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Why multivariate models?
 MT models are useful for traits where the difference between genetic and
residual correlations are large ( e.g. greater than 0.5 difference )

 Where one trait has a much higher heritability than the other trait.

« EBVs for traits with low heritability tend to gain more in accuracy than
EBVs for traits with high heritability, although all traits benefit to some
degree from the simultaneous analysis.
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Why multivariate models?

* Another use of MT models is for traits that occur at different times in the
life of the animal, such that culling of animals results in fewer
observations on animals for traits that occur later in life compared to
those at the younger ages.

« Consequently, animals which have observations later in life tend to have
been selected based on their performance for earlier traits. Thus,
analysis of later life traits by themselves could suffer from the effects of

culling bias, and the resulting EBV could lead to errors in selecting
future parents.
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Multivariate models

 MT models do not offer great increases in accuracy for cases where
— heritabilities of traits are similar in magnitude,

— both genetic and residual correlations are relatively the same
magnitude and sign,

— every animal is measured for all traits.
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 However, if culling bias may exist, then an MT analysis should be
performed even if the parameters are similar.

 An MT analysis relies on the accuracy of the genetic and residual
correlations that are assumed.

 If the parameter estimates are greatly different from the underlying,
unknown true values, then an MT analysis could do as much harm as it
might do good.
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Drawback of multivariate models

Computer programs are more complicated, require more memory and
disk storage for MT analyses.

Verification of results might be more complicated.
These have to be balanced against the benefits of an MT analysis.

If culling bias is the main concern, then an MT model must be used

regardless of the costs or no analysis should be done at all, except for
the traits not affected by culling bias.
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Some theory

Decomposition of genetic variances and covariances

y JR 2 2 2 2

G%%x= 0°ax T O%pxt O%aax T O%Apx ¥ O%ppx -+
7 JR 2 2 2 2

0%6,= 0%p, + 0%p, + 0%pn, + 0%ppy + O%ppy F.o.

OG(xy) = Oaxy)T Op(xy) T Oaaixy) ¥ Oap(xy) T OpD(xy) T+

we can decompose phenotypic correlation (r,) to its
genetic and environmental components.

where o¢(x,y) is genetic covariance, og(X,y) is environmental covariance, o2 _subscripts
are genetic or environmental variances for traits x and y.
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Direct Response to Selection

« Genetic change due to selection for that trait
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Correlated Response to Selection

« Genetic change in one or more traits resulting from selection for another
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Causes of Correlated Response to Selection
« Linkage
— This is only temporary because of recombination and Mendelian
segregation

« Pleiotropy
— A single gene affecting more than one trait
— This is the major cause of correlated response to selection
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Pleiotropy &

Genes affecting
both traits
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Genetic Correlations

(FBVX,BVY )

* A measure of the strength of the relationship between
breeding values for one trait and breeding value for
another trait

* A measure of pleiotropy
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Phenotypic Correlations

(FPX»PY)

* A measure of the strength of the relationship between performance in one
trait and performance in another trait
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Environmental Correlations

(I/EX Ly )

* A measure of the strength of the relationship between environmental
effects on one trait and environmental effects on another trait
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Correlated response to selection

How much of phenotypic response of y when we select x
phenotype

r r 10
ABVYlX BV BV, gy BV, BY;

l L
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Correlated response to selection

ABVY)/ 3 /GBVY \(ABV)/)
¢ =Ty .y, /
Oz,
AB Vy| )/ - BVX,BVYhXthXGPY
L L

re,nxhy is called co-heritability of y and x
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LMM for MT

ID Height Yield
1 87 0.52
2 84 0.48
3 75 0.45
4 90 0.69
5 79 0.74

The general form of multivariate model is

Ynxd = anp+1 Bq+1xp+ Enxd

Where n is the number of rows (observations); d is the number of
dependent variables; p is a set of predictors. The X design matrix is
consisting of n x p+1 dimension, where p is the number of predictors and 1
is for the intercept. The B is the matrix of coefficients to be estimated with
g+1 x p dimension. The rows of B are predictor variables and the columns
are response variables.
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Y11 - individual 1, trait 1

LMM for MT Y1, — individual 1, trait 2

y,; — individual 2, trait 1

(v | [ 87 _611 |
Vi 0.52 €,
Va1 84 €
Vay 0.48 e,
y = Vi | _ 75 b= bl u= a, o ey,
Vi, 0.45 b2 a, e,
Ya 90 e,
Vi 0.69 .,
iz 07794 &
S ) | €52

For ease of calculations, the vectorsin Y, B and E are organized in a
different way (vectors instead of matrices).
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The LMM for multivariate models

The linear mixed model in compact matrix form is as follows.

v=Xb+Zu+e

It looks the same as analyzing one trait at time. However design matrices are different.
The same model can be written in a different way to show design matrices associated
with effects

Yn = (Iz@ X) b + (Iz@ Zf) Us T ex

Where y is the vector of traits with n rows,

e*is residuals of two traits,

I, is the identity matrix with n x 2 dimensions,

n is the number of pairs of observations for the traits,

b is the vector of fixed effects, such as intercepts for two traits,
Zs is the design matrix for random effect, and

u is vector of random effects.
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LMM for MT

(X’R‘lx X'R1Z )(B)= X'R™'y
ZRIX ZR1'Z+G 1 \u Z'R™ 1y

2
O7e c7e21]

2
O1a Og21
G =

ot netof

2 2
Oa12 07, Oc12 O3

In the G matrix, variances of two traits are given in the diagonal (02, and o2,
and the covariances or the correlations are given in the off-diagonals (04,,). | is
the identity matrix.

If genetic effects are related (have common parents or grandparents), then we
can substitute the identity matrix | with the numerator relationships matrix A.
Similarly, the diagonal elements of R are the residual variances of two traits; the
off-diagonal elements are either covariances or correlations.
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G21 Gzz Y ¢ G
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Precision of correlations

Estimation of genetic correlations requires many individuals each with a large number of
progenies. The standard error of correlation should be used with caution, because we do
not know its distribution. Although with the increased power of computing, resampling
methods have become available to obtain approximate distributions. One of two formulas
given below can be used to calculate an approximate standard error of genetic correlation.

1) An approximate standard error of genetic correlation (Falconer and Mackay 1996):

2 2
1/ 15 |SE(h,)SE(h})
J2 h2h?

Where, SE(h2%,) and SE(h2,) are standard errors of narrow-sense heritabilities of trait x and v,
respectively. The hZ, and h2, are narrow sense heritabilities of two traits.

SE(r;) ?
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Precision of correlations

2) Delta method is considered a better way to estimate variance of ratios for unknown
distributions (Lynch and Walsh 1998). See Appendix 1 in Lynch and Walsh for more details
about the Delta method.

cov(o,,)o?,

= Covariance between the covariance of xy and the variance of b

var(r) ? rzt(var(c; ) V&I’(G} ) Var(zsxy) B 2c0v(2csi2)0§ 2cov(2csi)cxy / 2c0v(csxy2)c5§
42 4o’ Gy 460, 26,0,, 26,,0, }?

var(o?,) = Variance of variance for trait x,

02, = Variance of trait x,

var(c?,) = Variance of variance for traity,

o?, = Variance of trait y,

var(o,,) = Variance of covariance of traits x and y,

0%y = Squared covariance of traits x and y,

cov(o?)0?, = Covariance between the variances of x and y

cov(0%)0yy = Covariance between the variance of x and the covariance of xy

Oy = Covariance between x and y
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Implementation of MT analysis

« Good starting values will save a lot of trouble!

« Analyze traits independently first to obtain variances for each. You may use
these variances as starting values for multivariate analysis.

« Multivariate models may not converge for small data sets. You need a lot of
genetic entries each with a lot of progeny. Even if the model converges the
reliability of correlations would be questionable.
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Modeling
genotype by environment interactions

E Tiezzi

Department of Animal Science
NCSU
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The problem

Advanced Topics in Quantitative Genetics and Breeding Francesco Tiezzi - NCSU



NC STATE
UNIVERSITY

Phenotype
Genotype A @
O
Genotype B
@

Genotype C
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Phenotype

Genotype A

Genotype B

Genotype C
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4 Genotype A
Phenotype Genotype A P
o
¢ o
Genotype B
® yp
Genotype B
@
Genotype C
@
Genotype C
>

Environmental covariate
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A Genot e A
o Genotype A yp
..................
Genotype B
¢ yp
Genotype B
t"
¢$“‘ ¢ GenotyPe C
o
Genotype C
o

Environmental covariate
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A Genot e A
o Genotype A P
IR TLLL L Py
@ -
............... e I
o A I8
R @
¢$“‘ ¢ GenotyPe C
o
=Lenotype C

>

Environmental covariate

* Just different (environmental) plasticity?
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A Genot e A
o Genotype A yp
..................
Genotype B
¢ yp
Genotype B
t"
¢$“‘ ¢ GenotyPe C
o
Genotype C
o

Environmental covariate




UNIVERSITY

A o Genotype A
o ¢ Genotype A yp
................ o
@ -
............... -
¢ yp
O Genotype B
Genotype B .

Genotype C

®
Genotype A

>

Environmental covariate
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4  Genotype C Genotype A
NP Py
O¢" ,ll‘- “O
"“ ..:. ___..-_--""‘ Gel’lOtype B
“& .--‘0'.‘“-0

" Genotype C
...0 “‘.““ *
Genotype C
Genotype A

>

Environmental covariate

* Genotype by Environment interaction
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Genotype A

Phenotype

Genotype B

Genotype C

>

Environmental covariate

* Genotype by Environment interaction: reaction norms
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Genotype A

Phenotype

Genotype B

Genotype C

>

Environmental covariate

* Genotype by Environment interaction: reaction norms
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Genotype A
Phenot t
enotype ®
®
O P GepetyPe B
. -
O
/
Population
o Genotype C
®
>

Environmental covariate

* Genotype by Environment interaction: reaction norms
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Reaction norms for most represented sires

40.

. \>\\\\ = f

-20.

MY GEBV

20 40 60 80

Relative Humidity
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Genotype Phenotype Environment
A 7.36 a
B 6.51 a
A 4.06 a
B 6.52 a
A 4.18 a
B 6.88 a
A 10.62 b
B 12.86 b
A 11.41 b
B 11.18 b
A 13.59 b
B 10.91 b
A 2.24 C
B 1.45 C
A 3.83 C
B 2.25 C
A 3.59 C
B 3.33 C
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Genotype Phenotype Environment Trait
A 7.36 a 1
B 6.51 a 1
A 4.06 a 1
B 6.52 a 1
A 4.18 a 1
B 6.88 a 1
A 10.62 b 2
B 12.86 b 2
A 11.41 b 2
B 11.18 b 2
A 13.59 b 2
B 10.91 b 2
A 2.24 C 3
B 1.45 C 3
A 3.83 c 3
B 2.25 C 3
A 3.59 C 3
B 3.33 C 3
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height loc_1 loc 2 loc_3 loc 4 loc 5 loc_ 6 loc 7 loc_8 loc9 loc10 loc 11 loc 12 loc 13

loc_1 . 0.42 0.44 0.58 0.13 0.51 0.51 0.46 0.49 0.45 0.68 0.54 0.54
loc_2 0.42 . 0.74 0.81 0.57 0.57 0.83 0.81 0.67 0.86 0.4 0.64 0.64
loc_3 0.44 0.74 . 0.82 0.51 0.71 0.82 0.85 0.81 0.81 0.63 0.64 0.64
loc_4 0.58 0.81 0.82 . 0.62 0.61 0.82 0.84 0.75 0.8 0.6 0.71 0.71
loc_5 0.13 0.57 0.51 0.62 . 0.12 0.41 0.52 0.28 0.47 0.12 0.14 0.15
loc_6 0.51 0.57 0.71 0.61 0.12 . 0.75 0.68 0.77 0.69 0.7 0.66 0.66
loc_7 0.51 0.83 0.82 0.82 0.41 0.75 . 0.89 0.85 0.86 0.64 0.76 0.76
loc_8 0.46 0.81 0.85 0.84 0.52 0.68 0.89 . 0.82 0.84 0.61 0.68 0.68
loc_9 0.49 0.67 0.81 0.75 0.28 0.77 0.85 0.82 . 0.77 0.66 0.76 0.76
loc_10 0.45 0.86 0.81 0.8 0.47 0.69 0.86 0.84 0.77 . 0.51 0.69 0.69
loc_11 0.68 0.4 0.63 0.6 0.12 0.7 0.64 0.61 0.66 0.51 . 0.71 0.71
loc_12 0.54 0.64 0.64 0.71 0.14 0.66 0.76 0.68 0.76 0.69 0.71 . 0.95

loc_13 0.54 0.64 0.64 0.71 0.15 0.66 0.76 0.68 0.76 0.69 0.71 0.95
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Variance Absorbed

1.0.

0.9

0.8

0.7.

height

Eigenvalue decomposition
of the (co)variance matrix

70.

Variance Absorbed

0.9

0.8.

0.7

Variance Absorbed

diameter

volume
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Genotype Phenotype Environment Trait Env Cov
A 7.36 a 1 -1
B 6.51 a 1 -1
A 4.06 a 1 -1
B 6.52 a 1 -1
A 4.18 a 1 -1
B 6.88 a 1 -1
A 10.62 b 1 5
B 12.86 b 1 5
A 11.41 b 1 5
B 11.18 b 1 5
A 13.59 b 1 5
B 10.91 b 1 5
A 2.24 C 1 -4
B 1.45 C 1 -4
A 3.83 C 1 -4
B 2.25 C 1 -4
A 3.59 C 1 -4
B 3.33 C 1 -4
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Genotype Env Cov
A -1
B -1
A -1
B -1
A -1
B -1
A 5
B 5
A 5
B 5
A 5
B 5
A -4
B -4
A -4
B -4
A -4
B -4

Incidence
Matrix X:
covariate
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Genotype Env Cov Incidence
A -1
5 B Matrix Z:
A -1
B -1 ..
A 1 additive
B -1 -
genetlc
A 5 .
) 5 Intercept
A 5
B 5
A 5
B 5

o o> W > W >
A A A A A A
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location

L1

L1

L1

L1

L1

L1

L1

L1

L1

dam

8LKKNK18RW

N21WTSHLDC

2Q3JTJYK]5

9952X5QYCW

25S2KSLMOD

ASFRGUPAX1

SRKHPBRZYT

J35M737LYL

NGZXWQXZ6X

testLat

-1.068474

-1.068474

-1.068474

-1.068474

-1.068474

-1.068474

-1.068474

-1.068474

-1.068474

testTemp

-0.2096745

-0.2096745

-0.2096745

-0.2096745

-0.2096745

-0.2096745

-0.2096745

-0.2096745

-0.2096745

rep ht
1 762
1 747
1 6.86
1 8.38
1 732
1 732
1 732
1 716
1 6.1

dbh

12.19

12.19

10.67

15.24

11.68

11.94

12.45

11.43

9.4

vol

32.93

32.3

23.01

55.92

29.16

30.43

33

27.37

16.18

Genetic Data Analysis for Plant and Animal Breeding

Francesco Tiezzi - NCSU
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Latitude

-1.9829
-1.3445
-1.0685
-0.9404
-0.694
-0.3804
-0.3485
-0.1188
0.1636
0.4869
0.6098
1.4584
2.0525

Leg 0
0.7071
0.7071
0.7071
0.7071
0.7071
0.7071
0.7071
0.7071
0.7071
0.7071
0.7071
0.7071
0.7071

Leg 1
-1.2247
-0.8372
-0.6696
-0.5919
-0.4423
-0.252
-0.2327
-0.0932
0.0782
0.2744
0.349
0.8641
1.2247

Genetic Data Analysis for Plant and Animal Breeding

Francesco Tiezzi - NCSU
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Height regressed on latitude

Vijk= D1E1 + DoE iy + ayEyy + apE + e

a|G~N(0,G® A)

2
Op Op1

G=| , ]
010 O1

Genetic Data Analysis for Plant and Animal Breeding Francesco Tiezzi - NCSU
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Height regressed on latitude

11.159

b=11518
G=] 0.073 0.0001 ]
0.0001 0.0097636877
dam a, a,
1C42G8GL8F 0.041 -0.013
1LVIVK3E3T 0.225 -0.004
22EQY58P1F -0.138 -0.015

2JLGOZIC4Z 0.127 0.110

Genetic Data Analysis for Plant and Animal Breeding Francesco Tiezzi - NCSU
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11.159]
1.518

Latitude Leg 0 Leg 1
-1.9829 0.7071 -1.2247

-1.3445 0.7071 -0.8372

dam
1C42G8GLSF
1LVIVK3E3T
22EQY58P1F
2JLGOZICAZ

0.041
0.225
-0.138
0.127

-0.013
-0.004
-0.015

0.110

E%*%t(a)

y;;=11.159 «0.7071 + 1.518 % -1.2247 + 0.041 %0.7071 + —0.013 *-1.2247

Genetic Data Analysis for Plant and Animal Breeding

Francesco Tiezzi - NCSU
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Reaction norms

10

lat

| /\'\\ | «'\q’ | <
+'\ / _‘:\ / +'\ / +'\ / ~&:\ v ~\:\ 7
3 N N N
& & & & &

Genetic Data Analysis for Plant and Animal Breeding Francesco Tiezzi - NCSU
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diag(E%*%G%*%t (E))

0.16]
Model
-~ model1
0.14. -~ model2
)
=
'_E 0.12]
(1]
=
—
[<}]
I
0.10.
e— ——————
0.08/
N K & & &2 & & & & & & & &
N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/ N/
3 & & 3 & & &K & & & &K & &
location

Genetic Data Analysis for Plant and Animal Breeding

Francesco Tiezzi - NCSU
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Height on temperature

9.
8.
o
&
I
7.
6.
N/ N/ N/ N/
& § 0§
S & & &

Reaction norms

/\QQ’ /\Q(b /\"Q /\Q\ /\'\% N
N7/ N/ N/ N/ N/ N/
F§F
L & & & &

Genetic Data Analysis for Plant and Animal Breeding

Francesco Tiezzi - NCSU
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Volume on latitude

Reaction norms

80.

60.

lat

40.

20.

AT OGS AP P P (P S
/£

_\:\/ .\:\/ _*:\/
S & &

Genetic Data Analysis for Plant and Animal Breeding Francesco Tiezzi - NCSU
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Height regressed on latitude

11.159 0.0733 —0.0006 —0.0073
b = [ 1.518 ] G = [-0.0006 0.0099 0.0002 ]
—0.0073 0.0002  0.0025
—0.654
dam a, a, a,
1C42G8GL8F 11.13 1.55 -0.67
1LVIVK3E3T 11.31 1.65 -0.69
22EQYS58P1F 10.95 1.56 -0.67

2JLGOZIC4Z 11.18 1.38 -0.68

Genetic Data Analysis for Plant and Animal Breeding Francesco Tiezzi - NCSU
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Height on latitude

Reaction norms

lat

lat

Reaction norms

Q& PSS TS P SN & &®
7

+\/ _‘:\/ _F\/ _\:\/ +\/ _*:\/ _\:\/ _\:\/ _p
S & & & & & & & & & &

9

Genetic Data Analysis for Plant and Animal Breeding

Francesco Tiezzi - NCSU
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Reproducting Kernel Hilbert
Spaces regression

Genetic Data Analysis for Plant and Animal Breeding Francesco Tiezzi -
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Theor Appl Genet (2014) 127:595-607
DOI 10.1007/s00122-013-2243-1

ORIGINAL PAPER

A reaction norm model for genomic selection using
high-dimensional genomic and environmental data

Diego Jarquin - José Crossa - Xavier Lacaze - Philippe Du Cheyron -
Joélle Daucourt * Josiane Lorgeou - Francois Piraux - Laurent Guerreiro -
Paulino Pérez - Mario Calus - Juan Burgueio - Gustavo de los Campos

SCIEy,, o
o,}.ll\“o‘% J. Dairy Sci. 100:2042-2056
El\.=,!g https://doi.org/10.3168/jds.2016-11543
?‘%;‘!!(\0@ © American Dairy Science Association®, 2017.

Genotype by environment (climate) interaction improves genomic
prediction for production traits in US Holstein cattle

F. Tiezzi,*' G. de los Campos,t K. L. Parker Gaddis,t and C. Maltecca*
*Department of Animal Science, North Carolina State University, Raleigh 27695

tDepartment of Epidemiology and Biostatistics, Michigan State University, East Lansing 48828
FCouncil on Dairy Cattle Breeding, Bowie, MD 20716

Genetic Data Analysis for Plant and Animal Breeding Francesco Tiezzi - NCSU
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The Genomic Relationship Matrix

AA=2
Aa=1 )
— SR
> &m &'b &u \{:, aa=0 \A\b\\o &\.\\6"
\/000 \,o(' \,o(' \9(’ \9(’ \(\5 &
1 2 0 1' Individual 1 Individual 1
M = 0O 2 1! 1 /|mndviua: Individual 2
2 1 O_ Individual 3 .
_ — / — 2
[M — P][M — P] Cov(g) = Go?

=TS ma-p

Nejati-Javaremi et al., 1997; VanRaden, 2008

Genetic Data Analysis for Plant and Animal Breeding Francesco Tiezzi - NCSU
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Record 5

The ‘Environmental’ Relationship Matrix

Genetic Data Analysis for Plant and Animal Breeding

Francesco Tiezzi - NCSU
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'35.46

35.13
45.25

47.37
-45.31

78.38 -

80.50
75.41

122.19

122.40-

Genetic Data Analysis for Plant and Animal Breeding

The ‘Geographical’ Relationship Matrix

Raleigh, NC

Charlotte, NC

Ottawa (CAN,

Seattle, WA

Portland, OR

Francesco Tiezzi - NCSU
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Hadamard product and the GXE

2 ... 1 lg T r - 6
2 ... 21 13 ... 3 6 - 6

Genetic Data Analysis for Plant and Animal Breeding Francesco Tiezzi - NCSU
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Hadamard product and the GXE

N v G 9 N v % & )

Francesco Tiezzi - NCSU
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Hadamard product and the GXE

N v G 9 N v % & )

>

Francesco Tiezzi - NCSU
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