FSPAK
An interface for public domain sparse matrix subroutines
Authors: Miguel Perez-Enciso, University of Wisconsin, USA
 UdL-IRTA, Spain
 Ignacy Misztal, University of Illinois, USA
 Mauricio E. Elzo, University of Florida, USA

INTRODUCTION

FSPAK is a set to subroutines, consisting of about 1000 lines of
fortran code, that utilize some public domain sparse matrix code from George
and Liu (1981) to solve a symmetric positive definite linear system of
equations. In addition, FSPAK incorporates other non-standard
procedures in commercial packages such as sparse vector methods
(Tinney et al., 1985), sparse matrix inversion using Takahashi et
al. (1971) algorithm or computing the determinant. FSPAK is free to use
for noncommercial applications.

PACKAGE OVERVIEW

FSPAK requires that the user provides the upper triangular matrix in
the IA,JA,A form (i.e., Kincaid et al., 1982; Duff et al., 1989; George
and Liu, 1981) where IA denotes the starting locations of each of the rows in
JA and A,
JA contains the column indices of the nonzero elements (NZE), and A
the value
of these elements.

As other direct solver packages, FSPAK breaks the solution
process into several steps:

1. Ordering: a permutation vector and its inverse are found
2. Symbolic factorization: the compressed pointer data structures of
 U is obtained
3. Numerical factorization: computes the Cholesky decomposition U'D
 U
 FSPAK allows the factorization of non-full rank matrices

Once factorization is complete, several options are available:

4. Dense vector solving (full forward followed by full backward
 substitution)
5. Sparse vector solving (fast forward followed by fast backward
 substitution)
6. Compute the determinant or the log-determinant
7. Sparse inverse (memory- and speed-optimized)

In addition, FSPAK provides with a restart facility where the ordering
is read from a file previously written, and an option that provides with
timing, storage required and other statistics. There is also an option
that checks whether Ax = b, x being the solution provided by the
dense vector solving.

SUBROUTINES REQUIRED

fspak routines
(they can be obtained from misz.animal.uiuc.edu)
 fspak.f (main driver)
 fspak_sub.f

sparspak routines:
(they can be obtained from netlib @ research.att.com)
 genqmd.f
 qmdrch.f
 qmdupd.f
 qmdqt.f
 qmdmrg.f
 qmdrch.f
 smbftc.f

test program
 ftest.f

GENERAL CALLING ARGUMENT

CALL FSPAK (OPTION, N, IA, JA, A, B,
 FLAG, IOUT, IOOR, AVAILABLE, NEEDED, IS,
 FNODE, BNODE, FNSEG, BNSEG, FX, FEQB, IRANK)

where

OPTION = Option to be run (integer scalar)
 The following options are available so far:
 10 = find order
 20 = symbolic factorization
 40 = numerical factorization
 50 = solve (full forward/backward)
 51 = initialize for sparse solving
 52 = sparse solving (fast forward/backward)
 54 = computes determinant
 55 = computes log-determinant
 56 = checks whether Ax = b
60 = computes sparse inverse (optimized for speed)
61 = computes sparse inverse (optimized for memory)
70 = restart (read ordering)
80 = print statistics

N = dimension of the system (integer scalar)
IA = vector specifying the pointers for the beginning of each row
of the upper triangular sparse stored (integer vector of dimension N+1)
JA = vector specifying the column indices (integer vector of dimension nze)
A = vector with the numeric values of the NZE of the matrix (real*8 of dimension nze)
B = vector with the right-hand-side (real*8 of dimension N)
after option=50, B contains the solution vector of dimension N
after option=52, B contains the solution for the elements required (vector of dimension BNSEG)
after option=54 or 55, B is a scalar with the output value
FLAG = error flag (integer scalar)
 Possible values so far are:
 -99 = not implemented option
 -2 = error in OPTION=restart
 -1 = error in OPTION=restart
 0 = no error
 1 = error in checking solution (Ax <> b)
OPTION*:
 100+1 = not enough memory in IS to perform option OPTION
 4000000 + ROW = zero or negative pivot for row ROW during numerical factoriz.
IOUT = number of output unit (integer scalar)
IOOR = number of unit where ordering is printed (integer scalar)
AVAILABLE = declared dimension of working vector IS (integer scalar)
NEEDED = needed dimension of IS to perform that particular option (integer scalar)
FNODE = vector containing the nodes of the nonzero elements in the sparse vector for the fast forward (integer of dimension FNSEG)
BNODE = vector containing the nodes of the nonzero elements in B for which the solutions are wanted in the fast backward (integer of dimension BNSEG)
FNSEG = NZE in B (integer scalar)
BNSEG = number of elements in B for which solution is wanted (integer scalar)
FX = (OPTION=52) numeric values of NZE in B
 = (OPTION=56) numeric values of the rhs, B (real*8 of dimension FNSEG, if OPTION=52, or N if
OPTION=56)
FEQB = flag to indicate whether the forward and backward paths are equal
 0 = not equal
 1 = equal
IRANK = rank of the matrix

PROCEDURES USAGE

FSPAK is written such that only one subroutine with the same arguments has to be called in all steps. However, not all arguments are used in all subroutines. In the following, dummy arguments are written in lower case and needed arguments in UPPER case.

1. ORDERING

This should be the first step in solving the linear system, and it is usually the most expensive one. Finding an ordering vector is achieved by calling

CALL FSPAK (10, N, IA, JA, a, b, FLAG, IOUT, IOOR, AVAILABLE, NEEDED, IS, fnode, bnode, fnseg, bnseg, fx, feqb, irank)

FSPAK calls the minimum degree ordering subroutines of George and Liu (1981). It can also be easily modified to call the multiple minimum degree subroutines of Liu (1985) (These subroutines are not provided). Once the permutation vectors are found, these are written to unit IOOR with format '(10i7)'.

2. SYMBOLIC FACTORIZATION

In this step the data structures for upper triangular factor, including of course the "fill-ins", is created. The option is

CALL FSPAK (20, N, IA, JA, a, b, FLAG, IOUT, ioor, AVAILABLE, NEEDED, IS, fnode, bnode, fnseg, bnseg, fx, feqb, irank)

FSPAK calls SMBFCT (George and Liu, 1981).
3. NUMERICAL FACTORIZATION

CALL FSPAK (40, N, IA, JA, A, b, FLAG, IOUT, ioor, AVAILABLE, NEEDED, IS, fnode, bnode, fnseg, bnseg, fx, feqb, IRANK)

FSPAK calls a rearranged version of subroutine GSFCT (George and Liu, 1981), that resulted in an increase of efficiency of about 15%. Vector A should contain current numerical values. IRANK returns the rank of the matrix.

4. DENSE VECTOR SOLVING

CALL FSPAK (50, N, ia, ja, a, B, FLAG, IOUT, ioor, AVAILABLE, NEEDED, IS, fnode, bnode, fnseg, bnseg, fx, feqb, irank)

FSPAK calls a full forward/backward solving routine. On output, B is overwritten by the vector of solutions. This is the cheapest step and, thus, it is fairly inexpensive to solve the same system of equations with different right hand sides.

5. SPARSE VECTOR SOLVING

This is one of the options in FSPAK not implemented so far in commercial packages. It uses the sparse vector methods well described in Tinney et al. (1985). It is of interest when either the right hand side is a sparse vector (only a few elements are not zero) or only a subset of the whole solution vector is required, or a combination of both. In all cases, dramatic increases in speed can be achieved. The basic idea is that if the rhs vector is sparse, only an ordered subset of the columns of U' and D are required. This subset is known as the factorization path if the vector is a singleton (only one nze) or as the composite or segmented factorization path if there are more than one nze. Forward substitution following a factorization path is called 'fast-forward'. Similarly, if
only certain elements of the solution vector have to be computed, backward substitution has to be done only with a subset of the rows of U, given by the segmented factorization path of the elements required. This is called 'fast-backward'. Computing factorization paths is inexpensive provided that the number of the lowest-numbered nonzero off-diagonal element in each row of U can be accessed without searching. This is the case in the data structures considered here. In FSPAK, sparse vector solving is preceded by an intilialization step that computes the path table:

```fortran
CALL FSPAK (51, N, ia, ja, a, b, FLAG,
           IOUT, ioor, AVAILABLE, NEEDED, IS,
           fnode,
           bnode, fnseg, bnseg, fx, feqb, irank)
```

After this step, sparse solving can be called any number of times without further explicit reinitializing. However, it should be borne in mind that the sparse vector option destroys the data structures for sparse solving and vice versa. Then, if sparse vector solving is needed after sparse vector option, the initializing routine should be called again. Calling the determinant routines dos not affect the sparse vector data structures, except that B is overwritten. To call for sparse vector solving:

```fortran
CALL FSPAK (52, N, ia, ja, a, B, FLAG,
           IOUT, ioor, AVAILABLE, NEEDED, IS,
           FNODE,
           BNODE, FNSEG, BNSEG, FX, FEQB, irank)
```

Sparse vector methods are of particular interest in obtaining certain elements of the inverse. For instance, if only the diagonal elements of the inverse of the matrix are needed the following piece of code is likely to be the most efficient:

```fortran
do i=1,n
    call fspak (52, n, ia, ja, a, b, flag, iout, ioor,
               available,
               needed, is,
               + i, i, 1, 1, 1, 1)
    c now b(1) contains the diagonal element of the i-th row of the inverse
enddo
```
This variant stores the diagonal elements of the inverse in vector B

\[
\text{do } i=1,n \\
\text{ call fspak (52, n, ia, ja, a, b(i), flag, iout, ioor, available, } \\
+ \text{ needed, is, } \\
+ \text{ i, i, 1, 1, 1, 1) } \\
\text{ enddo}
\]

now \(b(i)\) contains the diagonal element of the \(i\)-th row of the inverse

6. DETERMINANT

Once the factorization is complete, the determinant is obtained by multiplying the elements of the diagonal matrix \(D\) in \(U'DU\).

\[
\text{CALL FSPAK (54, N, ia, ja, a, B, } \\
\text{ FLAG, IOUT, ioor, AVAILABLE, NEEDED, IS, } \\
\text{ fnode, bnode, fnseg, bnseg, fx, feqb, irank) } \\
\]
gives in \(B(1)\) the determinant, while

\[
\text{CALL FSPAK (55, N, ia, ja, a, B, } \\
\text{ FLAG, IOUT, ioor, AVAILABLE, NEEDED, IS, } \\
\text{ fnode, bnode, fnseg, bnseg, fx, feqb, irank) } \\
\]
gives in \(B(1)\) the logarithm of the determinant.

7. SPARSE INVERSE (speed-optimized)

The NZE of the inverse that are also non zero in the triangular factor \(U\), plus all the diagonal elements can be efficiently obtained using the Takahashi et al (1971) method. In FSPAK, the option is

\[
\text{CALL FSPAK (60, N, IA, JA, A, b, } \\
\text{ FLAG, IOUT, ioor, AVAILABLE, NEEDED, IS, } \\
\text{ fnode, bnode, fnseg, bnseg, fx, feqb, irank) } \\
\]
This is the option likely to require more memory. Upper-triangular \(A, JA, A\) is augmented by lower-triangular elements, and \(A\) is overwritten with the corresponding elements of the inverse. Only those elements are overwritten that are nonzero in the factorization. This includes all elements of
the original matrix. Since, both upper and lower elements are stored in IA, JA, A after return, it should be checked that there is enough storage available in JA and A (see below in traps and tips). This option is fast, especially on vector computers, but it requires 250–400% more memory than that required by the numerical factorization.

8. SPARSE INVERSE (memory-optimized)

This option is similar to the previous option, except that it is optimized for memory.

```
CALL FSPAK (61, N, IA, JA, A, b, FLAG, IOUT, ioor, AVAILABLE, NEEDED, IS, fnode, bnode, fnseg, bnseg, fx, feqb, irank)
```

In this option, IA is not changed, JA may be permuted, and A is overwritten with the corresponding elements of the inverse. This option requires only 20–80% more memory than the factorization, but is up to 0–50% slower, the difference being computer dependent. Inversion with option 61 (but not 60) destroys the factor so that after option 61 any operations involving the factor, e.g., solving or computing a determinant will yield incorrect results.

9. RESTART

Because ordering is the most expensive step in most cases, ordering vectors are written to unit IOOR. During subsequent runs of the package, these vectors can be recovered so that the ordering step can be skipped. In order to do so replace Fspak (10, ...) with

```
CALL FSPAK (70, N, ia, ja, a, b, FLAG, IOUT, IOOR, AVAILABLE, NEEDED, IS, fnode, bnode, fnseg, bnseg, fx, feqb, irank)
```

If the number of equations in unit IOOR is different from N, FLAG is
set to
-1. If there is an error in reading IOOR because of out of bounds reading
, FLAG is set to -2.

10. STATISTICS

At any time,

CALL FSPAK (80, N, ia, ja, a, b,
flag, IOUT, ioor, AVAILABLE, NEEDED, IS,
fnode, bnode, fnseg, bnseg, fx, feqb, irank)

can be called to obtain a printout in unit IOUT of timing, storage and
other statistics.

11. CHECKING SOLUTION

The option

CALL FSPAK (56, N, IA, JA, A, B,
FLAG, IOUT, ioor, AVAILABLE, NEEDED, IS,
fnode, bnode, fnseg, bnseg, FX, feqb, irank)

checks that the solution obtained from dense vector solving satisfies
the condition Ax=b. Here B contains the solution vector, x, and FX
contains the original right hand side. Thus, if this option is used,
the vector FX should a dimension of at least N. On output, FX(1)
contains the mean absolute difference between Ax and b. If this difference is
greater than TOL (set to 10d-6 in FSPAK), FLAG is set to 1.

CUSTOMIZING FSPAK

In the first call to FSPAK, the function FRATIO is called. This function
returns the value of 2 if the storage for integer is half of that for
real*8, as in most machines, or 1 if is the same (such as in the Cray
machines). The user is advised to check that this function returns the proper value.
FSPAK uses a timing function called SECOND() that returns the cpu clock time. This function should be specific to each system. See Appendix for examples of this function on several computers.

TRAPS AND TIPS

1. IA,JA,A should contain only the NZE of the upper triangular of the matrix. If the lower triangular elements are present, unpredictable results can be expected.

2. All real variables in FSPAK are declared as REAL*8. For single precision operation, all REAL*8 and DOUBLE PRECISION statements should be substituted by REAL.

3. The error flag should remain 0 after calling FSPAK with any option. FSPAK with OPTION=80 can be called any time to check for maximum amount of storage required in the previous calls to FSPAK.

4. Checks for storage bounds are performed by may be imperfect. If unreasonable results are obtained, this could be due to too little, but undetected, storage available.

5. It is responsibility of the user to check that all diagonal elements must be positive; otherwise unpredictable results may occur.

6. In the solving option, the rhs vector B is overwritten with solutions.

7. In the sparse vector solving option, if the forward path is equal to the backward path, then

 CALL FSPAK (. . . FNODE,FNODE,FNSEG,FNSEG,FX,1) and

 CALL FSPAK (. . . FNODE,BNODE,FNSEG,FNSEG,FX,0)

 will work, though the last call will be slightly less efficient.

8. Different options use common storages in vector IS differently and sometimes destroy vectors used by the other options. For instance,
"sparse inverse" option (60) destroys vectors by "sparse matrix solving" (51). Then, subsequent application of option 52 would necessitate calling option 51 again.

9. None of the nodes in FNODE and BNODE should exceed the rank of the matrix, N.

10. In sparse inverse option (60) the original matrix is overwritten by those of the inverse. In addition, lower triangulars are also stored, so the user should check that there is enough storage, that is, JA and A have to be declared to have at least \((IA(N+1)-1-N)*2\) elements.

11. It can be found useful to insert the first lines of FSPAK to the application program, so that mnemonic names can be used in calling FSPAK

\[
\begin{align*}
\text{integer order, symfac, inval, numfac, solve, sinit, ssolve} & \\
+ & \quad \text{det, ldet, spin, restart, stat} \\
\text{parameter (order=10, symfac=20, inval=30, numfac=40, solve=50, sinit=51, ssolve=52, det=54, ldet =55, spin=60,} & \\
+ & \quad \text{restart=70,stat=80} \\
\end{align*}
\]

12. If no sparse vector methods are needed, and the rank is of no interest, FSPAK can be called using only the first 12 arguments, i.e.

\[
\text{CALL FSPAK (OPTION, N, IA, JA, A, B, FLAG, IOUT, IOOR, AVAILABLE, NEEDED, IS)}
\]

MEMORY ALLOCATION AND REQUIREMENTS IN FSPAK

Guidelines for memory requirements in FSPAK. The actual maximum needed is written to unit IOUT under the heading "MAXIMUM NEEDED". Check the subroutine FIGUREOUT.

Notation:
- N=rank of the matrix
- NZE= no. of non zero elements in the upper triangular
- NZU=number of nonzero elements in the factored matrix (upper triangular)
 \[\text{NZE} + \text{fillins}\]
- RATIO=2 if real*8 requires double storage than integer, 1 otherwise
OPTION APPROX. STORAGE REQUIRED FOR INTEGER VECTOR 'IS'

10 (order) 9*N+2*NZE
20 (sym. fact.) 8*N+2*NZE+NZU
40 (num. fact.) N*(5+2*RATIO)+NZE*(RATIO+1)+NZU*(RATIO+1)
50,51,52,54,55 less than num. fact.
60 (sparse inv.) N*(9+4*RATIO)+NZU*(3+2*RATIO)
61 (sparse inv.) N*(5+2*RATIO)+NZU*(RATIO+2)

With respect to what pointers can be nil, these are written in lower case
in the manual for each option, i.e. for OPTION=10 (order):

CALL FSPAK (10, N, IA, JA, a, b,
FLAG,
 IOUT, IOOR, AVAILABLE, NEEDED, IS,
fnode,
痫node, fnseg, bnseg, fx, feqb, irank)

will render exactly the same results as

CALL FSPAK (10, N, IA, JA, i, i,
FLAG,
 IOUT, IOOR, AVAILABLE, NEEDED, IS,
i , i , i , i , i , i)

OPTIMIZATION AND SUPERCOMPUTERS

During factorization, almost all the time is spent in subroutine
FGSFCT in the
following loop:

 DO II = ISTRT, ISTOP
 ISUB = NZSUB(I)
 TEMP(ISUB) = TEMP(ISUB) + LNZ(II)*LJK
 I = I + 1
 ENDDO

In the inversion routine (FSINVERSE), most of computing is in the
loop below:

 do k=iu(l),iu(l+1)-1
 tmp(l)=tmp(l)+u(k)*tmp(ju(iju(l)-iu(l)+k))
 enddo

Optimizing for a particular architecture can be limited to the above
loops. On
vector computers, these loops will not vectorize automatically,
because
of possible dependencies. As in fact there are no dependencies, the
compiler
should be told so. On the Cray computers, these loops can be preceded by a line:
cdir$ ivdep
for up to 1.2-10 times better performance. The increase in performance is greater if matrices are larger and denser.

COMPUTER-SPECIFIC PROBLEMS

FSPAK ends with a "bus error" on HP workstations when programs are compiled with default options. That compiler expects real*8 aligned on a 8 byte boundary. Option +A3 appears to solve the problem. Similar problems may occur with other compilers. In this case please use an appropriate compiler option.

The test version of FSPAK (Dec 27, 1994) aligns real*8 variables to an even address. This will alleviate the alignment problem if the work vector passed to FSPAK is aligned. The work vector will always be aligned if it is declared as real*8 (with halve the number of elements), or if it equivalenced to any real*8 variable.

REFERENCES

EXAMPLE

This is the output from running FTEST.F, the test program. This program produces two output files FSPAK.OUT and FSPAK.ORD
1. DENSE VECTOR METHOD
 COLUMN DIAG VALUE
 1. 38889D+00
 2. 41358D+00
 3. 33951D+00
 4. 52469D+00
 5. 72222D+00
 The mean absolute difference between Ax and b is 0.527355936696949301E-16

2. SPARSE VECTOR METHOD
 COLUMN DIAG VALUE
 1. 38889D+00
 2. 41358D+00
 3. 33951D+00
 4. 52469D+00
 5. 72222D+00

3. TAKAHASHI ET AL.'s METHOD
 COLUMN DIAG VALUE
 1. 38889D+00
 2. 41358D+00
 3. 33951D+00
 4. 52469D+00
 5. 72222D+00

Finally, the determinant is: 0.16200D+03

I forgot that I need element (2,4) of the inverse |
-0.30864D-01
or, of course, element (4,2)
-0.30864D-01

*** FSPAK ***

MPE / IM
August 1992

SPARSE STATISTICS
RANK OF COEFF MATRIX = 5
STORAGE AVAILABLE = 2000
MAXIMUM NEEDED = 267
NZE IN UPPER TRIANGULAR = 9
NZE IN FACTOR = 4
NO. OF CALLS NUM FACT = 1
NO. OF CALLS SOLVE = 5
NO. OF CALLS SPARS SOLV = 7
NO. OF CALLS DET / LDET = 1
NO. OF CALLS SPARS INV = 1
MAX NO. NODES = 1
MAX PATH LENGTH = 3
AVG NO. NODES FPATH = 1.000
AVG NO. NODES BPATH = 1.000
AVG FPATH LENGTH = 2.286
AVG BPATH LENGTH = 2.286
TOTAL CPU TIME IN FSPAK = 0.006918
TIME FOR FINDING ORDER = 0.000127
TIME FOR SYMBOLIC FAC = 0.000071
TIME FOR NUMERICAL FAC = 0.000121
TIME FOR SOLVE = 0.000226
TIME FOR SPARSE SOLVE = 0.000470
TIME FOR SPARSE INVERSE = 0.000146

cat fspak.ord

 5 4
2 1 5 4 3 2 1 5 4
3

APPENDIX

Function second on several computers

1. VM CMS (IBM mainframe)

 REAL FUNCTION SECOND()
 REAL*8 A,B
 LOGICAL FIRST/.TRUE./
 INTEGER I
 SAVE FIRST,B
 IF (FIRST) THEN
 CALL CPUTIME(B,I)
 FIRST=.FALSE.
 ENDIF
 CALL CPUTIME(A,I)
 SECOND=(A-B)/1.E6
 END

2. CRAY supercomputers and DEC workstations

 Function second is part of the system. No extra function is needed.

3. PC - Microsoft Compiler ver. 5.0, Watcom compiler ver. 9.0, Lahey LF90 3.0

 function second()
 real x,seconds
 integer first
 save x,first
 data first/0/
 c
if (first.eq.0) then
 x=secnds(0.0)
 first=1
 second=0
else
 second=secnds(x)
endif
end

C
INTEFRACE ROUTINE FROM DEC TO PC FOR GETTING TIME
C
FUNCTION SECNDS(X)
REAL*4 SECNDS, X
INTEGER*2 IHOUR, IMINUT, ISECON, IHUND
REAL*4 RHOUR, RMINUT, RSECON, RHUND
REAL*4 X1
CALL GETTIM(IHOUR, IMINUT, ISECON, IHUND)
RHOUR = FLOAT(IHOUR)
RMINUT = FLOAT(IMINUT)
RSECON = FLOAT(ISECON)
RHUND = FLOAT(IHUND)
X1 = RHOUR*3600.0 + RMINUT*60.0 + RSECON +
 RHUND/100.0
SECNDS = X1 - X
RETURN
END

4. Sun workstation

function second
real second
real*8 x(2)
second=etime(x)
end

5. IBM RS/6000 workstation

real function second()
integer mclock
second = mclock()/100.
end

6. Linux with Absoft f90 (and probably f77) compiler
function second()
real second
real x(2)
second=etime(x)
end

Link as
f90 -lU77
7. If neither of the above functions work on your computer, either write one yourself, or substitute the following "dummy" subroutine:

```fortran
real function second()
    second=0
end
```

Please note that this subroutine does not return any CPU time; it merely lets the other programs run.