
Coancestry and Inbreeding



Introduction and Definition of Identity by Descent

The concepts of the degree of relationship between individuals and the inbreeding coefficient were developed by Sewall Wright
(1922) by use of correlation and path coefficient methodology.
Malécot (1948, 1969) developed the concepts using probability theory.
The concepts of coancestry and inbreeding will be defined for autosomal diploid loci in this section.
The method is based on Malécot’ s approach modified by Kempthorne (1957).
With respect to a specific locus, say A, two alleles, x and y, are said to be alike in state if x and y are functionally indistinguishable.
In contrast, x and y are identical by descent (IBD) if one of the following three conditions holds :
1) 𝑥 is a copy of 𝑦,
2) 𝑦 is a copy of 𝑥, or
3) 𝑥 and 𝑦 are copies of the same ancestral gene.
“Copy” is synonymous with meiotic duplication.
Now if 𝑥 and $y4 are alleles randomly drawn from the A locus of individuals X and Y, then the coefficient of coancestry is defined 
as
𝑟𝑋𝑌 = 𝑃 𝑥 ≡ 𝑦 , where “≡” means IBD.
The coefficient of kinship, coefficient of consanguinity and coefficient de parente are synonymous to the coefficient of coancestry. 
Kempthorne (1957) used still another term for coancestry, the coefficient of parentage



Derivation of coancestry and Inbreeding



The coefficient of coancestry for autosomal diploids may be 
derived by applying the simple rules of probability. The figure 
above depict a pedigree showing the genes at a locus in an 
autosomal diploid individual. (The subscripts 1 and 2 are 
arbitrarily designated as alleles received from the male (1) and 
female (2) gametes, respectively.
Thus, x1 = a , x2 = b , y1 = c , y2 = d , z1 = x and z2 = y .
Now let x and y be alleles at locus A sampled at random from 
individuals X and Y.



Then the coancestry is is the average of the four coancestries
among the parents of X and Y:

𝑟𝑋𝑌
= 𝑃 𝑥 = 𝑥!𝑦 = 𝑦!, 𝑥! ≡ 𝑦! + 𝑃 𝑥 = 𝑥!𝑦 = 𝑦", 𝑥! ≡ 𝑦"
+ 𝑃 𝑥 = 𝑥"𝑦 = 𝑦!, 𝑥" ≡ 𝑦! + 𝑃 𝑥 = 𝑥"𝑦 = 𝑦", 𝑥" ≡ 𝑦"
=
1
4
[𝑃 𝑎 ≡ 𝑐 + 𝑃 𝑎 ≡ 𝑑 + 𝑃 𝑏 ≡ 𝑐 + 𝑃 𝑏 ≡ 𝑑

=
1
4
𝑟𝐴𝐶 + 𝑟𝐴𝐷 + 𝑟𝐵𝐶 + 𝑟𝐵𝐷



If Z is a progeny of X and Y, it follows directly that the inbreeding coefficient of Z is the 
probability that the alleles z1 and z2 are IBD :

𝐹% = 𝑃 𝑧1 ≡ 𝑧&
= 𝑃 𝑧' = 𝑥'𝑧& = 𝑦', 𝑥' ≡ 𝑦' + 𝑃 𝑧' = 𝑥'𝑧& = 𝑦&, 𝑥' ≡ 𝑦&
+ 𝑃 𝑧' = 𝑥&𝑧& = 𝑦', 𝑥& ≡ 𝑦' + 𝑃 𝑧' = 𝑥&𝑧& = 𝑦&, 𝑥& ≡ 𝑦&

=
1
4
𝑃 𝑋1 ≡ 𝑌1 + 𝑃 𝑋1 ≡ 𝑌2 + 𝑃 𝑋2 ≡ 𝑌1 + 𝑃 𝑋2 ≡ 𝑌2

=
1
4
𝑃 𝑎 ≡ 𝑐 + 𝑃 𝑎 ≡ 𝑑 + 𝑃 𝑏 ≡ 𝑐 + 𝑃 𝑏 ≡ 𝑑

= 𝑟()
which shows that the inbreeding coefficient of an individual is equal to the coancestry
between the individual’ s parents.



A special case is the coancestry of an individual with itself.
Consider sampling a gene twice with replacement from 
individual X.
Designating these genes as 𝑥 and 𝑥′

𝑟## = 𝑃 𝑥 ≡ 𝑥′
= 𝑃 𝑥 = 𝑥!𝑥′ = 𝑥! + 𝑃 𝑥 = 𝑥"𝑥′ = 𝑥"
+ 𝑃 𝑥 = 𝑥!𝑥′ = 𝑥"𝑥! ≡ 𝑥" + 𝑃 𝑥 = 𝑥"𝑥′ = 𝑥!𝑥" ≡ 𝑥!

= 1 + 𝐹$ /2



Often it is convenient to calculate coancestry between two individuals by finding the 
coancestry between one individual and the parents of the other.
When using this algorithm, it is essential to use the coancestry between the older 
individual (appearing earlier in the pedigree) and the parents of the younger individual 
(appearing later in the pedigree).
Otherwise, an incorrect answer may be obtained because intermediate paths of 
relationship may be omitted.
Referring to Figure before, gametes of C and D can form zygotes (c1 d1), (c1 d2), (c2 
d1) and (c2 d2) with equal frequency of one quarter.



𝑟!" = 𝑟! #$% =
1
4 {
1
4 𝑃 𝑥& ≡ 𝑐& + 𝑃 𝑥& ≡ 𝑑& + 𝑃 𝑥' ≡ 𝑐& + 𝑃 𝑥' ≡ 𝑑&

+
1
4 𝑃 𝑥' ≡ 𝑐' + 𝑃 𝑥' ≡ 𝑑& + 𝑃 𝑥& ≡ 𝑐' + 𝑃 𝑥& ≡ 𝑑&

+
1
4
𝑃 𝑥' ≡ 𝑐& + 𝑃 𝑥' ≡ 𝑑' + 𝑃 𝑥& ≡ 𝑐& + 𝑃 𝑥& ≡ 𝑑'

1
4
𝑃 𝑥' ≡ 𝑐& + 𝑃 𝑥' ≡ 𝑑& + 𝑃 𝑥& ≡ 𝑐& + 𝑃 𝑥& ≡ 𝑑& }

=
1
8 { 𝑃 𝑥' ≡ 𝑐' + 𝑃 𝑥' ≡ 𝑐& + 𝑃 𝑥& ≡ 𝑐' + 𝑃 𝑥& ≡ 𝑐&

+ 𝑃 𝑥' ≡ 𝑑' + 𝑃 𝑥' ≡ 𝑑& + 𝑃 𝑥& ≡ 𝑑' + 𝑃 𝑥& ≡ 𝑑& }
= 4𝑟(* + 4𝑟(+ /8 = 𝑟(* + 𝑟(+ /2

which is the average coancestry of X with the parents of Y.



A special case occurs when we consider the coancestry
of parent X with offspring Z:
𝑟#% = 𝑟# #$& = 𝑟## + 𝑟#& /2 = 1 + 𝐹# + 2𝑟#& /4

If 𝐹# = 0 and 𝑟#& = 0, then the coancestry between 
parent and offspring is 1/4.



The coancestry between full sibs who have parents A and B is
𝑟() = 2𝑟,- + 𝑟,, + 𝑟-- /4 = 2𝑟,- + 1 𝐹, + 𝐹- /2 /2

Another important probability statement is the probability that both alleles in X are 
IBD with both alleles in Y :

𝑢() = 𝑃 𝑥' ≡ 𝑦'𝑥& ≡ 𝑦& + 𝑃 𝑥' ≡ 𝑦&𝑥& ≡ 𝑦' = 𝑟,*.-+ + 𝑟,+.-*

For full sibs, this reduces to 𝑢() = 𝑟,,.-- + 𝑟2𝐴𝐵, and if 𝐹𝐴 = 𝐹𝐵 = 𝑟𝐴𝐵 = 0, 
then 𝑢() = 1/4.

Clearly, uXY = 0 for parent offspring coancestry in a random mating population



Wright’s definition of Inbreeding coefficient and 
coefficient of relationship

Wright (1922) defined the inbreeding coefficient of individual z as the correlation 
between uniting gametes

𝐹% =
1
2
6
/

1
2
𝑛' + 𝑛& 1 + 𝐹,/

where
𝐴𝑖 = the ith common ancestor, 𝑛1 = number of generations from one parent back 
to the common ancestor, 𝑛2 = corresponding number of generations from the 
second parent.
Wright also defined the coefficient of relationship between X and Y as

𝑅() =
𝐶𝑂𝑣 𝑋, 𝑌
𝑉(𝑉) '/& =

∑/
1
2𝑛' + 𝑛& 1 + 𝐹,/

1 + 𝐹( '/& + 1 + 𝐹) '/&



𝐶𝑜𝑣 𝑋, 𝑌 = 2𝐹% = 2𝑟#&
and if

𝐹# = 𝐹& = 0
𝑅#& = 2𝑟#&



Molecular and Pedigree Based Relationships



• The tale of two identities.
• Pedigree versus Molecular 

Relatedness:
• Expectation versus Realization.
• Inverse Calculation.
• Computational Considerations.

Outline



???? ????

IBS-IBD
• Genotypes are derived from a random sampling process (Keep 

this in mind through lecture). 
• IBD is a proxy to the true (unknown) IBS!!



Pedigree Relatedness

• Based on the expected relationship between and within 
individuals.

• Estimate of the IBD relatedness.
• Generated from a pedigree as outlined below:

Animal Sire Dam

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 2 3

7 4 5

8 1 6

.. .. ..



Pedigree Relatedness

Relationship Matrix
1 2 3 4 5 6 7 8 9 10 11

1 1+0 0 0 0 0 0 0 0.5 0.5 0.5 0.5
2 1+0 0 0 0 0.5 0 0.25 0.25 0 0
3 1+0 0 0 0.5 0 0.25 0.25 0 0
4 1+0 0 0 0.5 0 0 0.25 0.25
5 1+0 0 0.5 0 0 0.25 0.25
6 1+0 0 0.5 0.5 0 0
7 1+0 0 0 0.5 0.5
8 1+0 0.5 0.25 0.25
9 1+0 0.25 0.25

10 1+0 0.5
11 1+0

• Coancestry between two individuals: average coancestry 
between one individual and the parents of the other. 
• Always true if parents come before progeny!!

Estimate of Expected Relationship!!!



Pedigree Relatedness

• The primary motivation in using a relationship matrix is to derive 
breeding values for individuals.

• Only need inverse though!!

• Henderson (1975) generated a recursive way to generate A-1 

without have to do it brute force (i.e. inverse of A).
• Faster methods by Quass (1976) and Meuwissen & Luo (1992).
• Millions of animals is computationally efficient!
• Sparsity!!



Pedigree Relatedness

• Points on a pedigree based relationship matrix:
• All relative to base/founder population.
• Founder individuals relatedness.
• Depth of pedigree.
• What to do with multi-breed population.
• Does not account for Mendelian Sampling!!

Do these two individuals have the 
same estimated breeding value?



Pedigree Relatedness
• Does not take in to account the variation in expected 

relationships, which is partly due to Mendelian Sampling 
(MS).
• MS is a sample from a random process of the 

transmission of alleles from parent to offspring.
• Relationship = (Expected Relationship) ± MS.

• Sets an upper limit to the amount of information you can 
get from an offspring without any phenotypes!
• Max accuracy is equal ???.

Sire Chromosome

Offspring 1

Offspring 2

Offspring 3

Offspring 4



Pedigree Relatedness

Mendelian Sampling Effect

• Example using a single locus:
• For every A allele add a +1 to the breeding value.
• For every a allele add a -1 to the breeding value.

Dam

A a

Sir
e

A AA Aa

A AA Aa

Dam

A a

Sir
e

A +2 0

A +2 0

Genomic Information
EBV = Σ allelic effects

Pedigree Information
EBV = 0.5*(EBVSire + EBVDam)

Dam

A a

Sir
e

A +1 +1

A +1 +1



Molecular Relatedness
• Based on the realized relationship between and within 

individuals (i.e. Realization of the sampling process)
• E(Molecular) = Pedigree

• Estimate of the IBS relatedness.
• Proportion of shared genotypes.

• Generated from molecular data:
• SNP, Haplotypes, Microsatellites



Molecular Relatedness

Relationship Matrix
1 2 3 4 5 6 7 8 9 10 11

1 0.96 0.12 0.15 0.43 0.12 0.07 0.05 0.5 0.5 0.5 0.5
2 0.98 0.05 0.02 0.13 0.5 0.02 0.23 0.29 0.09 0.05
3 1.02 0.08 0.05 0.5 0.06 0.28 0.22 0.4 0.03
4 1.01 0.02 0.03 0.5 0.02 0.02 0.22 0.22
5 1.05 0.04 0.5 0.07 0.09 0.29 0.27
6 1.02 0.06 0.5 0.5 0.03 0.05
7 1.01 0.06 0.07 0.5 0.5
8 1.02 0.49 0.22 0.27
9 0.98 0.28 0.22

10 0.93 0.53
11 1.04

• Disregard how it is set up at this point.
• Measure of proportion of alleles shared.

Estimate of Realized Relationship!!!



Molecular Relatedness



Molecular Relatedness

• Points on a molecular based relationship matrix:
• Founders are now related.
• Accounts for Mendelian Sampling.
• Issues related to SNP ascertainment bias.
• Assume SNP are independent.
• What about LD?
• Is the amount of information generated from each 

SNP the same?
• Does the information generated increase as the 

number of SNP increase?
• Genotyping Errors
• Sometimes not invertible
• No longer Sparse



Molecular Relatedness
Relationship Construction

• Multiple ways to construct, but all in some form derive from 
this setup of:
• Wnp = genotype for individual “n” for marker “p”.
• Matrix is sometimes referred to as “gene content”.
• Dimension is number of animals by number of snp.

=

Diagonals – Within animal summation
Off-diagonals – Across animal summation



Does SNP Coding Matter?
W(aa)        = -1
W(Aa/aA) = 0
W(AA)       = 1

W(aa)         = 0
W(Aa/aA)  = 1
W(AA)        = 2

E(W) = (p-q)
Var(W) = 2pq

E(W) = 2p
Var(W) = 2pq

Variance Equal but mean shifts??

Molecular Relatedness



Traditional Way to Construct in Animal Breeding

Molecular Relatedness

• Set up Z which is a matrix of gene content that has been 
centered to set mean allele effects to 0.

Coding (0,1,2)
Z(aa)        = 0 - 2p = -2p  
Z(Aa/aA) = 1 - 2p = 1-2p
Z(AA)       = 2 - 2p = 2(1-p)

Coding (-1,0,1)
Z(aa)        = -1 - (p-q)  = -2p  
Z(Aa/aA) = 0 - (p-q)   = 1-2p
Z(AA)       = 1 -(p-q)    = 2(1-p)

Van-Raden (2008)
Z(aa)        = -1 - 2(p-0.5) = -2p  
Z(Aa/aA) = 0 - 2(p-0.5)  = 1-2p
Z(AA)       = 1 - 2(p-0.5)  = 2(1-p)



Traditional Way to Construct in Animal Breeding
Molecular Relatedness

• Centering:
• More credit to rare alleles than to common ones when 

calculating off-diagonal relationships.
• Genomic Inbreeding greater if individual is homozygous for 

rare alleles.



Traditional Way to Construct in Animal Breeding

Molecular Relatedness

• Once Z is created then perform the following:

G = ZZ’ / 2 Σ pi(1-pi)
• Denominator scales so it is similar to A matrix.
• Properties based on HWE and Linkage Equilibrium:
• Average Diagonals = 1.0
• Average Off-Diagonals = 0.0



• As with using pedigree information the primary motivation in 
using a relationship matrix is to derive breeding values for 
individuals.

• The matrix is dense in comparison to a pedigree based matrix.
• Costly to invert
• Misztal et al. (2014) developed a recursion or Meyer et al. 

(2014) developed a way to update inverse as new animals 
enter.

Molecular Relatedness



Pedigree + Molecular   Relatedness

• What if you have individuals with both pedigree and genomic 
information??

• Compute Pedigree based and Molecular based seperately 
and combine them.

• Combine Pedigree and Genomic into one matrix (H) and is 
referred to as Single Step Genomic Evaluation.
• Good paper with example pedigree:
• Legarra et al. (2009); A relationship matrix 

including full pedigree and genomic information.



Characterization and 
management of homozygosity: 

the livestock perspective



Homozygosity: Difference between IBS v. IBD

• Identity-by-state (IBS) = Two genes that have 
identical nucleotide sequences but may or may not 
have descended from different copies in the 
ancestral population.

• Identity-by-descent (IBD) = Identical nucleotide 
sequences descended from same ancestral copy.



Inbreeding

• Inbreeding results from the mating of related 
individuals (share one or more ancestors).

• The inbreeding coefficient of an individual is 
defined as the probability of 2 randomly 
chosen alleles at the same locus being IBD. 





Pedigree inbreeding (FPED)

• Numerator relationship matrix (A)
– Covariance matrix that is an estimate of the expected 

proportion of genes shared by individuals in the pedigree.

• Multiple methods have been developed to construct A 
and its inverse from pedigree information:
–Meuwissen and Luo (1992)
– Colleau (2002)
– VanRaden (1992)



Drawbacks of using pedigree

1. Need to collect pedigree information
– Wild populations?

1. Susceptible to missing/inaccurate information

1. It is only an expectation
– Mendelian sampling



Genomic measures of 
inbreeding

• Largely fall into:

–Marker-based measures
• FHOM
• FGRM

–Segment based measures
• FROH



Proportion of homozygous 
markers (FHOM)

•



Genomic relationship matrix

• Using genomic data, we can build can built a 
matrix like A but using relationships built on 
the proportion of alleles shared between 
individuals.

• This matrix is called the genomic relationship 
matrix (G or GRM).
–Realized relationship



Inbreeding using genomic 
relationship matrix (FGRM)

•



Drawbacks of using FGRM
• Many methods to build G and different 

interpretations.

• Cannot distinguish between IBS and IBD 
homozygosity and therefore will tend to 
overestimate inbreeding.



Runs of homozygosity

• Continuous stretches of the genome in a 
homozygous state are known as runs of 
homozygosity. 

• Large homozygous segments are unlikely 
to be homozygous by chance.





Detecting ROH using a sliding window approach



PLINK algorithm for detecting 
ROH

1) A scanning window is defined by a 
predefined number of SNPs. 
• # of heterozygous SNPs
• # of missing

Then the number of homozygous 
windows the SNP is a part of is 
counted.



PLINK algorithm for detecting 
ROH

2) Then a threshold is imposed where 
the SNP needs to be a part of X 
amount of homozygous windows



PLINK algorithm for detecting 
ROH

3) ROH segments are constructed and 
checked against further constraints:
• Interval between SNPs
• Minimum number of SNPs in 

segment.
• Minimum segment length



Characteristics of ROH
• Size of an ROH
–The length of an ROH is expected to be related to 

the number of generations that have passed since 
the common ancestor.

• Distribution of ROH
–Recombination
–Selection







Proportion of the genome in 
ROH (FROH)

•



Inbreeding depression
•



Working theories
1. Increased expression of deleterious recessive 

alleles.
– As inbreeding increases the frequency of deleterious 

recessives increases and presents effect hidden in 
heterozygotes.

2. Homozygosity at loci where there is heterozygote 
advantage (overdominance)
– As inbreeding increases the number of heterozygous 

genotypes with positive effect decrease.



Inbreeding depression 
examples:

Litter Size and 
lifespan

Growth and survival

Milk production and 
reproduction



Is all inbreeding the same?
• Age of inbreeding

• Location of inbreeding



Case study: Inbreeding 
depression in American Angus 

cattle
• Objectives:
1. Characterize the American 

Angus population in terms of 
pedigree and genomic 
inbreeding levels.

1. Quantify the effect of pedigree 
and genomic inbreeding, as 
well as any moderating effects 
of the age of inbreeding



Data

• Pedigree and genomic (BovineSNP50k v2 
BeadChip) data was provided for 567,475  animals 
of the American Angus breed.

• Phenotypic records for heifer pregnancy (HP), 
birth weight (BW), weaning weight (WW), and 
Postweaning gain (PWG)



Inbreeding coefficients
• Inbreding measures considered:

– FPED
• In order to decompose FPED into age classes, we also calculated pedigree 

inbreeding based on the first 3 (FPED), 4 (FPED4), 5 (FPED5), and 6 (FPED6) 
ancestral generations.

– FGRM

– FROH
• In order to decompose FROH into age classes, we also calculated 

ROH inbreeding based on ROH of lengths 1 to 2 Mb (FROH1-2), 2 to 
4 Mb (FROH2-4), 4 to 8 Mb (FROH4-8), 8 to 16 (FROH8-16), and 16 Mb or 
larger (FROH16).





Trait Group 
FPED FGRM FROH

BiW
Males -0.08 -0.11 -0.11

Females -0.09 -0.15 -0.12

WW 
Males -0.16 -0.20 -0.16

Females -0.17 -0.21 -0.18

PWG 
Males -0.28 -0.32 -0.26

Females -0.32 -0.36 -0.30

Effect (as % of trait mean) of a 1% increase in inbreeding.



Projected phenotypic depression for animals with low (5th perc.) and high 
(95th perc.) pedigree and genomic inbreeding.



Effect of inbreeding age on depressive effects



Genetic diversity
• Genetic diversity is the presence of 

variation in the genetic composition 
among individuals in a group.



Idealized Population
1. Random mating

1. Distinct non-overlapping generations

1. No migration

1. No mutation

1. No selection

1. Constant population size



Idealized population



Rate of Inbreeding in an 
idealized population



Effective population size (Ne)
•



What is a good effective population size?



Genetic diversity case study: 
American dairy cattle

Objective:

• Assess the current state of genetic diversity and 
changes in genetic diversity due to recent selection 
strategies. 



Genomic selection in dairy 
cattle

• What is genomic selection?

• When was it implemented in dairy cattle?

• What were the consequences for genetic 
diversity?



Genomic 
selection has 
considerably 
increased the rate 
of genetic gain



Animals

Breed Acronym Pedigree Genotyped
Holstein HO 6,725,679 3,649,734

Jersey JE 985,959 459,784

Brown Swiss BS 208,219 49,360

Ayrshire AY 33,975 9,442

Guernsey GU 45,792 5,359



Average Inbreeding by Year of 
Birth (2000-2020)



Yearly Rate of Inbreeding

•



Effective population size 
estimates for US Holstein

Measure Period Males Females

NePED (CI) 

P1 672 (339, 
37961) 75 (68, 84)

P2 29 (27, 31) 55 (53, 57)

P3 24 (22, 26) 29 (28, 29)

NeGRM (CI) 

P1 150 (116, 208) 55 (50, 60)

P2 15 (14, 15) 42 (41, 44)

P3 14 (14, 15) 20 (20, 20)

NeROH (CI) 

P1 131 (105, 174) 44 (41, 48)

P2 16 (15, 16) 43 (42, 45)

P3 15 (14, 16) 21 (20, 21)



Effective population size 
estimates for US Jersey

Measure Period Males Females

NePED (CI) 

P1 NA NA

P2 48 (37, 71) 117 (98, 145)

P3 74 (44, 222) 112 (99, 130)

NeGRM (CI) 

P1 NA NA

P2 43 (29, 83) 195 (132, 369)

P3 NA 276 (189, 512)

NeROH (CI) 

P1 NA NA

P2 35 (25, 57) 102 (82, 135)

P3 59 (33, 279) 197 (149, 290)



Final remarks:

• The characterization of inbreeding has 
direct implications on the possible 
management of genetic diversity resources 
and avoiding inbreeding depression.



Covariance between relatives



Introduction

Quantitative genetics relies on the resemblance between 
relatives to estimate the genetic variances. The amount of 
phenotypic resemblance among relatives for the trait provides 
an indication of the amount of genetic variation for the trait. If 
trait variation has a significant genetic basis, the closer the 
relatives, the more similar their appearance.



Care must be taken, however, that biases due to environmental 
covariances between relatives are not present.In most mammalian 
litter - bearing species, for example, full sibs share the common 
environment of the litter, and thus the resemblance between them 
may be enhanced by the covariance due to their common 
environment.In humans, adopted children share a common 
environment with their nonbiological parents, which could cause a 
positive environmental covariance.In plants, competition could 
introduce a negative environmental covariance between sibs.



The covariance between relatives will be presented first using 
genotypic frequencies and genetic effects for one autosomal 
locus.Then the method of Malécot will be applied to give a 
general framework for deriving covariance in a random mating 
population.



To understand the usefulness of covariance between individuals 
we need to look back at the heritability. ℎ" is a central concept in 
quantitative genetics: It explains the proportion of variation due 
to additive genetic values (Breeding values) and is defined as

ℎ" =
VA
VP



You should notice that while phenotypes (and hence VP) can be 
directly measured,
Breeding values (and hence VA) must be estimated and 
estimates of VA require known collections of relatives



Covariance

Cov (x, y) = E[x∗y] − E[x]∗E[y]
Covariance though is dependent on the unit of measure and it is 
not readly interpretable. A standardized measure of covariance 
is correlation which is

𝑟 =
𝑐𝑜𝑣 𝑥, 𝑦

𝑉𝑎𝑟 𝑥 𝑉𝑎𝑟 𝑦
correlation varies between - 1 and 1 where r = 1 implies perfect 
positive linear association and r = -1 perfect negative linear 
association



Now, consider the best (linear) predictor of y given that we know x
!𝑦 = 𝑦

!
+ 𝑏 𝑥 − 𝑥

!

The slope of the regression is a function of the covariance
b = cov (x,y)/Var (x)

The fraction of the variation in y accounted for by knowing x, i.e,
𝑉𝑎𝑟 !𝑦 − 𝑦

is
𝑟"



Now we can establish the relationship between correlation and 
regression slope as

r (x,y) = b∗[Var (x)/Var (y)]
Note that If 𝑉𝑎𝑟 𝑥 = 𝑉𝑎𝑟 𝑦 , then

b (y | x) = b ( x | y) = r (x, y)



Covariance (and the related measures of correlations and 
regression slopes) can be used to quantify the phenotypic 
resemblance between relatives.Quantitative genetics as a field 
traces back to R.A.Fisher’ s 1918 paper showing how to use the 
phenotypic covariances to estimate genetic variances, whereby 
the phenotypic covariance between relatives is expressed in 
terms of genetic (co)variances.



We can basically divide the relationship between individuals in two big categories. 
1) Parent offspring. In this case covariance between individuals can be seen in 
terms of regression (which include parent offspring and mid - parent offspring 
regression). The slope of the (single) parent-offspring regression is estimated by

𝑏 𝑂|𝑃 =
𝐶𝑜𝑣 𝑂, 𝑃
𝑉𝑎𝑟 𝑃

with
𝐶𝑜𝑣 𝑂, 𝑃
𝑉𝑎𝑟 𝑃

=
1

𝑛 − 1 𝛴𝑂𝑖𝑃𝑗 − nO
!
𝑃
!

Notice that the regressions involves the covariance between parents and their 
offspring



Collateral releationships. In this case covariance between individuals can be 
estimated using ANOVA
With collateral relatives, the above formula for the sample covariance is not 
appropriate, for two reasons. First, there are usually more than two collateral 
relatives per family. Second, collateral relatives belong to the same class or 
category. In contrast, parents and offspring belong to different classes. The 
covariance between parents and offspring is an interclass (between-class) 
covariance, while the covariance between collateral relatives is an intraclass 
(within-class) covariance. The analysis of variance (ANOVA), first proposed in 
Fisher’s 1918 paper, is used to estimate intraclass covariances.



Under the simplest ANOVA framework, we can consider the total variance of 
a trait to consists of two components:
a between-group (also called the among-group) component (for example, 
differences in the mean value of different families)
a within-group component (the variation in trait value within each family).

𝑉𝑎𝑟 𝑇 = 𝑉𝑎𝑟 𝐵 + 𝑉𝑎𝑟 𝑊
Variance(between groups) = covariance (within groups).
Thus, the larger the covariance between members of a family, the larger the 
fraction of total variation that is attributed to differences between family 
means
Intraclass correlation,

𝑡 = 𝑉𝑎𝑟 𝐵 /𝑉𝑎𝑟 𝑇



Situation 1

𝑉𝑎𝑟 𝐵 = 2.5
𝑉𝑎𝑟 𝑊 = 0.2
𝑉𝑎𝑟 𝑇 = 2.7

𝑡 = 2.5/2.7 = 0.93



Situation 2

𝑉𝑎𝑟 𝐵 = 0
𝑉𝑎𝑟 𝑊 = 2.7
𝑉𝑎𝑟 𝑇 = 2.7
𝑡 =/2.7 = 0



What happened in situation 2:
-) members of a family resemble each other no more than they do members 
of other families
-) there are no significant differences in average phenotype between families
-) phenotypic resemblance is low, so genetic variation is low
Note that phenotypic resemblance among relatives can equivalently be 
consider as a measure of the similiary among a group of relatives for the 
phenotype of a quantitative trait (the covariance of family members), or the 
difference in phenotype between different families (the between-group 
variance), as Cov(Within a group) = Var(Between group means).


