Quality Control of SNP data and creation of genomic matrices with BLUPF90 software

> Daniela Lourenco BLUPF90 TEAM – 03/2023

UNIVERSITY OF GEORGIA

College of Agricultural & Environmental Sciences

Animal Breeding and Genetics Group

SNP data

SNP

ANIMAL

025	11010111	(5)	11101111100100012211 51 2 (5) 221 25 02 25) 11110 25) 1220102010210002211210 25) 0012201
036	21101101	022	012122222012101222010120222111112021222111112102020101101
050	12101002	111	202111120002121222210002112212212211000002022000021102212221212202000111202
054	12000120	022	012121110012100222211021122110201121222120022002121212111120211202200202210
066	20000202	022	102122112002200122221110122020211020222202022000122212101120102102
097	10110212	022	0121122111021001111100102211212022111111
101	12100212	022	00112211000111122201001011201121212111212012210021020020
151	11100102	022	12202102010110122202001212211112212211211
172	21101202	021	111210121102110222010100122121222110222020122102021211201021112202211201101
224	22000111	022	101221010102110252020111212022212221222011012101110222005021012102201002212
277	21010220	012	12212112120210122220020122102121102011210212210022110110
314	12201112	012	222021021001000212100112012020200121002002
419	22111221	012	1120222221022102110201021121211122000000
439	20020210	012	212121010102101222110111222020202211001011121001120102201222021102101001102
456	12000102	022	11122001010210022110002022212122222200101102211102120120
501	11100002	122	112120121212100222110120222210102211222211022001120211002020110202210002102
571	11000012	020	220022121202200121020001112211011022222120022002021200101021212102210201011
579	11210021	021	0010101111022002221200022211112020222222
581	21100202	(5)2	10012212020110022002011251212150225222225022101120112
657	11001112	022	011121110102001222100011222121202121112120022001220222002221221
660	21000212	022	112022112102101222101101222122212121112020122101220112111121111202200001210
730	21000202	022	002022222001200222000122022222002110225220012200120211115100101202200101202
732	21210212	1,52	100220120001210112120121511021512252112115022001110211105020222112201102201
764	11110212	(52	001221221102000122020122522211502152222115022011020212005020202202211111211
780	12110102	112	222021010102200222120120112122101211111011122102020200101011221212100202102
800	22100012	022	1222210202021102221101012112022120222222
816	11000122	022	012122011002201112110001102112212122002011222200222211102111121202201102201
832	12101001	112	00112111100211122201111121222212102011110202210021122210012121111210121111
900	21010011	022	012212121102110212101212022121212110111111
901	12100102	022	112121221001000212020111122111212200111111

Quality control

• Call rate

Which software in the BLUPF90 family?

- Animals
- SNP
- Minor Allele Frequency (MAF)
- Hardy-Weinberg Equilibrium (HWE)
- Non-mapped SNP
- Mendelian Conflicts
- Duplicate genotypes
- Linkage disequilibrium (LD)

• Interface program to the genomic module to process the genomic information in the BLUPF90 family of programs

• Performs Quality Control of SNP information

- Creates the genomic relationship matrix (G)
 - and relationships based on pedigree (A₂₂)
 - Inverse of relationship matrices

- Same parameter file as for all BLUPF90 programs
- Needs an extra OPTION in renf90.par
 - OPTION SNP_file marker.geno
- Reads 2 extra files (besides data and pedigree):
 - marker.geno
 - marker.geno_XrefID(created by renumf90)

Run renumf90 before preGSf90

• Use renumf90 for renumbering data and creating XrefID and files

EFFECT 1 cross alpha RANDOM animal FILE ped3.txt FILE POS 12300 SNP FILE marker.geno PED DEPTH 0 (CO) VARIANCES 0.30

Parameter files

RENUMF90 BLUPF90 renf90.par renum.par DATAFILE DATAFILE renf90.dat phenotypes.txt NUMBER_OF_TRAITS TRAITS 1 З NUMBER_OF_EFFECTS FIELDS_PASSED TO OUTPUT 2 OBSERVATION(S) WEIGHT(S) 1 WEIGHT(S) RESIDUAL_VARIANCE EFFECTS: POSITIONS_IN_DATAFILE NUMBE 0.9038 1 cross 2 EFFECT 15800 cross з 1 cross alpha # mu RANDOM_RESIDUAL VALUES EFFECT 0.90380 2 cross alpha # animal RANDOM_GROUP RANDOM 2 animal RANDOM_TYPE add_animal FILE FILE pedigree renadd02.ped SNP FILE (CO)VARIANCES marker.geno 0.99510E-01 (CO)VARIANCES OPTION SNP_file marker.geno. 0.9951E-01

New pedigree file from RENUMF90

- 1 renumbered animal ID
- 2 parent 1 number or UPG
- 3 parent 2 number or UPG
- 4 3 minus number of known parents or inbreeding code
- 5 known or estimated year of birth
- 6 number of known parents

if animal is genotyped 10 + number of known parents

- 7 number of records
- 8 number of progenies as parent 1
- 9 number of progenies as parent 2
- 10 original animal ID

SNP file, XrefID, and ped from renumf90

SNP File First col: original ID Second col: SNP genotypes {codes: 0,1,2, and 5 (missing)} All SNP should start in the same column!!!

- Same parameter file as for all BLUPF90 programs
- Needs an extra OPTION in renf90.par
 - OPTION SNP_file marker.geno
- Reads 2 extra files (besides data and pedigree):
 - marker.geno
 - marker.geno_XrefID(created by renumf90)

SNP map file – new default

- OPTION chrinfo <*file>*
- OPTION map_file <*file*>
 - For GWAS and QC
- Format:
 - A header must be provided
 - Names for SNP, chromosome, and physical position are mandatory
 - SNPID for SNP
 - CHR for chromosome
 - POS for position

NUM CHR POS SNPID NUM2 31428 14 7928189 ARS-BFGL-BAC-1020 2 32005 14 31819743 ARS-BFGL-BAC-10245 3 14 6133529 ARS-BFGL-BAC-10345 17544926 ARS-BFGL-BAC-10591 32053 14 34639444 ARS-BFGL-BAC-10867 31993 14 31267746 ARS-BFGL-BAC-10919 23506 10 18882288 ARS-BFGL-BAC-10952 23550 10 20609250 ARS-BFGL-BAC-10960 11 23566 10 21225382 ARS-BFGL-BAC-10975 12 23612 10 26527257 ARS-BFGL-BAC-10986 13 24705 10 78512500 ARS-BFGL-BAC-10993 14 24712 10 79252023 ARS-BFGL-BAC-11000 24732 10 80410977 ARS-BFGL-BAC-11003 16 24741 10 80783719 ARS-BFGL-BAC-11007 17 24827 10 84516867 ARS-BFGL-BAC-11025 18 25865 11 21276136 ARS-BFGL-BAC-11039 21

Saving 'clean' files

- SNP excluded from QC are set to missing (i.e., Code=5)
 - 5 is replaced by 0 in calculations
- OPTION saveCleanSNPs
- Save clean genotype data without excluded SNP and individuals
 - For example, for a SNP_file named *marker.geno*
 - Clean fles will be:
 - *marker.geno_*clean
 - *marker.geno_clean_*XrefID
 - Removed SNP/animals will be output in files:
 - *marker.geno_*SNPs_removed
 - *marker.geno*_Animals_removed

Only QC in preGSf90

- Quality control
- Genomic relationship matrices and inverses
 - Inverse is costly
- How to do only QC avoiding the inverses:
 - OPTION SNP_file marker.geno
 - OPTION saveCleanSNPs
 - OPTION createGInverse 0
 - OPTION createA22Inverse 0
 - OPTION createGimA22i 0

No QC in the application programs

- ONLY use:
 - If QC was performed in a previous run and "clean" genotype file is used
- OPTION SNP_file marker.geno_clean
- OPTION no_quality_control

Use in application programs

• Use renumf90 for renumbering and creation of XrefID and files

- Run preGSf90 with quality control, saving clean files
- Run further programs with clean files as needed
 - blupf90+,gibbs2f90+,...

PreGSf90 wiki

- Performs Quality Control of SNP information
- Creates the genomic relationship matrix (G)
 - and relationships based on pedigree (A₂₂)
 - Inverse of relationship matrices

BLUP-based models

$$\begin{bmatrix} \mathbf{X'X} & \mathbf{X'W} \\ \mathbf{W'X} & \mathbf{W'W} + \mathbf{A}^{-1} \frac{\sigma_e^2}{\sigma_a^2} \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\boldsymbol{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{W'y} \end{bmatrix} \qquad \mathsf{BLUP} \qquad \mathsf{Henderson, 1963}$$

$$\begin{bmatrix} \mathbf{X'X} & \mathbf{X'W} \\ \mathbf{W'X} & \mathbf{W'W} + \mathbf{G}^{-1} \frac{\sigma_e^2}{\sigma_a^2} \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\boldsymbol{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{W'y} \end{bmatrix} \qquad \mathsf{GBLUP} \qquad \mathsf{Nejati-Javaremi et al., 1997} \\ \mathsf{Fernando, 1998} \\ \mathsf{VanRaden, 2008} \end{aligned}$$

$$\begin{bmatrix} \mathbf{X'X} & \mathbf{X'W} \\ \mathbf{W'X} & \mathbf{W'W} + \mathbf{H}^{-1} \frac{\sigma_e^2}{\sigma_a^2} \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\boldsymbol{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{W'y} \end{bmatrix} \qquad \mathsf{SSGBLUP} \qquad \overset{\mathsf{Misztal et al. (2009)} \\ \mathsf{Legarra et al. (2009)} \\ \mathsf{Aguilar et al. (2010)} \\ \mathsf{Christense \& Lund} \\ (2010) \end{bmatrix}$$

$$\mathbf{H}^{-1} = \begin{bmatrix} \mathbf{A}^{11} & \mathbf{A}^{12} \\ \mathbf{A}^{21} & \mathbf{A}^{22} \end{bmatrix} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}^{-1}_{22} \end{bmatrix} \qquad \mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}^{-1}_{22} \end{bmatrix}$$

PreGSf90

• Created to construct the matrices using in ssGBLUP

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$$
$$\mathbf{G} \qquad \mathbf{G}^{-1}$$
$$\mathbf{A}_{22} \qquad \mathbf{A}_{22}^{-1}$$
$$\mathbf{G}^{-1} - \mathbf{A}_{22}^{-1}$$

Genomic Relationship Matrix - G

- Z = matrix for SNP marker
- Dimension of $Z = n^*i$
- *n* animals
- *i* markers

Genotype Codes

- 0 Homozygous
- 1 Heterozygous
- 2 Homozygous
- 5 No Call (Missing)

80	21101011002012011011010110111111211111210100
8014	21110101511101120221110111511112101112210100
516	21100101202252021120210121102111202212111101
181	21110111112201120550200020101022212211111100

PreGSf90

- Efficient methods
 - create the genomic relationship matrix and the relationship matrix based on pedigree
 - Invert the relationship matrices

- Computes statistics for the matrices
 - Means, Var, Min, Max
 - Correlations between diagonals
 - Correlations for off-diagonals
 - Correlations for the full matrices
 - Regression coefficients

Genomic Matrix default options

•
$$\mathbf{G}_0 = \frac{\mathbf{Z}\mathbf{Z}'}{2\sum p_i(1-p_i)}$$
 (VanRaden, 2008)

- With:
 - Z centered using current allele frequencies
 - Current genotyped animals

Genomic Matrix Options

• OPTION whichfreq x

- 0: read from file *freqdata* or other specified name (needs OPTION FreqFile)
- 1:0.5
- 2: current calculated from genotypes (default)
- OPTION FreqFile *file*
 - Reads allele frequencies from a file

Genomic Matrix default options

- Blending to avoid singularity problems $\mathbf{G} = 0.95^*\mathbf{G}_0 + 0.05^*\mathbf{A}_{22}$
 - OPTION AlphaBeta 0.95 0.05 #(default)
 - Numerically: Beta can vary from 0 to 1
 - In practice: Beta may vary from 0.01 to 0.2

Genomic Matrix default options

• Tuning

- Adjust **G** to have mean of diagonals and off-diagonals equal to A_{22}
- OPTION tunedG 2 #(default) Chen et al. (2011)

- Base of GBLUP is *genotyped* animals
- Base of pedigree is *founders of the pedigree*
- For SSGBLUP modelled as a mean for genotyped animals
 - $-p(\boldsymbol{u}_2) = N(\mathbf{1}\mu, \mathbf{G})$
 - Integrate μ : $\mathbf{G}^* = 11'\lambda + (1 \lambda/2)\mathbf{G}$
 - $-\mu$ = (Genomic base) (Pedigree base)
 - Vitezica et al. 2011

Options for matching **G** to A_{22}

- OPTION tunedG x
 - 0: no adjustment
 - 1: mean(diag(G))=1, mean(offdiag(G))=0
 - 2: mean(diag(G))=mean(diag(A₂₂)), mean(offdiag(G))=mean(offdiag(A₂₂)) (default)
 - 3: mean(G)=mean(A₂₂)
 - 4: Use Fst adjustment. Powell et al. (2010) & Vitezica et al. (2011)

$$\lambda = \frac{1}{n^2} \left(\sum_{i} \sum_{j} \mathbf{A}_{22_{ij}} - \sum_{i} \sum_{j} \mathbf{G}_{ij} \right) \qquad \mathbf{G}^* = 11' \lambda + (1 - \lambda/2) \mathbf{G}$$

Storing and Reading Matrices

• preGSf90 saves $G^{-1} - A_{22}^{-1}$ by default (file: GimA22i)

To save 'raw' genomic matrix:

- OPTION saveG [all]
 - If the optional *all* is present all intermediate **G** matrices will be saved!!!

To save **G** and inverse:

- OPTION saveG and OPTION saveGInverse
 - Only the final **G**, after blending, scaling, etc. is inverted !!!

To save A_{22} and inverse

OPTION saveA22 and OPTION saveA22Inverse

Storing and Reading Matrices

- OPTION saveG [all], OPTION saveGInverse, ...
 - Saves in binary format
 - "Dumped" format to save space and time
 - To save as row, column, value:
 - OPTION no_full_binary
 - Still binary, but can be easily read and converted to text

Storing with Original IDs

- Some matrices could be stored in text files with the original IDs extracted from *renaddxx.ped* created by the RENUMF90 program (col #10)
- For example:
 - OPTION saveGOrig
 - OPTION saveDiagGOrig
 - OPTION saveHinvOrig
- Values
 - origID_i, origID_j, val

Genomic Matrix - Population structure

OPTION plotpca

Plot first two principal components to look for stratification in the population.

OPTION extra_info_pca file col

Reads from file the column col to plot with different colors for different classes.

Genomic Matrix - Population structure

Tricks to setup **G** for GBLUP #1

- Tricks are needed because preGSf90 is set up for ssGBLUP
- 1) Use a dummy pedigree

200

2) Use PED_DEPTH 1 in renumf90

- 3) Change blending parameters
 - OPTION AlphaBeta 1.00 0.00 \rightarrow G = 1.00*G + 0.00*I
 - OPTION AlphaBeta 0.95 0.05 \rightarrow G = 0.95*G + 0.05*I

4) No adjustment for compatibility with A_{22}

• OPTION tunedG 0

Tricks to setup **G** for GBLUP #2

1) In renum.par, remove any information about the pedigree. Example:

FILE

pedigree.txt

FILE_POS

1 2 3 0 0

PED_DEPTH

3

3) Change blending parameters

- OPTION AlphaBeta 1.00 0.00 → G = 1.00*G + 0.00*I
- OPTION AlphaBeta 0.95 0.05 → G = 0.95*G + 0.05*I

4) No adjustment for compatibility with A_{22}

• OPTION tunedG 0

PreGSf90 inside BLUPF90 ??

- Almost all programs from BLUPF90 support creating genomic relationship matrices
- OPTION SNP_file xxxx
- Why preGSF90 ?
 - Same genomic relationship matrix for several models, traits, etc.
 - Just do it once and store GimA22i or Gi and A22i separate

Use in application programs

- Use renumf90 for renumbering and creation of XrefID and files SNP_FILE marker.geno
- Run preGSf90 with quality control, saving clean files
- Option 1:

run blupf90+ with clean files

• Option 2:

run preGSf90 with clean files (program saves **GimA22i**) run blupf90+ with option to read **GimA22i** from the file

Reading external matrices

- BLUPF90 programs accept external matrices created outside
- <u>http://nce.ads.uga.edu/wiki/doku.php?id=user_defined_files_for_covariances_of_random_effects</u>
- File should be row, column, value in plain text format (lower OR upper triangular)

- user_file: if providing the inverse of the covariance structure
- user_file_inv: if the program has to invert the covariance structure

Thank you for coming

