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Why multivariate models?
• MT models are useful for traits where the difference between genetic and 

residual correlations are large ( e.g. greater than 0.5 difference )  
• Where one trait has a much higher heritability than the other trait. 
• EBVs for traits with low heritability tend to gain more in accuracy than 

EBVs for traits with high heritability, although all traits benefit to some 
degree from the simultaneous analysis.



Why multivariate models?
• Another use of MT models is for traits that occur at different times in the 

life of the animal, such that culling of animals results in fewer 
observations on animals for traits that occur later in life compared to 
those at the younger ages. 

• Consequently, animals which have observations later in life tend to have 
been selected based on their performance for earlier traits. Thus, 
analysis of later life traits by themselves could suffer from the effects of 
culling bias, and the resulting EBV could lead to errors in selecting 
future parents.



Multivariate models 
• MT models do not offer great increases in accuracy for cases where 

– heritabilities of traits are similar in magnitude, 
– both genetic and residual correlations are relatively the same 

magnitude and sign, 
– every animal is measured for all traits.



MT
• However, if culling bias may exist, then an MT analysis should be 

performed even if the parameters are similar.
• An MT analysis relies on the accuracy of the genetic and residual 

correlations that are assumed. 
• If the parameter estimates are greatly different from the underlying, 

unknown true values, then an MT analysis could do as much harm as it 
might do good.



Drawback of multivariate models 

• Computer programs are more complicated, require more memory and 
disk storage for MT analyses. 

• Verification of results might be more complicated. 
• These have to be balanced against the benefits of an MT analysis. 
• If culling bias is the main concern, then an MT model must be used 

regardless of the costs or no analysis should be done at all, except for 
the traits not affected by culling bias.
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where σG(x,y) is genetic covariance, σE(x,y) is environmental covariance, σ2 _subscripts 
are genetic or environmental variances for traits x and y.

Some theory  
Decomposition of genetic variances and covariances

σ2
Gx= σ2

Ax + σ2
Dx + σ2

AA x + σ2
AD x + σ2

DD x +…
σ2

Gy= σ2
Ay + σ2

Dy + σ2
AAy + σ2

ADy + σ2
DDy +…

σG(x,y) = σA(x,y)+ σD(x,y) + σAA(x,y) + σAD(x,y) + σDD(x,y) +…

we can decompose phenotypic correlation (rp) to its 
genetic and environmental components.



• Genetic change due to selection for that trait

Direct Response to Selection



• Genetic change in one or more traits resulting from selection for another

Correlated Response to Selection



Causes of Correlated Response to Selection
• Linkage

– This is only temporary because of recombination and Mendelian 
segregation 

• Pleiotropy
– A single gene affecting more than one trait
– This is the major cause of correlated response to selection
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Pleiotropy



• A measure of the strength of the relationship between 
breeding values for one trait and breeding value for 
another trait

• A measure of pleiotropy 

Genetic Correlations

( ),X YBV BVr



• A measure of the strength of the relationship between performance in one 
trait and performance in another trait

Phenotypic Correlations

( ),X YP Pr



• A measure of the strength of the relationship between environmental 
effects on one trait and environmental effects on another trait

Environmental Correlations

( ),X YE Er
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Correlated response to selection
How much of phenotypic response of y when we select x 
phenotype
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Correlated response to selection

rxyhxhy is called co-heritability of y and x



The general form of multivariate model is 

Ynxd = Xnxp+1Bq+1xp+ Enxd

ID Height  Yield 
1  87  0.52 
2  84  0.48 
3  75  0.45 
4  90  0.69 
5  79  0.74 

LMM for MT

Where n is the number of rows (observations); d is the number of 
dependent variables; p is a set of predictors. The X design matrix is 
consisting of n x p+1 dimension, where p is the number of predictors and 1 
is for the intercept. The B is the matrix of coefficients to be estimated with 
q+1 x p dimension. The rows of B are predictor variables and the columns 
are response variables. 



LMM for MT
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For ease of calculations, the vectors in Y, B and E are organized in a 
different way (vectors instead of matrices). 

y11 - individual 1, trait 1
y12 - individual 1, trait 2
y21 - individual 2, trait 1 
...



The linear mixed model in compact matrix form is as follows.

y = Xb + Zu + e 

It looks the same as analyzing one trait at time. However design matrices are different. 
The same model can be written in a different way to show design matrices associated 
with effects 

Where y is the vector of traits with n rows, 
e*is residuals of two traits,
I2 is the identity matrix with n x 2 dimensions, 
n is the number of pairs of observations for the traits, 
b is the vector of fixed effects, such as intercepts for two traits, 
Zf is the design matrix for random effect, and
u is vector of random effects. 

The LMM for multivariate models

yn = (I2⊗ X) b + (I2⊗ Zf) uf + e*  



In the G matrix, variances of two traits are given in the diagonal  (σ2
1a and σ2

2a  
and the covariances or the correlations are given in the off-diagonals (σ12a). I is 
the identity matrix. 
If genetic effects are related (have common parents or grandparents), then we 
can substitute the identity matrix I with the numerator relationships matrix A. 
Similarly, the diagonal elements of R are the residual variances of two traits; the 
off-diagonal elements are either covariances or correlations. 
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LMM for MT
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Estimation of genetic correlations requires many individuals each with a large number of 
progenies. The standard error of correlation should be used with caution, because we do 
not know its distribution. Although with the increased power of computing, resampling 
methods have become available to obtain approximate distributions. One of two formulas 
given below can be used to calculate an approximate standard error of genetic correlation.

1) An approximate standard error of genetic correlation (Falconer and Mackay 1996): 
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Where, SE(h2
x) and SE(h2

x) are standard errors of narrow-sense heritabilities of trait x and y, 
respectively. The h2

x and h2
x are narrow sense heritabilities of two traits. 

Precision of correlations 



2) Delta method is considered a better way to estimate variance of ratios for unknown 
distributions (Lynch and Walsh 1998). See Appendix 1 in Lynch and Walsh for more details 
about the Delta method.
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var(σ2
x)  = Variance of variance for trait x, 

σ2
x   = Variance of trait x,

var(σ2
y)  = Variance of variance for trait y, 

σ2
y   = Variance of trait y,

var(σxy)  = Variance of covariance of traits x and y,
σ2

xy   = Squared covariance of traits x and y,
cov(σ2

x)σ2
y = Covariance between the variances of x and y

cov(σ2
x)σxy = Covariance between the variance of x and the covariance of xy

σxy   = Covariance between x and y 
cov(σxy)σ2

y = Covariance between the covariance of xy and the variance of b

Precision of correlations 



Implementation of MT analysis 

• Good starting values will save a lot of trouble!

• Analyze traits independently first to obtain variances for each. You may use 
these variances as starting values for multivariate analysis. 

• Multivariate models may not converge for small data sets. You need a lot of 
genetic entries each with a lot of progeny. Even if the model converges the 
reliability of correlations would be questionable. 
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The	problem
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• Just	different (environmental)	plasticity?
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Genotype C

• Genotype by	Environment	interaction
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Genotype C

• Genotype by	Environment	interaction:	reaction norms
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Genotype C

Genotype A
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Phenotype

Environmental covariate

• Genotype by	Environment	interaction:	reaction norms



Genotype C

Genotype A

Genotype B

Phenotype

Environmental covariate

• Genotype by	Environment	interaction:	reaction norms

Population
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The	multiple	trait	model



Genotype Phenotype Environment

A 7.36 a

B 6.51 a

A 4.06 a

B 6.52 a

A 4.18 a

B 6.88 a

A 10.62 b

B 12.86 b

A 11.41 b

B 11.18 b

A 13.59 b

B 10.91 b

A 2.24 c

B 1.45 c

A 3.83 c

B 2.25 c

A 3.59 c

B 3.33 c



Genotype Phenotype Environment Trait

A 7.36 a 1

B 6.51 a 1

A 4.06 a 1

B 6.52 a 1

A 4.18 a 1

B 6.88 a 1

A 10.62 b 2

B 12.86 b 2

A 11.41 b 2

B 11.18 b 2

A 13.59 b 2

B 10.91 b 2

A 2.24 c 3

B 1.45 c 3

A 3.83 c 3

B 2.25 c 3

A 3.59 c 3

B 3.33 c 3



height loc_1 loc_2 loc_3 loc_4 loc_5 loc_6 loc_7 loc_8 loc_9 loc_10 loc_11 loc_12 loc_13

loc_1 . 0.42 0.44 0.58 0.13 0.51 0.51 0.46 0.49 0.45 0.68 0.54 0.54

loc_2 0.42 . 0.74 0.81 0.57 0.57 0.83 0.81 0.67 0.86 0.4 0.64 0.64

loc_3 0.44 0.74 . 0.82 0.51 0.71 0.82 0.85 0.81 0.81 0.63 0.64 0.64

loc_4 0.58 0.81 0.82 . 0.62 0.61 0.82 0.84 0.75 0.8 0.6 0.71 0.71

loc_5 0.13 0.57 0.51 0.62 . 0.12 0.41 0.52 0.28 0.47 0.12 0.14 0.15

loc_6 0.51 0.57 0.71 0.61 0.12 . 0.75 0.68 0.77 0.69 0.7 0.66 0.66

loc_7 0.51 0.83 0.82 0.82 0.41 0.75 . 0.89 0.85 0.86 0.64 0.76 0.76

loc_8 0.46 0.81 0.85 0.84 0.52 0.68 0.89 . 0.82 0.84 0.61 0.68 0.68

loc_9 0.49 0.67 0.81 0.75 0.28 0.77 0.85 0.82 . 0.77 0.66 0.76 0.76

loc_10 0.45 0.86 0.81 0.8 0.47 0.69 0.86 0.84 0.77 . 0.51 0.69 0.69

loc_11 0.68 0.4 0.63 0.6 0.12 0.7 0.64 0.61 0.66 0.51 . 0.71 0.71

loc_12 0.54 0.64 0.64 0.71 0.14 0.66 0.76 0.68 0.76 0.69 0.71 . 0.95

loc_13 0.54 0.64 0.64 0.71 0.15 0.66 0.76 0.68 0.76 0.69 0.71 0.95 .



height diameter

volume

Eigenvalue	decomposition	
of	the	(co)variance	matrix



Genotype Phenotype Environment Trait Env	Cov

A 7.36 a 1 -1

B 6.51 a 1 -1

A 4.06 a 1 -1

B 6.52 a 1 -1

A 4.18 a 1 -1

B 6.88 a 1 -1

A 10.62 b 1 5

B 12.86 b 1 5

A 11.41 b 1 5

B 11.18 b 1 5

A 13.59 b 1 5

B 10.91 b 1 5

A 2.24 c 1 -4

B 1.45 c 1 -4

A 3.83 c 1 -4

B 2.25 c 1 -4

A 3.59 c 1 -4

B 3.33 c 1 -4



Genotype Env	Cov

A -1

B -1

A -1

B -1

A -1

B -1

A 5

B 5

A 5

B 5

A 5

B 5

A -4

B -4

A -4

B -4

A -4

B -4

Incidence	
Matrix	X:
covariate

-1

-1

-1

-1

-1

-1

5

5

5

5

5

5

-4

-4

-4

-4

-4

-4



Genotype Env	Cov

A -1

B -1

A -1

B -1

A -1

B -1

A 5

B 5

A 5

B 5

A 5

B 5

A -4

B -4

A -4

B -4

A -4

B -4

Incidence	
Matrix	Z:

additive
genetic	
intercept

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1



Genotype Env	Cov

A -1

B -1

A -1

B -1

A -1

B -1

A 5

B 5

A 5

B 5

A 5

B 5

A -4

B -4

A -4

B -4

A -4

B -4

Incidence	
Matrix	Z:

additive
genetic	
slope

-1 0

0 -1

-1 0

0 -1

-1 0

0 -1

5 0

0 5

5 0

0 5

5 0

0 5

-4 0

0 -4

-4 0

0 -4

-4 0

0 -4



Genotype Env	Cov

A -1

B -1

A -1

B -1

A -1

B -1

A 5

B 5

A 5

B 5

A 5

B 5

A -4

B -4

A -4

B -4

A -4

B -4

-1 0

0 -1

-1 0

0 -1

-1 0

0 -1

5 0

0 5

5 0

0 5

5 0

0 5

-4 0

0 -4

-4 0

0 -4

-4 0

0 -4

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

-1

-1

-1

-1

-1

-1

5

5

5

5

5

5

-4

-4

-4

-4

-4

-4

X Zintercept Zslope



location dam testLat testTemp rep ht dbh vol

L1 8LKKNK18RW -1.068474 -0.2096745 1 7.62 12.19 32.93

L1 N21WTSHLDC -1.068474 -0.2096745 1 7.47 12.19 32.3

L1 2Q3JTJYKJ5 -1.068474 -0.2096745 1 6.86 10.67 23.01

L1 9952X5QYCW -1.068474 -0.2096745 1 8.38 15.24 55.92

L1 25S2KSLMOD -1.068474 -0.2096745 1 7.32 11.68 29.16

L1 ASFRGUPAX1 -1.068474 -0.2096745 1 7.32 11.94 30.43

L1 5RKHPBRZYT -1.068474 -0.2096745 1 7.32 12.45 33

L1 J35M737LYL -1.068474 -0.2096745 1 7.16 11.43 27.37

L1 NGZXWQXZ6X -1.068474 -0.2096745 1 6.1 9.4 16.18

… … … … … … … …
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Latitude Leg_0 Leg_1

-1.9829 0.7071 -1.2247

-1.3445 0.7071 -0.8372

-1.0685 0.7071 -0.6696

-0.9404 0.7071 -0.5919

-0.694 0.7071 -0.4423

-0.3804 0.7071 -0.252

-0.3485 0.7071 -0.2327

-0.1188 0.7071 -0.0932

0.1636 0.7071 0.0782

0.4869 0.7071 0.2744

0.6098 0.7071 0.349

1.4584 0.7071 0.8641

2.0525 0.7071 1.2247

E

Genetic	Data	Analysis	for	Plant	and	Animal	Breeding																																																																										 Francesco	Tiezzi	-	NCSU



Height	regressed	on	latitude

𝑦𝑖𝑗𝑘= 𝑏1𝐸𝑖1	+ 𝑏2𝐸𝑖2	+	𝑎𝑗1𝐸𝑖1	+	𝑎𝑗2𝐸𝑖2	+	𝑒𝑖𝑗𝑘

a	|	G	~	N(0,	G	Ä	A)

𝐆 = [
𝜎!" 𝜎!#
𝜎#! 𝜎#"

]
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𝐆 = [ 0.073 0.0001
0.0001 0.0097636877]

Height	regressed	on	latitude

𝐛 = [11.1591.518 ]

dam a0 a1
1C42G8GL8F 0.041 -0.013

1LVIVK3E3T 0.225 -0.004

22EQY58P1F -0.138 -0.015

2JLGOZIC4Z 0.127 0.110

… … …
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𝑦𝑖𝑗=11.159 ∗0.7071	+	1.518 ∗	-1.2247	+	0.041 ∗0.7071	+	−0.013 ∗-1.2247

𝐛 = [11.1591.518 ] dam a0 a1
1C42G8GL8F 0.041 -0.013

1LVIVK3E3T 0.225 -0.004

22EQY58P1F -0.138 -0.015

2JLGOZIC4Z 0.127 0.110

… … …

Latitude Leg_0 Leg_1

-1.9829 0.7071 -1.2247

-1.3445 0.7071 -0.8372

E%*%t(a)
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diag(E%*%G%*%t(E))
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Height	on	temperature
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Volume	on	latitude
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𝐆 = [
0.0733 −0.0006 −0.0073
−0.0006 0.0099 0.0002
−0.0073 0.0002 0.0025

]

Height	regressed	on	latitude

𝐛 = [
11.159
1.518
−0.654

]

dam a0 a1 a2
1C42G8GL8F 11.13 1.55 -0.67

1LVIVK3E3T 11.31 1.65 -0.69

22EQY58P1F 10.95 1.56 -0.67

2JLGOZIC4Z 11.18 1.38 -0.68

… … … …
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Height	on	latitude
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Reproducting	Kernel	Hilbert	
Spaces	regression
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ABSTRACT

Genotype by environment interaction (G × E) in 
dairy cattle productive traits has been shown to ex-
ist, but current genetic evaluation methods do not take 
this component into account. As several environmental 
descriptors (e.g., climate, farming system) are known to 
vary within the United States, not accounting for the G 
× E could lead to reranking of bulls and loss in genetic 
gain. Using test-day records on milk yield, somatic cell 
score, fat, and protein percentage from all over the 
United States, we computed within herd-year-season 
daughter yield deviations for 1,087 Holstein bulls and 
regressed them on genetic and environmental informa-
tion to estimate variance components and to assess pre-
diction accuracy. Genomic information was obtained 
from a 50k SNP marker panel. Environmental effect 
inputs included herd (160 levels), geographical region 
(7 levels), geographical location (2 variables), climate 
information (7 variables), and management conditions 
of the herds (16 total variables divided in 4 subgroups). 
For each set of environmental descriptors, environmen-
tal, genomic, and G × E components were sequentially 
fitted. Variance components estimates confirmed the 
presence of G × E on milk yield, with its effect being 
larger than main genetic effect and the environmental 
effect for some models. Conversely, G × E was moderate 
for somatic cell score and small for milk composition. 
Genotype by environment interaction, when included, 
partially eroded the genomic effect (as compared with 
the models where G × E was not included), suggest-
ing that the genomic variance could at least in part 
be attributed to G × E not appropriately accounted 
for. Model predictive ability was assessed using 3 cross-
validation schemes (new bulls, incomplete progeny test, 
and new environmental conditions), and performance 

was compared with a reference model including only 
the main genomic effect. In each scenario, at least 1 of 
the models including G × E was able to perform better 
than the reference model, although it was not possible 
to find the overall best-performing model that included 
the same set of environmental descriptors. In general, 
the methodology used is promising in accounting for 
G × E in genomic predictions, but challenges exist in 
identifying a unique set of covariates capable of describ-
ing the entire variety of environments.
Key words: genotype by environment interaction, 
genomic prediction, reproducing kernel Hilbert space 
regression, reaction norm model

INTRODUCTION

Dairy cattle breeding programs have ensured an im-
provement of performance over the past decades within 
the United States (CDCB, 2016). Phenotypes for pro-
ductive, reproductive, and type traits recorded over a 
wide variety of environments are currently used in the 
estimation of breeding values for selection candidates. 
Selection has been traditionally based on BLUP and 
pedigree information, but BLUP accuracy in predicting 
breeding values has received a considerable boost from 
the availability of genomic information coming from 
low-cost genotyping assays (Hayes et al., 2009). Yet, 
genomic information represents a promising tool to im-
prove the efficiency of selective breeding in dairy cattle 
when bulls’ daughter information is not available.

Statistical models for the prediction of breeding val-
ues assume the phenotype (i.e., the individual measure 
of a trait on an individual, for example milk yield) as 
the sum of 2 main components, the additive genetic and 
environmental effects. In this model, the single gene 
variants that an individual carries determine its genetic 
potential and the environmental conditions (defined 
as the management, nutrition, and climatic conditions 
where the individual expresses its genetic potential) 
determines the mean performance of individuals in a 
given environment, independent of the genetic makeup. 

Genotype by environment (climate) interaction improves genomic 
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The	Genomic Relationship Matrix

! = !− ! [!− !]′
2!(1− !) !

Cov(g)&=&!σ!! &
&

Individual 1

Individual 2

Individual 3

Indivi
dual 1

Indivi
dual 2

! =
1 2 2 0 1
0 0 2 1 1
0 2 2 1 0

!

AA	=	2
Aa	=	1
aa	=	0

Individual 1

Individual 2

Individual 3

Lo
cu

s 1

Lo
cu

s 2

Lo
cu

s 3

Lo
cu

s 4

Lo
cu

s 5

Nejati-Javaremi et al., 1997; VanRaden, 2008

Genetic	Data	Analysis	for	Plant	and	Animal	Breeding																																																																										 Francesco	Tiezzi	-	NCSU



The	‘Environmental’	Relationship Matrix
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The	‘Geographical’	Relationship Matrix
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Hadamard product and	the	GxE
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Hadamard product and	the	GxE
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Hadamard product and	the	GxE
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