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* A partial list of authors appears on the opposite page. Affiliations are listed at the end of the paper.

about human

The human genome holds an y trove of

iology, medicine and 5
Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human
genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

The rediscovery of Mendel’s laws of heredity in the opening weeks of
the 20th century'~* sparked a scientific quest to understand the
nature and content of genetic i ion that has propelled

coordinate regulation of the genes in the clusters.
@ There appear to be about 30,000-40,000 protein-coding genes in
the human g ly about twice as many as in worm or fly.

biology for the last hundred years. The scientific progress made
falls naturally into four main phases, corresponding roughly to the
four quarters of the century. The first established the cellular basis of
heredity: the chromosomes. The second defined the molecular basis
of heredity: the DNA double helix. The third unlocked the informa-
tional basis of heredity, with the discovery of the biological mechan-
ism by which cells read the information contained in genes and with
thei ion of the bij DNA technologies of cloning and
sequencing by which scientists can do the same.

The last quarter of a century has been marked by a relentle
to decipher first genes and then entire genomes, spawning t

of genomics. The fruits of this work already include the |
sequences of 599 viruses and viroids, 205 naturally oc
plasmids, 185 organelles, 31 eubacteria, seven archae
fungus, two animals and one plant.

Here we report the results of a collaboration involving 20

from the United States, the United Kingdom, Japan,

Germany and China to produce a draft sequence of the
genome. The draft genome sequence was generated froma |
map covering more than 96% of the euchromatic part of the
genome and, together with additional sequence in public da
it covers about 94% of the human genome. The sequer
produced over a relatively short period, with coverage risir
about 10% to more than 90% over roughly fifteen mont
sequence data have been made available without restricti
updated daily throughout the project. The task ahead is to pr
finished sequence, by closing all gaps and resolving all ambi
Already about one billion bases are in final form and the
bringing the vast majority of the sequence to this standard
straightforward and should proceed rapidly.

The sequence of the human genome is of interest in
respects. It is the largest genome to be extensively sequence
being 25 times as large as any previously sequenced geno
eight times as large as the sum of all such genomes. It is |
vertebrate genome to be extensively sequenced. And, uniqu
the genome of our own species.

Much work remains to be done to produce a complete |
sequence, but the vast trove of information that has
available through this collaborative effort allows a global per:
on the human genome. Although the details will change
sequence is finished, many points are already clear.

@ The genomic landscape shows marked variation in the d
tion of a number of features, including genes, trans
elements, GC content, CpG islands and recombination ra
gives us important clues about function. For example, the
opmentally important HOX gene clusters are the most repe
regions of the human genome, probably reflecting the very ¢

860 e

However, the genes are more complex, with more alternative
splicing generating a larger number of protein products.

@ The full set of proteins (the ‘proteome’) encoded by the human
genome is more complex than those of invertebrates. This is due in
part to the presence of vertebrate-specific protein domains and
motifs (an estimated 7% of the total), but more to the fact that
vertebrates appear to have arranged pre-existing components into a
richer collection of domain architectures.

@ Hundreds of human genes appear likely to have resulted from

the
human
Qe iome

http://neuroendoimmune.files.wordpress.com/2014/03/snp.png

Mutation < 1% < SNP
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Theor Appl Genet (1983) 67:25-33

Genetic polymorphism in varietal identification and genetic improvement *

M.Soller* and J.S. Beckmann ?

! Department of Genetics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
? Institute-of Field and Garden Crops, Agricultural Research Organization, The Voleani Center 50250 Bet Dagan, Isracl

Received July 14, 1982; Accepted July 3, 1983
Communicated by A. Robertson

Summary. New sources of genetic polymorphisms Use of DNA polymorphisms as genetic markers
promise mgmﬁcgnt ad‘dmons to the numbcx: of useful
e ooy o0 peul syl o . + Construct genetic relationships

morphic genetic markers in plant and animal breeding.

Two major areas of application can be distinguished. ° I i

The first is based on the utilization of genetic markers Pa rentage dete rmi nat|0n
to determine genetic relationships. These applications

include varietal identification, protection of breeder’s o Ident|f|cat|on Of QTL
rights, and parentage determination. The second area
of application is based on the use of genetic markers to R F I_P

identify and map loci affecting quantitative traits, and
to monitor these loci during introgression or selection

programs. A variety of breeding applications based on E Xpe N Sive
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* Genotyping will become cheap
* Thousands of SNP
e Compute GEBV based on SNP
* High accuracy
* Animals with no phenotypes
* Select the best animals earlier
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Genotyping became cheaper in 2008

* First genomic evaluation for dairy and beef cattle in 2009
* S300in 2009 vs. S30in 2022
* 50,000 SNP

What about statistical methods able to fit
genomic information?
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Statistical methods before genomics

 BLUP (Henderson, 1949 - 1976)
* Best: minimizes MSE
* Linear: linear function of the data
* Unbiased: E(u) = E(il)

* Prediction: for random effects That BLUP Is a Good Thing: The Estimation of

...........
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* Model
y = Xp+Wu+e
* Joint probability of phenotypes and EBV

p(y,u) = p(uly) p(y) = p(y|u) p(u)

* Joint probability density function of phenotypes and EBV

p(y,u) =

X'R™'XB + X'R™'Wu = XR™ly
WRXB + (WR'W+G™Hu = WR™ly

[ X'X

X'W

0
WX WW+AT—=

2

Oy |

il =



@ cEsien, Henderson’s MME for dairy in 1989

Journal of Dairy Science

» BLUP (Henderson, 1949 - 1976)

Im P lementation for dai ry In 1989 Implementation of an Animal Model for Genetic
Evaluation of Dairy Cattle in the United States

G.R. Wiggans, |. Misztal, L.D. Van Vleck

National genetic improvement programs for dairy cattle in the United States

9.5 M animals

11 M lactations

23.5 M equations to solve
7.5 hours

G. R. Wiggans

J Anim Sci 1991. 69:3853-3860.

Challenges

Genetic improvement programs are in a
period of rapid change. Advances in computer
capability enable adoption of sophisticated ACKNOWLEDGMENTS
computational procedures. Advances in repro- o :
- 'his research was conducted using the Cornell

National Supercomputer Facility, a resource of the
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* How to add genomic information to the evaluation system in 20097

Pedigree || Phenotypes

N/
-—

SN Pseudo-observations
(de-regressed EBV)

SNP

DGV

> Parent Average

—> | Pedigree Prediction

GEBV

Multistep
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Bayesian Alphabet

* SNP effect models = outputs SNP effects

* BayesA (Meuwissen et al., 2001)
* All SNPs have effect on the trait (few with large effect) al~N(,u,

e Different variances for each SNP

e BayesB (Meuwissen et al., 2001)

t(O v, 04 )or N(O o4 ) with probability (1 — m)

° . 2
p(a |Jai’ ™) = 0 with probability m

* When m =0, BayesB becomes BayesA

i)
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Bayesian Alphabet

BayesC (Habier et al., 2011)

e pa|o?) = N(0,0.) with probability (1 — m)
PR B 0 with probability

BayesR (Erbe et al., 2012)
« p(ai|m, 02) = m;x N(0,0x02) + myx N(0,1074%x02) + m3xN(0,1073%x02) + myxN(0,1072%x02)

BayesRC (MaclLeod et al., 2016)
* BayesR using biological information to assign SNP to classes

High computing cost and simple models

After > 10 years, assumption of normality is good enough!
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B i, SNP-BLUP (ridge regression)

* SNP effect model = outputs SNP effects

« a~N(0,0%)

y=XB+Za+e

X'y GEBV = Z4
7'X ZZH ~ |z

* All SNP explain the same proportion of variance on the trait
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B i, SNP-BLUP (ridge regression)

e SNP effect model =

outputs SNP effects

* All SNP explain the same proportion of variance on the trait

GEBV = Za
u=12a

Var(u) = Var(Za)
Var(u) = ZVar(a) Z'
Var(u) = ZZ'c?

oy

%a T 3 NEpi(1 —py)

o

Var(u) = ZZ'
2 ZSN 1pl(1 _ pi)

77’ , Genomic
Var(u) = 23SV (1 — ) Oy relationship matrix
1=t VanRaden (2008)

77’
ZfN 1pl(1 - pi)

Var(u) = Goy GBLUP assumption!!!
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oy

2% ¥ pi(1—py)

ol =

How do we get the variance of SNP effects, g2 ?

1) You can estimate it (Bayes C, REML)

2) You can « guess » from the genetic variance o2

SNP 1 contributes 2p;q,a? to the genetic variance

SNP 2 contributes 2p,g,a5 to the genetic variance
Reversing the expression gives

2\ 2
o =2 Z pigiai ~ 2 (2 pwu) x(af) = 2 (2 pwu) o} 52 ~ U

T2 i)
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 GEBV-based model = outputs genomic predictions
* u~N(0,02)
y=XB+Wu+e

WX W'W+ ‘10—2 il WYy

77’
Bernardo (1994) —
Nejati-Javaremi et al. (1997) 22pi(1—pp) VanRaden (2008)
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Genomic relationship matrix

Shifted to refer to the
Genotypes {0,1,2} average of a population
with allele frequencies p

1z (M—2P)(M-2P)
C2Ypi(1-p) 2Xpi(1—p)

G

Scaled to refer to the

genetic variance of a

population with allele
frequencies p
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B cigien, What are genomic relationships?

* Relationships were conceived as standardized covariances (Fisher, Wright)
« Cov(uyuj) = Rijof
* R;j “some” relationship
* o0/ genetic variance

* True relationships: two individuals are genetically identical (for a trait) if they carry the
same genotype at the causal QTL or genes

* Genomic relationships: due to shared (Identical By State) alleles at causal genes
e |f | share the blood group A with someone, we are like twins!
* Most of the genes are unknown
* We use proxies (SNP markers)
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* A =pedigree relationships: due to shared (ldentical By Descent) alleles at causal genes

* |n conservation genetics

* Gather markers, then reconstruct pedigrees, then construct A
* Either estimates of A, , or estimates of « the most likely relation » (son-daughter, cousins, whatever)

Li and Horvitz 1953, Cockerham 1969, Ritland 1996, Caballero & Toro 2002, and many others

 With abundant marker data we can do better than this
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T Pedigree vs. Genomic relationships

* |dentical By Descent Relationships based on pedigree are average relationships which
assume infinite loci

* « Real » IBD relationships are a bit different due to finite genome size (Hill and Weir, 2010)

 Therefore A is the expectation of realized or observed relationships

e SNPs more informative than A
e Two full sibs might have a correlation of 0.4 or 0.6

* Many markers needed to better estimate relationships
e Estimators of IBD
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Pedigree vs. Genomic relationships

Expected relationship (A)

Observed relationship (G)

=l et

0.2 0.3 0.4 0.5 0.6 0.7

Genomic relationship for full-sibs
Adapted from Lourenco et al. (2015)

21
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Shifted to refer to the

Genotypes {0,1,2} average of a population
with allele frequencies p

1z (M—2P)(M-2P)
C2Ypi(1-p) 2Xpi(1—p)

G

Scaled to refer to the If base allelic frequencies
8e”e|t'§va”a:ﬁe ?lfla are used, G is an unbiased
opulation wi allele . . .

Pop an efficient estimator of IBD

frequencies p . . _
realized relationships




$goiel Some “interesting” properties of G

If p are computed from the data
This implies that E(Breeding Values)=0

Positive and negative inbreeding
Some individuals are more heterozygous than the average of the population
(OK, no biological problem)

Positive and negative genomic relationships
Individuals i and j are more distinct than an average pair of individuals in the data
Fixing negative estimates of relationships to 0 is a wrong praxis
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Some

* VanRaden (2008)

- G can be singular if few SNP or identical genotypes (twins)

- G must be singular if number of individuals > number of SNP

e Stranden and Christensen (2011)

- Gissingularif p’s are averages across the sample

/

77
G =0.95 + 0.051 OR G =0.95
2Xp;(1—p;)

* Blending = Adding a residual polygenic effect

!

2 pi(1—p;)

+ 0.05A

9

nteresting” properties of G
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* For all matrices of the kind G 3 _ (M —2P)(M — 2P)’

T 2yp(l-p)  23npi(d-py)

 We don’t need to put the same p’s in the upper and and in the lower part

* Changing allele frequencies in P shifts EBV’s by a constant

* Irrelevant if there is an overall mean or fixed effect in the model (Stranden and Christensen,
2011)

1
2).piq;

* Changing allele frequencies in “scales”
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Not all individuals are genotyped

Genomic evaluation would be simpler if all animals were genotyped

What to do when there are genotyped and non-genotyped individuals?

* SNPs are capturing relationships

* Pedigrees give information about relationships

* Genomic and pedigree relationships can be combined in a single matrix!

A=[A11 AlZ] A = [A“ Az H=a+, 0 °
Az1 Ay Az G -Az;

Misztal et al., 2009
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* Genomic info can be extended to non-genotyped animals

* joint distribution of EBV for non-genotyped (u,) and genotyped (u,)
p(uy, uz) = puz)p(uyg|u,) Legarra et al., 2009

H= ( var(uy) Cov(ul,uz)) _ (A1 +ARA(G - Ap)AAy  ApALG
cov(uy,uy)  var(uy) GAZA,,; G

Variance of prediction
of genotypes for
Error in the non-genotyped animals
prediction

Prediction generates
a covariance

H = A1 —AAZ3A1 + ApAZ5GA; A | AjpAY; G} Relationships from

GAZ1A,, G genotypes



MY UNIVERSITY OF

Understanding H

* It is a projection of G matrix on the rest of individuals “so that” G matrix makes sense
* e.g. parents of two animals related in G should be related in A

* |t is a Bayesian update of the pedigree matrix based on new information from genotypes

* Typically
* Ainthe millions
* GandA,, in the thousands
* Leads to a very efficient method of genomic evaluation:
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Some properties of H

* Always semi-positive definite

e eigenvalues are always positive or zero
* Positive definite & invertible if G is invertible

* In practice, if G is too different from A,, (wrong pedigree or genotyping),

this gives lots of numerical problems
* If no one is genotyped, Single-step is BLUP

* If everyone is genotyped, Single-step is GBLUP
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Pedigree
Relationship
Matrix (A)

(1.0 0.0 0.5
1.0 0.5
1.0

Realized relationship matrix (H)

0.5]
0.5
0.5

Animal Sire D

1 0
2

N N O O|Y

0
1
1

1.0

Genomic
Relationship
Matrix (G)
for animals 3 and 4

1.004

Realized
Relationship
Matrix (H)

0.0 0.507 0.507]
1.004 0.507 0.507
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PLEE  Single-step Genomic BLUP (ssGBLUP)

* Because not all animals are genotyped
* 5to0 10% in large populations

XX X'Z

Z'X Z'Z+H '—|lal 12y
O'u |
0 0 |
—1_.-=1 Aguilar et al., 2010
H —A + _ 1 _ 1 ] Christensen and Lund, 2010
0 G1-A5)
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v Combining two sources of relationships

A55(G—Ay)AZ3A  AAS(G—A)

A,
H =A+[ ! z
(G— Ay)A%5A,,; G—-A,

* Contains expected relationships
* |s limited by the pedigree depth and completeness
 Depends on accuracy of recording pedigrees

* Contains number of alleles shared between animals weighted by heterozygosity
* No limitations regarding to the number of past generations
* Depends on allele frequency and quality of genomic data
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“z==  Combining two sources of relationships

| | 0 0

H "=A"""+ _ ~1

0 G- l-A3
_ Computed using Colleau’s
Compute(’j ulsmg, I;endgrrs]on- algorithm, which considers

Quaasj 2 gorlt. mwit Computed using VanRaden’s inbreeding
inbreeding : .
formula, which considers
inbreeding

* Tuning
* Base of G is genotyped animals
* Base of Ais founders of the pedigree
* For SSGBLUP, Vitezica et al. 2011 modeled a mean in genotyped animals:

p(uz) = N(1y, G) : Tries to put G and A on
Integrate u : G* = a + bG L the same scale

u = (Pedigree base) — (Genomic base)
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X'X X'Z ] ;

218 X'

ZX z'7+H 12 Elzlz'y
52|t y
u

ssGBLUP

Misztal et al. (2009)

Legarra et al. (2009)

Aguilar et al. (2010)
Christensen & Lund (2010)

s 8¢ 'E"" 14 . .

5“‘4‘ v~ J. Dairy Sci. 101:10082-10088

%\ = ;~ https://doi.org/10.3168/jds.2018-14913

N WE”S  ©2018, The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®.
S This is an open access article under the CC BY-NC-ND license (http:/icreativecommons.org/licenses/by-nc-nd/4.0/).

Short communication: Genomic prediction using different single-step
methods in the Finnish red dairy cattle population

H. Gao,"t' M. Koivula,t J. Jensen,* |. Strandén,t P. Madsen,* T. Pitkdnen,t G. P. Aamand,t
and E. A. Mantysaarif

*Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830 Tjele, Denmark
tNordic Cattle Genetic Evaluation, DK-8200 Aarhus, Denmark
INatural Resources Institute Finland (Luke), FIN-31600 Jokioinen, Finland

X'X XZM X' Z,
2
M'ZX M'Z'ZM + 1% M,Z,Z,
g
o
4
; ; 5 o2
ZX, Z.ZM, Z,2, + A"
£

ssSNPBLUP or ssBR

Fernando et al. (2014)
Liu et al. (2014)
Mantysaari & Stranden (2016)

B X'y
a|=|MZy
é Z; Yn

Fernando et al. Genetics Selection Evolution 2014, 46:50
http//www.gsejournal.org/content/46/50

equation (3) results in the usual non-genomic MME for
the BVM.

Theory underlying SSBV-BLUP

Legarra et al. [11] proposed an ingenious strategy to
combine information from genotyped and non-genotyped
animals in a single BLUP analysis based on a BVM, which
we refer to as SSBV-BLUP. Suppose g is partitioned as:

=[5 ]=[%]

We confirmed that regular ssGBLUP and ssBR with
an cxtra polygenic effect led to the same predictions.

34
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QC of SNP data in BLUPF90

ssGBLUP and GBLUP in BLUPF90



