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Frtial sequencing and analysis of the

International Human Genome Sequencing Consortium*

* A partial list of authors appears on the opposite page. Affiliations are listed at the end of the paper.

about human

The human genome holds an y trove of

iology, medicine and .
Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human
genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

The rediscovery of Mendel’s laws of heredity in the opening weeks of
the 20th century'-* sparked a scientific quest to understand the
nature and content of genetic i ion that has propelled

coordinate regulation of the genes in the clusters.
@ There appear to be about 30,000-40,000 protein-coding genes in
the human g ly about twice as many as in worm or fly.

biology for the last hundred years. The scientific progress made
falls naturally into four main phases, corresponding roughly to the
four quarters of the century. The first established the cellular basis of
heredity: the chromosomes. The second defined the molecular basis
of heredity: the DNA double helix. The third unlocked the informa-
tional basis of heredity, with the discovery of the biological mechan-
ism by which cells read the information contained in genes and with
the i ion of the bi DNA technologies of cloning and
sequencing by which scientists can do the same.

The last quarter of a century has been marked by a relentle
to decipher first genes and then entire genomes, spawning t

of genomics. The fruits of this work already include the |
sequences of 599 viruses and viroids, 205 naturally oc
plasmids, 185 organelles, 31 eubacteria, seven archae
fungus, two animals and one plant.

Here we report the results of a collaboration involving 20

from the United States, the United Kingdom, Japan,

Germany and China to produce a draft sequence of the
genome. The draft genome sequence was generated froma |
map covering more than 96% of the euchromatic part of the
genome and, together with additional sequence in public da
it covers about 94% of the human genome. The sequer
produced over a relatively short period, with coverage risir
about 10% to more than 90% over roughly fifteen mont
sequence data have been made available without restricti
updated daily throughout the project. The task ahead is to pr
finished sequence, by closing all gaps and resolving all ambi
Already about one billion bases are in final form and the
bringing the vast majority of the sequence to this standard
straightforward and should proceed rapidly.

The sequence of the human genome is of interest in
respects. It is the largest genome to be extensively sequence
being 25 times as large as any previously sequenced geno
eight times as large as the sum of all such genomes. It is |
vertebrate genome to be extensively sequenced. And, uniqu
the genome of our own species.

Much work remains to be done to produce a complete |
sequence, but the vast trove of information that has
available through this collaborative effort allows a global per:
on the human genome. Although the details will change
sequence is finished, many points are already clear.

@ The genomic landscape shows marked variation in the d
tion of a number of features, including genes, trans
elements, GC content, CpG islands and recombination ra
gives us important clues about function. For example, th
opmentally important HOX gene clusters are the most repe
regions of the human genome, probably reflecting the very ¢

860 e

However, the genes are more complex, with more alternative
splicing generating a larger number of protein products.

@ The full set of proteins (the ‘proteome’) encoded by the human
genome is more complex than those of invertebrates. This is due in
part to the presence of vertebrate-specific protein domains and
motifs (an estimated 7% of the total), but more to the fact that
vertebrates appear to have arranged pre-existing components into a
richer collection of domain architectures.

@ Hundreds of human genes appear likely to have resulted from

the
human
Qe iome

http://neuroendoimmune.files.wordpress.com/2014/03/snp.png

Mutation < 1% < SNP
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Theor Appl Genet (1983) 67:25-33
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Genetic polymorphism in varietal identification and genetic improvement *

M.Soller* and J.S. Beckmann ?

! Department of Genetics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
? Institute-of Field and Garden Crops, Agricultural Research Organization, The Voleani Center 50250 Bet Dagan, Isracl
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Summary. New sources of genetic polymorphisms Use of DNA polymorphisms as genetic markers
promise significant additions to the number of useful

i kers i ricul 1 pl d animals, and . . .
e oo poemi o of o * Construct genetic relationships

morphic genetic markers in plant and animal breeding.

Two major areas of application can be distinguished. ° i i

The first is based on the utilization of genetic markers Pa rentage dete rmi nat|0n
to determine genetic relationships. These applications

include varietal identification, protection of breeder’s o Ident|f|cat|on Of QTL
rights, and parentage determination. The second area
of application is based on the use of genetic markers to R F I_P

identify and map loci affecting quantitative traits, and
to monitor these loci during introgression or selection

programs. A variety of breeding applications based on Expe N Sive
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B cesicin Excitement about genomics

Copyright © 2001 by the Genetcs Society of America
Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps

T. H. E. Meuwissen,” B. J. Hayes’ and M. E. Goddard™*

* Research Institute of Animal Science and Health, 8200 AB Lelystad, The Netherlands, "Victorian Institute of Animal Science,
Attwood 3049, Victoria, Australia and 'Institute of Land and Food Resources,
University of Melbourne, Parkville 3052, Viclona, Australia

Manuscript received August 17, 2000
Accepted for publication January 17, 2001

* Genotyping will become cheap
* Thousands of SNP
e Compute GEBV based on SNP
* High accuracy
* Animals with no phenotypes
* Select the best animals earlier
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Genotyping became cheaper in 2008

* First genomic evaluation for dairy and beef cattle in 2009
* S300in 2009 vs. S25 in 2024
* 50,000 SNP

What about statistical methods able to fit
genomic information?
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Statistical methods before genomics

 BLUP (Henderson, 1949 - 1976)
* Best: minimizes MSE
* Linear: linear function of the data
* Unbiased: E(u) = E(il)

* Prediction: for random effects That BLUP Is a Good Thing: The Estimation of

...........

XX XW .. |
|03

WX Ww+ATT S| [g] T [Wry
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* Model
y = Xp+Wu+e
* Joint probability of phenotypes and EBV

p(y,u) = p(uly) p(y) = p(y|u) p(u)

* Joint probability density function of phenotypes and EBV

p(y,u) =

X'R7IXB + X'R™1'Wu = X'R™ 1y
WR™IXB + (WRIW+G™Hu = WR™ 1y

[ X'X

X'W

0
WX WW+AT—=

2

Oy |

il =



@ cEsien, Henderson’s MME for dairy in 1989

-~

Journal of Dairy Science

o B LU P ( H e n d e rSO n ) 1 949 - 1 9 7 6) _ U! . Volume 71, Supplement 2, June 1988, Pages 54-69

* Im plementatlon for dai ry in 1989 Implementation of an Animal Model for Genetic
Evaluation of Dairy Cattle in the United States

G.R. Wiggans, |. Misztal, L.D. Van Vleck

National genetic improvement programs for dairy cattle in the United States

9.5 M animals

11 M lactations

23.5 M equations to solve
7.5 hours

G. R. Wiggans

J Anim Sci 1991. 69:3853-3860.

Challenges

Genetic improvement programs are in a
period of rapid change. Advances in computer

capability enable adoption of sophisticated ACKNOWLEDGMENTS
computational procedures. Advances in repro- o :
- ['his research was conducted using the Cornell

National Supercomputer Facility, a resource of the
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* How to add genomic information to the evaluation system in 20097

Pedigree || Phenotypes

N/
-—

SN Pseudo-observations
(de-regressed EBV)

SNP

DGV

> Parent Average

—> | Pedigree Prediction

GEBV

Multistep
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Bayesian Alphabet

* SNP effect models = outputs SNP effects

* BayesA (Meuwissen et al., 2001)
* All SNPs have effect on the trait (few with large effect) al~N(,u,

e Different variances for each SNP

e BayesB (Meuwissen et al., 2001)

t(O v, 04 )or N(O o4 ) with probability (1 — m)

° . 2
p(a |Jai’ ™) = 0 with probability m

* When m =0, BayesB becomes BayesA

i)
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Bayesian Alphabet

BayesC (Habier et al., 2011)

e pa|o?) = N(0,0.) with probability (1 — m)
PR B 0 with probability

BayesR (Erbe et al., 2012)
e p(ai|m, 02) = m;x N(0,0x02) + myx N(0,1074%x02) + m3xN(0,1073%x02) + myxN(0,1072%x02)

BayesRC (MaclLeod et al., 2016)
* BayesR using biological information to assign SNP to classes

High computing cost and simple models

After > 10 years, assumption of normality is good enough!
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* SNP effect model = outputs SNP effects

e a~N(0

SNP-BLUP (ridge regression)

y=XB+Za+e

XX X'Z
7.'X Z'Z+I

13- [zs

110101111511110111110010001221151205122125022511110250122010201021000221121025000122010
211011010220121222220121012220101202221111120212221111121020201011010201111112011012110
121010021112021111200021212222100021122122122110000020220000211022122212122020001112020
120001200220121211100121002222110211221102011212221200220021212121111202112022002022100
200002020221021221120022001222211101220202110202222020220001222121011201021022010011010
101102120220121122111021001111100102211212022111111020221001201222012111021021021012000
121002120220011221100011112220100101120112121211121201221002102002021211222022010022110
111001020221220210201011012220200121221111221221121111222002201112011212111022000022012:
211012020211112101211021102220101001221212221102220201221020212112010211122022112011010
220001110221012210101021102520201112120222122212220110121011102220050210121022010022125
210102200121221211212021012222002012210212110201121021221002211011020211021112021012010
122011120122220210210010002121001120120202001210020021210011201022021212111022010101100
221112210121120222221022102110201021121211122000000111220002211122020222112120012121110
200202100122121210101021012221101112220202022110010111210011201022012220211021010011020
120001020221112200101021002211000202221212222220010110221110212012011212211111102112010
111000021221121201212121002221101202222101022112222110220011202110020201102022100021020
110000120202200221212022001210200011122110110222221200220020212001010212121022102010110
112100210210010101111022002221200022211112020222222110222101202012111222111112011011020
211002021521001221202011002200201125121215022522222250221011201121051202222112111012110
110011120220111211101020012221000112221212021211121200220012202220022212212112001112011
210002120221120221121021012221011012221222121211120201221012201121111211112022000012101
210002020220020222220012002220001220222220021102252200122001202111151001012022001012025
212102121521002201200012101121201215110215122521121150220011102111050202221122011022010
111102121520012212211020001220201225222115021522221150220110202120050202022022111112110
121101021122220210101022002221201201121221012111110111221020202001010112212121002021021
221000120221222210202021102221101012112022120222222200221002211121021202011022010111010
110001220220121220110022011121100011021122121220020112222002222111021111212022011022010
121010011120011211110021112220111112122221210201111020221002112221001212111121012111110
210100110220122121211021102121012120221212121101111110221001202121110211011021100022020
121001020221121212210010002120201111221112122001111110221002201022012212121021000012020

GEBV = Za

* All SNP explain the same proportion of variance on the trait

12



UNIVERSITY OF

B i SNP-BLUP (ridge regression)

e SNP effect model =

outputs SNP effects

* All SNP explain the same proportion of variance on the trait

GEBV = Za
u=>12a

Var(u) = Var(Za)
Var(u) = ZVar(a) Z'
Var(u) = ZZ'c?

oy

%a T 3 NEpi(1 —py)

0.2

Ve = P o (= )

77’ , Genomic
Var(u) = 23SV (1 — o) oy relationship matrix
1=t VanRaden (2008)

77’
ZfN 1pl(1 - pi)

Var(w) = Goy GBLUP assumption!!!
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(LIS GBLUP: equivalent to SNP-BLUP

* GEBV-based model = outputs genomic breeding values (GEBV)
* u~N(0,Go?2)
y=XB+Wu+e

XX X'W o [’G]=[Xy
WX W'W+ o2 ii W'y

77’
Bernardo (1994) —
Nejati-Javaremi et al. (1997) 22pi(1—pp) VanRaden (2008)
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Genomic relationship matrix

Shifted to refer to the
Genotypes {0,1,2} average of a population
with allele frequencies p

77’ (M- 2P)(M — 2P)’

G=22Pi(1—'Pi) 22 pi(1—p;)

Scaled to refer to the

genetic variance of a

population with allele
frequencies p

http://genoweb.toulouse.inra.fr/~alegarra/GSIP.pdf https://doi.org/10.3390/genes11070790
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B oot What are genomic relationships?

* Relationships were conceived as standardized covariances (Fisher, Wright)
« Cov(uyuj) = Rijof
* R;j “some” relationship
* o/ additive genetic variance

* True relationships: two individuals are genetically identical (for a trait) if they carry the
same genotype at the causal QTL or genes

* Genomic relationships: due to shared (Identical By State) alleles at causal genes
e |f | share the blood group A with someone, we are like twins!
* Most of the genes are unknown
* We use proxies (SNP markers)
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* A =pedigree relationships: due to shared (ldentical By Descent) alleles at causal genes

* |n conservation genetics

* Gather markers, then reconstruct pedigrees, then construct A
* Either estimates of A, , or estimates of « the most likely relation » (son-daughter, cousins, whatever)

Li and Horvitz 1953, Cockerham 1969, Ritland 1996, Caballero & Toro 2002, and many others

 With abundant marker data we can do better than this
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LS Pedigree vs. Genomic relationships

* Identical By Descent Relationships (IBD) based on pedigree
* average relationships which assume infinite loci

* « Real » IBD relationships are a bit different due to finite genome size (Hill and Weir, 2010)

 Therefore A is the expectation of realized or observed relationships

e SNPs more informative than A
e Two full sibs might have a correlation of 0.4 or 0.6

 Many markers needed to better estimate relationships
e Estimators of IBD
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=== Pedigree vs. Genomic relationships

Expected relationship (A)

Observed relationship (G)

=l et

0.2 0.3 0.4 0.5 0.6 0.7

Genomic relationship for full-sibs 20
Adapted from Lourenco et al. (2015)
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B cisien, Genomic relationships

Shifted to refer to the

Genotypes {0,1,2} average of a population
with allele frequencies p

1z (M—2P)(M-2P)
C2Ypi(1-p) 2Xpi(1—p)

G

Scaled to refer to the

genetic variance of a

population with allele
frequencies p

If base allelic frequencies
are used, G is an unbiased
and efficient estimator of
IBD realized relationships
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Some “interesting” properties of G

* VanRaden (2008)
- G can be singular if few SNP or identical genotypes (twins)

- G must be singular if number of individuals > number of SNP

77’ 77’
G =095 + 0.051 OR G =0.95 + 0.05A - G =aGy+ A
2201 —pp) 2201 —p;) 0

* Blending = Adding a residual polygenic effect



PEEE Some “interesting” properties of G

1z (M-2P)(M-2P)
C2Ypi(l—-p) 2YXpi(1—py)

e For all matrices of the kind G

 We don’t need to put the same p’s in the upper and and in the lower part

* Changing allele frequencies in P shifts EBV’s by a constant
 Irrelevant if there is an overall mean or fixed effect in the model (Stranden and Christensen, 2011)

1

“scales”
2).Piq;

* Changing allele frequencies in
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* GEBV-based model = outputs genomic breeding values (GEBV)
* u~N(0,Go?2)

y=XB+Wu+e

Only for

X'X X'W 2] [’G] [X'y genotyped individuals!!!
O¢ — ’
oz Ll LWy

WX W'W+

B 77’
22 pi(1—p;) VanRaden (2008)
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Not all individuals are genotyped

* Genomic evaluation would be simpler if all individuals were genotyped
* What to do when there are genotyped and non-genotyped individuals?
* SNPs are capturing relationships
* Pedigrees give information about relationships
* Genomic and pedigree relationships can be combined in a single matrix!

A, A12] A = Ajp Agp B 0

— H=A+ b
A [A21 Az Az G G-Ay;

Misztal et al., 2009
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M cisicis, Not all animals are genotyped

* Genomic info can be extended to non-genotyped animals

* joint distribution of EBV for non-genotyped (u,) and genotyped (u,)
p(uy,uz) = pu)p(uy|uy) Legarra et al., 2009

H_ ( var(u,) cov(ul,uz)) (A +ARASI(G - Ay)AGIA,  ALAG
cov(uy,uy)  var(uy) GAZA,,; G

Variance of prediction
of genotypes for
Error in the non-genotyped animals
prediction

Prediction generates
a covariance

H = A1 —AAZ3A1 + ApAZ5GA; A | AjpAY; G} Relationships from

GAZ1A,, G genotypes
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Understanding H

* It is a projection of G matrix on the rest of individuals “so that” G matrix makes sense
* e.g. parents of two animals related in G should be related in A

* |t is a Bayesian update of the pedigree matrix based on new information from genotypes

* Typically
* Ainthe millions
* GandA,, in the thousands
* Leads to a very efficient method of genomic evaluation:
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Some properties of H

* Always semi-positive definite

e eigenvalues are always positive or zero
* Positive definite & invertible if G is invertible

* In practice, if G is too different from A,, (wrong pedigree or genotyping)

* Numerical problems

* If no one is genotyped, Single-step is BLUP

* If everyone is genotyped, Single-step is GBLUP
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Pedigree
Relationship
Matrix (A)

(1.0 0.0 0.5
1.0 0.5
1.0

Realized relationship matrix (H)

0.5]
0.5
0.5

Animal Sire D

1 0
2

N N O O|Y

0
1
1

1.0

Genomic
Relationship
Matrix (G)
for animals 3 and 4

1.004

Realized
Relationship
Matrix (H)

0.0 0.507 0.507]
1.004 0.507 0.507
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PEEE  Single-step Genomic BLUP (ssGBLUP)

* Because not all animals are genotyped
* 5% to 15% in large populations

XX X'Z

Z'X Z'Z+H '—|lal 12y
O'u |
0 0 |
—1_.-=1 Aguilar et al., 2010
H —A + _ 1 _ 1 ] Christensen and Lund, 2010
0 G1-A5)
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v&xx  Combining two sources of relationships

A55(G—Ay)AZA  ARAS(G—A)

Ajr
H =A+[ ! z
(G—Ay)AZ5A,; G- A,

* Contains expected relationships
* |s limited by the pedigree depth and completeness
 Depends on accuracy of recording pedigrees

* Contains number of alleles shared between animals weighted by heterozygosity
* No limitations regarding to the number of past generations
* Depends on allele frequency and quality of genomic data
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z==  Combining two sources of relationships

| | 0 0

H "=A"""+ _ ~1

0 G- l-A3
_ Computed using Colleau’s
Compute(’j ulsmg, I;endgrrs]on- algorithm, which considers

Quaasj 2 gorlt. mwit Computed using VanRaden’s inbreeding
inbreeding : .
formula, which considers
inbreeding

* Tuning
* Base of G is genotyped animals
* Base of Ais founders of the pedigree
* For SSGBLUP, Vitezica et al. 2011 modeled a mean in genotyped animals:

p(uZ) = N(l'u’ G) g Triesto put Gand A in
Integrate u : G* = a + bG L the same scale

u = (Pedigree base) — (Genomic base)



MY UNIVERSITY OF

Il GEORGIA "
o S 1N g I e-ste p

ssGBLUP

Misztal et al. (2009)

Legarra et al. (2009)

Aguilar et al. (2010)
Christensen & Lund (2010)

N SCIEN,,
77\ »7 J. Dairy Sci. 101:10082-10088
s ;é https://doi.org/10.3168/jds.2018-14913

‘95 © 2018, The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®.
This is an open access article under the CC BY-NC-ND license (hitp://creativecommons.orgllicenses/by-nc-nd/4.0/).

Short communication: Genomic prediction using different single-step
methods in the Finnish red dairy cattle population

H. Gao,"t' M. Koivula,t J. Jensen,* |. Strandén,t P. Madsen,* T. Pitkdnen,t G. P. Aamand,t
and E. A. Mantysaarif

*Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830 Tjele, Denmark
tNordic Cattle Genetic Evaluation, DK-8200 Aarhus, Denmark
INatural Resources Institute Finland (Luke), FIN-31600 Jokicinen, Finland

(X 'X X"Z _ [X'X  X'ZM X, Z,
2
7X  7'7+H-1 ¢ B] [ Y M'Z'X M’Z'ZM+I% M.Z.Z,
_I_ - - A o
21 LU 2
I Oy | Z'X, Z.Z,M, 7.7, + A""Z—z
L £

ssSNPBLUP or ssBR

Fernando et al. (2014)
Liu et al. (2014)
Mantysaari & Stranden (2016)

B X'y
a|=|MZy
é Z;1 Yn

Fernando et al. Genetics Selection Evolution 2014, 46:50
http//www.gsejournal.org/content/46/50

equation (3) results in the usual non-genomic MME for
the BVM.

Theory underlying SSBV-BLUP

Legarra et al. [11] proposed an ingenious strategy to
combine information from genotyped and non-genotyped
animals in a single BLUP analysis based on a BVM, which
we refer to as SSBV-BLUP. Suppose g is partitioned as:

e=[5]=[%a ]

We confirmed that regular ssGBLUP and ssBR with

an cxtra polygenic effect led to the same predictions.

34



MY UNIVERSITY OF

,Ll, GEORGIA

i Bases for Genomic Predictions

Bases for Genomic Prediction

Andres Legarra Daniela A.L. Lourenco Zulma G. Vitezica
2022-05-11
DR 2 \\‘ 'l[l‘r,w\\\ : # J/ 4})‘;\%\

http://genoweb.toulouse.inra.fr/~alegarra/GSIP.pdf
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Quality Control of SNP data and

creation of genomic matrices with
BLUPF90 software

BLUPF90 TEAM, 08/2024



SNP data

(f)11101111100100012211;§2d:)221i:b2i:hllloi:blzzolozoloz100022112101:b00122010
01212222201210122201

2021111200021212222100021122122122110000020220000211022122212122020001112020:
0121211100121002222110211221102011212221200220021212121111202112022002022100.
1021221120022001222211101220202110202222020220001222121011201021022010011010:
0121122111021001111100102211212022111111020221001201222012111021021021012000.
0011221100011112220100101120112121211121201221002102002021211222022010022110.
1220210201011012220200121221111221221121111222002201112011212111022000022012!
1112101211021102220101001221212221102220201221020212112010211122022112011010:
1012210101021102520201112120222122212220110121011102220050210121022010022125.
1221211212021012222002012210212110201121021221002211011020211021112021012010:
2220210210010002121001120120202001210020021210011201022021212111022010101100.
1120222221022102110201021121211122000000111220002211122020222112120012121110.
2121210101021012221101112220202022110010111210011201022012220211021010011020:
1112200101021002211000202221212222220010110221110212012011212211111102112010:
1121201212121002221101202222101022112222110220011202110020201102022100021020:
2200221212022001210200011122110110222221200220020212001010212121022102010110.
0010101111022002221200022211112020222222110222101202012111222111112011011020.
1001221202011002200201125121215022522222250221011201121051202222112111012110.
0111211101020012221000112221212021211121200220012202220022212212112001112011.
1120221121021012221011012221222121211120201221012201121111211112022000012101.
0020222220012002220001220222220021102252200122001202111151001012022001012025!

1002201200012101121201215110215122521121150220011102111050202221122011022010:

0012212211020001220201225222115021522221150220110202120050202022022111112110.
2220210101022002221201201121221012111110111221020202001010112212121002021021:
1222210202021102221101012112022120222222200221002211121021202011022010111010.
0121220110022011121100011021122121220020112222002222111021111212022011022010.
0011211110021112220111112122221210201111020221002112221001212111121012111110.
0122121211021102121012120221212121101111110221001202121110211011021100022020:

SNP
ANIMAL

025 11010111@5
036 21101101pP2
050 12101002111
054 12000120p2
066 20000202p2
097 10110212p2
101 12100212p2
151 11100102p2
172 21101202p2
224 22000111p2
277 21010220pP1
314 12201112p1
419 22111221p1
439 20020210p1
456 12000102p2
501 1110000202
571 11000012p2
579 11210021p2
581 2110020215
657 11001112p
660 21000212p2
730 21000202p2
732 212102125
764 11110212
780 12110102p11
800 22100012p2
gl1l6 11000122p2
832 121010011
900 21010011p2
901 12100102p2

1121212210010002120201111221112122001111110221002201022012212121021000012020.



Quality control

Call rate

— Animals
— SNP

Minor Allele Frequency (MAF)
Hardy-Weinberg Equilibrium (HWE)
Non-mapped SNP

Mendelian Conflicts

Duplicate genotypes

Linkage disequilibrium (LD)



oreGST90

* Interface program to the genomic module to process the genomic
information in the BLUPF90 family of programs

preGSf90

N

blupf90+ Genomic
module
gibbsfo0+

postGSf90

blup90iod*

gcfo0



oreGSt90

* Performs Quality Control of SNP information

* Creates the genomic relationship matrix (G)

 and relationships based on pedigree (A,,)
* Inverse of relationship matrices



oreGSt90

e Same parameter file as for all BLUPF90 programs

* Needs an extra OPTION in renf90.par
* OPTION SNP file marker.geno

* Reads 2 extra files (besides data and pedigree):
* marker.geno
* marker.geno XrefID (created by renumf90)

_XrefID has 2 columns: Renumbered ID Original ID



Run renumf90 before preGSt90

* Use renumf90 for renumbering data and creating XrefID and files

EFFECT

1 cross alpha
RANDOM
animal

FILE

ped3.txt

FILE POS

12 3 00

SNP FILE
marker.geno
PED DEPTH

0

(CO) VARIANCES
0.30



Parameter files

RENUMF90
renum.par

DA

phenotypes. tx
TRAITS

3
FIELDS_PASSED TO OUTPUT

WEIGHT(S)

RESIDUAL_VARIANCE
0.9038

EFFECT

1 cross alpha # mu
EFFECT

2 cross alpha # animal
RANDOM

animal

SNP_FILE

marker.geno

(CO)VARIANCES
9.9951E-01

BLUPF90

renf90.par

DATAFILE

renf8@.dat

NUMBER_OF_TRAITS
1

NUMBER_OF_EFFECTS
2

OBSERVATION(S)

1
WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBE
2 1 cross
3 15800 cross
RANDOM_RESIDUAL VALUES
09.950380
RANDOM_GROUP
2
RANDOM_TYPE
add_animal
FILE
renadd@2. ped
(CO)VARIANCES
9.99510E-01
OPTION SNP_file marker.geno



New pedigree file from RENUMF90

e 1-renumbered animal ID

2 - parent 1 number or UPG

3 - parent 2 number or UPG
* 4 -3 minus number of known parents
 5-known or estimated year of birth
* 6 - number of known parents
if animal is genotyped 10 + number of known parents
* 7 -number of records
8 - number of progenies as parent 1
* 9 - number of progenies as parent 2

10 - original animal ID



SNP file, XreflD, and ped from renumt90

SNP File First col: original ID
Second col: SNP genotypes {codes: 0,1,2, and 5 (missing)}
All SNP should start in the same column!!!

80 211010110020120110110101101111
8014 211101015111011202211101115111
516 211001012022520211202101211021
18 211101111122011205502000201010

Renumbered ID

Cross Referen _ Pedigree File (renaddXX.ped)
1732 11010 10584 1 3 12

1732 80 100

8474 8014 8474 8691 9908 1 3 12 1 0 0 8014

406 516 406 8691 9825 1 3 12 1 0 2 516
9441 8691 8829 1 3 12 1 0 81

9441 181\
Original ID



oreGSt90

e Same parameter file as for all BLUPF90 programs

* Needs an extra OPTION in renf90.par
* OPTION SNP file marker.geno

* Reads 2 extra files (besides data and pedigree):
* marker.geno
* marker.geno XrefID (created by renumf90)

_XrefID has 2 columns: Renumbered ID Original ID



SNP map file — new default

* OPTION map_file <file>
* For GWAS and QC

* Format:

* A header must be provided
* Names for SNP, chromosome, and physical position are mandatory

e SNPID for SNP
* CHR for chromosome sy Toonie e mren-maet020 2

32005 14 31819743 ARS-BFGL-BAC-10245 3
ey 31371 14 6133529 ARS-BFGL-BAC-10345 4

* POS for pOS|t|On 31679 14 17544926 ARS-BFGL-BAC-10591
32053 14 34639444 ARS-BFGL-BAC-10867

31993 14 31267746 ARS-BFGL-BAC-10919

23506 10 18882288 ARS-BFGL-BAC-10952 10

23550 10 20609250 ARS-BFGL-BAC-10960 11

23566 10 21225382 ARS-BFGL-BAC-10975 12

23612 10 26527257 ARS-BFGL-BAC-10986 13

24705 10 78512500 ARS-BFGL-BAC-10993 14

24712 10 79252023 ARS-BFGL-BAC-11000 15

24732 10 80410977 ARS-BFGL-BAC-11003 16

24741 10 80783719 ARS-BFGL-BAC-11007 17

24827 10 84516867 ARS-BFGL-BAC-11025 18

25865 11 21276136 ARS-BFGL-BAC-11039 21

w -]

0



Saving ‘clean’ files

* SNP excluded from QC are set to missing (i.e., Code=5)
* 5isreplaced by 0 in calculations

e OPTION saveCleanSNPs

e Save clean genotype data without excluded SNP and individuals
* For example, for a SNP_file named marker.geno

* Clean fles will be:
* marker.geno_clean
* marker.geno_clean XrefID
* Removed SNP/animals will be output in files:

 marker.geno_SNPs_removed
* marker.geno_Animals_removed



Only QC in preGSt90

* Quality control

* Genomic relationship matrices and inverses
* Inverse is costly

* How to do only QC avoiding the inverses:
* OPTION SNP file marker.geno

OPTION saveCleanSNPs

OPTION createGInverse 0

OPTION createA22Inverse 0

OPTION createGimA221 O



No QC in the application programs

* ONLY use:

* |If QC was performed in a previous run
* and “clean” genotype file is used

* OPTION SNP file marker.geno clean
* OPTION no quality control



Use in application programs

* Use renumf 90 for renumbering and creation of XrefID and files
SNP FILE N
o 1 «c¢cross alpha

marker.geno RANDOM

animal

FILE
ped3.txt
FILE POS
12300
SNP_FILE
marker.geno
PED DEPTH

0

(CO) VARIANCES
0.30

* Run preGS£90 with quality control, saving clean files

* Run further programs with clean files as needed
* blupf90+,gibbs2£90+, ...



PreGSt90 wiki

fowgP
.%& BLUPF90

—

Trace: - start - application_programs - readme.pregsf90

PreGSF90 / PostGSF90

PreGSF9@ is an interface program to the genomic module to process the genomic information for the BLUPF9@
family of programs

This page also describes some options for PostGSF398 which is designed for genome-wide assocication study
(GWAS).

Ignacio Aguilar and Ignacy Misztal, University of Georgia
email: iaguilar at inia.org.uy; ignacy at uga.edu
01/29/09 - 07/30/14

Summary

Program PreGSF9@ helps to implement the genomic selection following the single-step methodology as
presented by & Aguilar et al. 2010 JDS.

In this methodology the relationship matrix A based on the pedigree information is replaced by matrix H, which
combines the pedigree and genomic information.

The main difference between A-' and H-" is matrix of structure
GImA22i=inv(G)-inv(Az5),

where G is a genomic relationship matrix and

A5 is a relationship matrix for genotyped animals.

Login

Search Q

Media Manager Sitemap

readme.pregsfa0

Table of Contents

PreGSF90 / PostGSF90
Summary
Input files
Qutput files

Options for creation of genomic
relationship Matrix (G)

Quality Control (QC) for G

Quality Control for Off-diagonal
of A22 and G

Options forH
GWAS options (PostGSF90)

Output files for GWAS
(postGSfa0)

Misc options
Save and Read options

Save and Read intermediate
files

DEPRECATED OPTIONS

Efficient methods for the creation of the genomic relationship matrix, relationship based on pedigree and their inverses are described in

@ Aguilar et al., 2011 JABG.
Program PreGSF90 could be run after RENUM90.

Itis also run automatically by application programs like BLUPF90, REMLF9@, GIBBSxF98 or BLUP98IOD when their parameter file contains OPTION

SNP_file filename.



oreGSt90

* Performs Quality Control of SNP information

* Creates the genomic relationship matrix (G)

 and relationships based on pedigree (A,,)
* Inverse of relationship matrices



BLUP-based models

X'X X'W
o

g

[E] _ [X'y B LU P Henderson, 1963

WX WW+A™!

X'X

’
X y . |
Nejati-Javaremi et al., 1997
( 5 B LU P Fernando, 1998

VanRaden, 2008

2
WX WW+G™! —;
a

X'X

X'Y Misztal et al. (2009)
SS G B LU P Legarra et al. (2009)

Aguilar et al. (2010)

Christensen & Lund

(2010)

2
WX WW+H™! —;
a

11 12 ro 0 0 0
gl=[AT A, : ] A A1 ]
a2 A2zl [0 G-AZ H=A"*]p g1-aj



PreGSf90

* Created to construct the matrices using in ssGBLUP

0 0
1 a-l
Aty i ag)
G G 1
Az A7}



Genomic Relationship Matrix - G

e G Z2’ ( . )
= VanRaden, 2008
23 pj(1-p;))
e 7 = matrix for SNP marker
* Dimension of Z = n*j Genotype Codes
. 0 — Homozygous
* nanimals 1 — Heterozygous
* jmarkers 2 — Homozygous

5 — No Call (Missing)

SNP file

\
( \

80 21101011002012011011010110111111211111210100
8014 21110101511101120221110111511112101112210100
516 21100101202252021120210121102111202212111101
181 21110111112201120550200020101022212211111100




PreGSf90

e Efficient methods
* create the genomic relationship matrix and the relationship matrix based on pedigree
* |Invert the relationship matrices

 Computes statistics for the matrices
* Means, Var, Min, Max
* Correlations between diagonals
e Correlations for off-diagonals
* Correlations for the full matrices
* Regression coefficients




Genomic Matrix default options

) 22’
2y pi(1-p;)

OGO

(VanRaden, 2008)

* With:
» Z centered using current allele frequencies
e Current genotyped animals



Genomic Matrix Options

* OPTION whichfreq x

* 0:read from file fregdata or other specified name (needs OPTION FregFile)
e 1:0.5
e 2:current calculated from genotypes (default)

* OPTION FregfFile file

e Reads allele frequencies from a file



Genomic Matrix default options

* Blending - to avoid singularity problems
G =0.95*G,+ 0.05*A,,

 OPTION AlphaBeta 0.95 0.05 #(default)

e Beta may vary from 0.2 to 0.01



Genomic Matrix default options

* Tuning
* Adjust G to have mean of diagonals and off-diagonals equal to A,,

 OPTION tunedG 2 #(default) Chenetal. (2011)

* Base of GBLUP is genotyped animals
e Base of pedigree is founders of the pedigree
* For SSGBLUP modelled as a mean for genotyped animals

- p(uz) = N(1y,G)
— Integrate u : G* = 11'A + (1 — }‘/Z)G
— U = (Genomic base) — (Pedigree base)
— Vitezica et al. 2011



Options tfor matching G to A,,

e OPTION tunedG x

* 0: no adjustment

* 1: mean(diag(G))=1, mean(offdiag(G))=0
* 2: mean(diag(G))=mean(diag(A,,)), mean(offdiag(G))=mean(offdiag(A,,)) (default)
* 3: mean(G)=mean(A,,)

4

: Use Fst adjustment. powell et al. (2010) & Vitezica et al. (2011)

F%ZZAZ%- ZZ%) G =110+ (1 -Y)G
i 1]



Storing and Reading Matrices

* preGSf90 saves G~1 — A1 by default (file: GimA22i)

To save ‘raw’ genomic matrix:

 OPTION saveG [all]
* If the optional all is present all intermediate G matrices will be saved!!!

To save G

* OPTION saveGlnverse
* Only the final G, after blending, scaling, etc. is inverted !!!

To save A,, and inverse
e OPTION saveA22 and OPTION saveA22lnverse



Storing and Reading Matrices

* OPTION saveG [all] , OPTION saveGlinverse, ...

* Saves in binary format
* “Dumped” format to save space and time

* To save as row, column, value:

* OPTION no_full binary

 Still binary, but can be easily read and converted to text



Storing with Original IDs

* Some matrices could be stored in text files with the original IDs extracted from
renaddxx.ped created by the RENUMF90 program (col #10)

* For example:
* OPTION saveGOrig
* OPTION saveDiagGOrig
* OPTION saveHinvOrig

* Values
* origlD_i, origID_j, val



Genomic Matrix - Population structure

OPTION plotpca

Plot first two principal components to look for stratification in the population.

OPTION extra_info _pca file col

Reads from file the column col to plot with different colors for different classes.



Genomic Matrix - Population structure

0.021
0.01
Line
~ 0.00 1 e C
8 A 11
= L2
-0.01
-0.02 1

-0.005 0.000 0.005
PC 1



Tricks to setup G for GBLUP #1

* Tricks are needed because preGSf90 is set up for ssGBLUP

1) Use a dummy pedigree

100
200

2) Use PED DEPTH 1 in renumf90

3) Change blending parameters
 OPTION AlphaBeta 1.000.00 - G =1.00*G + 0.00*I

* OPTION AlphaBeta 0.950.05 - G =0.95*G + 0.05*I

4) No adjustment for compatibility with A,
 OPTION tunedG O



Tricks to setup G for GBLUP #2

1) In renum.par, remove any information about the pedigree. Example:

FILE
pedigree.txt
FILE POS

1 2 3 00
PED DEPTH

3

3) Change blending parameters
* OPTION AlphaBeta 1.00 0.00 -> G=1.00*G+0.00*I
* OPTION AlphaBeta 0.95 0.05 - G =0.95*G + 0.05*I

4) No adjustment for compatibility with A,,
* OPTION tunedG 0



PreGSf90 inside BLUPF9Q ??

* Almost all programs from BLUPF90 support creating genomic relationship matrices
* OPTION SNP_file xxxx

* Why preGSF90 ?
* Same genomic relationship matrix for several models, traits, etc.

 Just do it once and store GimA22i or Gi and A22i separate



Use in application programs

Use renumf90 for renumbering and creation of XreflD and files
SNP FILE

marker.geno

Run preGSf90 with quality control, saving clean files

Option 1:
run blupf90+ with clean files
Option 2:

run preGSf90 with clean files (program saves GimA22i)

run blupf90+ with option to read GimA22i from the file



Reading external matrices

* BLUPF90 programs accept external matrices created outside

e http://nce.ads.uga.edu/wiki/doku.php?id=user defined files for covariances of random effects

* File should be row, column, value in plain text format (lower OR upper triangular)

renf90.par
RANDOM_GROUP Valid format Non-valid format
# genomic
2
111
RANDOM_TYPE 111 )
user file 12 0.5 1280.5
T o 2 10.5
FILE 221
221

# matrix file
Gi

* user_file: if providing the inverse of the covariance structure

e user_file_inv: if the program has to invert the covariance structure


http://nce.ads.uga.edu/wiki/doku.php?id=user_defined_files_for_covariances_of_random_effects

