estimated dimensionality, effective
population size and optimal number of SNP

Approx Me Effective Optimal
(98%) population number of
size (L=30M) |SNP
(12 x Me)

Holsteins 14k 149 170k
Jerseys 10k 101 120k
Angus 11k 113 130k
Pigs 4k 43 (L=20M) 50k
Chicken 4k 44 50k

Pocrnic et al. (2016b)



Side effects of reduced dimensionality

* Number of segments
e 800k in humans
e 5-15k in animals

* Impact on SNP selection and GWAS



Theory of limited dimensionality

Number of haplotypes: 4 Ne L
Ne within each 74 Morgan segment

Genome haplotypes

7a Morgan

Ne haplotypes within each % Morgan segment

Dimensionality of 74 Morgan case: Ne or number of identified QTLs
=» Reduced dimensionality with weighted GRM



Eigenvalue profile
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Accuracies with largest eigenvalues only
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Accuracies with largest eigenvalues only
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Largest eigenvalues or core animals in APY
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Which core animals in APY?

Bradford et al. (2017)

Simulated populations (QMSim; Sargolzaei and Schenkel, 2009)
Ne =40
#genotyped animals = 50,000

Core animals:

= Randomgen6 || gen7 || gen8 || gen9 || gen 10 (y)
= Random all generations

= |ncomplete pedigree

= Genotypesin gen 9 and 10 imputed with 98% accuracy
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Persistence over generations

1.0 GBLUP —very large

GBLUP —very large
80% genome

| BayesB - small

Reliability

GBLUP - small

Generations

Very large — equivalent to 4Nel animals with 99% accuracy
Are SNP effects from Holstein national populations converging



Multitrait ssGBLUP: Is SNP selection

important? Causative SNPs?

* SNP selection/weighting (BayesB, etc.)
* Large impact with few genotypes
e Little or no impact with many
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ssGBLUP accuracies using SNP60K and 100

QTNs — simulation stud
y Rank (98%)
0 10 20 30 40 50 60 70 80 a0 100
Fragomeni et al. (2017) sLur
. ssGBLUP - unweighted SNPeok [ 19k
unweighted SNP60k + 100 QTN [N

SNP60k + 100 QTN weighted by GWAS [ 5K
SNP60K + 100 QTN with "true" variance |GG
plus by APY .
only 100 QTN unweighted by APY [ 8



Accuracy and distance from markers
to QTL

Fragomeni et al. (2017)

100 QTL - no polygenic effect
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Nothing can be more fatal to progress than a
too confident reliance on mathematical
symbols; for the student is only too apt to take
the easier course, and consider the formula not
the fact as the physical reality.”

Kelvin
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EDITORIAL

J. Anim. Breed. Genet. ISSN 0931-2668

Shortage of quantitative geneticists in animal breeding

More and more I receive phone calls from various
breeding companies looking to hire a PhD in quanti-
tative genetics. They inquire if I know of a graduate
versed in quantitative genetics and mixed models,
with some programming skills, who can speak and
write passable English, has a general understanding
of markers and molecular genetics, can run and
troubleshoot a genetic evaluation, and in general be
a problem solver. I do not know of anyone available,
I reply. There were many of them 10-15 years ago,
but now they are rare. If they show up, they usually
have very good offers well before graduation. My
colleagues outside the USA are telling me of similar
problems, although the severity of the PhD shortage
is country dependent.

Why are PhDs in animal breeding with quantita-
tive skills rare in the USA as well as in many other
countries? Some 15 years ago there was a shift in
governmental funding away from animal breeding
and aquantitative genetics to almost exclusivelv

Great hopes were put into finding markers for
major genes (QTL) that could help solve the new chal-
lenges. Based on many association studies, there is
growing consensus that few markers/QTLs can be
detected, those that were detected had their estimated
effects inflated, and that the benefits of using markers
are limited. Of all markers found, very few were for
low-heritability traits.

The new trend in animal breeding is genomic selec-
tion using SNP chips. In this methodology, one esti-
mates effects of individual haplotypes, and genomic
EBV (GEBV) is estimated as a sum of those effects. No
effort is made to identify QTLs. The genomic selection
is based on an assumption opposite from the previous
effort in markers but the same as in ‘black box” genet-
ics: that a large number of genes are responsible for a
trait.

When only a small fraction of the population is
genotyped, the estimates of haplotype effects will be
derived via EBV obtained through classical methods



Development of the combined matrix

Initial (Misztal et al., 2009)

0 0 .
H= A + l-ungenotyped animals

_ 2-genotyped animals
0 G-A,

Comprehensive (Legarra ,2009)

| ' B -1 ] A -1
E H=A+ Alz(?zz (I) |:i}[G-A22][I I] A22A21 0

Inverse of Comprehensive (Aguilar et al., 2010)

H1=A14{O X }

0 G‘I_A;; Christensen and Lund, 2010

Boemcke et al., 2010



Implementation at UGA

Module genomic in BLUPF90 package (Aguilar et al. 2011)
Option SNP_File xxx in RENUMF90
Lots of options with defaults
Creation of G1: minutes for 10k

genotypes, hours for 50k genotypes

ORIGINAL ARTICLE

Efficient computation of the genomic relationship matrix and
other matrices used in single-step evaluation
I. Aguilar?, I. Misztal', A. Legarra® & S. Tsuruta'

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa



Predictions for US final scores in Holsteins (Aguilar et
al., 2010)

Parent Avg 24 31
Multist

ultistep 16 16
(VanRaden)

Single-step

Regular — G-1_a3) +17 31

Refined | sG-1.0.6a;! +17 4
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Multitrait national genomic evaluation for type
(Tsuruta et al., 2010)

* US Holsteins (10 million animals)
* 18 traits

* Almost 50,000 genotypes of bulls and cows
e 2 days computing

o SCIEN,
5’& / {n J. Dairy Sci. 94:4198-4204
g _E doi:10.3168/jds.2011-4256
7227y © American Dairy Science Association®, 2011.

Multiple-trait genomic evaluation of linear type traits using genomic
and phenotypic data in US Holsteins

S. Tsuruta,*' . Misztal,* I. Aguilar,f and T. J. Lawlorf

*Animal and Dairy Science Department, University of Georgia, Athens 30602

TlInstituto Nacional de Investigacién Agropecuaria, Las Piedras, Canelones 90200, Uruguay
THolstein Association USA Inc., Brattleboro, VT 05301



Genomic evaluations of broiler chicken (Chen et al,,

2010)

« 180k broiler chicken
« 3 k genotyped with SNP60k chip

* 3 methods
— BLUP-full data
— BayesA — genotyped subset
— Single step — subset and full data set

Genome-wide marker-assisted selection combining all pedigree
phenotypic information with genotypic data in one step:
An example using broiler chickens

C. Y. Chen,*"? 1. Misztal,* I. Aguilar,*t S. Tsuruta,* T. H. E. Meuwissen,}
S. E. Aggrey,§ T. Wing,# and W. M. Muir||

*Department of Animal and Dairy Science, University of Georgia, Athens 30602-2771; {Instituto Nacional
de Investigacidén Agropecuaria, Las Brujas 90200, Uruguay; {Department of Animal and Aquacultural Sciences,
Norwegian University of Life Sciences, NO-1432 As, Norway; §Department of Poultry Science,
University of Georgia, Athens 30602-2772; #Cobb-Vantress Inc., PO Box 1030, Siloam Springs, AR T2761-1030;
and ||Department of Animal Science, Purdue University, West Lafayette, IN 47907-1151



Accuracies for broiler chickens

ingle- ingle- BayesA — f
BLUP BayesA Single-step Single-step BayesA-dayso

Subset Subset Full computing + errors
Body
: 56 +4 +11 +12
Weight
Single-step —

Breast 35 +1 +0 +6 2 minutes

Meat

Leg Score 29 -20 -23 iy

Next cycle of selection Multiple trait

Breast Meat

Leg Score 28 -21 +6 -



Forni et al. Genetics Selection Evolution 2011, 43:1 Genetics
http//www.gsejournal.org/content/43/1/1 i
P 9sel g Selection

Evolution

RESEARCH Open Access

Different genomic relationship matrices for
single-step analysis using phenotypic, pedigree
and genomic information

Selma Forni"”, Ignacio Aguilar™®, Ignacy Misztal®

Effect of different genomic relationship matrices
on accuracy and scale’

C. Y. Chen,**® I. Misztal,* I. Aguilar,*} A. Legarra,f and W. M. Muir§

*Department of Animal and Dairy Science, University of Georgia, Athens 30602-2771;
tInstituto Nacional de Investigaciéon Agropecuaria, Las Brujas 90200, Uruguay;
TINRA, UR631 Station d’Amélioration Génétique des Animaux (SAGA), BP 52627, 32326 Castanet-Tolosan,
France; and §Department of Animal Science, Purdue University, West Lafayette, IN 47907-1151



Trend: genetic improvement in birth weight and total born
(PIC Genetic Nucleus)

Total born Birth weight
(pigs/sow/yr) (kg/pig)
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of RBGS!
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Journal of

EDITORIAL

FAQ for genomic selection

Genomic selection has been practiced in many spe-
cies and in many organizations. In some cases, the
results have been spectacular, and in some not.
When the results fall short of expectations, questions
remain as to whether they were because of inade-
quate statistics, too small chip size, problems with
quality control or basic issues. In the end, one won-
ders what the limits of genomic selection are, and
what will follow it. Based on published and unpub-
lished results on genomic selection, one can prepare
a FAQ sheet. Here it is. While looking at it, remem-
ber that FAQs change over time.

I have heard that with 1000 animals genotyped
and phenotyped I will have accurate predic-
tions for many generations. Is this true? Not
really. One needs more genotypes and the genomic associa-

J. Anim. Breed. Genet. ISSN 0931-2668

number of recent ancestors in the reference population. If
that number is high and the populations are strongly
linked, the accuracy may be decent. If that number is low,
the accuracy will be close to 0. In the extreme, the genomic
prediction for a different population, while ignoring the
parent average, may be less accurate than the reqular
EBV.

Are prediction equations developed with one
breed useful for other breeds? They are not. They
would be if SNP effects were gene effects that are similar
across breeds. However, SNP effects point mostly to com-
mon haplotypes of recent ancestors, or in other words, we
are getting ‘better’ additive relationships.

If this is the case, what fraction of the additive
variability is explained by genes or closely



ssGBLUP for Genome Wide Association Studies

* Large research interest in GWAS

e Limitations if Bayesian methods
— Simple models
— Single trait
— Complicated if not all animals genotyped

Can ssGBLUP be used for GWAS?

Genet. Res., Camb. (2012), 94, pp. 73-83.  © Cambridge University Press 2012
doi: 10.1017/S0016672312000274

Genome-wide association mapping including phenotypes
from relatives without genotypes

H. WANG“‘ I. MISZTAL', 1. AGUILAR?, A. L]:GARRASANDW M. MUIR!
! Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602-2771, USA
IA Las Brujas, 9(} (}0 Canelones, Uruguay
s."\4 RA, L Rﬁji Statio des Animaux (SAGA), BP 52627, j,j,ﬁ Castaner-Tolosan, France
* Departmenti of Anim u(’ v, West Lafayette, IN 47907-1151, USA

(Received 19 September 2011, revised 8 December 2011, and 9 March 2012; accepted 13 March 2012)




Three Methods for GWAS — chicken

© ssGBLUP

- Iterations on SNP (it5)

- L.-L ol 'l Py .l i

000000000000000



Can large QTL exist despite selection?

* Genetics and genomics of mortality in US
Holsteins

. (Tokuhisa et al, 2014; Tsuruta et al., 2014)

* 6M records, SNP50k genotypes of 35k bulls
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R?in Israeli dairy — 1400 genotypes

(Lino et al., 2012)
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Why unknown parent groups

e Different lines or breeds (Harris and Johnson, 2012)

* Unrecorded parents across generations

Journal of V¥

J. Anim. Breed. Genet. ISSN 0931-2668

ORIGINAL ARTICLE

Unknown-parent groups in single-step genomic evaluation
I. Misztal', Z.G. Vitezica®, A. Legarra®, I. Aguilar® & A.A. Swan®

1 Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA

2 Université de Toulouse, UMR 1289 TANDEM, INRA/INPT-ENSAT/ENVT F-31326, Castanet-Tolosan, France
3 INRA, Station d’Amélioration Génétique des Animaux, Castanet-Tolosan, France

4 Instituto Nacional de Investigacion Agropecuaria,, Las Brujas, Uruguay

5 Animal Breeding and Genetics Unit, University of New England, Armidale, NSW, Australia



Pedigree depth for young animals
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Pedigree length and convergence

H'=A"+

-1 i
G e Azlz

G'- A

-1 -1
G _Azz

0

1

Long °

0

Big A,, makes H less PD,

-1 -1 Reduces convergence rate

Good convergence and genotyped animals biased down

Bad convergence and genotyped animals biased up

_A-l _ A'2123 Bad convergence and genotyped
22,2

medium sho’rt animals biased down and up

pedigrees



Cut pedigree and data?
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US Holsteins — final scores

Truncated pedigree
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Realized broiler accuracies with male, female or
both genotypes — Trait A
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(Lourenco et al., submitted)



Realized accuracies with male, female or both
genotypes —Trait D
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(Lourenco et al., in prep)



Why realized accuracies differ by sex?

parents
038 196,000 birds with phenotype lf.'l
M+F ~13,000 genotypes -
0.7
0.6
0.5 0
' BLUP =
04 M+F
Fem
03 0
0.2 f.".ll
Male
01 BLUP
0 — 0 wes males
Male EPD Female EPD
% s females

Bigger selection pressure on females

Selection graph for GEBV; possibly more differential selection EBV from BLUP



Why realized accuracies differ by traits for similar h?
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Decomposition of GEBV in Single-step

( - =D

0 0 A
I'MZ+ad™ + L l=Z'My

| | N G{A\

GEBV =w,CD+w,PA+w,PC+w, DGV +w.PI w =1

N

CD — contemporary

I DGV — direct genomic
deviation
No genotype, no extra accuracy
PA — Parent average value Ind
PC — Progeny Pl — Parental Index

Contribution



GEBV for young animals

Complete  (;EBV =w,PA+w, DGV +w.Pl

If genotype via SNP only GEBV: DGV

If no genotype GEBV — PA

Little improvement with genomics if animal not genotyped



EDITORIAL
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Is genomic selection now a mature technology?

A couple of years ago, I wrote ‘FAQ for genomic selec-
tion’ in JABG (Volume 8, 245-246), and statements
there are still intact IMHO. With many new studies,
many murky points became clear and new puzzles
appeared.

The genetic evaluation by BLUP became mature
technology after the discovery of inexpensive inverse
of the numerator relationship matrix (Henderson)
and computing methodologies by iteration on data
(Schaeffer). Then, the largest evaluations could be
conducted by BLUP. Refinements continued, but the
main steps were done. One can wonder whether now
the genomic selection is also a mature technology.

validation continues. Properties of a particular valida-
tion are clearer by looking at the decomposition of
GEBV into five components: parent average, yield
deviation, progeny contribution, direct genomic value
and pedigree index [e.g. Lourenco et al., (2015) Genet.
Sel. Evol., 47:56]. One big plus of a genomic validation
is that it usually includes BLUP wvalidation, often
exposing problems in BLUP models such as excessive
complexity. Good BLUP models are important as bad
EBVs usually mean bad GEBVs. Realized accuracies
may be very low due to strong selection [Bijma
(2012) J Anim Breed Genet., 129:345-358].

Single-step GBLUP (ssGBLUP) became a universally



New studies

* Unbiased evaluations of US Holstein with > 2 M genotypes of varying
quality

* Helping Interbull survive

* Unbiased pseudo-observations for bulls
 GBLUP MACE

* Crossbreeding evaluation without reduction of accuracy

* Resilience and genomic selection



Programming/methodology

* Better approximations of accuracy
* Better GWAS
* GUI?



Applied studies

* Pigs

* Mortality, survival, changing correlations

* Chickens
e Sexual dimorphism,...

* Dairy

* Beef
* Altitude, GxE

* Fish

* Heat stress
* GxE

* Resilience
* Theory



Trends

Production (high h?)

Raw fitness (low h?)

Management

Realized fitness

T
-

Genomic selection



s UGA a good place to come?

* Good place for Science

* Improving South

* Politics small at universities

* Funding available

* Interesting projects

* Data from biggest animal institutions across species



L
Asch (1951) experiments

A, B or C?



