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Mixed linear models are a particular class of models containing both 
fixed and random effects. Loosely speaking, a mixed model is a model 
where some terms remain constant over repeated sampling and some 
other terms vary at random according to some distribution. For 
simplicity from now on we will drop the notation linear and refer to 
these models simply as mixed models. For any mixed model we can 
identify three main components: the equation of the model, the 
expectations and Variance-Covariance for the random effects, and all 
the remaining assumptions regarding the model.

Mixed Models in a Nutshell: Theory and Concepts
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The model

A model is a mathematical representation of our understanding of the 
biological process that explains our observations. We can think of each 
observation as a single equation (and in this case we are confining 
ourselves to linear equations), containing the trait of interest, and the 
factors that explain the observations. For example:

a1x1 + a2x2 + ... + anxn = b

A system of equations is then a set of these single linear equations and 
a solution for the system must satisfy all equations. With n unknown the 
system takes form:

a11x1 + a12x2 + ... + a1nxn = b1
a21x1 + a22x2 + ... + a2nxn = b2
a31x1 + a32x2 + ... + a3nxn = b3

am1x1 + am2x2 + ... + amnxn = bm
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The same set of equation can be rewritten in a more 
convenient matrix notation 

The model
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From now on we will assume that our model contain both fixed and 
random effects (more on it below). Traditionally mixed models have been 
represented in matrix form as follow

The model

e+Zu+Xb=y
where 
y is the vector of the observations (observables), 
b is a vector of fixed effects 
u is a vector of random effects (unknown), 
e is a vector of residual (whatever we cannot explain with our model) which are also random, 
X and Z are incidence matrices, assigning each element of b and u to their corresponding 
element in y.



6

The distinction between fixed and random applies to the unknown 
model components. 

Fixed and random effects

A fixed effect is a known constant that will 
remain the same over conceptual repeated 
sampling

A random effect is a random variable that arises 
from the subsampling and random selection of 
“treatment” levels. 

In reality the distinction between fixed and random effects often depends on the practical use 
and interpretation of parameter estimates. When the investigator is interested in comparing 
specific levels of a certain factors (let’s say amount of fertilizer for a plant or concentrate for a 
cow) than it is sensible to consider them as fixed effect. When a parameter is not of relevance 
for the analysis but rather a nuisance that we want to account for, more often than not we 
end up treating that effect as random. Also keep in mind that one of the advantages of 
random effects is their parsimony. 
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Since we have assumed that random effects come from some large 
population we need to define location and dispersion for these parameters. 
Note that we have assumed that our observations are normally distributed 
and we will always assume that our residuals are normally distributed. Keeping 
the general matrix notation that we have seen before the expectations of, u 
e and y are

Expectations and variance-covariance for the random effects 
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Also, the variances of u and e are 

V = u
e

⎛
⎝⎜

⎞
⎠⎟
= G 0

0 R
⎛
⎝⎜

⎞
⎠⎟

The actual structure of G and R is flexible we will discuss this in later 
lectures but in the simplest cases 

Expectations and variance-covariance for the random effects 
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y ~ N(Xb, V); 
u ~N(0, G); 
e ~N(0, R)

Expectations and variance-covariance for the random effects 
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A trivial example – Daughters Lactation Yield 

110 = herd1 + sireZA + e
100 = herd1 + sireAD + e
110 = herd2 + sireBB + e
100 = herd2 + sireDD + e
100 = herd2 + sireDD + e
110 = herd3 + sireCC + e
110 = herd3 + sireCC + e
100 = herd3 + sireAD + e
100 = herd3 + sireAD + e

y = Xb +Zu + e
y =

110
100
110
100
100
110
110
100
100
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sZA
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X =

1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

,Z =

1 0 0 0
0 0 0 1
0 1 0 0
0 0 0 1
0 0 0 1
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
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Vu = G = Iσ u
2

Ve = R = Iσ e
2

Vy = Z'GZ + R

y ~N(Xb, V); 
u ~N(0, G); 
e~ N(0, R) 
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A trivial example – Daughters Lactation Yield 
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Solving the model 

b̂ = ( ′X V-1X)-1 ′X V-1y

û = G ′Z V-1(y - Xb̂)

 

b = (105.64,104.28,105.46)'

u = (0.40,0.52,0.76,−1.67)'

consider variance components as a fixed 
quantity estimated a priori. 
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The mixed model equations

For the general mixed linear model described above, a particular set of 
equation can be used in finding the solutions of each effect. These are the 
Henderson's mixed model equations and were developed for animal 
breeding by C.R. Henderson (Henderson, 1949).



14

If we assume that residual variance is IID (identical and independent for all 
observations), the R matrix can be factored out. In most of the applications 
we will see from now on the following form of the equations will be more 
convenient and therefore used:

The mixed model equations

X'X Z'X
X'Z Z'Z+ Iα

⎡

⎣
⎢

⎤

⎦
⎥ b̂
û

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

X'y
Z'y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

α = σ e
2

σ u
2

X'X X'Z⎡⎣ ⎤⎦
-1 X'y

Z'y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
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Z'X Z'Z + Iα⎡⎣ ⎤⎦
-1 X'y

Z'y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

BLUE fixed effects

BLUP random effects
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b=(105.64,104.28,105.46)'

u=(0.40,0.52,0.76,-1.67)'

The mixed model equations

FOR-CS-ANS 726 Lecture 1
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While we will not embark in a description of the statistical properties of BLUP and BLUE a 
reminder of why we like them so much is in order. 

They maximize correlations between true values and predicted values (they are BEST) among 
the (LINEAR) functions of the observations. 

The estimates of the fixed effects are (UNBIASED) and the mean of the true (unknown) random 
effects is equal to the mean of the predicted random effects.

BLUE and BLUP
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Estimability in models with multiple fixed effects

When there are multiple effects in the model it is often impossible to 
obtain unique BLUE for each level of the fixed effects. 

Herd Sire Yield 
1 ZA 110
1 AD 100
2 BB 110
2 AD 100
2 AD 100
3 CC 110
3 CC 110
3 AD 100
3 AD 100

X =

1 0 0 1 0 0 0
1 0 0 0 0 0 1
0 1 0 0 1 0 0
0 1 0 0 0 0 1
0 1 0 0 0 0 1
0 0 1 0 0 1 0
0 0 1 0 0 1 0
0 0 1 0 0 0 1
0 0 1 0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

The fourth column (in red) 
is equal to the difference 
of the other columns. 

X’X is not full rank since its dimension is 7x7 yet there are only 6 independent rows and 
columns. In this case a unique inverse of the coefficient matrix (X’X) does not exist. 
Therefore we cannot obtain the BLUE estimates for herd and sire. 

Linear functions of the solutions are still estimable.  
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sire<-c("ZA","AD","BB","AD","AD","CC","CC","AD","AD") #sires
herd<-c("one","one","two","two","two","three","three","three","three") #herds
yield<-c(110,100,110,100,100,110,110,100,100) #yields
new_data<-as.data.frame(cbind(yield,herd,sire)) # putting everything in a dataframe
new_data$yield<-as.numeric(as.character(new_data$yield)) # yield as numeric
fm<-lm( yield~ herd + sire -1,data=new_data) # omitting the intercept (-1)
summary(fm)

Set to 0 the first level of the sire fixed effect (sire AD in this 
case). Model was reparametrized to be full rank the 
solutions presented are estimable function of the 
(unknown) BLUEs 

SireAD − SireBB
SireAD − SireCC
SireAD − SireZA
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Accuracy refers to the correlation between true and predicted random 
effects. Calculation of these values requires knowledge of the inverse 
elements of the mixed model equations.

Standard errors and accuracy of the estimates 

X'X Z'Z
Z'X Z'Z + Iα

⎡
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⎢
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⎦
⎥ =
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⎢
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⎡

⎣
⎢
⎢

⎤
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= C11 C12
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⎣
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⎢

⎤

⎦
⎥
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LHS-1

PEV =V (û− u) = C22σ e
2

PEVi = (diσ e
2 )

Diagonal element of C22
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As an aside, the sum of each row in C22 is equal to the variance of true sire 
effect values, which in this case we defined as 0.1 (rounding error causes 
these example values to be a little bit off):

PEV =

0.095
0.094
0.092
0.083

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

REL =V (true_ values)−V (PE) /V (true_ values)

Standard errors and accuracy of the estimates 

Sire  BLUP SEP REL
ZA   0.40 0.308 0.05
BB   0.52 0.306 0.06
CC   0.76 0.303 0.08
ZD  -1.67 0.288 0.17

Prediction error variance

Reliability

Another measure of the accuracy of the BLUPs is reliability, defined as the 
squared correlation between predicted and true values (reliability ranges 
from 0 to 1). For each BLUP i, we can compute reliability as (V(true values) – 
PEVi)/V(true_values).

(0.1 – 0.095)/0.1
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In this section, we focus on hypothesis testing and estimation of an empirical data set to show how these 
analyses are conducted for different methods and for different software packages. Only a few details of the 
mathematical machinery involved in the mixed models analysis will be covered here.

Mixed models compared to traditional ANOVA 

A more detailed description of mixed model theory will be covered in later sections of the book. For readers 
interested in a more formal treatment of the argument details, they can be found in Sorensen and Gianola 
(3). Details of ANOVA for balanced and unbalanced data can be found in Rawlings et al. (2001) and 
Milliken and Johnson ( 2004).
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Example data (MaizeRILs.csv ) were obtained by testing 62 recombinant inbred line (RIL) progeny from 
the cross between inbred maize lines B73 and Mo17. 

RILs were grown in experimental units (plots) of 20 plants each using a randomized complete block design 
with two replications at each of four locations. 

Five plants in each plot were measured for height. 

The mean height for each plot is the independent variable used for this experiment. 

Some data were missing from the actual data set, these were filled in with simulated data to create a 
balanced data set for demonstration. 

Mixed models compared to traditional ANOVA 
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location rep block plot RIL   pollen silking ASI height
ARC   1 1  1  RIL-53 74  77    3 184.8
ARC   1 1  2  RIL-40 75  75    0 225.2
ARC   1 1  4  RIL-41 74  74    0 174.4
ARC   1 1  5  RIL-28 69  71    2 147.6
ARC   1 1  6  RIL-11 69  71    2 181.6

location Location of the progeny test
rep  Replication number
block  Block number. There were 2 blocks at each location
plot  Plot number
RIL  Recombinant inbred line ID
pollen Days to pollen shed
silking Days to silking
ASI  Dnthesis-silk interval (silking – pollen)
height Mean height of five plants in each plot
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The linear model for this experiment is:

Where 
μ = overall mean, 
Li = effect of location i, 
B(L)ij = effect of block j nested within location i (replication effect), 
Gk  = effect of genotype k (RIL effect), 
GLik = effect of interaction between genotype k and location i, 
εijk = residual (experimental error) effect of the plot containing genotype k in 
block j of location i. 

We will assume that all effects except the overall mean are random 

Mixed models compared to traditional ANOVA 

Yijk = μ + Li + B(L)ij + Gk + GLik + εijk,
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ANOVA 
BALANCED DESIGN
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F = MS(RIL)/MS(location*RIL) = 2539.959/114.7508 = 22.13 with 61 and 183 df.

ANOVA SAS GLM

proc glm data = ril.maizeril;                                                                                                              
class location rep RIL;                                                                                                            
model height = location rep(location) RIL RIL*location;                                                                            
random location rep(location) RIL RIL*location/test;                                                                                               
lsmeans RIL;                                                                                                                         
run; 

Default F-tests for each factor shown 
here are correct only for the model in 
which all effects except residuals are 
fixed. 

Default F-tests use the residual error 
variance as the denominator in all cases. 

Since we have assumed that all effects 
are random, the correct form of the F-test 
depends on the expected mean squares. 
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Tests of Hypotheses for Random Model Analysis of Variance 
Dependent Variable: mean_height 
 
Source           DF   Type III SS   Mean Square  F Value  Pr > F 
location          3         84931         28310    29.85  0.0022 
Error        4.4543   4224.553277    948.420722 
Error: MS(rep(location)) + MS(location*RIL) - MS(Error) 
 
 
Source            DF   Type III SS   Mean Square  F Value  Pr > F 
rep(location)      4   3594.224445    898.556111    13.85  <.0001 
location*RIL     183         20999    114.750840     1.77  <.0001 
Error: MS(Error) 244         15832     64.886230 
 
 
Source            DF   Type III SS   Mean Square  F Value  Pr > F 
RIL               61        154938   2539.959544    22.13  <.0001 
Error            183         20999    114.750840 
Error: MS(location*RIL) 

proc glm; 
class location rep RIL; 
model mean_height = location rep(location) RIL RIL*location; 
random location rep(location) RIL RIL*location/test; 
lsmeans RIL; 
run; 

F = MS(RIL)/MS(location*RIL) = 2539.959/114.7508 = 22.13 with 61 and 183 df.
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ANOVA SAS GLM

Var Comp. method of moments à equate the 
observed mean squares to their expectations 
and solve for the variance components 

Predicted marginal mean value of each RIL 
using the “lsmeans” 
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ANOVA R
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Balanced data – mixed models analysis with SAS Proc MIXED 

• No degrees of freedom, sum of squares, mean 
squares, or F-tests for random terms. 

• VarComp estimated 
• REML varcomp=Moment method with 

balanced design



31

Balanced data – mixed models analysis with R 
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Hypothesis testing with mixed models

Hypothesis testing for the variance components can be based on the “Z 
value” obtained by using the “covtest” option in the Proc MIXED statement. 

The Z value is the ratio of the variance component to its standard error, 
which has a Z distribution. This test has low power, particularly for variance 
components estimated with few degrees of freedom. 
Hypothesis testing with higher power can be implemented with the 
likelihood ratio test. 

This test requires one to perform an additional Proc MIXED analysis for 
each factor to be tested, in which one removes the factor of interest from 
the model. 

The likelihood of this “reduced” model can be compared to the likelihood 
of the “full” model to form a test of the null hypothesis that the variance 
component for the dropped term is zero. 

If removing the term causes a large decrease in the likelihood of the 
model, then there is more evidence that the variance component for the 
term is greater than zero.
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LRT = (-2) ln (likelihood of reduced model / likelihood of full model) 
= -2 * ln (likelihood of reduced model) – (-2)*ln (likelihood of full 
model)
= 3841.3 – 3833.2 = 8.1

LRT has approx. chi-square distribution. DF equal the number of parameters (variance 
components) that differ between the models. The raw p-value should be divided by 2. 
H0: σ2location = 0, raw p-value of χ2 with value 8.1 and df of 1 = 0.004. Adjusted p-value = 0.002

proc mixed;
class rep RIL;
model mean_height =;
random rep(location) RIL RIL*location;

Test significance of location main effect by dropping it from model, compute 
likelihood of reduced model:



34

Prediction of random factors with mixed models

To compare the estimation of RIL values from Proc MIXED and Proc GLM, the first difference 
one will notice is that an error message will result if one includes the statement “lsmeans RIL” 
as part of the Proc MIXED analysis. 

In practice, we obtain the RIL effect predictions by requesting the solutions for the random 
effects in the model using the “/solution” option on the random statement in Proc MIXED. 

We can then construct best linear unbiased predictors (BLUP) in this case by simply adding 
the estimated overall mean effect (μ, obtained with the “/solution” option on the model 
statement) to each RIL effect prediction
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Unbalanced data - ANOVA with SAS Proc GLM 

The GLM Procedure
Dependent Variable: mean_height
                                    Sum of
Source             DF       Squares   Mean Square  F Value  Pr > F
Model             248   251616.8381     1014.5840    15.06  <.0001
Error             225    15157.9644       67.3687
Corrected Total   473   266774.8025

R-Square     Coeff Var      Root MSE    mean_height Mean
0.943181      4.509687      8.207846            182.0048

Source             DF     Type I SS   Mean Square  F Value  Pr > F
location            3    79345.6274    26448.5425   392.59  <.0001
rep(location)       4     3693.2364      923.3091    13.71  <.0001
RIL                61   150287.3376     2463.7268    36.57  <.0001
location*RIL      180    18290.6367      101.6146     1.51  0.0018

Source             DF   Type III SS   Mean Square  F Value  Pr > F
location            3    77171.8286    25723.9429   381.84  <.0001
rep(location)       4     3677.7950      919.4488    13.65  <.0001
RIL                61   149644.4648     2453.1879    36.41  <.0001
location*RIL      180    18290.6367      101.6146     1.51  0.0018
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• First, notice that the degrees of freedom for RIL are still 61 but the degrees of freedom for location*RIL are 
now 180 instead of 183. 

• The reason for this is that we have no data on two of the location*RIL interactions involving RIL-5 (because 
we have no data on this RIL from two locations) and one of the location*RIL interactions involving RIL-51 
(as it is missing in one location). 

• Second, note that now the Type I and Type III sums of squares (SS) and mean square (MS) results are 
different from each other in this case. This occurs because the 

• Type I statistics are computed by fitting the effects in the order given in the model and computing the 
sums of squares accounting for each term sequentially, whereas the 

• Type III statistics are computed by calculating the sums of squares attributable to each term after 
accounting for all other terms in the model. 

• In the case of balanced data, all of the model terms are orthogonal to each other such that the order of 
fitting factors affects how much variation they are associated with. 

• In contrast, with unbalanced data, the different factors can become correlated and the variation associated 
with any one term may also be partly associated with a different term, such that the order of fitting terms 
affects the sums of squares for the term.

• Because of this, Type III statistics are preferred since they indicate the amount of variation attributable to 
each factor after accounting for the other factors in the model 

Unbalanced data - ANOVA with SAS Proc GLM 

As a result, the sum of Type III statistics will be less than the total sums of squares for the model: in 
this example the sum of the Type III SS = 248784.7251, whereas the total SS for the model is 
266774.8025. 
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• Variance components can be estimated by the method of moments from ANOVA Type III MS, but two 
complications arise in the case of unbalanced data: 

• First, such estimates are reasonable estimates if the data are not too badly balanced, but the statistical 
properties of such estimators are unknown, so it can be difficult to know how reliable they are for a 
given data set. 

• Second, the expected mean squares shown for the balanced data set above are not correct for the 
unbalanced data case, as the coefficients on the variance components are affected by the data 
structure. 

• The computation of the coefficients can be horribly complex (see Rawlings and Messy Data books), 
but we can get the coefficients using SAS Proc GLM with the random statement, resulting in this 
output:

Unbalanced data - ANOVA with SAS Proc GLM 

WITH BALANCE

WITH NO BALANCE
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As this expectation does not equal 1 when the null hypothesis is true (RIL variance component = 0), the F-
test is not correct. Instead, more complicated forms of the F-test are required, and Proc GLM computes 
these forms when the random statement is given: 

The GLM Procedure
Tests of Hypotheses for Random Model Analysis of Variance
Dependent Variable: mean_height

Source            DF   Type III SS   Mean Square  F Value  Pr > F
location           3         77172         25724    27.00  0.0031

Error         4.2929   4089.266951    952.566239
Error: 0.9999*MS(rep(location)) + 0.9701*MS(location*RIL)
- 0.9699*MS(Error)

Source               DF   Type III SS   Mean Square  F Value  Pr > F
rep(location)         4   3677.795036    919.448759    13.65  <.0001
location*RIL        180         18291    101.614649     1.51  0.0018

Error: MS(Error)    225         15158     67.368731

Source               DF   Type III SS   Mean Square  F Value  Pr > F
RIL                  61        149644   2453.187948    24.23  <.0001

Error            182.48         18479    101.262345
Error: 0.9897*MS(location*RIL) + 0.0103*MS(Error)
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Unbalanced data - ANOVA with SAS Proc GLM 

Var comp

LSmeans

??
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In the fixed model, the interaction of a genotype-by-location interaction 
effect is non-estimable if there are no data on that combination of genotype 
and location. Then if some interaction effects included in the LSmean 
equation are non-estimable, the whole LSmean is non-estimable 

Unbalanced data - ANOVA with SAS Proc GLM 



42

Unbalanced data – mixed models analysis 

Same model with proc mixed

𝑌.." = 𝜇 + 𝐺"

LSmean (BLUE):

BLUP:


