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Biological vs. statistical effects



Biological effects

The terms ‘dominance/epistasis’ describe apparent distortions of
mendelian segregation ratios that were due to one gene masking the
effects of another

atlocus 1

. éf@ w b B M

Genotypes
Genotypes at locus 2

Aa
Example of dominance Example of epistasis: dominance-by-dominance

two-locus epistasis



Biological effects

e Unfortunately we don’t know all gene actions & pathways
* For many purposes, we need to make educated guesses

* Guesses include:
» predicting phenotype of progeny (Genetic evaluation)
* |s this genome region interesting? (GWAS)
 What happened in this genome region? (selection footprints)

* For these practical purposes, we use statistical models



Statistical effects

* Fisher’s described dominance and epistasis as deviations from

additivity in a linear statistical model
e Statistical effects (dominance & epistasis) are a population phenomenon

e Genetic model

Epistatic deviation

Phenotype

P=A+D+I+E

Additive (or breeding) value Dominance deviation



Statistical effects

This decomposition is a regression of G

Fisher (1918) explained that the

. . u+ 20‘2"'3"?622
substitution effect of one allele Gort R
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* Dominance deviations are essentially residuals
Walsh B., 2013

 Dominance deviations are the difference for a genotype (in red) between the
genotypic value and its prediction from 2 alleles.



Statistical effects

* Why is a relevant & how does it take care
of non-additive gene action?

This decomposition is a regression of G

w202y
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* The statistical definition doesn’t care how « E N CEl peagea,
“works” N
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* By definition, a potentially includes biological g L
dominance and epistasis N c o
u1 °
e Because individuals pass on gametes (and not | | |
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complete genotypes) to offspring: 1 Genotypes 21 ”
* a describes how much you gain by selecting an Walsh B., 2013

allele (in either natural or artificial selection)



Example pairwise epistasis

2
+(1 - 2p,)d,
+(p2 — q2)1

+(2p,2q3)j

+(1 = 2p1)(p2 — q2)1
+2p,q,(1 — 2py )k

Biological

Additive

Dominant

Additive x additive
Additive x dominant
Dominant x additive

-__

yi=mta, tagti Ye=mta, +dgtj y;=mta,—ap—
Aa y=m+d, tag+l  ys=m+d,tdytk Yi=m+d,— ag—1
aa yi=m—ay, tag—i ye=m-—a,+ dg—j Yo=m— a,— ag+i

u=m+a,(p,—q)+az(p,—q,)+2pqd F2p,q,d y+(p, —q,) (P, — 4,)i +
2(pi =4 P29,J +2p:q,(p, —4:) +4piq, P2k
o, =a,td (1-2p, )+ (p,-q,)i+2 p,q, j+(1-2p, ) (pr-q,)I+2 p,q,k(1-2p,)
a, = aytdy(1-2p, )+ (p-q,)it2p,ql+(1-2p, )(p-q, )it2 p\q,k(1-2p,)
dy=(d,=1)+2p,(l +k)—2kp;
dy = (dy— ) +2p,(j + k)~ 207
@t (i j+k+1)=2p,(j+K) =2, (j +K) - 2kp,p,
ayd = (j +k)—2kp,
da, =(1+k)-2kp,
dd,=k
Toro, 2017

Dominant x dominant



Statistical & biological effects

Being a “Big” horse is determined by
Genotypes at locus 2 biological dominance-by-dominance
two-locus epistasis

Genotypes
at locus 1

BB Bb bb
AA S H H

ﬁ;‘ L}% m Genotypes at enotypes at locus 2
Aa A . locus 1

BB Bb bb
- A 3 AA u u u

ay = 2p,q, (1 — 2p;)(9-4) e puooptlddy p
aa u u u



Statistical & biological effects

* In the classical V, + V + V; partition,
* Additive biological gene actions contribute only to /4, while

* Both biological dominant and biological epistatic gene actions contribute to
multiple variance components

Gene actions < Additive > <Dominant> Epistatic

Variance
components

Huang & Mackay, 2016

L Total genetic variance !

* There is no correspondence between the kind of biological gene action and
the variance component

11



What to do with all these math?

* In absence of knowing true action genes, this gives tools

® (0 (statistical additive effect) SAYS
* how much do you improve if you select me
* Big a = interesting locus

¢ d;k (statistical dominance effect) SAYS
* For whatever reason, the heterozygote here is interesting
* Perhaps we can mate these two animals here and maximize it

* (aa)l-j (statistical epistatic effect) SAYS
* Somehow the fates of these two loci are bound together



What to do with all these math?

* @ (statistical additive effect) iS the ONLY component involved in selection,
because only individual alleles are transmitted from parents to
descendants

. d;k (statistical dominance effect) and (aa)l-j (statistical epistatic effect) also contribute
to the total genetic value and to the expected phenotype of the
crosses/hybrid, but not to selection, because the allele/gene
combinations are not transmitted to the descendants



New models accounting for non-additive effects
GBLUP, GDBLUP, and its extensions
Inbreeding depression



‘II

“Mixed model” based prediction

* We use quantitative genetic theory to build relationship matrices
* Then we fit them into mixed model



Genomic prediction with non-additive effects

1. We need to construct a linear model based on SNP genotypes

2. Write orthogonal incidence matrices for additive, dominant, additive x additive,
additive x dominant... SNP effects

1. This yields SNP-BLUP or RR-BLUP kind of models but they are cumbersome for epistasis

3. Equivalently, define relationship matrices
1. High order matrices are products of low order matrices

2. The whole theory stems from
1. VanRaden 2008 (A),
2. Vitezica et al., 2013 (A+D)
3. Vitezica et al., 2017 (A+D+AXA + any epistatic interactions)
4. Gonzalez-Diéguez et al. (2021) (A+D+AXA + any epistatic interactions in hybrid crops)

4. Use a Mixed Model with relationship matrices

This is doable if all individuals are genotyped
* There is no Single Step GBLUP for dominance or epistasis




Genomic prediction with non-additive effects

* Recipe:
1. Define incidence matrices Z for « and W for d™, e.g.
( 2

2 —2p —2q AA
Zij=41-2p and W;j =4 2pq for genotypesq Aa

0—2p \—sz aa
2. Relationship matrices are:

4 L "
* Gy = for individual additive effects (GEBVs)
2).piq;

° D — G — ww’ . - s
= UD = S g2 of dominance deviations Use in Mixed Model: GD-BLUP




Genomic prediction with non-additive effects

* Recipe:
2. Relationship matrices are:
* Gyq=Z27'/2¥p;q; for individual additive effects (GEBVs)
« D=Gp=WW'/4Y(p;q;)* for dominance deviations
* Gya =G4 O Gy/mean(diag(G4 O Gp)) for additive x additive
* Gyp = G4 © Gp/mean(diag(G4 © Gp)) for additive x dominant

* ..e8.Gaap =G4 O Gy O Gp/mean(diag(G4 © G4 O Gp))



Genomic prediction with non-additive effects

* Recipe:
2. Relationship matrices are:
* Ggp = G4 O Gp/mean(diag(G4 © Gp)) for additive x dominant

Genomic additive Genomic dominant
relationship matrix relationship matrix
G, O Gp

Gin =
AP r(6, © Gp)/n
t Use in Mixed Model: GDI-BLUP

A standardization based on the trace of the relationship matrices is needed.




Genomic prediction with non-additive effects

* Recipe:
* Then use these matrices in (G)(D)(I)BLUP / REML

y=Xb+gs+9p +Gaa+9ap +gpp +--(+pe) ..+ e

Var(g,) = Gao5;Var(gp) = Doj;Var(gaa) = Gaa0ia

* pe is the permanent environmental effect
e captures remaining genetic effects (e.g. AXAXAXA...) in repeated records (such as
analysis of milk yield)

* The matrices of higher orders G4, Gaa4, G444 are increasingly less
informative and at some point they’re not worth fitting.




Genomic prediction with non-additive effects
— crosses in hybrid crops

* In hybrid crops like maize, the cultivated plant is usually an F1 hybrid
which is the cross of two homozygote lines, each from a different
population (“heterotic group”)

* Parental homozygote lines are homozygous at all loci

* This generates a particular partition of additive, dominance and
epistasis across and within heterotic groups

Genomic prediction of hybrid crops allows disentangling
dominance and epistasis GENETICS, 2021, 218(1), iyab026

David Gonzalez-Diéguez (® '*, Andrés Legarra', Alain Charcosset?, Laurence Moreau?, Christina Lehermeier (@ 3, DOI: 101093/genetlcs/1yab026
Simon Teysseédre®, and Zulma G. Vitezica (®
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Genomic prediction in hybrid crops

* Hybrid crops from pure lines

* E.g. maize: population 1 is “Dent” and population 2 is “Flint”
* The effects (GCA and SCA) are defined “according to parental

origin”
* We define Z-matrices within each heterotic groups
e W-matrix is defined in the hybrid David Gonzélez-Diéguez
Population (1) Population (2)
e.g. Heterotic group Dent e.g. Heterotic group Flint

22



Genomic prediction in hybrid crops

* Recipe:
1. For each locus,
define incidence matrices Z, for a4 (pop 1), Z, for a, (pop 2) and W for d* (in hybrids)

(1-py) B1B; (1—-p2) B,B,
= for genotypes , Zy.. = for genotypes
Y {( —p1) & YP b1b, 2ij ( —p2) . P b, b,
and
f—2q1q2 (3132
_ ) 2q1p2 B1b,
Wi; = o 2014, for genotypes <« b, B,

k_2P1P2 Lb1b2



New models accounting for non-additive effects
GBLUP, GDBLUP, and its extensions
Inbreeding depression



Inbreeding / heterosis

* Inbreeding depression is the decline in biological fitness (viability,
fertility, % as a consequence of inbreeding

(Falconer, 1981)

* This phenomenon may be explained by directional dominance.

* Directional dominance, e.g. the heterozygote is usually “better”

(Lynch & Walsh, 1998)



Inbreeding/ heterosis

* If heterosis or inbreeding depression, E(d) = 1up with up > 0

 Statistically this translates into a regression on a measure F of
homozygosity (y =X +Fb+g,+gp +--+e)

e Across individual markers: “genomic inbreeding” (Silio et al 2013; Xiang et al
2016)

* In blocks: ROHs (long ROHs are better because inbreeding has not been
purged)

* |gnoring inbreeding/heterosis may inflate estimates of dominance
variance

* Including inbreeding/heterosis allows finer estimates of EBV



Results?

OK, so we have this nice theory, what now?

* Is this any useful?
e Extra accuracy in predictions
* Variance components
* Mate allocation

27



Example in pigs
y=XB+Fb+gs+9p+9aa+9pa+9gop +re+e

 Small variances for non-additive effects

 The model is empirically orthogonal: variance component estimates do not change by adding an
extra term
* Inclusion of dominance/epistasis did not increase the accuracy of prediction of breeding values

o v"

e

Genus plc (Hendersonville, TN, USA) = = ¥ .
3,619 genotyped sows 13,369 records | From Genus
38,779 SNPs

O VarA
— @ VvarD
O VarAA
O Var.AD
O Var.DD

1.2

1.0

Litter size
12.7+3.1

0.8

Genetic variance
0.6

0.4

0.2

0.0
|

ViteZica et al., 2018 A A+D A+D+AA A+D+AA+AD A+D+AA+AD+DD 28



Additive Dominance

Example in pigs

1.0- From Genus
' Model
o 0.50- ¥ el . . . . .
i cor Without including inbreeding
" os depression in the model, dominance
variance was overestimated
o This has long been known for pedigree
analysis (e.g. DeBoer and Hoeschele, 1993).
Gbl GEI)IF Gbl MOdeIGEI)IF
Posterior distributions of additive and dominance genetic variances for
model including (GDIF) or not (GDI) genomic inbreeding
29
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Advance Access publication December 23, 2019

a Received: 29 August 2019 and Accepted: 19 December 2019

AMERICAN SOCIETY OF ANIMAL SCIENCE Animal Genetics and Genomics

American Angus Association
ANIMAL GENETICS AND GENOMICS

1 9; 375 gen Otyp ed males Estimating dominance genetic variances for

Carolina Garcia-Baccino 39 245 SNPs growth. traits in American Angus males using
’ genomic models

Carolina A. Garcia-Baccino,* Daniela A. L. Lourenco,! Stephen Miller,*
Rodolfo J. C. Cantet,*S and Zulma G. Vitezica*

*Departamento de Produccién Animal, Facultad de Agronomia, Universidad de Buenos Aires, C1417DSQ Buenos Aires,
Argentina, 'Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, *Angus Genetics Inc., St.
Joseph, MO 64506, SINPA, UBA-CONICET, C1427CWO Buenos Aires, Argentina, ‘INP ENSAT, UMR 1388 GenPhySE, 31326

Small variances for non additive effects
Inclusion of dominance in the model did not increase the accuracy of prediction of breeding values

Table 2. Estimates of additive, dominance deviation, and residual variance components (03, 03, 02) and heritability for growth traits using MG
and MGD models

Trait! Model? o2 o3 h% h? (03 /02) o?

BW MG 6.27 (0.33) — 0.25 — — 18.82 (0.24)
MGD 6.28 (0.33) 0.18 (0.15) 0.25 0.01 0.03 18.65 (0.28)

WW MG 222.75 (14.61) — 0.16 — — 1186.28 (14.26)
MGD 223.55 (14.82) 10.02 (4.98) 0.16 0.01 0.04 1176.88 (14.86)

PWG MG 270.76 (20.42) — 0.16 — — 1388.81 (19.87)
MGD 270.30 (21.94) 21.68 (10.95) 0.16 0.01 0.08 1369.01 (26.00)

BW, birth weight; WW, weaning weight; PWG, postweaning gain.
MG, model including only additive effects; MGD, model including both additive and dominant effects. From AAA
The results are given as estimate (in parenthesis SE); h} = 0% /0% and h? = 03 /o2, where o3 is the phenotypic variance.
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Example in beef cattle

2,111 Australian Brahman (BB) cows and bulls
Genotyped with 770,000 SNPs
Body yearling weight

BB
800+

AH AD ADH GxG HGxG GxD HGxD DxD HDXD

o

Phenotipyc variance

200+

o

0-

From ABBA

Small variances for non additive effects I Additive 18 Dominance [l Epistasis [l Residual
Without including inbreeding depression in the model, dominance variance was overestimated

Raidan et al., 2018 -



Results

* Inclusion of dominance/epistasis

* does not increase the accuracy of prediction of breeding values (Ertl et al., 2014;

Xiang et al, 2016; Esfandyari et al., 2016; Moghaddar and van der Werf, 2017, Gonzalez-Diéguez et al.,
2019, Garcia-Baccino et al., 2020 — Pégard et al., 2020, Gonzalez-Diéguez et al., 2021 )

* with the exception of Aliloo et al. (2016) (for fat yield in Holstein)

* Inclusion of inbreeding depression/heterosis effect
* does increase predictive ability (Xiang et al., 2016) in pigs
e and in maize (Roth et al., 2022)

* Fitting non-orthogonal models or non fitting inbreeding
* Biases in variance component estimation (Vitezica et al. 2013; 2018)



Results?

OK, so we have this nice theory, what now?

* Is this any useful?
* Extra accuracy in predictions
* Variance components
* Mate allocation



Mate allocation: theory

 What happens if | mate i and j so that the product has an extraordinarily good
phenotype (=dominance deviation)?

What is the best combination of matings?

Vi Wi
Best progeny
merit

34



Example in pigs (within breed)

France Genetic Porc

39,353 SNPs

AGE (days) 789 2179
BD(mm)  ETANPYTE

APWL (g) 1446 1226

David Gonzdlez-Diéguez

S e (06 e
Selection

Evolution

RESEARCH ARTICLE Open Access
: " ®

SNP-based mate allocation strategies S

to maximize total genetic value in pigs

David Gonzalez-Diéguez'"®, Llibertat Tusell', Céline Carillier-Jacquin', Alban Bouquet?* and Zulma G. Vitezica'

Age at 100 kg (AGE), Backfat depth (BD), Average piglet weight at birth (APWL)

Trait | Boars | Sows | Genotyped animals | Number of records | Mean (sD)

2968 2968 149.03 (9.36)
3682 3682 11.20 (1.68)
2672 3297 1321.73 (213)

Landrace francais 35



Example in pigs (within breed)

Estimation of variance components: 0'/% 0'1%
» Model GD : additive + dominance + genomic inbreeding

y=XB+Fb+Zu+Zv+e Within breed

. .. . . . 4 @_:“/» X 9 .
F is a vector of genomic inbreeding coefficients ‘b N &H
i-th boar 1 J-th sow
Progeny  PB performance
u~N (0, Gaf), G built as in VanRaden (2008) >
v~N(0, Do?), D built as in Vitezica et al. (2013) mateij—th Pag HHae /J

Vi WK

b is the inbreeding depression parameter

» Model G : only additive + genomic inbreeding

remlf90 software (Misztal et al. 2012)

Estimation of additive and dominant SNP effects: G and d

» BLUP-SNP model including dominance and genomic inbreeding
GS3 software (Legarra et al. 2011)



Example in pigs (within breed)

Prediction of expected progeny values (Toro and Varona 2010):

* Prediction of the total genetic values (g;;) of the mating

g, = Z[Pijk(CC)éik + P (CTYdy + Py (TT) (=) %
k

Future progeny
* Prediction of the breeding values (u;;) of the progeny

u;; = Z[Pijk(cc)(z — 2pi) @ +P; i (CT) (1 — 2py) @y +Py i (TT) (—2p ) @y |
X

ay, = A+ di(qr — i)



Example in pigs (within breed)

Allocation of matings

e.g. AGE
Topgesy 120 2,179 females ] . .
¥ d' Evaluation of expected genetic gains:
% - X &H Additive genetic gain (Au):
it boar l J-th sow " Au=mean(ilsoo) — mean(fai matings)

~ ' A

gi;’ P . Potential matings A () ( )
maltegi—th D“‘,",‘( Lw u g = mean g600 — mean g\ Il_mati

/ Vi VL e.g. 261,480 e

Future progeny

Total genetic superiority (Ag):

Optimization by linear programming

Two mate allocation strategies: R package Ipsolve (Berkelaar et al., 2004)
Two constraints:

(1) 600 matings selected on @;; — fopeim (Ui;) (1) each boar could be mated to up to 15 sows

(2) each sow could not be mated to more than one boar

(2) 600 matings selected on g;; — foptim(gij)



Example in pigs (across breeds)

s it possible to boost CB performance by implementing mate allocation in a
two-way pig crossbreeding scheme in the long term?

Simulation study (QMSim + Fortran program)

Maternal trait: litter size

Genome: 18 Chr 120 cM each

G3. =

Genes| Genomes | Genetics

Purebred and Crossbred Genomic Evaluation and
Mate Allocation Strategies To Exploit Dominance in

Pig Crossbreeding Schemes

Javid Gonzélez-Diéguez,*' Llibertat Tusell,* Alban Bouquet,”* Andres Legarra,* and Zulma G. Vitezica*
‘GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326, Castanet Tolosan, France, TIFIP Institut du Porc, BP35104,
35651 Le Rheu, France, and *France Génétique Porc, BP35104, 35651 Le Rheu, France

JRCID ID: 0000-0002-8637-1835 (D.G.-D.)

Sargolzaei and Schenkel, 2009

GENOMIC PREDICTION

Mate allocation to produce
two-way crossbreds

Purebred 1 Purebred 2

1‘*‘“ x&%

i-th boar J-th sow

CB performance

matej; : of y ;
ij—th | S, I
V.
Crgssbred /_7\

progeny

David Gonzdlez-Diéguez



Genetic improvement in pigs

* It uses selection and crossbreeding

* The breeding goal is to improve crossbred (CB) performance, while
selection takes place in purebred (PB) animals based on PB

performances

* Selection depends on the correlation between PB and CB
performance (rp) ’

Selection may be suboptimal (GxE)
roc<1 (~0.7)

Comercial crossbred pigs

40



Example in pigs (across breeds)

Simulation of heterosis and QTL effects

Maternal trait: “e.g. Litter size” controlled by additive and dominant QTL action (2,500 QTLs)

Inbreeding depression was assumed to be -1 piglet per 10% increase in genomic inbreeding in P1, P2 and CB

Additive and dominance QTL effects were sampled from a MVN distribution with correlation between the
three populations to account for GXE and GxG. Landrace and Yorkshire genetic variances were taken from

Xiang et al. (2016)

T,
QTLpy,p i
— Correlation between QTLs (1pry):

P1 = 0.5

P2
{oi> Ry
[, &
TQTLP1CB\> : u ah T,
: ¥R il QTLpzcB

y'-‘ y'.l
CB

TQTLPLCB = TQTLPLPZ = TQTLPZ,CB



Example in pigs (across breeds)

p1 Iwo-way crossbreeding scheme P2
GenO 19204 12 - . RS Q 204 d 12
Founders sgmpled S ks
from generation 2030 \I\/ F12* Q 204 R“/
RM
2,448 descendants Crosshreds 2,448 descendants
Genl 192032 [g~a16 | . 2% @ ~2032 [0~416 |-
: % EE t3%: . ! % EF 0
I\\Best 10% 3‘5’ es ;' Mate a”Ocatlon II‘Best 10% 5@ Best3//,
: o strategies  2Best 3
Q@ 204 J 12" -~ females " Q 204 d'12
RM 07'12*\ @ 204 RM
Gen 2 2,448 descendants Crossbreds 2,448 descendants
: Q@ ~2032 |J~416 s ? ~2032 [0'~416

SELECTION
EVALUATION
SELECTION

z
=
=
<
2
3
>
w

Litter size =12
. RM = Random mating
Gen 10 *Same boars than used in purebred lines




Mate allocation: results

 Mate allocation has a small added benefit within-breed and no
benefit across-breed

* Selecting PB animals for CB performance using PB and CB data is a
good strategy to exploit heterosis and improve crossbred
performance, especially if the rp is low



Some conclusions

* We have a comprehensive theory

* We know how to properly define/estimate non-additive statistical
effects

* Inbreeding/heterosis should be fit in the genetic evaluation model

* Fitting dominance and epistatic effects is interesting to correctly
appraise genetic variances



Some conclusions

* Dominance and epistasis is not difficult with markers provided all
animals © (plants © ) are genotyped

* In our experience, computational complexity is not an issue (models
fit into computers), but convergence and accuracy are an issue (many
parameters, little information)
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Genomic Prediction Methods Accounting for Nonadditive
Genetic Effects

Luis Varona, Andred Legarra, Miguel A. Toro, and Zulma G. Vitezica
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