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Our genetic model is: y=Xb+Wu-+e

y = vector of phenotypes

Xb = matrix relating y with fixed effectsin b

Wu = matrix relating y with random effects in u, Var(u) = Ao/
e = vector of random errors, Var(e) = Ig2

[X’X X'W ”i)]:[X’Y
WX WW+A Mg W'y
Best: minimizes MSE

Linear: linear function of the data
Unbiased: E(u) = E(@)
Prediction: for random effects ui — uS_i + ud_i

P(Y; U) — p(u|Y)p(Y) = p(ylu)p(u) @ Henderson, 1949
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 Unbalanced data and information from relatives

[X’X [b] [X’y
WX w w + A‘1/1

1 — h?
h? is high 1= h? is low
h2
A goes to zero ‘ A goes to infinity
A~11 goes to zero A~11 goes to infinity
“Relationships don’t matter” “Relationships matter a lot”

@ Henderson, 1949
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Genomic BLUP

BLUP-based methods
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Use of DNA polymorphisms as genetic markers

Summary. New sources of genetic polymorphisms
promise significant additions to the number of useful
genetic markers in agricultural plants and animals, and
prompt this review of potential applications of poly-
morphic genetic markers in plant and animal breeding.
Two major areas of application can be distinguished.
The first is based on the utilization of genetic markers
to determine genetic relationships. These applications
include varietal identification, protection of breeder’s
rights, and parentage determination. The second area
of application is based on the use of genetic markers to
identify and map loci affecting quantitative traits, and
to monitor these loci during introgression or selection
programs. A variety of breeding applications based on

Construct genetic relationships

Parentage determination

Identification of QTL

RFLP (expensive)

@ Soller and Beckman, 1982
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Genomic BLUP

BLUP-based methods

CROP BREEDING, GENETICS & CYTOLOGY

Prediction of Maize Single-Cross Performance Using RFLPs and
Information from Related Hybrids

Rex Bernardo*

ABSTRACT

Methods for predicting hybrid yield would facilitate the identifi-
cation of superior maize (Zea mays L.) single crosses. Best linear
unbiased prediction of the performance of single crosses, based on (i)
restriction fragment length polymorphism (RFLP) data on the paren-
tal inbreds and (ii) yield data on a related set of single crosses, was
evaluated. Yields of m single crosses were predicted as y,, = C V!
¥p, where: y,;, = m X 1 vector of predicted yields of missing (i.e., no
yield data available) single crosses; C = m X nr matrix of genetic
covariances between the missing and predictor hybrids; V = n x n
matrix of phenotypic variances and covariances among predictor hy-
brids; and y, = n X 1 vector of predictor hybrid yields corrected for
trial effects. From a set of 54 single crosses, made between six Iowa
Stiff Stalk Synthetic (SSS) and nine non-SSS inbreds, 100 different
sets of n = 10, 15, 20, 25, or 30 predictor hybrids were chosen at
random. Pooled correlations between predicted and observed yields
of the remaining (54 — n) hybrids ranged from 0.654 to 0.800. The
correlations were slightly higher when dominance variance was in-
cluded in the model or when coefficients of coancestry were deter-
mined from RFLP rather than pedigree data. The correlations remained
relatively stable across different, arbitrary values of genetic variances.
The results suggested that single-cross yield can be predicted effec-
tively based on parental RFLP data and yields of a related set of
hybrids.

marker dissimilarity between parents. Restriction frag-
ment length polymorphisms have been found useful for
assigning inbreds to heterotic groups as well as for de-
termining relationships among inbreds in the same het-
erotic group (Smith et al., 1990; Melchinger et al., 1991;
Dudley et al., 1991; Hogan and Dudley, 1992; Ber-
nardo, 1993). But in theoretical (Bernardo, 1992; Char-
cosset et al., 1991) as well as empirical studies using
RFLPs (Godshalk et al., 1990; Melchinger et al., 1990;
Dudley et al., 1991), the correlations between single-
cross yield and molecular marker dissimilarity between
parents have been too low to be of any predictive value.

Although yield data may not be available for all pos-
sible single-cross combinations among available inbreds,
some of these combinations already may have been eval-
uated by the breeder. For example, yield data may be
available for 200 out of 2500 possible hybrids between
50 inbreds from X and 50 inbreds from Y. If information
on the RFLP or pedigree relationships among the 100
parental inbreds is available, by best linear unbiased pre-
diction (BLUP) (Henderson, 1975; 1985) the yield data
on the 200 tested hybrids may be used to predict the
yields of the remaining 2300 untested hybrids. The BLUP
procedure, usually assuming an additive and intrapop-

Use of DNA polymorphisms as genetic markers

Construct genetic relationships

Parentage determination

Identification of QTL

RFLP (expensive)

Bernardo, 1994



Genomic BLUP

BLUP-based methods

articles

Initial sequencing and analysis of the
human genome

International Human Genome Sequencing Consortium*

* A partial list of authors appears an the opposite page. Affiliations are listed at the end of the paper.

The human genome holds an ry trove of i ion about human icine and
Here we report the results of an international collaboration to produce and make freely available a dmﬂ sequence of the human
genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

The rediscovery of Mendel's laws of heredity in the opening weeks of
the 20th century'™ sparked a scientific quest to understand the

coordinate regulation of the genes in the clusters.
@ There appear to be abour 30,000—40,000 protein-coding genes in

nature and content of genetic infe jon that has propelled
biology for the last hundred years. The scientific progress made
falls naturally into four main phases, corresponding roughly to the
four quarters of the century. The first established the cellular basis of
heredity: the chromosomes. The second defined the molecular basis
of heredity: the DNA double helix. The third unlocked the informa-
tional basis of heredity, with the discovery of the biological mechan-
ism by which cells read the information contained in genes and with
the i ion of the b DINA technologies of cloning and
sequencing by which scientists can do the same.

The last quarter of a century has been marked by a relentle -
to decipher first genes and then entire genomes, spawning |

of genomics. The fruits of this work already include the |
sequences of 599 viruses and viroids, 205 naturally oc ’
plasmids, 185 organelles, 31 eubacteria, seven archac
fungus, two animals and one plant.
Here we report the results of a collaboration involving 20
from the United States, the United Kingdom, Japan,

Germany and China to produce a draft sequence of the
genome. The draft genome sequence was generated froma |
map covering more than 96% of the euchromatic part of the
genome and, together with additional sequence in public da
it covers about 94% of the human genome. The sequer
produced over a relatively short period, with coverage risit
about 10% to more than 90% over roughly fifteen mont
sequence data have been made available without restricti
updated daily throughout the project. The task ahead is to pr
finished sequence, by closing all gaps and resolving all amb
Already about one billion bases are in final form and the
bringing the vast majority of the sequence to this standard
straightforward and should proceed rapidly.

The sequence of the human genome is of interest in
respects. Itis the largest genome to be extensively sequence
being 25 times as large as any previously sequenced geno
eight times as large as the sum of all such genomes. It is |
vertebrate genome to be extensively sequenced. And, uniqu
the genome of our own species.

Much work remains to be done to produce a complete |
sequence, but the vast trove of information that has
available through this collaborative effort allows a global per.
on the human genome. Although the derails will change
sequence is finished, many points are already clear.
® The genomic landscape shows marked variation in the d
tion of a number of features, including genes, trans
elements, GC content, CpG islands and recombination ra
gives us important clues about function. For example, th
opmentally important HOX gene clusters are the most repe
regions of the human genome, probably reflecting the very ¢

the human g ly about twice as many as in worm or fly.
However, the genes are more complex, with more alternative
splicing generating a larger number of protein products.

@ The full set of proteins (the ‘proteome’) encoded by the human
genome is more complex than those of invertebrates. This is due in
part to the presence of vertebrate-specific protein domains and
motifs (an estimated 7% of the total), but more to the fact that
vertebrates appear to have arranged pre-existing components into a
richer collection of domain architectures.

® Hundreds of human genes appear likely to have resulted from

eent

the

Cf human
1r 1100

http://neuroendoimmune.files.wordpress.com/2014/03/snp.png

Mutation < 1% < SNP

Copyright @ 2001 by the Genetics Sociery of America

Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps
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X'X X'W ] [i)] _ [X’Y] Only for genotyped animals
WX ww+eAlal [(Wy
* Better Mendelian sampling tracking

Pedigree relationships
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Bernardo, 1994
Nejati-Javaremi et al. (1997) Lourenco et al. (2015)
VanRaden, 2008
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BLUP-based methods

* In practice, not all individuals are genotyped

Pedigree

Phenotypes

\

/

Pseudo-observations
(de-regressed EBV)

SNP

> Parent Average

DGV

Pedigree Prediction

How to obtain covariances for all animals?

@ GEBV




Single-step Genomic BLUP

BLUP-based methods

* In practice, not all individuals are genotyped

Blended
relationships

Pedigree
' relationships

______________

Genomic
' relationships |

______________

[\)/(v))(( WW+H‘1/1”b] [

Phenotypes

e How to obtain covariances for all animals?

@ Misztal et al. (2009)
9



Single-step Genomic BLUP

BLUP-based methods

. Genomic evaluation would be simpler if all individuals were genotyped

e  What should be done when there are genotyped and non-genotyped individuals?
SNPs are capturing relationships
. Pedigrees give information about relationships

. Genomic and pedigree relationships can be combined in

A A
A= [ 11 12] H=A +
A21 A22

L 0 ]

@ Misztal et al. (2009)
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Single-step Genomic BLUP

BLUP-based methods

* Ais the expectation of realized or observed relationships

* Consider A as prior and G as observed relationships, then construct posterior relationships

p(“Z) — N(O, Go-‘l%)
p(u;|uy) = N(Aj,AZ7uy, A — ApA5A,7)
p(uy, uy) = p(uyjuy)p(uy)

v u1] e [H11 H12] _ [An —A12A55A + A A GASZA ARAZSG
ar u, = H = =

H,; Hp GAS1A,, G

@ Legarra et al. (2009); Aguilar et al. (2010)
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Single-step Genomic BLUP

BLUP-based methods

l— ______ l — ________ 1
. | ' Prediction variance of |

| Error in the |

! orediction I genotypes for ungenotyped |

I I I animals I

_______ - e e e e e e e e m 7

u; Hy; Hy; GAZ;A;; GTj
/A 1 o T T T ':
I . , | Relationships from
Covariance I |
| : I genotypes :
. - e e e e e e e - v

But .. weneed H™!

@ Legarra et al. (2009); Aguilar et al. (2010)
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Surprisingly...

0 0
-1 _ A-1
H = ATy g2 g

[x'x ”b] [X’y
WX W w + H-1/1

@ Legarra et al. (2009); Aguilar et al. (2010)
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Animal Sire Dam

1 0 0

2 0 0

1 2

1 2

A G H
(1.0 0.0 0.5 0.5] (1.004 0.0 0.507 0.507]
1.0 0.5 0.5 : 1.004 0.507 0.507
1.0 0.5 [ ]
1.0

@ Legarra et al. (2009); Aguilar et al. (2010)
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BLUP-based methods

X'X

wW'X WW+H

Projection of genomic relationships on the rest of individuals

Bayesian update of A based on new information from G

ID

100

200 4

300

400 4

500

Pedigree relationships

%

200 300 400 500

value
1.25

1.00
0.75
0.50
0.25
0.00

ID

g

100

200

300 - IS

400 A

500

Sl ] =lwy

Pedigree-Genomic relationships

]

100

200

ID

360

value

1.5
1.0
0.5

0.0
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Single-step Genomic BLUP

BLUP-based methods

/ / [
* \)/(V'))(( W’V\)/( WA—lﬂ] [E] = [W’y * Contains expected relationships
+ y It is limited by the pedigree depth and completeness

 Depends on the accuracy of recording pedigrees

!/

. X'X 1 ] [b] [X ,y] * Contains the number of shared alleles between animals weighted by
wX W W + G A w heterozygosity

* There are no limitations regarding the number of past generations

* |t depends on allele frequency and quality of genomic data

. [X'X X'W ”i,lzlx’y]
WX Ww+H MG W'y

Projection of genomic relationships on the ungenotyped individuals
* Bayesian updating of A based on new information from G

&g .
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* Pedigree BLUP

600 1
500 1
400 A

300 1

ebvs?2

200 1

100 1

-100 1

-100 0 100 200 300 400 500 600
ebvs2p
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Full sib family GEBYV distribution

o_
- @ GEBV
@ PA
0 —
S 0
)
c
)
S
o
2
L oo
™
o
I I | 1 I 1 I |
1 2 3 4 5 6 7 8

(G)EBV

@ Garcia et al. (2018)
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Single-step Genomic BLUP
BLUP-based methods Growth Trait

0.8

0.6

0.4

Accuracy

0.2

Progeny Grand Great Progeny Grand Great Progeny Grand Great Progeny Grand Great Progeny Grand  Great
progeny grand progeny grand progeny grand progeny grand progeny grand

progeny progeny progeny progeny orogeny
m/ Hidalgo et al. (2022)
Pedigree + Phenotypes y



Single-step Genomic BLUP
BLUP-based methods Growth Trait

12

0.8
0.6

0.4

ll B B

Progeny Grand Great Progeny Grand Great Progeny Grand Great Progeny Grand Great Progeny Grand  Great
progeny grand progeny grand progeny grand progeny grand progeny grand

progeny progeny progeny progeny orogeny
m/ Hidalgo et al. (2018)
Pedigree + Phenotypes .

Accuracy




Single-step Genomic BLUP
BLUP-based methods Growth Trait

2 3

0.8
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Progeny Grand Great Progeny Grand Great Progeny Grand Great Progeny Grand Great Progeny Grand  Great
progeny grand progeny grand progeny grand progeny grand progeny grand
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m/ Hidalgo et al. (2018)
Pedigree + Phenotypes N
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Single-step Genomic BLUP

BLUP-based methods Growth Trait

2 3

0.8
0.6

0.4

ll B B

Progeny Grand Great Progeny Grand Great Progeny Grand Great Progeny Grand Great Progeny Grand  Great
progeny grand progeny grand progeny grand progeny grand progeny grand

progeny progeny progeny progeny progeny
m/ Hidalgo et al. (2022)
Pedigree + Phenotypes 22
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Single-step Genomic BLUP

BLUP-based methods Growth Trait

2 3
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Progeny Grand Great Progeny Grand Great Progeny Grand Great Progeny Grand Great Progeny Grand  Great
progeny grand progeny grand progeny grand progeny grand progeny grand
progeny progeny progeny progeny progeny

m/ Hidalgo et al. (2022)
Pedigree + Phenotypes )
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How to construct G

Realized relationship matrix

* Backto 1922, Wright’s relationships matrix (A)

e Relationships were conceived as standardized covariances

Wright, S. 1922. Coefficients of inbreeding and

13
relationship. The American Naturalist 56:330-338. A :
: Champion of England r Cﬁi‘iigl&s ‘omet ¢
(17526) ( ) -
o

r Grand Duke of

| Gloster 19900

| (26288 { 1

frk ) Duchess of Gloster | I”Zﬁiagif)"
9th J[

Virtue

¥ ' ( lé(;i:tlei)%;oolf Duchess of Gloster a

COEFFICIENTS OF INBREEDING AND ' (29864) : . S

RELATIONSHIP [Chmpian ggré:ngmd {mcgggegfm <

\ f _ Mimulus ‘ Virtue : §

DR. SEWALL WRIGHT 2 _ R, .. Lﬁsnem [Loz'cllang)lan ';f

A : N

Bureau oF ANDMAL INDUSTRY, UNiTED STATES DEPARTMENT e | e e :

OF AGRICULTURE . [Lanc(aiﬁ;t& gomot { The %‘,‘;gg; Roan 2

2 Champion ozlel)inghmd ;

Ix the breeding of domestic animals consanguineous { e Ve S - B

matings are frequently macle. Occasionally matings are N nit o | Verdant §

made between very close relatives—sire and daughter, | S o g =

brother and sister, ete.—but as a rule such close inbreed- o i (MSET)  Corianda .

ing is avoided and there is instead an attempt to concen- 3 John Bull
trate the blood of some noteworthy individual by what SN Stopes’

is known as line breeding. No regular system of mating §

such as might be followed with laboratory animals is
practicable as a rule.



How to construct G

Realized relationship matrix

* How much DNA do two individuals share looking to DNA?

* Let gene content be coded as 0, 1, and 2 copies of a reference allele IDI  0221200101202211002222121
* Define z;; for locus i, individual j as the gene content ID2  2211212121101211212012121
* The mean of gene content is twice the allele frequency; z = 2p ID3  1212120020202120120122111

* The variance of the gene content; 022 =2p(1 —p)

* Center z; subtracting the mean; z;; — 2p;
* Scale dividing by the sum of variances = ), 2p; (1 — p;)

B 77’
X 2pi(1—py)

@ VanRaden, 2008
26
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How to construct G

Realized relationship matrix

¢ T ! - T T !

I I ' Shifted to refer tothe |

I Genotypes {0,1,2} | I average of a population |

| with allele frequenciesp |

L - T /

o = = e e 1

ZZ’ (M _ ZP) (M _ ZVP)I l Scaled to refer to the I

G = = | genetic variance of a I
2. 2pi(1 — p;) 22 0i(1—p;) D | population with allele

|

1 _ _frﬂquEnc_ies_p _

&g .



Tuning and Blending G
Realized relationship matrix

* Tuning scales G to A, to refer to the same genetic base
* p(uz) =N(0, Goy)
 |f the population is undergoing selection, the mean is not 0
* Different genetic variance in genotyped and ungenotyped animals
* Accounts for the selection, improves accuracy, and reduces bias
* (diag(G))b +a = (diag(Azz))
c a+bG=A,,

® Gtun = a+bGO

* Blending avoids singularity; the procedure consists of a weighted sum of G, and a positive-definitive matrix

* Improves convergence
* G =aGyy, + LA
* This also assigns part of the genetic variance to pedigrees

@ Christensen et al. (2012)
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Importance of inbreeding

Realized relationship matrix

0 0
0 G1-Ajl

The G matrix computed using VanRaden’s method considers inbreeding, so G™1 does. Therefore, A~! and A2 should be

H'=A"+

constructed considering inbreeding to avoid inflation in the estimated breeding values

* Pocrnicet al. (2016)
e 10generations: 5 males mated 12.5k females

5 - -
* 138k pedigree | 75k genotyped animals ‘_ 5 :

* Average inbreeding in generation 10 = 0.21 -

* No convergence after 5000 iterations P~

* Ideal simulated population ] Q ,\i

* No missing pedigree
* All recent generations were in the pedigree file

g .



Importance of inbreeding

Realized relationship matrix

T I N S S - - 1 F ________ 1
( :
| H(;?\?:riend_gzl:ags' I ' Computed using Colleau’s |
I algorithm, without A22 < AE% | fOI‘mU|ail;]\I;erIec;1irc]on5|ders :
| inbreeding g
——————— - Il conditioned MME e e e e e e e v
Inflated GEBV v
0 0
H'=A"1+ _ _
0 G1-A7]
. 22
11 127
H—1 — A A + [O . O 1]
A21 AZZ_ 0 G — A22
o= e e e = e 1

Computed using VanRaden’s |
formula, which considers |
inbreeding |

@ e e e e e e e - y 30




Importance of inbreeding

Realized relationship matrix

{ " Computed using | - k
l Hei?:rl;oen—cjzl:ags’ | ' Computed using Colleau’s |
I . ) formula, which considers |
algorithm, with I , ,

: : I inbreeding |
| inbreeding _ I P

v

0 0
H_1 — A_1 + -1 -1

Computed using VanRaden’s |
formula, which considers |
inbreeding |

&g .




Importance of inbreeding

Realized relationship matrix

e @Garcia-Baccino et al. (2017)

e 29k pedigree | 5.3k genotyped animals

e PBLUP vs. ssGBLUP vs. ssGBLUP_inbreeding (F)
* Inflated GEBV with ssGBLUP

* No inflation with inbreeding

brev~EBv)

10 5

1.0 A

09 A

0.8 -

0.7 -

06 1

1

\

PBLUP -

SSGBLUP 1

SSGBLUP_F

32




Importance of inbreeding

Realized relationship matrix

Inbreeding is also important in the estimation of accuracies

SSGBLUP reliability

PEV;
1- 2
oy (1 + Fl)

Accuracy; =

Received: 22 August 2019 Revised: 10 December 2019 Accepted: 11 January 2020

Rel’

DOL: 10.1111/jbg.12470 uj

ORIGINAL ARTICLE

Effects of ignoring inbreeding in model-based accuracy for BLUP

and SSGBLUP
©
Ignacio Aguilar' @ | Eduardo N. Fernandez’ | Agustin Blasco®® | Olga Ravagnolo® | 4
Andres Legarra* © . . . . .
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Decomposition of EBV and GEBV

EBV (WW+A =Wy

U; —W1PA +W2YD +W3PC

Parent i: Yield i | Progeny
| Average 11 Deviation 11 Contribution |
Geav wweaa [0 L0 da-wy
0 G_ - A22

_______________________________________________________________________________

Parent | Yield :: Progeny 1! Direct Genomic i : Pedigree
Average i i Deviation ii Contribution i i Value ' Prediction
For young animals u; = wiPA; + (wy DGV — wy PP;)

With many genotypes u; = wy DGV;

&g .



Importance of inbreeding

Decomposition of EBV and GEBV

* Foryoung animals u; = w,;PA; + (W41DGVi — W42PPi)

2

1_Fi gii aii
l +g”—a” l +g”—a” l tgli—gli l
1_Fi 22 1_Fi 22 1_Fi 9 22
* lgnoring F
2 gii aii
i — ii_ il PA; + i _ il DGV; — ii_ il PP;

Inbreeding increases the denominator
GEBV is smaller
Inflation is reduced

g .



REML, GREML and SSGREML
Estimating Variance Components

We require VC or at least some function of them
EM-REML

= NS B
y=Xb+Zute w'x ww+A—1/1” w’ A

1. Setinitial variance components

_____________________

2 ~ . Pl fLHS f
2. Compute b and i solving the MME ndividud effect

_____________________

3. Update variance components
.,  WAT'U+tr(ATICM)GE

0, =
u 1 1
N < Number of

I individuals, rank of A |

_____________________

Ly (y — Xb — Z1)
¢ N -—rank(X)

4. Goto 1 orstop if variance components do not change anymore

Patterson and Thompson (1971)

@ Dempster et al. (1977)
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REML, GREML and SSGREML
Estimating Variance Components

A-REML //

Al- algorithm uses this matrix as Hessian R

1{(y — Xb — Zii) P(y — Xb — za)} 1 {u’Z’P(y —Xb - Zﬁ)}

A 2 (68)* 2 HGHE
1= R ,
1{(y — Xb — Z@i) PZu 1(u'Z'PZu
2 HGHE 2 (6D)?
Gradient
1{(y-xb—zd)'(y—-Xb—2Z1t) (n—p—q tr(A"lC")
s=|? (68)? (62)? 62
1(WA™ ' ¢ 62
= - +tr(ATICYY) —
2{ Gnr ez )(63)2}

&g .



REML, GREML and SSGREML

Estimating Variance Components

EM-REML

* Simple equations

* More complex in multiple-trait models

* Very slow convergence
* Computationally demanding (

X'X
WX

Al-REML

Faster than EM-REML
* Fewer iterations
Provides estimation of standard errors

For complex models and poor starting values
* Slow convergence
e Estimates out of the parameter space
Initial rounds with EM-REML may help
Computationally demanding ()

ww +aalla] = iy

g

38




gibbsf90+

gibbsl1£90: stores single trait matrices once — fast for multi-trait models

gibbs2£90: gibbs1f90 with joint sampling of correlated effects — Maternal effects and RRM
gibbs3£90: gibbs2f90 with heterogeneous residual variance

thrgiblbsl£90: for linear-threshold models

thrgiblbs3£90: thrgibbs1f90 with heterogeneous residual variance

Variance Components Estimation
Mixed Model Equations Solver

[X'R‘lX X'R™1W ‘ B [X'R‘ly]

WRTIX WRIW+A1QG; 1) WR-y

39



Linear

Default

4

90+

glbbs:

Y

Threshold (-Linear)

OPTION cat 0 2 5

e Categories renumbered from 1

e Missing records isonly 0

40



gibbsf90+

Bayes Theorem

» Likelihood function
‘ indicates how likely the observations are from a distribution

(with particular parameters)
p(Oly) =p(y|6) p(6)
L prior probability of unknown 6

——» posterior probability of unknown 8 with known y

Basic idea of Gibbs Sampling:

Numerical method to draw samples from a posterior distribution (not always explicitly available)
Draw samples = generate random numbers following a distribution

The results are random numbers (not theoretical formulas)

The posterior distribution will be drawn based on the numerical values (like a histogram)
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gibbsf90+

Ingredients for Gibbs sampling
1) Theoretical derivation: conditional posterior distribution for each unknown parameter

2) Software: a random number generator for a particular distribution

# Basic Gibbs sampling for mu (normal) and sigma2 (inverted chi-square)
y <- ¢(14,16,18)

N <- length(y)

n.samples <- 100

mu <- rep(0,n.samples)

sigma?2 <- rep(0,n.samples)

# initial value
mu[l] <- 0
sigma2[1] <- 10

# sampling
for(i in 2:n.samples){
mu[i] <- rnorm(1, mean=mean(y), sd=sqrt(sigma2[i-1]/N)) # using the most recent sigmaZ2
df <- N-2
S <- sum((y-mu[i])*2)
sigmaZ2[i] <- rinvchisq(l, df=df, scale=S) # using the most recent mu

}
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gibbsf90+

* Name of parameter file?
gibbsl.par
* Number of samples and length of burn-in?
samples=10,000 to 100,000; burn-in=0
* Give n to store every n-th sample?
10

* gibbsf90+ parfile.par --samples 1 —--burnin j —--interval k

43



gibbsf90+

* Procedure
 Run gibbsf90+ to estimate variance components
* Run postgibbsf90 to process the samples and check convergence
* Run gibbsf90+ with new variance components to compute EBV (2k to 10k
samples)
OPTION fixed var mean X

\—> Number of the

animal effect



postgibbsfo0

Basic idea of post-Gibbs analysis:

Summarize and visualize the samples drawn by gibbsf90+
Confirm if the chain converged
Find the most probable value = posterior mode as a “point estimate”

Find the reliability of the estimates = the highest posterior density as a “confidence interval”



postgibbsfo0

* Name of parameter file?

gibbs1.par

* Burn-in?
0

* Give n to store every n-th sample? (1 means read all samples)
10

* input files
gibbs_samples, fort.99
e output files
"postgibbs samples"
all Gibbs samples for additional post analyses
"postmean”
posterior means
"postsd”
posterior standard deviations

"postout”



postgibbsfo0

Pos. effl eff2 trtl trt2

o o o W e

Pos.

oo e W

-

o= e R = R .

[ R S T o

effl eff2 trtl trt2

o R = = S .

=T = = R L

[ S W N O

RS

at least > 10 is recommended
> 30 may be better

R Monte Carlo Error by Time Series ¥**¥¥#+*
MCE Mean HPD Effective Median Mode
Interval (95%) | sample size

1 1.362E-02 0.9889 0.7788 1.215 704 0.9844 0.9861
2 1.288E-02 1.006 0.777 1.219 841 1.006 0.952
2 1.847E-02 1.66 1.347 1.987 803 1.652 1.579
1 9.530E-03 24.47 2407 24.84 425.6 24.47 2453
2 8.253E-03 11.84 11.54 12.18 395.8 11.83 11.82
2 1.233E-02 30.1 29.65 30.58 387.8 30.09 2997

T p, Lower and upper bounds ratio between first half and second

of Mean + 1.96PSD half of the samples ; should be < 1.0

PSD Mean PSD Geweke Autocorrelations

Interval (95%)|| diagnostic | lag:1 10 50
0.1144 0.9889 0.7648 1.213 -0.02 | 0.853 0.188 0.049
0.1182 1.006 0.7742 1.237 -0.11 | 0.828 0111 -0.066
0.1656 1.66 1.335 1.984 0.06 | 0.B28 0.108 -0.021
0.1967 24.47 24.09 2486 -0.01 | 0.034 0.029 -0.062
0.1643 11.84 11.51 1216 0.03 | 0.032 -0.006 -0.016
0.2429 30.1 29.62 3057 -0.02 0.07  -0.014 0.037

Independent
chain size
18

18

25

Independent
# batches

50

50

36

450

450

180
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postgibbsfo0

Choose a graph for samples (= 1) or histogram (= 2); or exit (= @)
1

positions
1 2 3 # choose from the position numbers 1 through 6

If the graph is stable (not increasing or decreasing), the convergence is met.
All samples before that point should be discarded as burn-in.

print = 1; other graphs = 2; or stop = @
2

48



0,2

postgibbsfo0

FOSTGIBESFAD - Samples

0,18 F

016 F

0,14 F

0,12

0.1

0L05 F

006 F

0,04 F

0,02

par
par

1 —

40000

RGO

OG0

100000 120000 140000 160000 130000 200000 220000

240000 2E000
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postgibbsfo0

Choose a graph for samples (= 1) or histogram (= 2); or exit (= @)
2

Type position and # bins
1 28

50



postgibbsfo0

?{ Gnuplot

140 T T

POSTGIBRSFAG - Histogram

1

120 F

100 F

B0 F

20 F

0.7 0.8 0,9

1,2

158 1.4

1.5
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Common problems for BLUPFO0 family

* Wrong position or formats for observation and effects

* Misspelling of Keywords
* Program may stop

 (Co)variance matrices not symmetric, not positive definite
* Program may not stop

e Large numbers (e.g., 305-day milk yield 10,000 kg)
e Scale down i.e., 10,000 /1,000 = 10



General output from BLUPF90 family

- Output printed on the screen is not saved to any file!

- Should use redirection or pipes to store output

renumf90

renumf90 renum.par | tee renum.log

blupf90+
blupf90+ renf90.par | tee blup.log

gibbsf90+
gibbsf90+ exmr99sl --samples 1000 --burnin 0 --interval 1 | tee gibbs.log



Run in background + Save output

Svi gibbs.sh

#type the following commands inside gibbs.sh
gibbsf90+ <<AA > gibbs.log
renf90.par
1000 O
10
AA

#save and exit

Sbash gibbs.sh & #can replace bash with sh

Svi bp.sh

#type the following commands inside bp.sh
blupf90+ <<AA > blup.log
renf90.par
AA

#save and exit

Sbash bp.sh & #can replace bash by sh



REML, GREML and SSGREML
Estimating Variance Components

blupf90+

MME Solver VC Estimation
Default e AI-REML:

* Preconditioner Conjugate Gradient (PCG) OPTION method VCE

* Default Iterative method (fast)

* EM-REML:
* Successive over-relaxation (SOR)
 An iterative method based on Gauss-Seidel OPTION method VCE
 Direct solution using sparse Cholesky factorization OPTION EM-REML xx
* FSPAK or YAMS (greater memory requirements) L
_ (empty for pure EM)

# of EM rounds
ai (until convergence)

g .



Difference in estimates depending on population structure
Estimating Variance Components

* In practice, it is hard to have base allele frequencies

* SSGREML was less affected by selective or limited genotyping

(¢) One generation Two generations Three generations
60 60 60
47 45 45

& 40- & 407 & 407
= 32 Genotype = 32 Genotype = Genotype
2 2 =
£ Bna £ 27 Mna = Bna
= 23 25 I Random animals 2 26 26 I Random animals 2 I Random animals
£ 19 I Best animals £ I I Best animals = I Best animals
Q 20 2 201 2 20
T T T

01 01 0

REML GREML ssGREML REML GREML ssGREML REML GREML ssGREML
Method Method

Method
e Estimated heritability =30% @ Cesarani et al. (2018)
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Difference in estimates depending on population structure

Estimating Variance Components

- ---Pedigree-based analysis —— Genomic-based analysis

GT FT1 FT2

g
o
)
=
ol
J
=
a1
J

NN
o
1
=
N
1
=
N
|

S S =3
230 - 2 9 - 2 9 -
o) o o)
€20 - g 6 £ 6
[¢) [¢) (]
I I I

[
o
1
w
I
w
|

o
o
o

N NI N B\ BN N NI S\ B\ BN N NN TN B\ B\ B
Qq/ \Q’ \\I \(V \(b/ \v/ \6/ Qq/ \Q’ \\I \(V \(b/ \v/ \6/ qu \Q’ \\/ \(V \(bl \v/ \b’
Interval Interval Interval
35.11t0 16.5% 8.6 t0 5.6% 11.4 to 7.6%
A reduction of ~ 50% ~ 20%

@ Hidalgo et al. (2020)
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Difference in estimates depending on population structure

Estimating Variance Components

- ---Pedigree-based analysis —— Genomic-based analysis
FT1-GT1 FT2-GT1
0.0 | I I I I I I 0.0 I I I . . . .
502 - 502 -
I I
£-0.4 - £-0.4 -
3 3
2-0.6 - 2 -0.6 1
2 2
3 0.8 A 8 -0.8 A
-1.0 - -1.0 -
N e N 0 e R N o N 0 2 R
NN SN N AN e F RS
Interval Interval
-0.31t0 -0.58 -0.27 t0 -0.45

« These changes need to be considered in the breeding program

Hidalgo et al. (2020)
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Blupf90 programs
Practice

Media Manager Sitemap

1242 BLUPF90
Trace: - start

Table of Contents

BLUPF90 Family of Programs

BLUPF90 Family of Programs

Now with support for genomic selection Courses

Ignacy Misztal and collaborators, University of Georgia

BLUPF90 family of programs is a collection of software in Fortran 90/95 for mixed model computations in animal breeding. The goal of the
software is to be as simple as with a matrix package and as efficient as in a programming language. For general description, see a gmpaper from
the CCB'99 workshop or see a gmpaper on BGF90 at 7th WCGALP.

For variance component estimation, the family offers choices for simple and complicated models; see paper am “Reliable computing in estimation
of variance components” . From 2009 the programs are successively modified for genomic selection using a am single-step approach (or
ssGBLUP) by Ignacio Aguilar and Shogo Tsuruta.

For support, join % Blupf90 Discussion Group at Groups.io. We moved from Yahoo Groups to Groups.io on November 7, 2019, mainly because of
the unavailability of key features in Yahoo Groups. We no longer maintain the old group.

Please visit 4, our main web-site for details in research and publication.

Troubleshooting

(D If the software crashes with segmentation fault, please change settings in your operating system. See FAQ:Segmentation fault for details. Also,
The FAQ pages provide useful suggestions and solutions.

Headline

= History

= Modules

= Condition of use

= Distribution / Download

= Documentation / Manual / Tutorial
= Application program details
= Support

= FAQ

= Tricks / Tips

= To Do

= Sample data

= Undocumented options

Collection of software

Fortran = 90

Computations in AB & G

Since 1997 by Ignacy Misztal

Several developers + collaborators
Simple, efficient, and comprehensive

Very general models

https://nce.ads.uga.edu

https://nce.ads.uga.edu/software/
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Blupf90 programs
Practice

Shogo Andres lgnacio Yutaka
lgnacy Tsuruta Legarra Aguilar Masuda
Misztal

Matias
Bermann

* + Several contributors

e Research turns into code



Blupf90 programs
Practice

breedR is FOSS. Licensed GPL-3
o RShowDoc('LICENSE', package = 'breedR')

You can use and distribute breedR for any purpose

You can modify it to suit your needs
o we encourage to!

o please consider contributing your improvements

o you can distribute your modified version under the GPL

However, breedR makes (intensive) use of the BLUPF90 suite of Fortran programs

res <- remlf90(fixed = phe_X ~ 1,
random = ~ gg,

data = globulus) https://github.com/famuvie/breedR/wiki/Overview

&g .



https://github.com/famuvie/breedR/wiki/Overview

Blupf90 programs
P ra Cti c e Renumbering + data QC

preGSfo0
bl u pf90 Processing of SNP data (QC +matrices)

BLUP with explicit equations QCng x

rem|f90 bl upf90+ QC of large SNP data

Expectation Maximization REML postG Sg 0

a i re m Igo Estimation of SNP effects and GWAS
Average Information REML p re d fgo x

[ ]
gl bbego Prediction of GEBV based on SNP effects

Bayesian Analyses — linear traits gibbsf90+ Seekpa re ntgo b 4

t h rgi b bego Parentage verification (SNP and pedigree)
Bayesian Analyses — categorical traits p red i ctfgo

Adjusted and predicted phenotypes + residuals

@ ¥ No need for the renumbering process 62

blup90iod

cblup90iod

postgibbsf90

Post-analyses of Gibbs samples



Blupf90 programs
Practice

* Renumf90 parameter file

renumf90 --help

renumf90 --show-template

* FAQ blupf90

https://nce.ads.uga.edu/wiki/doku.php?id=faq

DATAFILE

data3.txt

TRAITS

4

FIELDS _PASSED TO OUTPUT

WEIGHT(S)

RESIDUAL_VARIANCE
0.60

EFFECT

3 cross alpha

EFFECT

1 cross alpha
RANDOM

animal

FILE

ped3.txt

FILE_POS

12300

SNP_FILE

snp3.2k

PED_DEPTH

0

(CO)VARIANCES

0.40

OPTION map_file mrkmap.txt
OPTION use_yams

g

Y =sex + animal + e

62 =04
62 =0.6
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Blupf90 programs
Practice

* Renumf90 parameter file

* FAQ blupf90

https://nce.ads.uga.edu/wiki/doku.php?id=faq

DATAFILE

renf90.dat

NUMBER_OF_TRAITS
1

NUMBER_OF EFFECTS
2

OBSERVATION(S)

1
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER _OF LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
2 2 cross

3 12010 cross

RANDOM_RESIDUAL VALUES

0.60000

RA2NDOM_GROUP Y = sex + animal + e
RANDOM_TYPE 6-1% — 04'
add_an_upginb A2

e o, = 0.6
renadd02.ped

(CO)VARIANCES

0.40000

OPTION SNP_file snp3.2k
OPTION map_file mrkmap.txt
OPTION use_yams

g .
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Blupf90 programs

Practice
RANDOM_GROUP * Add_an_self
Number of the effect(s) from list of effects * Tocreate arelationship matrix when there is selfing
Correlated effects should be consecutive e.g. Maternal * Pedigree file:

effects, Random Regression * individual, parent 1, parent 2,

number of selfing generations

RANDOM_TYPE
diagonal, add_animal, add_sire, add_an_upg,
add_an_upginb, add_an_self, user_file, user_file_i, or * user_file
par_domin * Aninverted matrix is read from the file
e Matrix is stored only upper- or lower-triangular
FILE

e Matrix file:

Pedigree file, parental dominance, or user file
* row, col, value

(CO)VARIANCES
Square matrix with dimension equal to the * user file i
number_of traits*number_of correlated_effects * As before but the matrix will be inverted by the

program

g .



preGSf90
Practice
Minor Allele
Frequency
* Quality control (MAF) |
oo
disequilibrium inbe g
(LD) Equilibrium
(HWE)
preGSfo0
Duplicate Non-mapped
genotypes o
Mendelian Call rate
Conflicts eIndividuals
*SNP

https://nce.ads.uga.edu/wiki/doku.php?id=readme.pregsfo0
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preGSf90
Practice

 Same parameter file as for all BLUPF90 programs
* Needs an extra OPTION in renf90.par
OPTION SNP_file marker.geno

preGSfo0

Reads 2 extra files (besides data and pedigree):
* marker.geno

* marker.geno_XreflD(created by renumf90)

_XrefID has 2 columns: Renumbered ID Original ID

g .



preGSf90
Practice

e preGSf90 saves G1-— AE% by default (file: GimA22i)
* To save ‘raw’ genomic matrix:
* OPTION saveG [all]

* If the optional all is present all intermediate G matrices will be saved!!!

preGSfo0

e Tosave G~
* OPTION saveGIlnverse

* Only the final G, after blending, scaling, etc. is inverted !!!

* To save A,, and inverse
e OPTION saveA22 and OPTION saveA22Inverse

&g .



Blupf90 programs
Practice DATAFILE

renf90.dat

NUMBER_OF_TRAITS
1

NUMBER_OF EFFECTS
2

* renf90.par OBSERVATION(S)

1
* OPTION method VCE WEIGHT(S)

* OPTION EM-REML xx EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF LEVELS TYPE_OF_EFFECT[EFFECT NESTED]
2 2 cross
3 12010 cross
b | u pf90+ RANDOM_RESIDUAL VALUES
0.60000

RA2NDOM_GROUP 9 = sex + animal + e
RANDOM_TYPE 6—5 =04
add_an_upginb ~

FILE O'ez = 0.6
renadd02.ped
(CO)VARIANCES

0.40000
OPTION SNP_file snp3.2k_clean
OPTION map_file mrkmap.txt_clean
OPTION use_yams

g .

gibbsfo90+




Blupf90 programs
Practice

* EM-REML

 OPTION SNP_file snp3.2k_clean

* OPTION map_file mrkmap.txt_clean
e OPTION no_quality_control

* OPTION use_yams

* OPTION method VCE

 OPTION EM-REML

blupf90+

At round: 23 Converge in fewer rounds than EM-REML rounds: 10000

Stop EM-REML at 23 and no runs with AI-REML

* END ITERATION: 07-17-2024 09h 54m 06s 649
solutions stored in file: "solutions"

Final Estimates
Genetic variance(s) for effect 2
0.35532
Residual variance(s)
0.61222
*** Statistical Method: VCE
* FINISHED (BLUPF90): 07-17-2024 09h 54m 06s 680
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Blupf90 programs

P ra cti ce -2logl= 26720.6457620796  :AIC = 26724.6457620796
In round 4 convergence= 7.833323538291451E-014
delta convergence= 7.908716592526159E-008
new R
0.61221

* AI-REML new G
0.35534
* END ITERATION: 07-17-2024 10h 14m 555 278
. solutions stored in file: "solutions"
 OPTION SNP_file snp3.2k_clean

* OPTION map_file mrkmap.txt_clean

Final Estimates

* OPTION no_quality_control Genetic variance(s) for effect 2
0.35534
* OPTION Use_yams Residual variance(s)

e OPTION method VCE Uitz

inverse of Al matrix (Sampling Variance)
0.73121E-03 -0.37380E-03

-0.37380E-03 0.32167E-03

Correlations from inverse of Al matrix
1.0000 -0.77076

-0.77076  1.0000

SE for G

0.27041E-01

SE for R
0.17935E-01
bIUPf90+ *** Statistical Method: VCE

* FINISHED (BLUPF90): 07-17-2024 10h 14m 55s 315

&g .



Blupf90 programs

Practice

* AI-REML
SE for genetic parameters

* OPTION se_covar_functionh2G 2 2 1 1/(G 2.2 1 1+R 1 1)

Notation is with reference to the effect number and the trait number (G_effl eff2 trtl trt2)thatindicate the element of the (co)variance
matrix for random effect eff1 and eff2 and trtl and trt2,

where eff1 and ef f2 are effect numbers 1 and 2, and trtl and trt2 are trait numbers 1 and 2.
R_trtl trtl indicates the element of the residual (co)variance matrix for traits 1 and 2.

b I u pf90+ * https://nce.ads.uga.edu/wiki/doku.php?id=readme.pregsf90
g \
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Blupf90 programs
Practice

 MME solver (default)

OPTION SNP_file snp3.2k_clean
OPTION map_file mrkmap.txt_clean
OPTION no_quality_control
OPTION use_yams

OPTION store_accuracy eff orig

blupf90+

jorgehidalgo@endpoint-10-192-53-192 Data % head acc_bf90

trait/effect level original_id solution acc

1

N N S

2

NNDNDNNDNMNDNNDN

1 UGA46217
2 UGA46272
3 UGA43455
4 UGA51333
5 UGA42183
6 UGA51501
7 UGA43704
8 UGA44900
9 UGA45303

0.05314548
-0.16554279
-1.22049127
-0.22292902
-0.15143591
-0.09200698
-0.12728916

0.49888989
-0.24224250

0.5257
0.5903
0.5542
0.5449
0.7176
0.5224
0.5011
0.5319
0.5009
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Blupf90 programs
An application example

# Genotyped Animals

American Angus

 11M pedigrees 1,180,000
« 9.6M birth weights 1,074,037
« 10.1M weaning weights 894,381

*  4.9M yearling weight records 728,638

568,799

406,330

279,689

169,342

93,673
o3 e [
15,741 ’
5,595 —

2011 2012 ©2013 ®2014 ®=2015 ®m2016 =201/ ®=2018 m2019 2020 2021 m 2022

&g .




Blupf90 programs
An application example — largest ssGBLUP evaluation

e US Holstein Type trait data
e 18 trait-model

* 13.6M animals in pedigree
e 10.2M phenotypes -:T"'.‘l‘. ) J. Dairy Sci. 104:662-677
3 ..'! https://doi.org/10.3168/jds.2020-18668
H ‘.!!/ ® 2021, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®.
d 2 .3 M genOtyped a n I m a IS i This is an open access article under the CC BY-NC-ND license (hitp://creativecommons.org/licenses/by-nc-nd/4.0/).
° 447,492,870 eq uations to solve Bias in genomic predictions by m_atlng pragtlces for linear

type traits in a large-scale genomic evaluation

S. Tsuruta,™ © T. J. Lawlor,2© D. A. L. Lourenco,’ @ and I. Misztal
lAnima| and Dalry Science DEpanmEnL Uni\."efsn‘," of Georgia. Athens 30602
ZHolstein Association USA Inc.. Brattleboro, VT 05301

e APY ssGBLUP with 15k core

1 day to build G5py and A3 -
e ~2.5days to converge ( ‘ 0 B
<500 GB RAM with APY

COUMCIL ON DAIRY CATTLE BREEDIMG

« >30TB RAM to compute G~1 without APY

&g .



Blupf90 programs
An application example

a» e .
- - ) G3, 2021, 11(10), jkab253
OXFORD - ou» DOI: 10.1093/g3journal/jkab253
- - e Advance Access Publication Date: 16 July 2021

Genes | Genomes | Genetics Multiparental Populations

Single-step genomic BLUP enables joint analysis of
disconnected breeding programs: an example with
Eucalyptus globulus Labill.

Andrew N. Callister (® ,"* Ben P. Bradshaw,? Stephen Elms,® Ross A. W. Gillies,® Joanna M. Sasse,* and Jeremy T. Brawner®

g

@)

Breeding value accuracy

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

EG1|GT

B ABLUP+race ®ABLUP-race ®EGI1-HBLUP JOINT-HBLUP

* v
- -
genotyped genotyped genotyped genotyped ungenotyped ungenotyped progeny

parent parent related unrelated parent parent
represented correlated represented correlated
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Blupf90 programs

Practice
Bases for Genomic Prediction
Andres Legarra Daniela A.L. Lourenco Zulma G. Vitezica
2024-02-21

Paodally Shap in A Joseqn
Nov popey, 7017

https://gsenoweb.toulouse.inra.fr/~alegarra/GSIP.pdf @
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Manual for

BLUPF90 family of programs

lgnacy Misztal (ignacy@uga.edu), Shogo Tsuruta (shogo@uga.edu),
Daniela Lourenco (danilino@uga.edu), Yutaka Masuda (yutaka@uga.edu)
University of Georgia, USA

Ignacio Aguilar (iaguilar@inia.org.uy)

I INIA, Uruguay
I a I I S Andres Legarra (andres.legarra@toulouse.inra.fr)
L INRA Toulouse, France

Zulma Vitezica (zulma.vitezica@ensat.fr)
ENSAT, France

http://nce.ads.uga.edu/html/projects/programs/docs/blupfo0_all8.pdf
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