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Introduction to Functional Annotation

• What is Functional Annotation?
• Functional annotation involves assigning biological information to genomic 

features, such as genes, SNPs, or other genomic regions.
• Helps in understanding the biological role of genetic variants and their impact 

on phenotypic traits.

• Why is Functional Annotation Important?
• Provides insights into the molecular mechanisms underlying complex traits 

and diseases.
• Facilitates the interpretation of results from genome-wide association studies 

(GWAS) and other genomic analyses.
• Aids in identifying potential therapeutic targets and biomarkers for disease.



Functional annotations

• External information about a variant in addition to its genotypes
• https://useast.ensembl.org/info/genome/index.html 

• Location
• Whether SNP is within a specific genomic element
• There are many resources to define genomic elements.

• Quantification
• Pathogenicity scores
• https://useast.ensembl.org/info/genome/variation/prediction/protein_function.html 

https://useast.ensembl.org/info/genome/index.html
https://useast.ensembl.org/info/genome/variation/prediction/protein_function.html


Types of Functional Annotations

• Gene-Centric Annotations:
• Gene Ontology (GO): Provides a controlled vocabulary to describe gene products in terms of 

their associated biological processes, cellular components, and molecular functions.
• Pathway Annotations: Describes genes in the context of biochemical pathways, such as KEGG 

or Reactome pathways.
• Regulatory Annotations:

• Promoters and Enhancers: Regions that regulate gene expression; identified through 
methods like chromatin immunoprecipitation (ChIP-seq).

• Transcription Factor Binding Sites (TFBS): Locations where transcription factors bind to 
regulate gene expression.

• Epigenomic Annotations:
• Histone Modifications: Modifications to histone proteins that affect chromatin structure and 

gene expression (e.g., H3K27ac marks active enhancers).
• DNA Methylation: Addition of methyl groups to DNA, affecting gene expression without 

changing the DNA sequence.



Methods for Functional Annotation

• Experimental Methods:
• ChIP-seq (Chromatin Immunoprecipitation Sequencing): Used to identify DNA-binding sites 

of proteins, such as transcription factors or histones.
• RNA-seq (RNA Sequencing): Provides information on gene expression levels and splicing 

variants.
• Computational Methods:

• Sequence Homology-Based Annotation: Uses similarity to known sequences (e.g., BLAST) to 
infer function.

• Machine Learning Approaches: Utilizes algorithms to predict functional elements based on 
genomic features (e.g., DeepSEA).

• Integrated Approaches:
• ENCODE Project: Provides a comprehensive map of functional elements in the human 

genome, integrating multiple experimental data types.
• Roadmap Epigenomics Project: Focuses on characterizing the epigenomic landscape across 

different cell types and tissues.



Tools and Databases for Functional 
Annotation
• UCSC Genome Browser:

• Offers a wide range of annotations, including genes, regulatory elements, and epigenomic 
data.

• Ensembl:
• Provides comprehensive genome annotation, including genes, variants, regulatory regions, 

and comparative genomics data.
• GREAT (Genomic Regions Enrichment of Annotations Tool):

• Associates genomic regions with biological functions by leveraging annotations from GO, 
pathways, and other sources.

• RegulomeDB:
• Integrates various types of functional annotation data to score regulatory potential of non-

coding variants.
• dbSNP and ClinVar:

• Provide annotations on known genetic variants, including their functional consequences and 
clinical significance.



https://www.animalgenome.org/community/FAANG/

Functional Annotation of Animal Genomes



Location-based



Quantification-based



Categorical annotations

• https://useast.ensembl.org/info/genome/variation/prediction/predicted_data.html

• Often binary
• eQTL: whether a SNP is an identified eQTL. Yes or no.
• CDS: whether a SNP is within CDS. Yes or no.

* SO term SO description SO accession Display term IMPACT
stop_gained A sequence variant whereby at least one base of a codon is changed, resulting in a premature stop codon, leading to a 

shortened transcript
SO:0001587 Stop gained HIGH

frameshift_variant A sequence variant which causes a disruption of the translational reading frame, because the number of nucleotides inserted or 
deleted is not a multiple of three

SO:0001589 Frameshift variant HIGH

stop_lost A sequence variant where at least one base of the terminator codon (stop) is changed, resulting in an elongated transcript SO:0001578 Stop lost HIGH

start_lost A codon variant that changes at least one base of the canonical start codon SO:0002012 Start lost HIGH
inframe_insertion An inframe non synonymous variant that inserts bases into in the coding sequence SO:0001821 Inframe insertion MODERATE
inframe_deletion An inframe non synonymous variant that deletes bases from the coding sequence SO:0001822 Inframe deletion MODERATE
missense_variant A sequence variant, that changes one or more bases, resulting in a different amino acid sequence but where the length is 

preserved
SO:0001583 Missense variant MODERATE

protein_altering_variant A sequence_variant which is predicted to change the protein encoded in the coding sequence SO:0001818 Protein altering variant MODERATE

splice_region_variant A sequence variant in which a change has occurred within the region of the splice site, either within 1-3 bases of the exon or 3-8 
bases of the intron

SO:0001630 Splice region variant LOW

splice_donor_region_variant A sequence variant that falls in the region between the 3rd and 6th base after splice junction (5' end of intron) SO:0002170 Splice donor region variant LOW

https://useast.ensembl.org/info/genome/variation/prediction/predicted_data.html
http://www.sequenceontology.org/miso/current_svn/term/SO:0001587
http://www.sequenceontology.org/miso/current_svn/term/SO:0001589
http://www.sequenceontology.org/miso/current_svn/term/SO:0001578
http://www.sequenceontology.org/miso/current_svn/term/SO:0002012
http://www.sequenceontology.org/miso/current_svn/term/SO:0001821
http://www.sequenceontology.org/miso/current_svn/term/SO:0001822
http://www.sequenceontology.org/miso/current_svn/term/SO:0001583
http://www.sequenceontology.org/miso/current_svn/term/SO:0001818
http://www.sequenceontology.org/miso/current_svn/term/SO:0001630
http://www.sequenceontology.org/miso/current_svn/term/SO:0002170


Continuous annotations

• Less commonly used than categorical annotations.

• Can be categorized.

• Minor allele frequency
• <0.01, 0.01-0.05, 0.05-0.10, etc

• Conservation score
• Constrained element
• https://useast.ensembl.org/info/genome/compara/conservation_and_constrained.html   

https://useast.ensembl.org/info/genome/compara/conservation_and_constrained.html


Link functional annotations to SNPs

Yes or no: whether a SNP is within a functional annotation category



Theory

14



Genetic Architecture of Complex Traits

● Limit of GWAS

● Proportion of genetic 
variance explained by 
significant SNPs ≈ 18.3%

H0: SNP effect size drawn from a 
normal distribution N(0, σg

2/M).

M: effective number of independent 
markers
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Genetic Architecture of Complex Traits (cont.)

• Omnigenic model
• A small number of “core” genes

• SNP effect size beyond polygenic effect N(0, σg
2/M)

• A lot more “peripheral” genes
• Contributing much more of heritability
• SNP effect size NOT beyond polygenic effect N(0, σg

2/M)

• Core genes are easy to deal with in genomic predictions.
• Bayesian mixture models

• BayesB, BayesR, BSLMM
• Fixing big QTL effects

• LDAK

• Difficult to model peripheral genes better than GBLUP



Modeling Functional Annotations

Annot1 Annot2 Annot3 Annot4
SNP1 1 1 0 0
SNP2 0 1 1 0
SNP3 1 1 1 1

2
SNP1 1 2
2
SNP2 2 3
2
SNP3 1 2 3 4

s t t

s t t

s t t t t

= +
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Var 𝛼! = ∑":!∈%! 𝜏" , where τk denotes the per-variant contribution of category k to Var 𝛼! .

W

=Wτ
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Linear Mixed Model with Functional Annotations
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where 𝐠 = 𝐙𝛂, 𝐆! = ⁄𝐙𝐖 ! 𝐙" 𝑀!

𝐖 !  is a diagonal matrix whose diagonal 
elements are W’s kth column.
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Integrative analysis becomes VC estimation.

1
2

~ ( , )

~ ( , )

K
k k kk

e

N M

N

t

s
=

= + +

å
y Xβ g e

g 0 G

e 0 R

• We may need to model many functional annotations, so K is large.
• VC estimates (τk) may be negative. 



Existing VC estimation methods

- HE-reg
- LDSC

GREML

Statistical efficiency

GREML

- HE-reg
- LDSC

Stability and scalability

• GREML may fail to converge for many VCs.
• GREML may be slow for large samples. • HE or LDSC is not statistically efficient.



Linkage Disequilibrium Score 
Regression



Introduction to Linkage Disequilibrium (LD) 
Score Regression
• What is Linkage Disequilibrium (LD)?
• Linkage Disequilibrium (LD) refers to the non-random association of 

alleles at different loci. It indicates that certain combinations of alleles 
occur together more frequently than would be expected by chance.
• Influenced by factors such as genetic drift, selection, mutation, 

recombination, and population structure.
• What is LD Score Regression?
• A statistical method used to partition heritability and identify 

confounding biases in genome-wide association studies (GWAS).
• Utilizes LD patterns to differentiate true polygenic signals from 

confounding biases in GWAS data.



Understanding LD Score
• LD Score Definition:
• The LD score of a single nucleotide polymorphism (SNP) is the sum of squared 

correlations 𝑟" between the SNP and all other SNPs within a certain genomic 
window.
• Quantifies the amount of genetic variation captured by a SNP.

LD Score 𝑙# =%
$%&

'

𝑟$#"

where 𝑟$#" is the squared correlation between SNP 𝑗 and SNP 𝑖 , and 𝑀 is the 
number of SNPs within the specified window.
• Why is LD Score Important?
• SNPs with high LD scores tag more genetic variation, aiding in differentiating 

between true signal and noise in association studies.



How LD Score Regression Works
• Core Idea:

• In a polygenic trait, SNPs with higher LD scores should, on average, have higher GWAS test statistics (chi-
squared statistics) because they tag more causal variants.

• Key Components:
• Dependent Variable: GWAS test statistics (chi-squared values) for each SNP.
• Independent Variable: LD scores for each SNP.

• Regression Model:

𝐸 𝜒!" = 1 +
𝑁 ⋅ ℎ" ⋅ 𝑙!

𝑀 +𝛼

where:

• 𝐸 𝜒!" is the expected chi-squared statistic for SNP ( j ),

• 𝑁 is the sample size,

• ℎ" is the heritability explained by the SNPs,

• 𝑙! is the LD score of SNP ( j ),

• 𝑀 is the number of SNPs, and
• 𝛼 is an intercept term representing confounding bias.





Applications of LD Score Regression

• Estimating Heritability:
• Used to estimate the heritability of complex traits by partitioning genetic variance from 

GWAS summary statistics.

• Detecting Confounding Bias:
• Intercept 𝛼 in the regression can identify confounding biases such as population 

stratification or cryptic relatedness.
• Improving GWAS Results:

• Differentiates true polygenic signals from spurious associations caused by confounding 
factors.

• Understanding Genetic Architecture:
• Provides insights into the genetic architecture of complex traits by assessing the genetic 

variance explained by SNPs across the genome.



Pros and Cons of LD Score Regression

• Advantages:
• Robust to Confounding: Effectively identifies and corrects for population stratification 

and other confounders in GWAS data.
• Simple and Scalable: Uses summary statistics and is computationally efficient for large-

scale GWAS.
• Broad Applicability: Applicable to both quantitative traits and case-control studies.

• Limitations:
• Requires Large Sample Sizes: Accurate estimates of heritability and bias detection need 

large GWAS sample sizes.
• Assumptions: Assumes GWAS results are polygenic and LD patterns are well-captured, 

which may not always hold.
• Sensitive to LD Score Calculation: Accuracy depends on the quality of LD score 

calculations, which can vary across populations and reference panels.
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Partitioning Heritability using GREML



Introduction to GREML
• What is GREML?
• Genomic-Relatedness-Based Restricted Maximum Likelihood (GREML) is a 

statistical method used to estimate the proportion of phenotypic variance that is 
attributable to genetic variance (heritability).
• GREML utilizes information from genomic data to partition heritability into 

components explained by different sets of genetic variants, often grouped by 
their minor allele frequency (MAF), functional annotation, or chromosomal 
location.

• Applications of GREML:
• Understanding the genetic architecture of complex traits.
• Estimating heritability attributable to specific genetic components.
• Identifying the contribution of different genomic regions or functional 

annotations to the overall genetic variance of a trait.



The Basics of Heritability and GREML

• Heritability h^2:
• The proportion of the total phenotypic variance of a trait that can be attributed to genetic variance.
• Broad-sense heritability 𝐻! includes all genetic variance components, while narrow-sense heritability ℎ!

focuses only on additive genetic variance.
• GREML Framework:

• Uses a linear mixed model to partition phenotypic variance into genetic and environmental components.
• The model estimates the genetic variance explained by SNPs captured in a genomic relationship matrix 

(GRM).
𝑦 = 𝑋𝛽 + 𝑔 + 𝑒

where:
• 𝑦 is the vector of phenotypic values,
• 𝑋 is the matrix of fixed effects,
• 𝛽 is the vector of fixed effect coefficients,
• 𝑔 is the vector of genetic effects (random effects),
• 𝑒 is the vector of residual (environmental) effects.



Constructing the Genomic Relationship 
Matrix (GRM)
• Genomic Relationship Matrix (GRM):
• Represents the genetic similarity between all pairs of individuals based on 

their SNP genotypes.
• The GRM is constructed using genotype data to estimate the proportion of 

the genome shared identical-by-state (IBS) between individuals.

GRM$# =
1
𝑀
%
!%&

'
𝑥$! − 2𝑝! 𝑥#! − 2𝑝!

2𝑝! 1 − 𝑝!
where:
• 𝑀 is the number of SNPs,

• 𝑥$! and 𝑥#! are the genotypes for individuals 𝑖 and 𝑗 at SNP 𝑘,
• 𝑝! is the allele frequency of SNP 𝑘.



Partitioning Heritability with GREML

• Objective:
• Partition the heritability of a complex trait into components attributable to 

different sets of SNPs (e.g., by MAF, functional category, or genomic region).
• GREML Model for Partitioning:

𝑉 𝑦 = 𝜎("𝐾 + 𝜎)"𝐼
where:
• 𝑉 𝑦 is the phenotypic variance-covariance matrix,
• 𝜎(" is the additive genetic variance explained by SNPs,
• 𝐾 is the GRM, capturing genetic relationships,
• 𝜎)" is the residual variance,
• 𝐼 is the identity matrix.



Steps in GREML Analysis

1. Prepare Data:
• Obtain SNP genotype data and phenotype data.
• Quality control (QC) steps to filter SNPs and individuals (e.g., removing SNPs with low 

MAF, high missingness, or poor quality).
2. Construct the GRM:

• Calculate the GRM using quality-controlled SNPs.
3. Fit the GREML Model:

• Use software like GCTA, BOLT-LMM, or LDAK to fit the linear mixed model and estimate 
variance components.

4. Partition Heritability:
• Decompose total genetic variance into components explained by different sets of SNPs 

(e.g., different MAF bins or functional categories).



Interpretation of GREML Results

• Total Heritability Estimate:
• The overall proportion of phenotypic variance explained by all SNPs in the 

model.
• Partitioned Heritability Estimates:
• Heritability explained by specific subsets of SNPs, allowing for interpretation 

of the contribution of various genetic factors.
• Implications for Genetic Architecture:
• Helps in understanding the distribution of genetic effects across the genome.
• Provides insights into whether certain genomic regions or functional 

annotations contribute disproportionately to the trait’s heritability.



Advantages and Limitations of GREML

• Advantages:
• Allows estimation of SNP-based heritability using only genotype data.
• Can partition heritability based on functional annotations or other criteria.
• Robust to population stratification if properly accounted for in the GRM.

• Limitations:
• Requires large sample sizes for accurate heritability estimates.
• Sensitive to the quality and representativeness of the reference population 

used to calculate the GRM.
• Assumes a polygenic model, where many variants of small effect contribute to 

the trait.
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Jicai Jiang NC State University

https://jiang18.github.io/mph/ https://github.com/jiang18/slemm



LDSC and stratified LDSC

39

𝑡#~N 0,
𝑛
𝑚
<𝑙#ℎ" + 𝑐

c is estimated in LDSC, which can measure the genomic inflation of GWAS statistics.

Parameter estimation is based on iteratively reweighted least squares.

𝑡#~N 0,
𝑛
𝑚
%

!%&

*
?𝑙#!𝜏! + 𝑐

8/29/24 ANS 590 (005)



8/29/24 ANS 590 (005) 40

MQS-LDW (like LDSC) lacks statistical power. MQS-LDW responds poorly to increasing sample size. 



Solution

• We need to use REML for the integration of functional annotations.

• Better REML implementation 
• Much more computationally efficient
• More robust

• MPH (https://jiang18.github.io/mph/)
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https://jiang18.github.io/mph/


Significance Tests and Predictions

● Does a function annotation contribute to heritability?
○ Wald tests on 𝜏! 
○ LRT tests

● Functional-annotation-informed variance components
○ Genetic variance estimate for each marker

● Genomic predictions
○ BLUPs enhanced by the integration of functional annotations
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Functional enrichment

Annot1 Annot2 Annot3 Annot4
SNP1 1 1 0 0
SNP2 0 1 1 0
SNP3 1 1 1 1

2
SNP1 1 2
2
SNP2 2 3
2
SNP3 1 2 3 4

s t t

s t t

s t t t t

= +

= +

= + + +

Var 𝛼! = ∑":!∈%! 𝜏" , where τk denotes the per-variant contribution of category k to Var 𝛼! .
More generally, Var 𝛼! = ∑"𝑊!"𝜏"  for a binary (𝑊!"=0/1) or continuous functional annotation. 

W

=Wτ
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Functional enrichment (cont.)
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Functional enrichment (cont.)

Let Q be a variant-to-annotation incidence matrix.
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Annot1 Annot2 Annot3 Annot4 Annot1,3
SNP1 1 1 0 0 1
SNP2 0 1 1 0 1
SNP3 1 1 1 1 1

T ˆk kv = q Wτ
Genetic	variance	explained	by	SNPs	in	annotation	category	𝑘
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Functional enrichment (cont.)

Note that )𝛕 and var )𝛕  are computed by REML.
Given )𝛕 and var )𝛕 , standard errors for enrichment estimates can be readily computed.
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