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Biological vs. statistical effects
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Biological effects

Example of epistasis: dominance-by-dominance 
two-locus epistasis 

Genotypes 
at locus 1

Genotypes at locus 2

BB Bb bb

AA 🐴 🐴 🐴

Aa 🐴 🐴 🐴

aa 🐴 🐴 🐴
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The terms ‘dominance/epistasis’ describe apparent distortions of 
mendelian segregation ratios that were due to one gene masking the 
effects of another

Example of dominance



Biological effects

• Unfortunately we don’t know all gene actions & pathways
• For many purposes, we need to make educated guesses
• Guesses include: 
• predicting phenotype of progeny (Genetic evaluation)
• Is this genome region interesting? (GWAS)
• What happened in this genome region? (selection footprints)

• For these practical purposes, we use statistical models
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Statistical effects

• Fisher’s described dominance and epistasis as deviations from 
additivity in a linear statistical model
• Statistical effects (dominance & epistasis) are a population phenomenon
• Genetic model

Additive (or breeding) value Dominance deviation

Phenotype
Epistatic deviation

𝑃 = 𝐴 + 𝐷 + 𝐼 + 𝐸
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Statistical effects

• Dominance deviations are essentially residuals

• Dominance deviations are the difference for a genotype (in red) between the 
genotypic value and its prediction from 2 alleles. 
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Fisher (1918) explained that the 
substitution effect of one allele 
is the regression of phenotype 
on genotype
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Statistical effects

• Why is 𝛼 relevant & how does it take care 
of non-additive gene action?

• The statistical definition doesn’t care how 𝛼 
“works”
• By definition, 𝛼 potentially includes biological 

dominance and epistasis
• Because individuals pass on gametes (and not 

complete genotypes) to offspring: 
• 𝛼 describes how much you gain by selecting an 

allele (in either natural or artificial selection)
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Example pairwise epistasis
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Which is the relationship among the ‘functional’ and the breeding effects ?

BB Bb bb
AA y1=m+ aA + aB + i y4=m + aA + dB+ j y7 = m + aA – aB – i
Aa y2=m + dA +aB+ l y5=m + dA + dB+ k y8= m + dA – aB – l
aa y3=m – aA + aB – i y6= m – aA +  dB – j y9 =m – aA – aB + i

59

Toro, 2017

𝛼! =
𝑎"

+ 1 − 2𝑝! 𝑑"
+ 𝑝# − 𝑞# 𝑖
+(2𝑝#𝑞#)𝑗

+ 1 − 2𝑝! 𝑝# − 𝑞# 𝑙
+2𝑝#𝑞# 1 − 2𝑝! 𝑘

Biological

Additive
Dominant
Additive x additive
Additive x dominant
Dominant x additive
Dominant x dominant



Statistical & biological effects

Being a “Big” horse is determined by 
biological dominance-by-dominance 
two-locus epistasis 

Genotypes 
at locus 1

Genotypes at locus 2

BB Bb bb

AA 🐴 🐴 🐴

Aa 🐴 🐴 🐴

aa 🐴 🐴 🐴

Genotypes at 
locus 1

Genotypes at locus 2

BB Bb bb

AA 𝜇 𝜇 𝜇
Aa 𝜇 𝜇 + 𝑑𝑑 *+ 𝜇
aa 𝜇 𝜇 𝜇
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𝛼! = 2𝑝#𝑞# 1 − 2𝑝! (🐴-🐴)



Statistical & biological effects

• In the classical 𝑉" + 𝑉$ + 𝑉%  partition, 
• Additive biological gene actions contribute only to 𝑉,, while 
• Both biological dominant and biological epistatic gene actions contribute to 

multiple variance components

• There is no correspondence between the kind of biological gene action and 
the variance component   

(Fig 2a). The classical VA + VD + VI partition obviously does not possess this property, despite
it being an orthogonal partition (uncorrelated variance components) and having suggestive
names, i.e., additive genetic variance for VA, dominance genetic variance for VD, and epistatic
genetic variance for VI (Fig 2b). Notably, except for additive gene actions, which contribute
only to VA, both dominant and epistatic gene actions contribute to multiple variance compo-
nents (Figs 1 and 2b). The specific amount of genetic variation each type of gene action con-
tributes depends on the genetic architecture or may even be unmeasurable because different
types of gene actions may not be independent from each other. Nonetheless, it is clear that this
classical VA + VD + VI partition is a poor indicator of the underlying genetic architecture;

Fig 2. Relationship between gene actions and variance components. (a) Ideally, the variance generated by each
type of gene actions is mutually exclusive therefore variance components provide a measure of relative importance of
gene actions. (b) In the classical VA + VD + VI variance partition, additive genetic variance VA has contribution from all of
additive, dominant, and epistatic gene actions in most circumstances. With the alternative parameterizations, all types of
gene actions contribute to V 0

D
(c) and V 00

AA
(d) in most circumstances.

doi:10.1371/journal.pgen.1006421.g002

Variance Partitioning for Quantitative Traits

PLOS Genetics | DOI:10.1371/journal.pgen.1006421 November 3, 2016 4 / 15

Huang & Mackay, 2016
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What to do with all these math?

• In absence of knowing true action genes, this gives tools
• 𝛼 (statistical additive effect) says 
• how much do you improve if you select me
• Big 𝛼 = interesting locus

•  𝑑&∗ (statistical dominance effect) says
• For whatever reason, the heterozygote here is interesting
• Perhaps we can mate these two animals here and maximize it

• 𝛼𝛼 &(  (statistical epistatic effect) says
• Somehow the fates of these two loci are bound together
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What to do with all these math?

• 𝛼 (statistical additive effect) is the ONLY component involved in selection, 
because only individual alleles are transmitted from parents to 
descendants
• 𝑑&∗ (statistical dominance effect) and 𝛼𝛼 &(  (statistical epistatic effect) also contribute 

to the total genetic value and to the expected phenotype of the 
crosses/hybrid, but not to selection, because the allele/gene 
combinations are not transmitted to the descendants
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New models accounting for non-additive effects
 GBLUP, GDBLUP, and its extensions
 Inbreeding depression
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“Mixed model” based prediction

• We use quantitative genetic theory to build relationship matrices 
• Then we fit them into mixed model

15



Genomic prediction with non-additive effects

1. We need to construct a linear model based on SNP genotypes
2. Write orthogonal incidence matrices for additive, dominant, additive x additive, 

additive x dominant… SNP effects
1. This yields SNP-BLUP or RR-BLUP kind of models but they are cumbersome for epistasis 

3. Equivalently, define relationship matrices
1. High order matrices are products of low order matrices 
2. The whole theory stems from 

1. VanRaden 2008 (A), 
2. Vitezica et al., 2013 (A+D) 
3. Vitezica et al., 2017 (A+D+AxA + any epistatic interactions)
4. González-Diéguez et al. (2021) (A+D+AxA + any epistatic interactions in hybrid crops)

4. Use a Mixed Model with relationship matrices
This is doable if all individuals are genotyped

• There is no Single Step GBLUP for dominance or epistasis

16



Genomic prediction with non-additive effects

• Recipe:
1. Define incidence matrices Z for 𝛼 and W for 𝑑∗ , e.g.

𝑍"# = %
2 − 2𝑝
1 − 2𝑝
0 − 2𝑝

 and  𝑊"# = ,
−2𝑞$
2𝑝𝑞
−2𝑝$

 for genotypes %
𝐴𝐴
𝐴𝑎
𝑎𝑎

2. Relationship matrices are:

• 𝑮𝑨 =
𝒁𝒁!

+∑0"1"
  for individual additive effects (GEBVs)

• 𝑫 = 𝑮2 =
𝑾𝑾!

4∑ 0"1" #
 for dominance deviations

17

Use in Mixed Model: GD-BLUP 



Genomic prediction with non-additive effects

• Recipe:
2. Relationship matrices are:

• 𝑮𝑨 = 𝒁𝒁"/2∑𝑝#𝑞#    for individual additive effects (GEBVs)
• 𝑫 = 𝑮$ = 𝑾𝑾"/4∑ 𝑝#𝑞# %   for dominance deviations

• 𝑮𝑨𝑨 = 𝑮𝑨⊙𝑮𝑨/mean(diag 𝑮𝑨⊙𝑮𝑨 )  for additive x additive
• 𝑮𝑨𝑫 = 𝑮𝑨⊙𝑮𝑫/mean(diag 𝑮𝑨⊙𝑮𝑫 ) for additive x dominant
• …
• … e.g. 𝑮𝑨𝑨𝑫 = 𝑮𝑨⊙𝑮𝑨⊙𝑮𝑫/mean(diag 𝑮𝑨⊙𝑮𝑨⊙𝑮𝑫 )

18



Genomic prediction with non-additive effects

• Recipe:
2. Relationship matrices are:

• 𝑮𝑨𝑫 = 𝑮𝑨⊙𝑮𝑫/mean(diag 𝑮𝑨⊙𝑮𝑫 ) for additive x dominant

19

𝑮,2 =
𝑮,⊙𝑮2

𝑡𝑟 𝑮,⊙𝑮2 /𝑛

A standardization based on the trace of the relationship matrices is needed.

Genomic additive 
relationship matrix

Genomic dominant 
relationship matrix

Use in Mixed Model: GDI-BLUP 



Genomic prediction with non-additive effects

• Recipe:
• Then use these matrices in (G)(D)(I)BLUP / REML

𝒚 = 𝑿𝒃 + 𝒈% + 𝒈& + 𝒈%% + 𝒈%& + 𝒈&& +⋯ +𝒑𝒆 …+ 𝒆

𝑉𝑎𝑟 𝒈% = 𝑮%𝜎%$; 𝑉𝑎𝑟 𝒈& = 𝑫𝜎&$; 𝑉𝑎𝑟 𝒈%% = 𝑮%%𝜎%%$

• 𝒑𝒆 is the permanent environmental effect 
• captures remaining genetic effects (e.g. AxAxAxA…) in repeated records (such as 

analysis of milk yield)
• The matrices of higher orders 𝑮!!, 𝑮!!!, 𝑮!!!! are increasingly less 

informative and at some point they’re not worth fitting.
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Genomic prediction with non-additive effects 
– crosses in hybrid crops
• In hybrid crops like maize, the cultivated plant is usually an F1 hybrid 

which is the cross of two homozygote lines, each from a different 
population (“heterotic group”)
• Parental homozygote lines are homozygous at all loci 
• This generates a particular partition of additive, dominance and 

epistasis across and within heterotic groups
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Abstract

We revisited, in a genomic context, the theory of hybrid genetic evaluation models of hybrid crosses of pure lines, as the current practice is
largely based on infinitesimal model assumptions. Expressions for covariances between hybrids due to additive substitution effects and
dominance and epistatic deviations were analytically derived. Using dense markers in a GBLUP analysis, it is possible to split specific com-
bining ability into dominance and across-groups epistatic deviations, and to split general combining ability (GCA) into within-line additive
effects and within-line additive by additive (and higher order) epistatic deviations. We analyzed a publicly available maize data set of Dent
! Flint hybrids using our new model (called GCA-model) up to additive by additive epistasis. To model higher order interactions within
GCAs, we also fitted “residual genetic” line effects. Our new GCA-model was compared with another genomic model which assumes
a uniquely defined effect of genes across origins. Most variation in hybrids is accounted by GCA. Variances due to dominance and
epistasis have similar magnitudes. Models based on defining effects either differently or identically across heterotic groups resulted in simi-
lar predictive abilities for hybrids. The currently used model inflates the estimated additive genetic variance. This is not important for hybrid
predictions but has consequences for the breeding scheme—e.g. overestimation of the genetic gain within heterotic group. Therefore,
we recommend using GCA-model, which is appropriate for genomic prediction and variance component estimation in hybrid crops using
genomic data, and whose results can be practically interpreted and used for breeding purposes.

Keywords: dominance; epistasis; genetic variance; heterosis; genomic models; genomic prediction; GenPred; shared data resources

Introduction
Many plant species are presently cultivated in the form of single-
cross hybrid varieties, especially when a strong heterosis effect is ob-
served for yield-related traits (e.g. maize, sunflower, sugarbeet, etc.).
These hybrids are generally obtained by crossing inbred lines origi-
nated from two complementary populations, called heterotic
groups. Breeders’ objective is therefore to identify (i) the best single-
cross hybrids among all possible crosses between existing inbred
lines from the two groups and (ii) create new lines within heterotic
group, from crosses of existing lines, which will improve the perfor-
mance of candidate hybrids at a next generation. Models for genetic
improvement of hybrid crops (e.g. maize) across two heterotic groups
are typically based on the notions of general combining ability (GCA)
and specific combining ability (SCA) (Griffing 1962; Stuber and
Cockerham 1966; Bernardo 2010). The genotypic value Gij of the
cross of lines i and j, as a function of uniting gametes from i and j,
can be written as follows:

Gij ¼ lþ GCAi þ GCAj þ SCAij (1)

where GCA of line i is the average effect of a gamete
when ideally crossed to all gametes from the reciprocal

heterotic group. SCA of the combination of line i and j is the
remainder.

It is important to notice, for readers not familiar with hybrid
crops, that in many hybrid crops such as maize, parents are pure
homozygous individuals (inbred lines). Thus, all gametes pro-
duced by i (and j) are identical, and all F1 descendants of i and j
are identical. This is different from crosses of other species such
as animals (pigs for instance) where full-sibs show genetic varia-
tion. As a result, GCA contains single locus (additive, in the statis-
tical sense) and multiple loci (additive by additive and higher
additive interactions) effects. This is because the whole genotype
(gamete) of the pure line is transmitted to the F1 descendants,
including any possible epistatic combination, and regardless of
whether loci in interaction are in the same or in different chro-
mosomes. In this, GCA is different from the concept of Breeding
Value in Animal Genetics, which captures the part of functional
epistatic effects that is contained in the additive substitution
effects, but it does not contain epistatic deviations as they are
broken down by meiosis.

Informally, the GCAs within group 1 (group 2) are the sum
of additive, additive x additive, additive x additive x additive. . .

deviations within group 1 (group 2), whereas SCA are the sum of

Received: December 17, 2020. Accepted: February 6, 2021
VC The Author(s) 2021. Published by Oxford University Press on behalf of Genetics Society of America.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
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Introduction
Many plant species are presently cultivated in the form of single-
cross hybrid varieties, especially when a strong heterosis effect is ob-
served for yield-related traits (e.g. maize, sunflower, sugarbeet, etc.).
These hybrids are generally obtained by crossing inbred lines origi-
nated from two complementary populations, called heterotic
groups. Breeders’ objective is therefore to identify (i) the best single-
cross hybrids among all possible crosses between existing inbred
lines from the two groups and (ii) create new lines within heterotic
group, from crosses of existing lines, which will improve the perfor-
mance of candidate hybrids at a next generation. Models for genetic
improvement of hybrid crops (e.g. maize) across two heterotic groups
are typically based on the notions of general combining ability (GCA)
and specific combining ability (SCA) (Griffing 1962; Stuber and
Cockerham 1966; Bernardo 2010). The genotypic value Gij of the
cross of lines i and j, as a function of uniting gametes from i and j,
can be written as follows:

Gij ¼ lþ GCAi þ GCAj þ SCAij (1)

where GCA of line i is the average effect of a gamete
when ideally crossed to all gametes from the reciprocal

heterotic group. SCA of the combination of line i and j is the
remainder.

It is important to notice, for readers not familiar with hybrid
crops, that in many hybrid crops such as maize, parents are pure
homozygous individuals (inbred lines). Thus, all gametes pro-
duced by i (and j) are identical, and all F1 descendants of i and j
are identical. This is different from crosses of other species such
as animals (pigs for instance) where full-sibs show genetic varia-
tion. As a result, GCA contains single locus (additive, in the statis-
tical sense) and multiple loci (additive by additive and higher
additive interactions) effects. This is because the whole genotype
(gamete) of the pure line is transmitted to the F1 descendants,
including any possible epistatic combination, and regardless of
whether loci in interaction are in the same or in different chro-
mosomes. In this, GCA is different from the concept of Breeding
Value in Animal Genetics, which captures the part of functional
epistatic effects that is contained in the additive substitution
effects, but it does not contain epistatic deviations as they are
broken down by meiosis.

Informally, the GCAs within group 1 (group 2) are the sum
of additive, additive x additive, additive x additive x additive. . .
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Genomic prediction in hybrid crops 
• Hybrid crops from pure lines
• E.g. maize: population 1 is “Dent” and population 2 is “Flint”
• The effects (GCA and SCA) are defined “according to parental 

origin” 
• We define Z-matrices within each heterotic groups
• W-matrix is defined in the hybrid

22

Hybrids

Population (2)
e.g. Heterotic group Flint

Population (1)
e.g. Heterotic group Dent

David González-Diéguez



• Recipe:
1. For each locus, 
define incidence matrices Z1 for 𝛼' (pop 1), Z2 for 𝛼$ (pop 2) and W for 𝑑∗ (in hybrids)

𝑍$!" = 6 1 − 𝑝$−𝑝$
 for genotypes   6𝐵$𝐵$𝑏$𝑏$

	,  𝑍%!" = 6 1 − 𝑝%−𝑝%
 for genotypes   6𝐵%𝐵%𝑏%𝑏%

and  

𝑊&' =

−2𝑞$𝑞%
2𝑞$𝑝%
2𝑝$𝑞%
−2𝑝$𝑝%

for genotypes

𝐵$𝐵%
𝐵$𝑏%
𝑏$𝐵%
𝑏$𝑏%
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Genomic prediction in hybrid crops 



New models accounting for non-additive effects
 GBLUP, GDBLUP, and its extensions
 Inbreeding depression
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Inbreeding / heterosis

• Inbreeding depression is the decline in biological fitness (viability, 
fertility, …) as a consequence of inbreeding

• This phenomenon may be explained by directional dominance.
• Directional dominance, e.g. the heterozygote is usually “better”

(Lynch & Walsh, 1998)

252 INBREEDING AND CROSSBREEDING: I [Chap. 14

linear with respect to F, and this might be taken as evidence that

epistatic interaction between loci is not of great importance. There
are, however, several practical difficulties that stand in the way of

drawing firm conclusions from observations of the rate of inbreeding

depression. One is that as inbreeding proceeds and reproductive

capacity deteriorates, it soon becomes impossible to avoid the loss of

Fig. 14. i. Examples of inbreeding depression affecting fertility.

(a) Litter-size in mice (original data). Mean number born alive in

1 st litters, plotted against the coefficient of inbreeding of the litters.

The first generation was by double-first-cousin mating; thereafter

by full-sib mating. No selection was practised, (b) Fertility in

Drosophila subobscura. Mean number of adult progeny per pair per
day, plotted against the inbreeding coefficient of the parents.

Consecutive full-sib matings. (Redrawn from Hollingsworth &
Smith, I955-)

some lines. The survivors are then a selected group to which the

theoretical expectations no longer apply. Thus precise measurement
of the rate of inbreeding depression can generally be made only over

the early stages, before the inbreeding coefficient reaches high levels.

Another difficulty, met with particularly in the study of mammals,
arises from maternal effects. Maternal qualities are among the most
sensitive characters to inbreeding depression. The effect of inbreed-

ing on another character that is influenced by maternal effects is

therefore two-fold: part being attributable to the inbreeding of the

individuals measured and part to the inbreeding in the mothers. So
the relationship between the character measured and the coefficient

of inbreeding cannot be depicted in any simple manner. In conse-

(Falconer, 1981)
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Inbreeding/ heterosis

• If heterosis or inbreeding depression, 𝐸 𝒅 = 𝟏𝜇$  with 𝜇$ > 0
•  Statistically this translates into a regression on a measure F of 

homozygosity (𝒚 = 𝑿𝜷 + 𝑭𝑏 + 𝒈" + 𝒈$ +⋯+ 𝒆)
• Across individual markers: “genomic inbreeding” (Silio et al 2013; Xiang et al 

2016)
• In blocks: ROHs (long ROHs are better because inbreeding has not been 

purged)

• Ignoring inbreeding/heterosis may inflate estimates of dominance 
variance
• Including inbreeding/heterosis allows finer estimates of EBV

26



Results?

OK, so we have this nice theory, what now?
• Is this any useful?
• Extra accuracy in predictions
• Variance components
• Mate allocation

27
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Example in pigs

A A+D A+D+AA A+D+AA+AD A+D+AA+AD+DD

G
en

et
ic 

va
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nc
e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Var.A
Var.D
Var.AA
Var.AD
Var.DD

𝒚 = 𝑿𝜷 + 𝑭𝑏 + 𝒈' + 𝒈$ + 𝒈'' + 𝒈$' + 𝒈$$ + 𝒑𝒆 + 𝒆

• Small variances for non-additive effects
• The model is empirically orthogonal: variance component estimates do not change by adding an 

extra term
• Inclusion of dominance/epistasis did not increase the accuracy of prediction of breeding values

Litter size
12.7 ± 3.1

Vitezica et al., 2018.

Genus plc (Hendersonville, TN, USA) 
3,619 genotyped sows 13,369 records
38,779 SNPs
 

From Genus



Without including inbreeding 
depression in the model, dominance 
variance was overestimated

 20 

Figure 3. Estimates (boxplots of posterior distributions) of additive, dominance and epistatic 414 

genetic variances for A+D+AA+AD+DD evaluation model including (GDIF) or not (GDI) 415 

genomic inbreeding.  The A+D+AA+AD+DD model involves additive, dominance, additive-416 

by-additive, additive-by-dominance, and dominance-by-dominance effects.  417 

●●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●●
●●

●

●
●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●●●
●

●
●

●

●

●

●

●

●●●

●

●●
●●

●
●

●

●●●

●

●
●●●

●
●

●●

●

●●
●
●

●

●
●
●
●

●

●

●
●
●

●

●●

●

●

●

●●

●
●

●●
●

●

●●

●

●
●
●
●

●

●

●

●

●

●
●

●
●

●
●

●
●
●

●
●

●

●

●
●

●

●

●
●

●●●
●
●

●

●●

●

●

●
●●●
●●●
●
●●

●
●

●●

●
●

●

●

●
●

●●
●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●
●
●

●

●

●

●

●
●
●●
●

●

●

●

●

●
●

●

●

●●
●
●
●
●

●

●●●
●
●

●

●

●

●

●

●

●

●

●
●●●
●

●
●●
●●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●●●
●

●

●

●
●

●

●
●
●
●

●

●

●●
●

Additive Dominance Epistasis

GDI GDIF GDI GDIF GDI GDIF

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.4

0.6

0.8

1.0

1.2

Model

Va
ria
nc
e Model

GDI

GDIF

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 20 

Figure 3. Estimates (boxplots of posterior distributions) of additive, dominance and epistatic 414 

genetic variances for A+D+AA+AD+DD evaluation model including (GDIF) or not (GDI) 415 

genomic inbreeding.  The A+D+AA+AD+DD model involves additive, dominance, additive-416 

by-additive, additive-by-dominance, and dominance-by-dominance effects.  417 

●●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●●
●●

●

●
●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●●●
●

●
●

●

●

●

●

●

●●●

●

●●
●●

●
●

●

●●●

●

●
●●●

●
●

●●

●

●●
●
●

●

●
●
●
●

●

●

●
●
●

●

●●

●

●

●

●●

●
●

●●
●

●

●●

●

●
●
●
●

●

●

●

●

●

●
●

●
●

●
●

●
●
●

●
●

●

●

●
●

●

●

●
●

●●●
●
●

●

●●

●

●

●
●●●
●●●
●
●●

●
●

●●

●
●

●

●

●
●

●●
●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●
●
●

●

●

●

●

●
●
●●
●

●

●

●

●

●
●

●

●

●●
●
●
●
●

●

●●●
●
●

●

●

●

●

●

●

●

●

●
●●●
●

●
●●
●●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●●●
●

●

●

●
●

●

●
●
●
●

●

●

●●
●

Additive Dominance Epistasis

GDI GDIF GDI GDIF GDI GDIF

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.4

0.6

0.8

1.0

1.2

Model

Va
ria
nc
e Model

GDI

GDIF

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

This has long been known for pedigree 
analysis (e.g. DeBoer and Hoeschele, 1993).

Posterior distributions of additive and dominance  genetic variances for 
model including (GDIF) or not (GDI) genomic inbreeding

29

Example in pigs

Vitezica et al., 2018.

From Genus



30

Carolina Garcia-Baccino

Copyedited by: SU

Garcia-Baccino et al. | 3

Cov(u,v) = 0 under orthogonality (Vitezica et  al., 2013). 
Xiang et  al. (2016) proved analytically that, in the presence 
of directional dominance, inclusion of genomic inbreeding 
as a covariate in the model is necessary to obtain correct 
estimates of dominance variance. This has long been known 
for pedigree analysis (e.g., De Boer and Hoeschele, 1993; Miller 
and Goddard, 1998).

An exploratory analysis of the data set showed that among 
all dams, 15,579 (80% of dams) had only 1 offspring, leading to 
an average of 1.10 offspring per cow. Consequently, maternal 
effects were completely confounded and were not included in 
BW and WW analysis.

The additive genomic relationship matrix G was calculated 
according to VanRaden (2008) as follows:

G =
MM′

2
∑m

k=1 pkqk
,

where M is a matrix with dimensions of number of animals (n) 
by the number of SNPs (m), with elements equal to (2− 2pk), 
(1− 2pk), and (−2pk), for genotypes AA, Aa, and aa, respectively; 
pk is the frequency for allele A of SNP k and qk = 1− pk.

The dominance deviation genomic relationship matrix D 
was built as in Vitezica et al. (2013):

D =
WW′

∑m
k=1 (2pkqk)

2 ,

where W has the same dimension as in M, with elements equal 
to (−2q2k), (2pkqk), and (−2p2k) for AA, Aa, and aa, respectively; pk
is frequency for allele A of SNP k and qk = 1− pk. Matrices M 
and W, their cross-products, and the inverses of G and D were 
built using own programs. Parallel programming in Fortran 
using OpenMP and BLAS-MKL libraries was used. Matrices 
G and D were blended in order to make them full rank as 
G∗ = 0.95G+ 0.05I, and D∗ = 0.95D+ 0.05I, and then inverted.

Variance Component Estimation and Model 
Comparison
Estimation of variance components was performed by 
Bayesian methods using Gibbs sampling and also by REML 
using the software GIBBS2F90 and REMLF90 (available at 
http://nce.ads.uga.edu/wiki/), respectively (Misztal et  al., 
2014). A  total of 200,000 iterations were run for each trait 
under the Bayesian approach, with burn-in of 10,000 initial 
iterations and sample interval of 10. Posterior means and 
posterior SD were calculated based on a "nal chain of 19,000 
samples. Convergence to the "nal distribution was checked 
by visual inspection of the chains and its variability. Initial 

parameters for REML were obtained from the Gibbs sampling 
estimates.

The maximum likelihood ratio test was performed from 
REML results to assess goodness of "t and to compare MG and 
MGD models. The Akaike information criterion (AIC) was also 
considered for those purposes. The superiority of an alternative 
model MGD over model MG was evaluated using a likelihood 
ratio test. The χ2 was calculated as χ2 = −2 log LMG + 2 log LMGD, 
the "rst term involved the MG likelihood and the second one 
took into account the MGD likelihood. P-values of the chi-square 
tests were obtained from a mixture of chi-square distributions 
with 1 and 0 degrees of freedom (Visscher, 2006).

GBLUP, using the software BLUPF90 (Misztal et  al., 2014), 
was used to obtain estimated genetic values (u,v) by "xing the 
variance components that were estimated. Conventional cross-
validation was conducted to compare the 2 models. Two data 
sets were used for this purpose: 1)  the “complete” data set as 
described above (Table 1) and 2) the “reduced” data set in which 
young animals had no own or progeny information. Those 
animals born in 2014 were considered the “young” males for BW 
and WW, but as they did not have records for PWG, a different 
“young” group of animals born in 2013 was considered for this 
trait. The predictive ability of phenotypes of “young” males 
for the 2 models was assessed as the cor(y∗, ŷ) (Legarra et  al., 
2008) where y∗ is the corrected phenotype from the “complete” 
data set, calculated as y∗ = y− Xβ̂ − f b̂ and ŷ is the predicted 
corrected phenotype from the “reduced” data set, equal to the 
estimated additive genetic effects (u) for MG model, or the sum 
of estimated additive and dominant genetic effects (u+ v)for 
MGD model.

Results
Table 2 shows the variance component estimates for each trait 
using both MG and MGD models. For all traits, additive variance 
estimates were not affected by the inclusion of dominance 
effect in the model. Additive genetic variance did not differ 
between MG and MGD models, which empirically shows the 
orthogonality in the partition of the genetic variance. The model 
used in the analysis in terms of breeding values and dominance 
deviations (Vitezica et al., 2013) enables an orthogonal partition 
of the genetic variance in HWE and linkage equilibrium. HWE 
holds in this dataset, however linkage disequilibrium (LD) 
exists. Note that a tight linkage is needed to yield substantial LD 
in outbred populations (Hill and Mäki-Tanila, 2015). Likewise, no 
changes in h2

A were observed when including dominance in the 
model (going from MG to MGD).

Means of the diagonal and off-diagonal elements of matrices 
G and D were calculated. The average of the diagonal elements 

Table 2. Estimates of additive, dominance deviation, and residual variance components (σ2
A, σ2

D, σ2
e) and heritability for growth traits using MG 

and MGD models

Trait1 Model2 σ2
A σ2

D h2
A h2

D (σ2
D/σ

2
A) σ2

e

BW MG 6.27 (0.33) — 0.25 — — 18.82 (0.24)
MGD 6.28 (0.33) 0.18 (0.15) 0.25 0.01 0.03 18.65 (0.28)

WW MG 222.75 (14.61) — 0.16 — — 1186.28 (14.26)
MGD 223.55 (14.82) 10.02 (4.98) 0.16 0.01 0.04 1176.88 (14.86)

PWG MG 270.76 (20.42) — 0.16 — — 1388.81 (19.87)
MGD 270.30 (21.94) 21.68 (10.95) 0.16 0.01 0.08 1369.01 (26.00)

1BW, birth weight; WW, weaning weight; PWG, postweaning gain.
2MG, model including only additive effects; MGD, model including both additive and dominant effects.
The results are given as estimate (in parenthesis SE); h2

A = σ2
A/σ

2
P and h2

D = σ2
D/σ

2
P, where σ2

P is the phenotypic variance.
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Abstract
Estimates of dominance variance for growth traits in beef cattle based on pedigree data vary considerably across studies, 
and the proportion of genetic variance explained by dominance deviations remains largely unknown. The potential 
bene/ts of including nonadditive genetic effects in the genomic model combined with the increasing availability of large 
genomic data sets have recently renewed the interest in including nonadditive genetic effects in genomic evaluation 
models. The availability of genomic information enables the computation of covariance matrices of dominant genomic 
relationships among animals, similar to matrices of additive genomic relationships, and in a more straightforward 
manner than the pedigree-based dominance relationship matrix. Data from 19,357 genotyped American Angus males 
were used to estimate additive and dominant variance components for 3 growth traits: birth weight, weaning weight, and 
postweaning gain, and to evaluate the bene/t of including dominance effects in beef cattle genomic evaluations. Variance 
components were estimated using 2 models: the /rst one included only additive effects (MG) and the second one included 
both additive and dominance effects (MGD). The dominance deviation variance ranged from 3% to 8% of the additive 
variance for all 3 traits. Gibbs sampling and REML estimates showed good concordance. Goodness of /t of the models was 
assessed by a likelihood ratio test. For all traits, MG /tted the data as well as MGD as assessed either by the likelihood 
ratio test or by the Akaike information criterion. Predictive ability of both models was assessed by cross-validation and did 
not improve when including dominance effects in the model. There was little evidence of nonadditive genetic variation 
for growth traits in the American Angus male population as only a small proportion of genetic variation was explained 
by nonadditive effects. A genomic model including the dominance effect did not improve the model /t. Consequently, 
including nonadditive effects in the genomic evaluation model is not bene/cial for growth traits in the American Angus 
male population.

Key words: Angus beef cattle, dominance genetic variance, genomic selection, growth traits
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Example in beef cattle

American Angus Association
19,375 genotyped males
39,245 SNPs 

Small variances for non additive effects
Inclusion of dominance in the model did not increase the accuracy of prediction of breeding values 

From AAA



2,111 Australian Brahman (BB) cows and bulls 
Genotyped with 770,000 SNPs
Body yearling weight 

Raidan et al., 2018 31

Example in beef cattle

Small variances for non additive effects
Without including inbreeding depression in the model, dominance variance was overestimated

From ABBA



Results

• Inclusion of dominance/epistasis 
• does not increase the accuracy of prediction of breeding values (Ertl et al., 2014; 

Xiang et al, 2016; Esfandyari et al., 2016; Moghaddar and van der Werf, 2017, González-Diéguez et al., 
2019, Garcia-Baccino et al., 2020 – Pégard et al., 2020, González-Diéguez et al., 2021 ) 

• with the exception of Aliloo et al. (2016) (for fat yield in Holstein)

• Inclusion of inbreeding depression/heterosis effect 
• does increase predictive ability (Xiang et al., 2016) in pigs
• and in maize (Roth et al., 2022)

• Fitting non-orthogonal models or non fitting inbreeding 
• Biases in variance component estimation (Vitezica et al. 2013; 2018)

32



Results?

OK, so we have this nice theory, what now?
• Is this any useful?
• Extra accuracy in predictions
• Variance components
• Mate allocation

33



Mate allocation: theory

• What happens if I mate i and j so that the product has an extraordinarily good 
phenotype (=dominance deviation)?

34
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Example in pigs (within breed)

David González-Diéguez

France Genetic Porc
Age at 100 kg (AGE), Backfat depth (BD), Average piglet weight at birth (APWL)
39,353 SNPs 

Trait Boars Sows Genotyped animals Number of records Mean (SD)

AGE (days) 789 2179 2968 2968 149.03 (9.36)

BD (mm) 1007 2675 3682 3682 11.20 (1.68)

APWL (g) 1446 1226 2672 3297 1321.73 (213)

Landrace français



Ø Model GD : additive + dominance + genomic inbreeding

Estimation of variance components: 𝜎,+ 𝜎2+

𝒚 = 𝑿𝜷 + 𝑭𝑏 + 𝒁𝒖 + 𝒁𝒗 + 𝒆

𝑭 is a vector of genomic inbreeding coefficients
𝑏 is the inbreeding depression parameter

𝒖~𝑁 𝟎,𝑮𝜎!" , 𝑮 built as in VanRaden (2008)  
𝒗~𝑁 𝟎,𝑫𝜎#" , 𝑫	built as in Vitezica et al. (2013)

Ø Model G : only additive + genomic inbreeding
 
remlf90 software (Misztal et al. 2012)

Estimation of additive and dominant SNP effects: G𝑎 and I𝑑
Ø BLUP-SNP model including dominance and genomic inbreeding
GS3 software (Legarra et al. 2011)

Example in pigs (within breed)

Within breed

PB performance



• Prediction of the total genetic values (𝑔#() of the mating

• Prediction of the breeding values (𝑢#() of the progeny

Prediction of expected progeny values (Toro and Varona 2010):

@𝑔&' =B
(

𝑃&'( 𝐶𝐶 @𝑎( + 𝑃&'( 𝐶𝑇 H𝑑( + 𝑃&'( 𝑇𝑇 (−@𝑎()

@𝑢&' =B
(

𝑃&'( 𝐶𝐶 (2 − 2𝑝() @𝛼(+𝑃&'( 𝐶𝑇 (1 − 2𝑝() @𝛼(+𝑃&'( 𝑇𝑇 (−2𝑝() @𝛼(

G𝛼) = G𝑎)+ I𝑑) 𝑞) − 𝑝)

Future progeny

i-th boar j-th sow

mateij−th

Example in pigs (within breed)



Allocation of matings
e.g. AGE 

2,179 females TopGEBV 120

Potential matings

e.g. 261,480 

i-th boar j-th sow

;𝑔$% , ;𝑢$%
mateij−th

Future progeny

Optimization by linear programming
R package lpsolve (Berkelaar et al., 2004)
Two constraints: 

(1) each boar could be mated to up to 15 sows
(2) each sow could not be mated to more than one boar

Two mate allocation strategies:
(1) 600 matings selected on O𝒖𝒊𝒋 → 𝒇𝒐𝒑𝒕𝒊𝒎 O𝒖𝒊𝒋
(2) 600 matings selected on O𝒈𝒊𝒋 → 𝒇𝒐𝒑𝒕𝒊𝒎 O𝒈𝒊𝒋

Evaluation of expected genetic gains:
Additive genetic gain (∆𝑢):

§ ∆𝑢 = 𝑚𝑒𝑎𝑛 ;𝑢&'' −𝑚𝑒𝑎𝑛 ;𝑢())_+(,$-./

Total genetic superiority (∆𝑔):
§ ∆𝑔 = 𝑚𝑒𝑎𝑛 ;𝑔&'' −𝑚𝑒𝑎𝑛 ;𝑔())_+(,$-./

Example in pigs (within breed)



Is it possible to boost CB performance by implementing mate allocation in a 
two-way pig crossbreeding scheme in the long term?

Purebred 1 Purebred 2

Crossbred 
progeny

i-th boar j-th sow

mateij−th

Mate allocation to produce 
two-way crossbreds

CB performance

Example in pigs (across breeds)

David González-Diéguez

Simulation study (QMSim + Fortran program)
Maternal trait: litter size
Genome: 18 Chr 120 cM each

Sargolzaei and Schenkel, 2009



Genetic improvement in pigs

• It uses selection and crossbreeding
• The breeding goal is to improve crossbred (CB) performance, while 

selection takes place in purebred (PB) animals based on PB 
performances
• Selection depends on the correlation between PB and CB 

performance (rPC)

40

Selection may be suboptimal (GxE)
rPC < 1  (~0.7)

Comercial crossbred pigs

.031

Les méthodes d’amélioration génétique : 
Utilisation du croisement

Porc charcutier = croisement entre plusieurs lignées 
Croisement majoritaire en France : 

X

X
Piétrain

Large White

Truie croisée

Porc charcutier

Landrace

Crossbred female 



Simulation of heterosis and QTL effects

• Maternal trait: “e.g. Litter size” controlled by additive and dominant QTL action (2,500 QTLs)

• Inbreeding depression was assumed to be -1 piglet per 10% increase in genomic inbreeding in P1, P2 and CB

• Additive and dominance QTL effects were sampled from a MVN distribution with correlation between the 
three populations to account for GxE and GxG. Landrace and Yorkshire genetic variances were taken from 
Xiang et al. (2016)

𝑟012!",!$

P1 P2

CB

𝑟012!$,%&𝑟012!",%&

Correlation between QTLs (𝑟012):
𝑟012!",%& = 𝑟012!",!$ = 𝑟012!$,%& = 0.5

Example in pigs (across breeds)



Two-way crossbreeding scheme
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Example in pigs (across breeds)



Mate allocation: results
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• Mate allocation has a small added benefit within-breed and no 
benefit across-breed 
• Selecting PB animals for CB performance using PB and CB data is a 

good strategy to exploit heterosis and improve crossbred 
performance, especially if the 𝑟TU  is low



Some conclusions

• We have a comprehensive theory
• We know how to properly define/estimate non-additive statistical 

effects
• Inbreeding/heterosis should be fit in the genetic evaluation model
• Fitting dominance and epistatic effects is interesting to correctly 

appraise genetic variances
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Some conclusions

• Dominance and epistasis is not difficult with markers provided all 
animals J (plants J ) are genotyped
• In our experience, computational complexity is not an issue (models 

fit into computers), but convergence and accuracy are an issue (many 
parameters, little information)
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In the last decade, genomic selection has become a standard in the genetic evaluation

of livestock populations. However, most procedures for the implementation of genomic

selection only consider the additive effects associated with SNP (Single Nucleotide

Polymorphism) markers used to calculate the prediction of the breeding values of

candidates for selection. Nevertheless, the availability of estimates of non-additive

effects is of interest because: (i) they contribute to an increase in the accuracy of the

prediction of breeding values and the genetic response; (ii) they allow the definition

of mate allocation procedures between candidates for selection; and (iii) they can be

used to enhance non-additive genetic variation through the definition of appropriate

crossbreeding or purebred breeding schemes. This study presents a review of methods

for the incorporation of non-additive genetic effects into genomic selection procedures

and their potential applications in the prediction of future performance, mate allocation,

crossbreeding, and purebred selection. The work concludes with a brief outline of some

ideas for future lines of that may help the standard inclusion of non-additive effects in

genomic selection.

Keywords: genomic selection, dominance, epistasis, crossbreeding, genetic evaluation

INTRODUCTION

Through his experiments on pea plants, Gregor Mendel (1866) realized that some traits are
dominant over others (for example “round peas” were dominant over “wrinkled peas”). InMendel’s
own words: “As a rule, hybrids do not represent the form exactly intermediate between the parental
strains. . . Those traits that pass into hybrid association entirely or almost entirely unchanged,
thus themselves representing the traits of the hybrid, are termed “dominating,” and those that
become latent in the association, “recessive””. Shortly after the rediscovery of Mendel’s rules, it
was observed that, in some cases, the addition of the individual action of genes could not explain
the mode of inheritance, and Bateson (1909) coined the term “epistasis” to describe the cases in
which the actions of two or more genes interact. A distinction must be drawn between biological
(functional) genetic effects that correspond to theMendelian definition (i.e., dominance means that
the heterozygote value is higher or lower than the mean of homozygous genotypes) and statistical
(population or weighted) effects which depend on allelic frequencies. In the latter, the relevant issue
is the contribution of non-additive effects to genetic variance. Some authors argue that non-additive
genetic effects may be a general phenomenon whose understanding is important for gaining more
knowledge on the nature of quantitative traits, but whose contribution to variance is negligible
(Crow, 2010).
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Genomic Prediction Methods Accounting for Nonadditive
Genetic Effects

Luis Varona, Andred Legarra, Miguel A. Toro, and Zulma G. Vitezica

Abstract

The use of genomic information for prediction of future phenotypes or breeding values for the candidates
to selection has become a standard over the last decade. However, most procedures for genomic prediction
only consider the additive (or substitution) effects associated with polymorphic markers. Nevertheless, the
implementation of models that consider nonadditive genetic variation may be interesting because they
(1) may increase the ability of prediction, (2) can be used to define mate allocation procedures in plant and
animal breeding schemes, and (3) can be used to benefit from nonadditive genetic variation in cross-
breeding or purebred breeding schemes. This study reviews the available methods for incorporating
nonadditive effects into genomic prediction procedures and their potential applications in predicting future
phenotypic performance, mate allocation, and crossbred and purebred selection. Finally, a brief outline of
some future research lines is also proposed.

Key words Genomic prediction, Dominance, Epistasis, Crossbreeding, Genetic evaluation, Genomic
selection

1 Introduction

Nonadditive genetic variation is caused by interaction between the
effects of alleles either at the same locus (dominance) or between
the alleles of different loci (epistasis). The term “dominance” was
introduced by Gregor Mendel [1] when he realized that some traits
dominate others (in his case, “round peas” were dominant over
“wrinkled peas”). He noted that “hybrids do not represent the
form exactly intermediate between the parental strains . . . .” Some
years after the rediscovery ofMendel’s rules, at the beginning of the
twentieth century, Bateson [2] introduced the term “epistasis” to
describe those situations where two or more genes interact, and
when the individual action of genes does not explain the mode of
inheritance.

Nourollah Ahmadi and Jérôme Bartholomé (eds.), Genomic Prediction of Complex Traits: Methods and Protocols,
Methods in Molecular Biology, vol. 2467, https://doi.org/10.1007/978-1-0716-2205-6_8,
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