# **Introduction to Genomics**

**Daniela Lourenco**  BLUPF90 TEAM – 08/2024



### UNIVERSITY OF GEORGIA

College of Agricultural & **Environmental Sciences** 

**Animal Breeding and Genetics Group** 

*INIAV Course 2024*

*Daniela Lourenco Fernando Bussiman*



### Genomic Information

**articles** 

#### Initial sequencing and analysis of the human genome

International Human Genome Sequencing Consortium

\* A partial list of authors appears on the opposite page. Affiliations are listed at the end of the paper.

The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution.<br>Here we report the results of an international collaboration to produce and make freely available a genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence

The rediscovery of Mendel's laws of heredity in the opening weeks of coordinate regulation of the genes in the clusters. the 20th century<sup>1-3</sup> sparked a scientific quest to understand the  $\bullet$  There appear to be about 30,000-40,000 protein-coding genes in nature and content of genetic information that has propelled the human genome—only about twice as many as in worm or fly. biology for the last hundred years. The scientific progress made However, the genes are more complex, with more alternative falls naturally into four main phases, corresponding roughly to the four quarters of the century. The first established the cellular basis of  $\bullet$  The full set of proteins (the 'proteome') encoded by the human heredity: the chromosomes. The second defined the molecular basis of heredity: the DNA double helix. The third unlocked the informa-part to the presence of vertebrate-specific protein domains and tional basis of heredity, with the discovery of the biological mechan- motifs (an estimated 7% of the total), but more to the fact that ism by which cells read the information contained in genes and with vertebrates appear to have arranged pre-existing components into a the invention of the recombinant DNA technologies of cloning and richer collection of domain architectures. sequencing by which scientists can do the same.

The last quarter of a century has been marked by a relentle to decipher first genes and then entire genomes, spawning t of genomics. The fruits of this work already include the sequences of 599 viruses and viroids, 205 naturally oc plasmids, 185 organelles, 31 eubacteria, seven archae fungus, two animals and one plant.

Here we report the results of a collaboration involving 20 from the United States, the United Kingdom, Japan, Germany and China to produce a draft sequence of the genome. The draft genome sequence was generated from a 1 map covering more than 96% of the euchromatic part of the genome and, together with additional sequence in public da it covers about 94% of the human genome. The sequer produced over a relatively short period, with coverage risin about 10% to more than 90% over roughly fifteen mont sequence data have been made available without restricti updated daily throughout the project. The task ahead is to pr finished sequence, by closing all gaps and resolving all amb Already about one billion bases are in final form and the bringing the vast majority of the sequence to this standard straightforward and should proceed rapidly.

The sequence of the human genome is of interest in respects. It is the largest genome to be extensively sequence being 25 times as large as any previously sequenced geno eight times as large as the sum of all such genomes. It is t vertebrate genome to be extensively sequenced. And, uniqu the genome of our own species.

Much work remains to be done to produce a complete t sequence, but the vast trove of information that has available through this collaborative effort allows a global peron the human genome. Although the details will change sequence is finished, many points are already clear.

· The genomic landscape shows marked variation in the d tion of a number of features, including genes, trans elements, GC content, CpG islands and recombination ra gives us important clues about function. For example, the opmentally important HOX gene clusters are the most repe regions of the human genome, probably reflecting the very c

**2202** 

splicing generating a larger number of protein products. genome is more complex than those of invertebrates. This is due in

· Hundreds of human genes appear likely to have resulted fro





http://neuroendoimmune.files.wordpress.com/2014/03/snp.png

Mutation < 1% < SNP



## What are SNP used for?

Theor Appl Genet (1983) 67:25-33



#### Genetic polymorphism in varietal identification and genetic improvement\*

M. Soller<sup>1</sup> and J. S. Beckmann<sup>2</sup>

<sup>1</sup> Department of Genetics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel

<sup>2</sup> Institute of Field and Garden Crops, Agricultural Research Organization, The Volcani Center 50250 Bet Dagan, Israel

Received July 14, 1982; Accepted July 3, 1983 Communicated by A. Robertson

Summary. New sources of genetic polymorphisms promise significant additions to the number of useful genetic markers in agricultural plants and animals, and prompt this review of potential applications of polymorphic genetic markers in plant and animal breeding. Two major areas of application can be distinguished. The first is based on the utilization of genetic markers to determine genetic relationships. These applications include varietal identification, protection of breeder's rights, and **parentage determination**. The second area of application is based on the use of genetic markers to identify and map loci affecting quantitative traits, and to monitor these loci during introgression or selection programs. A variety of breeding applications based on

Use of DNA polymorphisms as genetic markers

- Construct genetic relationships
- Parentage determination
- Identification of QTL

RFLP

Expensive



## Excitement about genomics

Copyright © 2001 by the Genetics Society of America

### Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps

T. H. E. Meuwissen,\* B. J. Hayes<sup>†</sup> and M. E. Goddard<sup>†,‡</sup>

\*Research Institute of Animal Science and Health, 8200 AB Lelystad, The Netherlands, †Victorian Institute of Animal Science, Attwood 3049, Victoria, Australia and <sup>1</sup>Institute of Land and Food Resources, University of Melbourne, Parkville 3052, Victoria, Australia

> Manuscript received August 17, 2000 Accepted for publication January 17, 2001

- Genotyping will become cheap
	- Thousands of SNP
- Compute GEBV based on SNP
	- High accuracy
	- Animals with no phenotypes
	- Select the best animals earlier



## Genotyping became cheaper in 2008

- First genomic evaluation for dairy and beef cattle in 2009
	- \$300 in 2009 vs. \$25 in 2024
	- 50,000 SNP

## What about statistical methods able to fit genomic information?



## Statistical methods before genomics

- BLUP (Henderson, 1949 1976)
	- Best: minimizes MSE
	- Linear: linear function of the data
	- Unbiased:  $E(u) = E(\hat{u})$
	- Prediction: for random effects

**Statistical Science**  $1991$  Vol.  $6$  No.  $1$  15.51

That BLUP Is a Good Thing: The Estimation of **Random Effects** 

G. K. Robinson

$$
\begin{bmatrix} \mathbf{X'X} & \mathbf{X'W} \\ \mathbf{W'X} & \mathbf{W'W+A^{-1}} \frac{\sigma_e^2}{\sigma_u^2} \end{bmatrix} \begin{bmatrix} \widehat{\beta} \\ \widehat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{W'y} \end{bmatrix}
$$



## Henderson's MME

• Model

 $y = X\beta + Wu + e$ 

• Joint probability of phenotypes and EBV

$$
p(\mathbf{y}, \mathbf{u}) = p(\mathbf{u}|\mathbf{y}) p(\mathbf{y}) = p(\mathbf{y}|\mathbf{u}) p(\mathbf{u})
$$

• Joint probability density function of phenotypes and EBV

$$
\rho(\mathbf{y}, \mathbf{u}) = \rho(\mathbf{y}|\mathbf{u}) \rho(\mathbf{u}) = \frac{1}{\sqrt{2\pi |\mathbf{R}|}} e^{-\frac{1}{2}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta} - \mathbf{W}\mathbf{u})' \mathbf{R}^{-1}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta} - \mathbf{W}\mathbf{u})} \frac{1}{\sqrt{2\pi |\mathbf{G}|}} e^{-\frac{1}{2}(\mathbf{u} - \mathbf{0})' \mathbf{G}^{-1}(\mathbf{u} - \mathbf{0})}
$$

$$
\begin{cases}\nX'R^{-1}X\beta + X'R^{-1}Wu = X'R^{-1}y \\
W'R^{-1}X\beta + (W'R^{-1}W + G^{-1})u = W'R^{-1}y\n\end{cases}\n\begin{bmatrix}\nX'X & X'W \\
W'X & W'W + A^{-1}\frac{\sigma_e^2}{\sigma_u^2}\n\end{bmatrix}\n\begin{bmatrix}\n\widehat{\beta} \\
\widehat{u}\n\end{bmatrix} =\n\begin{bmatrix}\nX'y \\
W'y\n\end{bmatrix}
$$

7



# Henderson's MME for dairy in 1989

- BLUP (Henderson, 1949 1976)
- Implementation for dairy in 1989

National genetic improvement programs for dairy cattle in the United States

G. R. Wiggans

J Anim Sci 1991, 69:3853-3860.

#### Challenges

Genetic improvement programs are in a period of rapid change. Advances in computer capability enable adoption of sophisticated computational procedures. Advances in repro-



Journal of Dairy Science Volume 71, Supplement 2, June 1988, Pages 54-69



Implementation of an Animal Model for Genetic Evaluation of Dairy Cattle in the United States

G.R. Wiggans, I. Misztal, L.D. Van Vleck

- 9.5 M animals
- 11 M lactations
- 23.5 M equations to solve
- 7.5 hours

#### **ACKNOWLEDGMENTS**

This research was conducted using the Cornell National Supercomputer Facility, a resource of the



## From 1989 to 2009

• How to add genomic information to the evaluation system in 2009?



#### **Multistep**



## Bayesian Alphabet

- SNP effect models = outputs SNP effects
- BayesA (Meuwissen et al., 2001)
	- All SNPs have effect on the trait (few with large effect)  $a_i \sim N(\mu, \sigma_{a_i}^2)$
	- Different variances for each SNP

• BayesB (Meuwissen et al., 2001)

• 
$$
p(a_i|\sigma_{a_i}^2, \pi) = \begin{cases} t(0, v, \sigma_{a_i}^2) or N(0, \sigma_{a_i}^2) with probability (1 - \pi) \\ 0 with probability \pi \end{cases}
$$

• When  $\pi = 0$ , BayesB becomes BayesA



## Bayesian Alphabet

• BayesC (Habier et al., 2011)

• 
$$
p(a_i|\sigma_a^2) = \begin{cases} N(0, \sigma_a^2) \text{ with probability } (1 - \pi) \\ 0 \text{ with probability } \pi \end{cases}
$$

- BayesR (Erbe et al., 2012)
	- $p(a_i|\pi, \sigma_a^2) = \pi_1 \times N(0, 0 \times \sigma_u^2) + \pi_2 \times N(0, 10^{-4} \times \sigma_u^2) + \pi_3 \times N(0, 10^{-3} \times \sigma_u^2) + \pi_4 \times N(0, 10^{-2} \times \sigma_u^2)$
- BayesRC (MacLeod et al., 2016)
	- BayesR using biological information to assign SNP to classes
- High computing cost and simple models
- After > 10 years, assumption of normality is good enough!



# SNP-BLUP (ridge regression)

- SNP effect model = outputs SNP effects
- $a \sim N(0, \sigma_a^2)$

 $y = X\beta + Za + e$ 

 $2110120202111121012110211022201010012212122211022202012210202121120102111220221120110101211122022121120110101211121012112012112012112012112012112012112012112012112012112012112012112012112012112012112012112012112012112012$  $1110000212211212012121210022211012022221010221122221102200112021100202011020221000210202100021020210002102021000210202100002102021000021020210000210202100002102021000021020210000210202100002102021000021020210000210202010$ 2100020202200202222200120022200012202222200211022522001220012021111510010120220  $212102121521002201200012101121201215110215122521121150220011102111050202221122011022010\\$ 11110212152001221221102000122020122522211502152222115022011020212005020202221  $121101021122220210101022002221201201211222101211110111221020202001010112212121002$ 1100012202201212201100220111211000110211221212200201122220022221110211112120220 

 $GFRV = Z\hat{a}$ 

**X***′***X X***′***Z Z***′***X Z***′***Z**+**I**  $\sigma_e^2$  $\overline{\sigma^2_a}$  $\widehat{\boldsymbol{\beta}}$  $\begin{bmatrix} \mathbf{p} \\ \hat{\mathbf{a}} \end{bmatrix}$  = **X***′***y Z***′***y**

• All SNP explain the same proportion of variance on the trait



# SNP-BLUP (ridge regression)

- SNP effect model = outputs SNP effects
- All SNP explain the same proportion of variance on the trait

13  $GEBV = Zâ$  $\mathbf{u} = \mathbf{Z}\hat{\mathbf{a}}$  $Var(\mathbf{u}) = Var(\mathbf{Za})$  $Var(\mathbf{u}) = \mathbf{Z} Var(\mathbf{a}) \mathbf{Z}'$  $Var(\mathbf{u}) = \mathbf{Z}\mathbf{Z}'\sigma_a^2$  $\sigma_a^2$  =  $\sigma^2_u$  $\sqrt{2 \sum_{i=1}^{SNP} p_i (1-p_i)}$  $Var(\mathbf{u}) = \mathbf{Z}\mathbf{Z}' \frac{\sigma_u^2}{2 \mathbf{Z}^{SNP}}$  $2\sum_{i=1}^{SNP} p_i(1-p_i)$  $Var(\mathbf{u}) =$  $\mathbf{Z} \mathbf{Z}'$  $2\sum_{i=1}^{SNP} p_i(1-p_i)$  $\sigma^2_u$  $G =$  $\mathbf{Z} \mathbf{Z}'$  $2\sum_{i=1}^{SNP} p_i(1-p_i)$ Genomic relationship matrix VanRaden (2008)  $Var(\mathbf{u}) = \mathbf{G}\sigma_u^2$ GBLUP assumption!!!



## GBLUP: equivalent to SNP-BLUP

- GEBV-based model = outputs genomic breeding values (GEBV)
- $\mathbf{u} \sim N(0, \mathbf{G}\sigma_u^2)$

 $y = X\beta + Wu + e$ 

$$
\begin{bmatrix} X'X & X'W \\ W'X & W'W + G^{-1} \frac{\sigma_e^2}{\sigma_u^2} \end{bmatrix} \begin{bmatrix} \widehat{\beta} \\ \widehat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} X'y \\ W'y \end{bmatrix}
$$

Bernardo (1994) Nejati-Javaremi et al. (1997)

$$
G = \frac{ZZ'}{2\sum p_i(1-p_i)}
$$

2 ∑ 0(1 − 0) VanRaden (2008)



## Genomic relations



http://genoweb.toulouse.inra.fr/~alegarra/GSIP.pdf https://doi.org/10.



# What are genomic relationships?

- Relationships were conceived as standardized covariances (Fisher, Wright)
	- $Cov(u_i, u_j) = R_{ij} \sigma_u^2$
	- $R_{ij}$  "some" relationship
	- $\sigma_u^2$  additive genetic variance
- True relationships: two individuals are genetically identical (for a trait) if they carry the same genotype at the causal QTL or genes
- Genomic relationships: due to shared (Identical By State) alleles at *causal genes*
	- If I share the blood group A with someone, we are like twins!
	- Most of the genes are unknown
	- We use proxies (SNP markers)



## Early use of markers to infer **A**

• **A** = pedigree relationships: due to shared (Identical By Descent) alleles at *causal genes*

- In conservation genetics
- Gather markers, then reconstruct pedigrees, then construct **A**
	- Either estimates of  $A_{xy}$ , or estimates of « the most likely relation » (son-daughter, cousins, whatever)

Li and Horvitz 1953, Cockerham 1969, Ritland 1996, Caballero & Toro 2002, and many others

• With abundant marker data we can do better than this



## Pedigree vs. Genomic relationships

- Identical By Descent Relationships (IBD) based on pedigree
	- average relationships which assume infinite loci
- « Real » IBD relationships are a bit different due to finite genome size (Hill and Weir, 2010)
- Therefore **A** is the expectation of realized or observed relationships
- SNPs more informative than **A**
	- Two full sibs might have a correlation of 0.4 or 0.6
- Many markers needed to better estimate relationships
	- Estimators of IBD



## Pedigree vs. Genomic relationships



Genomic relationship for full-sibs



## Genomic relationships



If base allelic frequencies are used, **G** is an unbiased and efficient estimator of IBD realized relationships



## Some "interesting" properties of **G**

- VanRaden (2008)
	- **G** can be singular if few SNP or identical genotypes (twins)
	- **G** must be singular if number of individuals > number of SNP

$$
G = 0.95 \frac{ZZ'}{2 \sum p_i (1 - p_i)} + 0.05I \qquad \text{OR} \qquad G = 0.95 \frac{ZZ'}{2 \sum p_i (1 - p_i)} + 0.05A \qquad \Rightarrow \qquad G = \alpha G_0 + \beta A
$$

Blending  $\approx$  Adding a residual polygenic effect



## Some "interesting" properties of **G**

• For all matrices of the kind  $G =$  $\mathbf{Z} \mathbf{Z}^\prime$  $2\sum p_i(1-p_i)$ =  $(M - 2P)(M - 2P)'$  $2\sum p_i(1-p_i)$ 

- We don't need to put the same *p*'s in the upper and and in the lower part
- Changing allele frequencies in  $P$  shifts EBV's by a constant
	- Irrelevant if there is an overall mean or fixed effect in the model (Stranden and Christensen, 2011)
- Changing allele frequencies in  $\frac{1}{2\Sigma x}$  $2\Sigma p_i q_i$ "scales"



## GBLUP

- GEBV-based model = outputs genomic breeding values (GEBV)
- $\mathbf{u} \sim N(0, \mathbf{G}\sigma_u^2)$

 $y = X\beta + Wu + e$ **X***′***X X***′***W**  $\mathbf{W'X}$  **W**<sup>*′***W**+**G**<sup>-1</sup><sub>-2</sub><sup>*o*<sub>*e*</sup></sup><sub>-2</sub><sup>2</sup></sup></sup></sub>  $\overline{\sigma^2_u}$  $\widehat{\boldsymbol{\beta}}$  $\begin{bmatrix} \mathbf{p} \\ \hat{\mathbf{u}} \end{bmatrix} =$ **X***′***y W***′***y**

### Only for genotyped individuals!!!

$$
G = \frac{ZZ'}{2\sum p_i(1-p_i)}
$$

2 ∑ 0(1 − 0) VanRaden (2008)



## Not all individuals are genotyped

- Genomic evaluation would be simpler if all individuals were genotyped
- What to do when there are genotyped and non-genotyped individuals?
	- SNPs are capturing relationships
	- Pedigrees give information about relationships
	- Genomic and pedigree relationships can be combined in a single matrix!





## Not all animals are genotyped

- Genomic info can be extended to non-genotyped animals
	- joint distribution of EBV for non-genotyped  $(u_1)$  and genotyped  $(u_2)$

 $p(u_1, u_2) = p(u_2)p(u_1|u_2)$ Legarra et al., 2009

$$
\mathbf{H} = \begin{pmatrix} var(u_1) & cov(u_1, u_2) \\ cov(u_2, u_1) & var(u_2) \end{pmatrix} = \begin{pmatrix} A_{11} + A_{12}A_{22}^{-1}(G - A_{22})A_{22}^{-1}A_{21} & A_{12}A_{22}^{-1}G \\ GA_{22}^{-1}A_{21} & G \end{pmatrix}
$$
  
\n
$$
H = \begin{bmatrix} Error \text{ in the} \\ prediction \end{bmatrix}
$$
  
\n
$$
W = \begin{bmatrix} Variance \text{ of } predicted \text{ in the} \\ productation \end{bmatrix}
$$
  
\n
$$
Variance \text{ of }generated \text{ in the } G\\T = \begin{bmatrix} A_{11} - A_{12}A_{22}^{-1}A_{21} + A_{12}A_{22}^{-1}GA_{22}^{-1}A_{21} & A_{12}A_{22}^{-1}G \\ GA_{22}^{-1}A_{21} & G \end{bmatrix}
$$
  
\n
$$
Variance \text{ of }generated \text{ in the } G\\T = \begin{bmatrix} R_{11} - A_{12}A_{22}^{-1}A_{21} + A_{12}A_{22}^{-1}GA_{22}^{-1}A_{21} & A_{12}A_{22}^{-1}G \\ GA_{22}^{-1}A_{21} & G \end{bmatrix}
$$



# Understanding **H**

- It is a projection of **G** matrix on the rest of individuals "so that" **G** matrix makes sense
	- e.g. parents of two animals related in **G** should be related in **A**
- It is a Bayesian update of the pedigree matrix based on new information from genotypes

- Typically
	- **A** in the millions
	- **G** and  $A_{22}$  in the thousands
	- Leads to a very efficient method of genomic evaluation:





## Some properties of **H**

- Always semi-positive definite
	- eigenvalues are always positive or zero
- Positive definite & invertible if **G** is invertible
- In practice, if G is too different from  $A_{22}$  (wrong pedigree or genotyping)
	- Numerical problems
- If no one is genotyped, Single-step is BLUP
- If everyone is genotyped, Single-step is GBLUP



## Realized relationship matrix (**H**)







## Single-step Genomic BLUP (ssGBLUP)

- Because not all animals are genotyped
	- 5% to 15% in large populations

$$
\begin{bmatrix} XX & XZ \\ Z'X & Z'Z+H^{-1}\frac{\sigma_e^2}{\sigma_u^2} \end{bmatrix} \begin{bmatrix} \widehat{\beta} \\ \widehat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} X'y \\ Z'y \end{bmatrix}
$$

$$
H^{-1} = A^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & G^{-1} - A_{22}^{-1} \end{bmatrix}
$$

Aguilar et al., 2010 Christensen and Lund, 2010



## Combining two sources of relationships

$$
H = A + \begin{bmatrix} A_{12}A_{22}^{-1}(G - A_{22})A_{22}^{-1}A_{21} & A_{12}A_{22}^{-1}(G - A_{22}) \ (G - A_{22})A_{22}^{-1}A_{21} & G - A_{22} \end{bmatrix}
$$

#### • **A**

- Contains expected relationships
- Is limited by the pedigree depth and completeness
- Depends on accuracy of recording pedigrees

#### • **G**

- Contains number of alleles shared between animals weighted by heterozygosity
- No limitations regarding to the number of past generations
- Depends on allele frequency and quality of genomic data



# Combining two sources of relationships



- Tuning
	- Base of **G** is *genotyped* animals
	- Base of **A** is *founders of the pedigree*
	- For SSGBLUP, Vitezica et al. 2011 modeled a mean in genotyped animals:





## Single-step

$$
\begin{bmatrix} XX & X'Z \\ Z'X & Z'Z+H^{-1}\frac{\sigma_e^2}{\sigma_u^2} \end{bmatrix} \begin{bmatrix} \widehat{\beta} \\ \widehat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} X'y \\ Z'y \end{bmatrix}
$$

**ssGBLUP**

Misztal et al. (2009) Legarra et al. (2009) Aguilar et al. (2010) Christensen & Lund (2010)

$$
\begin{bmatrix}\nX'X & X'ZM & X'_nZ_n \\
M'Z'X & M'Z'ZM + I\frac{\sigma_e^2}{\sigma_{\alpha}^2} & M'_nZ'_nZ_n \\
Z'_nX_n & Z'_nZ_nM_n & Z'_nZ_n + A^{nn}\frac{\sigma_e^2}{\sigma_{\chi}^2}\n\end{bmatrix}\n\begin{bmatrix}\n\hat{\beta} \\
\hat{\alpha} \\
\hat{\epsilon}\n\end{bmatrix} =\n\begin{bmatrix}\nX'y \\
M'Z'y \\
Z'_ny_n\n\end{bmatrix}.
$$

### **ssSNPBLUP** or **ssBR**

Fernando et al. (2014) Liu et al. (2014) Mantysaari & Stranden (2016) Fernando et al. Genetics Selection Evolution 2014, 46:50 http://www.gsejournal.org/content/46/50

equation (3) results in the usual non-genomic MME for the BVM.

#### **Theory underlying SSBV-BLUP**

 $\mathbf{g} = \begin{bmatrix} \mathbf{g}_1 \\ \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{g}_1 \\ \mathbf{T}_2 \boldsymbol{\alpha} \end{bmatrix},$ 

Legarra et al. [11] proposed an ingenious strategy to combine information from genotyped and non-genotyped animals in a single BLUP analysis based on a BVM, which we refer to as SSBV-BLUP. Suppose g is partitioned as:



J. Dairy Sci. 101:10082-10088 https://doi.org/10.3168/jds.2018-14913

© 2018, The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association<sup>®</sup>.<br>This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

Short communication: Genomic prediction using different single-step methods in the Finnish red dairy cattle population

H. Gao,\*†<sup>1</sup> M. Koivula,‡ J. Jensen,\* I. Strandén,‡ P. Madsen,\* T. Pitkänen,‡ G. P. Aamand,† and E. A. Mäntysaari±

\*Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830 Tjele, Denmark †Nordic Cattle Genetic Evaluation, DK-8200 Aarhus, Denmark #Natural Resources Institute Finland (Luke), FIN-31600 Jokioinen, Finland

We confirmed that regular ssGBLUP and ssBR with an extra polygenic effect led to the same predictions.



### Bases for Genomic Predictions

Bases for Genomic Prediction

Andres Legarra Daniela A.L. Lourenco Zulma G. Vitezica

2022-05-11



http://genoweb.toulouse.inra.fr/~alegarra/GSIP.pdf



# Quality Control of SNP data and creation of genomic matrices with BLUPF90 software

### SNP data

**SNP**

#### **ANIMAL**



### Quality control

• Call rate

**Which software in the BLUPF90 family?**

- Animals
- SNP
- Minor Allele Frequency (MAF)
- Hardy-Weinberg Equilibrium (HWE)
- Non-mapped SNP
- Mendelian Conflicts
- Duplicate genotypes
- Linkage disequilibrium (LD)

• Interface program to the genomic module to process the genomic information in the BLUPF90 family of programs

![](_page_36_Figure_2.jpeg)

• Performs Quality Control of SNP information

![](_page_37_Picture_2.jpeg)

- Creates the genomic relationship matrix (**G**)
	- and relationships based on pedigree  $(A_{22})$
	- Inverse of relationship matrices

- Same parameter file as for all BLUPF90 programs
- Needs an extra OPTION in renf90.par
	- OPTION SNP\_file *marker.geno*
- Reads 2 extra files (besides data and pedigree):
	- marker.geno
	- marker.geno\_XrefID (created by renumf90)

### Run renumf90 before preGSf90

• Use renumf90 for renumbering data and creating XrefID and files

**EFFECT** 1 cross alpha RANDOM animal FILE ped3.txt FILE POS  $12300$ SNP FILE marker.geno PED DEPTH 0 (CO) VARIANCES  $0.30$ 

### Parameter files

RENUMF90 BLUPF90 renf90.parrenum.par **DATAFILE** DATAFILE renf90.dat phenotypes.txt NUMBER\_OF\_TRAITS **TRAITS** 1. З NUMBER OF EFFECTS FIELDS\_PASSED TO OUTPUT 2 OBSERVATION(S) WEIGHT(S) 1 WEIGHT(S) RESIDUAL\_VARIANCE EFFECTS: POSITIONS\_IN\_DATAFILE NUMBE 0.9038 1 cross 2 **EFFECT** 15800 cross в 1 cross alpha # mu RANDOM\_RESIDUAL VALUES **EFFECT** 0.90380 2 cross alpha # animal RANDOM\_GROUP RANDOM 2 animal RANDOM TYPE add\_animal **FILE FILE** pedigree renadd02.ped SNP FILE (CO)VARIANCES marker.geno 0.99510E-01 (CO) VARIANCES  $\rightarrow$  OPTION SNP\_file marker.geno. 0.9951E-01

## New pedigree file from RENUMF90

- 1 **renumbered animal ID**
- 2 parent 1 number or UPG
- 3 parent 2 number or UPG
- 4 3 minus number of known parents
- 5 known or estimated year of birth
- **6** number of known parents

### **if animal is genotyped 10 + number of known parents**

- 7 number of records
- 8 number of progenies as parent 1
- 9 number of progenies as parent 2
- **10 original animal ID**

### SNP file, XrefID, and ped from renumf90

**SNP File** First col: original ID Second col: SNP genotypes {codes: 0,1,2, and 5 (missing)} All SNP should start in the same column!!!

![](_page_42_Figure_2.jpeg)

- Same parameter file as for all BLUPF90 programs
- Needs an extra OPTION in renf90.par
	- OPTION SNP\_file *marker.geno*
- Reads 2 extra files (besides data and pedigree):
	- marker.geno
	- marker.geno\_XrefID (created by renumf90)

## SNP map file – new default

- OPTION chrinfo *<file>*
- OPTION map file <*file* 
	- For GWAS and QC
- Format:
	- A header must be provided
		- Names for SNP, chromosome, and physical position are mandatory
	- SNPID for SNP
	- CHR for chromosome
	- POS for position

NUM CHR POS SNPID NUM<sub>2</sub> 31428 14 7928189 ARS-BFGL-BAC-1020 2 32005 14 31819743 ARS-BFGL-BAC-10245 3 14 6133529 ARS-BFGL-BAC-10345 14 17544926 ARS-BFGL-BAC-10591 32053 14 34639444 ARS-BFGL-BAC-10867 14 31267746 ARS-BFGL-BAC-10919 23506 10 18882288 ARS-BFGL-BAC-10952 23550 10 20609250 ARS-BFGL-BAC-10960 23566 10 21225382 ARS-BFGL-BAC-10975 23612 10 26527257 ARS-BFGL-BAC-10986 24705 10 78512500 ARS-BFGL-BAC-10993 14 24712 10 79252023 ARS-BFGL-BAC-11000 15 24732 10 80410977 ARS-BFGL-BAC-11003 16 24741 10 80783719 ARS-BFGL-BAC-11007 17 24827 10 84516867 ARS-BFGL-BAC-11025 18 25865 11 21276136 ARS-BFGL-BAC-11039 21

### Saving 'clean' files

- SNP excluded from QC are set to missing (i.e., Code=5)
	- 5 is replaced by 0 in calculations
- OPTION saveCleanSNPs
- Save clean genotype data without excluded SNP and individuals
	- For example, for a SNP\_file named *marker.geno*
	- Clean fles will be:
		- *marker.geno*\_clean
		- *marker.geno\_clean*\_XrefID
	- Removed SNP/animals will be output in files:
		- *marker.geno*\_SNPs\_removed
		- *marker.geno*\_Animals\_removed

## Only QC in preGSf90

- Quality control
- Genomic relationship matrices and inverses
	- Inverse is costly
- How to do only QC avoiding the inverses:
	- OPTION SNP\_file *marker.geno*
	- OPTION saveCleanSNPs
	- OPTION createGInverse 0
	- OPTION createA22Inverse 0
	- OPTION createGimA22i 0

### No QC in the application programs

### • ONLY use:

- If QC was performed in a previous run
- and "clean" genotype file is used
- OPTION SNP\_file *marker.geno\_clean*
- OPTION no\_quality\_control

### Use in application programs

• Use renumf90 for renumbering and creation of XrefID and files

![](_page_48_Figure_2.jpeg)

- Run preGSf90 with quality control, saving clean files
- Run further programs with clean files as needed
	- blupf90+, gibbs2f90+, …

### PreGSf90 wiki

![](_page_49_Picture_1.jpeg)

- Performs Quality Control of SNP information
- Creates the genomic relationship matrix (**G**)
	- and relationships based on pedigree  $(A_{22})$
	- Inverse of relationship matrices

![](_page_50_Figure_5.jpeg)

### BLUP-based models

| $\begin{bmatrix}\nX'X & X'W \\ W'X & W'W+A^{-1}\frac{\sigma_e^2}{\sigma_a^2}\n\end{bmatrix}\n\begin{bmatrix}\n\hat{\beta} \\ \hat{\mathbf{q}}\n\end{bmatrix} =\n\begin{bmatrix}\nX'y \\ W'y\n\end{bmatrix}$ \n                                                     | BLUP    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| $\begin{bmatrix}\nX'X & X'W \\ W'X & W'W+G^{-1}\frac{\sigma_e^2}{\sigma_a^2}\n\end{bmatrix}\n\begin{bmatrix}\n\hat{\beta} \\ \hat{\mathbf{q}}\n\end{bmatrix} =\n\begin{bmatrix}\nX'y \\ W'y\n\end{bmatrix}$ \n                                                     | GBLUP   |
| $\begin{bmatrix}\nX'X & X'W \\ W'X & W'W+H^{-1}\frac{\sigma_e^2}{\sigma_a^2}\n\end{bmatrix}\n\begin{bmatrix}\n\hat{\beta} \\ \hat{\mathbf{q}}\n\end{bmatrix} =\n\begin{bmatrix}\nX'y \\ W'y\n\end{bmatrix}$ \n                                                     | SGBLUP  |
| $\begin{bmatrix}\nX'X & X'W \\ W'X & W'W+H^{-1}\frac{\sigma_e^2}{\sigma_a^2}\n\end{bmatrix}\n\begin{bmatrix}\n\hat{\beta} \\ \hat{\mathbf{q}}\n\end{bmatrix} =\n\begin{bmatrix}\nX'y \\ W'y\n\end{bmatrix}$ \n                                                     | SSGBLUP |
| $\begin{bmatrix}\n\text{Misztal et al. (2009)} \\ \text{Legarra et al. (2009)} \\ \text{Christal et al. (2009)} \\ \text{Doisart al. (2010)}\n\end{bmatrix}$ \n |         |

### PreGSf90

• Created to construct the matrices using in ssGBLUP

$$
H^{-1} = A^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & G^{-1} - A_{22}^{-1} \end{bmatrix}
$$
  
\nG  
\n
$$
A_{22} \t A_{22}^{-1}
$$
  
\n
$$
A_{22} = A_{22}^{-1}
$$
  
\n
$$
G^{-1} - A_{22}^{-1}
$$

### Genomic Relationship Matrix - G

![](_page_53_Figure_1.jpeg)

- Z = matrix for SNP marker
- Dimension of Z = *n*\**i*
- *n* animals
- *i* markers

#### **Genotype Codes**

- 0 Homozygous
- 1 Heterozygous
- 2 Homozygous
- 5 No Call (Missing)

![](_page_53_Figure_11.jpeg)

![](_page_53_Picture_98.jpeg)

### PreGSf90

- Efficient methods
	- create the genomic relationship matrix and the relationship matrix based on pedigree
	- Invert the relationship matrices

- Computes statistics for the matrices
	- Means, Var, Min, Max
	- Correlations between diagonals
	- Correlations for off-diagonals
	- Correlations for the full matrices
	- Regression coefficients

### Genomic Matrix default options

• 
$$
G_0 = \frac{ZZ'}{2 \sum p_j(1-p_j)}
$$
 (VanRaden, 2008)

- With:
	- **Z** centered using current allele frequencies
		- Current genotyped animals

### Genomic Matrix Options

### • OPTION whichfreq *x*

- 0: read from file *freqdata* or other specified name (needs OPTION FreqFile)
- $1: 0.5$
- 2: current calculated from genotypes (default)
- OPTION FreqFile *file*
	- Reads allele frequencies from a file

### Genomic Matrix default options

- **Blending** to avoid singularity problems  $G = 0.95 * G_0 + 0.05 * A_{22}$ 
	- OPTION AlphaBeta 0.95 0.05 #(default)
	- Beta may vary from 0.2 to 0.01

### Genomic Matrix default options

### • **Tuning**

- Adjust **G** to have mean of diagonals and off-diagonals equal to  $A_{22}$
- OPTION tunedG 2 #(default) Chen et al. (2011)

- Base of GBLUP is *genotyped* animals
- Base of pedigree is *founders of the pedigree*
- For SSGBLUP modelled as a mean for genotyped animals
	- $-p(u_2) = N(1\mu, G)$
	- $-$  Integrate  $\mu$  :  $\textbf{G}^* = 11'\pmb{\lambda} + (1 \pmb{\lambda}\big/_{2})\textbf{G}$
	- $-\mu$  = (Genomic base) (Pedigree base)
	- Vitezica et al. 2011

## Options for matching G to  $A_{22}$

- OPTION tunedG *x*
	- 0: no adjustment
	- 1: mean(diag(G))=1, mean(offdiag(G))=0
	- 2: mean(diag(G))=mean(diag(A<sub>22</sub>)), mean(offdiag(G))=mean(offdiag(A<sub>22</sub>)) (default)
	- 3: mean(G)=mean( $A_{22}$ )
	- 4: Use Fst adjustment. Powell et al. (2010) & Vitezica et al. (2011)

$$
\lambda = \frac{1}{n^2} \left( \sum_i \sum_j A_{22_{ij}} - \sum_i \sum_j G_{ij} \right) \qquad G^* = 11'\lambda + (1 - \lambda/2)G
$$

### Storing and Reading Matrices

• preGSf90 saves  $G^{-1} - A_{22}^{-1}$  by default (file: GimA22i)

To save 'raw' genomic matrix:

- OPTION saveG [all]
	- If the optional *all* is present all intermediate **G** matrices will be saved!!!

To save **G**-1

- OPTION saveGInverse
	- Only the final **G**, after blending, scaling, etc. is inverted !!!

To save  $A_{22}$  and inverse

• OPTION saveA22 and OPTION saveA22Inverse

### Storing and Reading Matrices

- OPTION saveG [all] , OPTION saveGInverse, …
	- Saves in binary format
	- "Dumped" format to save space and time
	- To save as row, column, value:
		- OPTION no\_full\_binary
		- Still binary, but can be easily read and converted to text

## Storing with Original IDs

- Some matrices could be stored in text files with the original IDs extracted from *renaddxx.ped* created by the RENUMF90 program (col #10)
- For example:
	- OPTION saveGOrig
	- OPTION saveDiagGOrig
	- OPTION saveHinvOrig
- Values
	- origID\_i, origID\_j, val

### Genomic Matrix - Population structure

OPTION plotpca

Plot first two principal components to look for stratification in the population.

OPTION extra\_info\_pca file col

Reads from file the column col to plot with different colors for different classes.

### Genomic Matrix - Population structure

![](_page_64_Figure_1.jpeg)

## Tricks to setup G for GBLUP #1

- Tricks are needed because preGSf90 is set up for ssGBLUP
- 1) Use a dummy pedigree 1 0 0 2 0 0

… 2) Use PED\_DEPTH 1 in renumf90

- 3) Change blending parameters
	- OPTION AlphaBeta 1.00 0.00  $\rightarrow$  G = 1.00  $*$ **G** + 0.00  $*$ **I**
	- OPTION AlphaBeta 0.95 0.05  $\rightarrow$  G = 0.95  $*$ **G** + 0.05  $*$ **I**

4) No adjustment for compatibility with  $A_{22}$ 

• OPTION tunedG 0

## Tricks to setup G for GBLUP #2

1) In renum.par, remove any information about the pedigree. Example:

FILE

pedigree.txt

FILE\_POS

1 2 3 0 0

PED\_DEPTH

3

3) Change blending parameters

- OPTION AlphaBeta 1.00 0.00  $\rightarrow$  **G** = 1.00\***G** + 0.00\***I**
- OPTION AlphaBeta 0.95 0.05  $\rightarrow$  **G** = 0.95\***G** + 0.05\*I

4) No adjustment for compatibility with  $A_{22}$ 

• OPTION tunedG 0

### PreGSf90 inside BLUPF90 ??

- Almost all programs from BLUPF90 support creating genomic relationship matrices
- OPTION SNP\_file xxxx
- Why preGSF90 ?
	- Same genomic relationship matrix for several models, traits, etc.
	- Just do it once and store GimA22i or Gi and A22i separate

### Use in application programs

- Use renumf90 for renumbering and creation of XrefID and files SNP\_FILE marker.geno
- Run preGSf90 with quality control, saving clean files
- Option 1:

run blupf90+ with clean files

• Option 2:

run preGSf90 with clean files (program saves **GimA22i**) run blupf90+ with option to read **GimA22i** from the file

## Reading external matrices

- BLUPF90 programs accept external matrices created outsi
- http://nce.ads.uga.edu/wiki/doku.php?id=user\_defined\_files\_for\_covariances\_of\_random\_effects
- File should be row, column, value in plain text format (low

![](_page_69_Picture_97.jpeg)

- user\_file: if providing the inverse of the covariance structu
- user\_file\_inv: if the program has to invert the covariance