Constructing A⁻¹

• Pedigree relationships:

$$u_i = 0.5(u_{s_i} + u_{d_i}) + \varphi_i$$

$$A^{-1} = (I - P)'M^{-1}(I - P)$$

```
ImP=(/1., -.5, -.5/)
Minv=(/2., 4/3., 1., 0./)
ainv=0.0
```

```
do
read(2,*,iostat=io) animal, sire, dam,par_stat
if (io /= 0) exit
p(1)=animal
p(2)=sire
p(3)=dam
do i=0,nanimal
    do k=1,3
        do l=1,3
            ainv(k,l)=ainv(k,l)+ImP(k)*ImP(l)*Minv(par_stat)
        enddo
    enddo
enddo
enddo
```

Henderson (1976) Quaas (1988)

par_stat: 3 - # of known parents

UNIVERSITY OF GEORGIA

College of Agricultural & Environmental Sciences

Animal Breeding and Genetics Group

Theory of GBLUP and single-step GBLUP

Daniela Lourenco BLUPF90 TEAM – 08/2024

Statistical methods before genomics

- BLUP (Henderson, 1949 1976)
 - Best: minimizes MSE
 - Linear: linear function of the data
 - Unbiased: $E(u) = E(\hat{u})$
 - Prediction: for random effects

Statistical Science 1991, Vol. 6, No. 1, 15–51

That BLUP Is a Good Thing: The Estimation of Random Effects

G. K. Robinson

$$\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{W} \\ \mathbf{W}'\mathbf{X} & \mathbf{W}'\mathbf{W} + \mathbf{A}^{-1}\frac{\sigma_e^2}{\sigma_u^2} \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{W}'\mathbf{y} \end{bmatrix}$$

Henderson's MME

• Model

 $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{W}\mathbf{u} + \mathbf{e}$

• Joint probability of phenotypes and EBV

$$p(\mathbf{y},\mathbf{u}) = p(\mathbf{u}|\mathbf{y}) p(\mathbf{y}) = p(\mathbf{y}|\mathbf{u}) p(\mathbf{u})$$

• Joint probability density function of phenotypes and EBV

$$p(\mathbf{y},\mathbf{u}) = p(\mathbf{y}|\mathbf{u}) \ p(\mathbf{u}) = \frac{1}{\sqrt{2\pi|\mathbf{R}|}} e^{-\frac{1}{2}(\mathbf{y}-\mathbf{X}\boldsymbol{\beta}-\mathbf{W}\mathbf{u})'\mathbf{R}^{-1}(\mathbf{y}-\mathbf{X}\boldsymbol{\beta}-\mathbf{W}\mathbf{u})} \ \frac{1}{\sqrt{2\pi|\mathbf{G}|}} e^{-\frac{1}{2}(\mathbf{u}-\mathbf{0})'\mathbf{G}^{-1}(\mathbf{u}-\mathbf{0})}$$

$$\begin{cases} \mathbf{X}'\mathbf{R}^{-1}\mathbf{X}\mathbf{\beta} + \mathbf{X}'\mathbf{R}^{-1}\mathbf{W}\mathbf{u} = \mathbf{X}'\mathbf{R}^{-1}\mathbf{y}\\ \mathbf{W}'\mathbf{R}^{-1}\mathbf{X}\mathbf{\beta} + (\mathbf{W}'\mathbf{R}^{-1}\mathbf{W}+\mathbf{G}^{-1})\mathbf{u} = \mathbf{W}'\mathbf{R}^{-1}\mathbf{y} \end{cases} \begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{W}\\ \mathbf{W}'\mathbf{X} & \mathbf{W}'\mathbf{W}+\mathbf{A}^{-1}\frac{\sigma_e^2}{\sigma_u^2} \end{bmatrix} \begin{bmatrix} \widehat{\mathbf{\beta}}\\ \widehat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y}\\ \mathbf{W}'\mathbf{y} \end{bmatrix}$$

4

Henderson's MME for dairy in 1989

- BLUP (Henderson, 1949 1976)
- Implementation for dairy in 1989

National genetic improvement programs for dairy cattle in the United States

G. R. Wiggans

J Anim Sci 1991. 69:3853-3860.

Challenges

Genetic improvement programs are in a period of rapid change. Advances in computer capability enable adoption of sophisticated computational procedures. Advances in repro-

Journal of Dairy Science Volume 71, Supplement 2, June 1988, Pages 54-69

Journ airy Scie	al of

Implementation of an Animal Model for Genetic Evaluation of Dairy Cattle in the United States

G.R. Wiggans, I. Misztal, L.D. Van Vleck

- 9.5 M animals
- 11 M lactations
- 23.5 M equations to solve
- 7.5 hours

ACKNOWLEDGMENTS

This research was conducted using the Cornell National Supercomputer Facility, a resource of the

Moving from 1989 to 2009

• How to add genomic information to the evaluation system in 2009?

Multistep

SNP-BLUP (ridge regression)

- SNP effect model = outputs SNP effects
- $a \sim N(0, \sigma_a^2)$

 $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\mathbf{a} + \boldsymbol{e}$

120001200220121211100121002222110211221102011212221200220021212121111202112022002022100

 $GEBV = Z\hat{a}$

 $\begin{bmatrix} \mathbf{X'X} & \mathbf{X'Z} \\ \mathbf{Z'X} & \mathbf{Z'Z} + \mathbf{I}\frac{\sigma_e^2}{\sigma_a^2} \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\mathbf{a}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{Z'y} \end{bmatrix}$

• All SNP explain the same proportion of variance on the trait

SNP-BLUP (ridge regression)

- SNP effect model = outputs SNP effects
- All SNP explain the same proportion of variance on the trait

 $GEBV = Z\hat{a}$ $Var(\mathbf{u}) = \mathbf{Z}\mathbf{Z}' \frac{\sigma_u^2}{2\sum_{i=1}^{SNP} p_i (1-p_i)}$ $\mathbf{u} = \mathbf{Z}\hat{\mathbf{a}}$ $\operatorname{Var}(\mathbf{u}) = \frac{\mathbf{Z}\mathbf{Z}'}{2\sum_{i=1}^{SNP} p_i(1-p_i)} \sigma_u^2$ Genomic $Var(\mathbf{u}) = Var(\mathbf{Z}\mathbf{a})$ relationship matrix VanRaden (2008) $Var(\mathbf{u}) = \mathbf{Z} Var(\mathbf{a}) \mathbf{Z}'$ $Var(\mathbf{u}) = \mathbf{Z}\mathbf{Z}'\sigma_a^2$ $\mathbf{G} = \frac{\mathbf{Z}\mathbf{Z}'}{2\sum_{i=1}^{SNP} p_i(1-p_i)}$ $\sigma_a^2 = \frac{\sigma_u^2}{2\sum_{i=1}^{SNP} p_i (1-p_i)}$ $Var(\mathbf{u}) = \mathbf{G}\sigma_u^2$ GBLUP assumption!!!

GBLUP: Genomic BLUP

- GEBV-based model = outputs genomic breeding values (GEBV)
- $\mathbf{u} \sim N(0, \mathbf{G}\sigma_u^2)$

 $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{W}\mathbf{u} + \boldsymbol{e}$

$$\begin{bmatrix} \mathbf{X'X} & \mathbf{X'W} \\ \mathbf{W'X} & \mathbf{W'W} + \mathbf{G}^{-1} \frac{\sigma_e^2}{\sigma_u^2} \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{W'y} \end{bmatrix}$$

Fernando & Grossman (1989) Bernardo (1994) Nejati-Javaremi et al. (1997)

$$\mathbf{G} = \frac{\mathbf{Z}\mathbf{Z}'}{2\sum p_i(1-p_i)}$$

VanRaden (2008)

GBLUP: Genomic BLUP

025	11010111151111011111100100012211512051221250225111102501220102010
036	21101101022012122222012101222010120222111112021222111112102020101101
050	121010021112021111200021212222100021122122
054	120001200220121211100121002222110211221102011212221200220021212121111202112022002022100;
066	20000202022102122112002200122221110122020211020222202022000122212101120102102
097	101102120220121122111021001111100102211212022111111
101	121002120220011221100011112220100101120112121212111212012210021020020
151	11100102022122021020101101222020012122111122122
172	211012020211112101211021102220101001221212221102220201221020212112010211122022112011010;
224	22000111022101221010102110252020111212022212221
277	2101022001212212112120210122220020122102121102011210212210022110110
314	12201112012222021021001000212100112012020200121002002
419	221112210121120222221022102110201021121211122000000
439	200202100122121210101021012221101112220202022110010111210011201022012220211021010011020
456	12000102022111220010102100221100020222121222222
501	111000021221121201212121002221101202222101022112222110220011202110020201102022100021020;
571	110000120202200221212022001210200011122110110
579	11210021021001010111102200222120002221111202022222110222101202012111222111112011011
581	2110020215210012212020110022002011251212150225222225022101120112
657	11001112022011121110102001222100011222121202121112120022001220222002221221
660	210002120221120221121021012221011012221222121211120201221012201121111211112022000012101;
730	21000202022002022222001200222000122022220021102252200122001202111151001012022001012025
732	212102121521002201200012101121201215110215122521121150220011102111050202221122011022010;
764	111102121520012212211020001220201225222115021522221150220110202120050202022022111112110;
780	12110102112222021010102200222120120112122101211110111221020202001010112212121002021021
800	221000120221222210202021102221101012112022120222222
816	110001220220121220110022011121100011021122121220020112222002222111021111212022011022010;
832	12101001112001121111002111222011111212222121020111102022100211222100121211112101211110;
900	21010011022012212121102110212101212022121212110111111
901	12100102022112121221001000212020111122111212200111111

Genomic relationship matrix

Each SNP contributes $2pqa^2$ to the genetic variance

http://genoweb.toulouse.inra.fr/~alegarra/GSIP.pdf

https://doi.org/10.3390/genes11070790

Genomic relationship matrix

If base allelic frequencies are used, **G** is an unbiased and efficient estimator of IBD realized relationships

Pedigree vs. Genomic relationships

- A provides Identical By Descent relationships (IBD)
- G provides Identical by State relationships (IBS)
- A is the <u>expectation</u> of realized or observed relationships
- **G** contains realized or observed relationships
- SNPs more informative than **A**
 - Two full sibs might have a correlation of 0.4 or 0.6
- Many markers needed to better estimate relationships
 - IBS as on estimator of IBD

Pedigree vs. Genomic relationships

0.2

Genomic relationship for full-sibs

Some "interesting" properties of G

- VanRaden (2008)
 - **G** can be singular if few SNP or identical genotypes (twins)
 - **G** must be singular if number of individuals > number of SNP

$$\mathbf{G} = 0.95 \frac{\mathbf{Z}\mathbf{Z}'}{2\sum p_i(1-p_i)} + 0.05\mathbf{I} \qquad \text{OR} \qquad \mathbf{G} = 0.95 \frac{\mathbf{Z}\mathbf{Z}'}{2\sum p_i(1-p_i)} + 0.05\mathbf{A} \qquad \Rightarrow \qquad \mathbf{G} = \alpha \mathbf{G}_0 + \beta \mathbf{A}$$

• Blending \approx Adding a residual polygenic effect

Some "interesting" properties of G

• For all matrices of the kind $\mathbf{G} = \frac{\mathbf{Z}\mathbf{Z}'}{2\sum p_i(1-p_i)} = \frac{(\mathbf{M}-\mathbf{2}\mathbf{P})(\mathbf{M}-\mathbf{2}\mathbf{P})'}{2\sum p_i(1-p_i)}$

- We don't need to put the same p's in the upper and and in the lower part
- Changing allele frequencies in **P** shifts EBV's by a constant
 - Irrelevant if there is an overall mean or fixed effect in the model (Stranden and Christensen, 2011)
- Changing allele frequencies in $\frac{1}{2\sum p_i q_i}$ "scales"

GBLUP

- GEBV-based model = outputs genomic breeding values (GEBV)
- $\mathbf{u} \sim N(0, \mathbf{G}\sigma_u^2)$

 $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{W}\mathbf{u} + \boldsymbol{e}$ $\begin{bmatrix} \mathbf{X'X} & \mathbf{X'W} \\ \mathbf{W'X} & \mathbf{W'W} + \mathbf{G}^{-1}\frac{\sigma_e^2}{\sigma_u^2} \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{W'y} \end{bmatrix}$

Only for genotyped individuals!!!

$$\mathbf{G} = \frac{\mathbf{Z}\mathbf{Z}'}{2\sum p_i(1-p_i)}$$

VanRaden (2008)

Not all individuals are genotyped

- Genomic evaluation would be simpler if all individuals were genotyped
- What to do when there are genotyped and non-genotyped individuals?
 - SNPs are capturing relationships
 - Pedigrees give information about relationships
 - Genomic and pedigree relationships can be combined in a single matrix!

Not all animals are genotyped

- Genomic info can be extended to non-genotyped animals
 - joint distribution of EBV for non-genotyped (u₁) and genotyped (u₂)

 $p(u_1, u_2) = p(u_2)p(u_1|u_2)$ Legarra et al., 2009

$$\mathbf{H} = \begin{pmatrix} var(u_1) & cov(u_1, u_2) \\ cov(u_2, u_1) & var(u_2) \end{pmatrix} = \begin{pmatrix} \mathbf{A}_{11} + \mathbf{A}_{12}\mathbf{A}_{22}^{-1}(\mathbf{G} - \mathbf{A}_{22})\mathbf{A}_{21}^{-1}\mathbf{A}_{21} & \mathbf{A}_{12}\mathbf{A}_{22}^{-1}\mathbf{G} \\ \mathbf{G}\mathbf{A}_{22}^{-1}\mathbf{A}_{21} & \mathbf{G} \end{pmatrix}$$

$$Variance of predicting genotypes for non-genotyped animals$$

$$\mathbf{H} = \begin{bmatrix} \mathbf{A}_{11} - \mathbf{A}_{12}\mathbf{A}_{22}^{-1}\mathbf{A}_{21} + \mathbf{A}_{12}\mathbf{A}_{22}^{-1}\mathbf{G}\mathbf{A}_{22}^{-1}\mathbf{A}_{21} & \mathbf{A}_{12}\mathbf{A}_{22}^{-1}\mathbf{G} \\ \mathbf{G}\mathbf{A}_{22}^{-1}\mathbf{A}_{21} & \mathbf{G} \end{bmatrix}$$

$$Relationships from genotypes$$

Some properties of H

- <u>Always</u> semi-positive definite
 - eigenvalues are always positive or zero
- Positive definite & invertible if **G** is invertible
- In practice, if **G** is too different from **A**₂₂ (wrong pedigree or genotyping)
 - Numerical problems
- If no one is genotyped, Single-step is BLUP
- If everyone is genotyped, Single-step is GBLUP

Realized relationship matrix (H)

Animal	Sire	Dam
1	0	0
2	0	0
3	1	2
4	1	2

Pedigree Relationship Matrix (A)			Genor Relation Matrix for animals	Genomic Relationship Matrix (G) for animals 3 and 4			Realized Relationship Matrix (H)				
1.0	0.0	0.5	0.5]				ſ	1.004	0.0	0.507	0.507]
	1.0	0.5	0.5						1.004	0.507	0.507
-		1.0	0.5		[1.0	0.52				1.0	0.52
-	-		1.0		L .	1.0					1.0

Understanding H

- It is a projection of **G** on the rest of the individuals so that **G** makes sense
 - e.g., parents of two animals related in **G** should be related in **A**
- It is a Bayesian update of the pedigree matrix based on new information from genotypes

- Typically
 - A in the millions
 - **G** and **A**₂₂ in the thousands
 - Leads to a very efficient method of genomic evaluation:

Single-step Genomic BLUP (ssGBLUP)

- Because not all animals are genotyped
 - 5% to 15% in large populations

$$\begin{bmatrix} \mathbf{X'X} & \mathbf{X'Z} \\ \mathbf{Z'X} & \mathbf{Z'Z+H^{-1}} \frac{\sigma_e^2}{\sigma_u^2} \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{Z'y} \end{bmatrix}$$

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$$

Aguilar et al., 2010 Christensen and Lund, 2010

Single-step Genomic BLUP (ssGBLUP)

USD

Single-step H matrix inverse - 2009

May 4-6 2009 meeting at UW - Madison:

liecture, Madison, WI, April 2024 (16)

- Symposium on Statistical Genetics of Livestock for the Post-Genomic Era
- May 11 email from Dave Johnson, LIC, NZL to Ignacy Misztal:
 - Good to meet you again last week. I have been thinking about your whole-population H matrix. It occurred to me, as I looked for something to do as I waited in LA airport, that H has a simple relatively sparse inverse. Namely H⁻¹ = A⁻¹ + {(0,0), (0,G⁻¹ - A₂₂⁻¹)}. Have you looked at this at all?

Journal of Dairy Science Volume 93, Issue 2, February 2010, Pages 743-752

Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score ¹

I. Aguilar * † 🎗 🖾 , I. Misztal *, D.L. Johnson ‡, A. Legarra ŷ, S. Tsuruta *, T.J. Lawlor #

Combining two sources of relationships

$$\mathbf{H} = \mathbf{A} + \begin{bmatrix} \mathbf{A}_{12}\mathbf{A}_{22}^{-1}(\mathbf{G} - \mathbf{A}_{22})\mathbf{A}_{22}^{-1}\mathbf{A}_{21} & \mathbf{A}_{12}\mathbf{A}_{22}^{-1}(\mathbf{G} - \mathbf{A}_{22}) \\ (\mathbf{G} - \mathbf{A}_{22})\mathbf{A}_{22}^{-1}\mathbf{A}_{21} & \mathbf{G} - \mathbf{A}_{22} \end{bmatrix}$$

• A

- Contains expected relationships
- Is limited by the pedigree depth and completeness
- Depends on accuracy of recording pedigrees

ł

• G

- Contains number of alleles shared between animals weighted by heterozygosity
- No limitations regarding to the number of past generations
- Depends on allele frequency and quality of genomic data

Combining two sources of relationships

- Tuning
 - Base of **G** is *genotyped* animals
 - Base of **A** is founders of the pedigree
 - For SSGBLUP, Vitezica et al. 2011 modeled a mean in genotyped animals:

Single-step

$$\begin{bmatrix} \mathbf{X'X} & \mathbf{X'Z} \\ \mathbf{Z'X} & \mathbf{Z'Z+H^{-1}}\frac{\sigma_e^2}{\sigma_u^2} \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{Z'y} \end{bmatrix}$$

Misztal et al. (2009) Legarra et al. (2009) Aguilar et al. (2010) Christensen & Lund (2010)

$$\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{Z}\mathbf{M} & \mathbf{X}'_{n}\mathbf{Z}_{n} \\ \mathbf{M}'\mathbf{Z}'\mathbf{X} & \mathbf{M}'\mathbf{Z}'\mathbf{Z}\mathbf{M} + \mathbf{I}\frac{\sigma_{\mathbf{e}}^{2}}{\sigma_{\alpha}^{2}} & \mathbf{M}'_{n}\mathbf{Z}'_{n}\mathbf{Z}_{n} \\ \mathbf{Z}'_{n}\mathbf{X}_{n} & \mathbf{Z}'_{n}\mathbf{Z}_{n}\mathbf{M}_{n} & \mathbf{Z}'_{n}\mathbf{Z}_{n} + \mathbf{A}^{nn}\frac{\sigma_{e}^{2}}{\sigma_{g}^{2}} \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\boldsymbol{\alpha}} \\ \hat{\boldsymbol{\epsilon}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{M}'\mathbf{Z}'\mathbf{y} \\ \mathbf{Z}'_{n}\mathbf{y}_{n} \end{bmatrix}$$

ssSNPBLUP or ssBR

Fernando et al. (2014)

Liu et al. (2014)

Mantysaari & Stranden (2016)

http://www.gsejournal.org/content/46/50

Fernando et al. Genetics Selection Evolution 2014, 46:50

equation (3) results in the usual non-genomic MME for the BVM.

Theory underlying SSBV-BLUP

 $\mathbf{g} = \begin{bmatrix} \mathbf{g}_1 \\ \mathbf{g}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{g}_1 \\ \mathbf{T}_2 \boldsymbol{\alpha} \end{bmatrix},$

Legarra et al. [11] proposed an ingenious strategy to combine information from genotyped and non-genotyped animals in a single BLUP analysis based on a BVM, which we refer to as SSBV-BLUP. Suppose **g** is partitioned as:

J. Dairy Sci. 101:10082–10088 https://doi.org/10.3168/jds.2018-14913

© 2018, The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Short communication: Genomic prediction using different single-step methods in the Finnish red dairy cattle population

H. Gao,*†¹ M. Koivula,‡ J. Jensen,* I. Strandén,‡ P. Madsen,* T. Pitkänen,‡ G. P. Aamand,† and E. A. Mäntysaari‡

*Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830 Tjele, Denmark †Nordic Cattle Genetic Evaluation, DK-8200 Aarhus, Denmark ‡Natural Resources Institute Finland (Luke), FIN-31600 Jokioinen, Finland We confirmed that regular ssGBLUP and ssBR with an extra polygenic effect led to the same predictions.

Bases for Genomic Predictions

Bases for Genomic Prediction

Andres Legarra Daniela A.L. Lourenco Zulma G. Vitezica

2022-05-11

http://genoweb.toulouse.inra.fr/~alegarra/GSIP.pdf

Quality Control of SNP data and creation of genomic matrices with BLUPF90 software

SNP file

SNP

ANIMAL

025	11010111	1(5)1	11101111100100012211(5)2(5)2212(5)225)1111025)0122010201021000221121025)00122010
036	21101101	022	012122222012101222010120222111112021222111112102020101101
050	12101002	111	2021111200021212222100021122122122110000020220000211022122212122020001112020:
054	12000120	022	0121211100121002222110211221102011212221200220021212121111202112022002022100
066	20000202	022	102122112002200122221110122020211020222202022000122212101120102102
097	10110212	022	0121122111021001111100102211212022111111
101	12100212	022	00112211000111122201001011201121212111212012210021020020
151	11100102	022	12202102010110122202001212211112212211211
172	21101202	021	1112101211021102220101001221212221102220201221020212112010211122022112011010:
224	22000111	022	1012210101021102520201112120222122212220110121011102220050210121022010022125:
277	21010220	012	12212112120210122220020122102121102011210212210022110110
314	12201112	012	222021021001000212100112012020200121002002
419	22111221	012	1120222221022102110201021121211122000000
439	20020210	012	2121210101021012221101112220202022110010111210011201022012220211021010011020:
456	12000102	022	11122001010210022110002022212122222200101102211102120120
501	11100002	122	1121201212121002221101202222101022112222110220011202110020201102022100021020:
571	11000012	020	2200221212022001210200011122110110222221200220020212001010212121022102010110:
579	11210021	021	0010101111022002221200022211112020222222
581	21100202	152	10012212020110022002011251212150225222225022101120112
657	11001112	022	011121110102001222100011222121202121112120022001220222002221221
660	21000212	022	1120221121021012221011012221222121211120201221012201121111211112022000012101:
730	21000202	022	0020222220012002220001220222220021102252200122001202111151001012022001012025
732	21210212	1(5)2	1002201200012101121201215110215122521121150220011102111050202221122011022010:
764	11110212	(52	0012212211020001220201225222115021522221150220110202120050202022022111112110:
780	12110102	112	2220210101022002221201201121221012111110111221020202001010112212121002021021
800	22100012	022	1222210202021102221101012112022120222222
816	11000122	022	0121220110022011121100011021122121220020112222002222111021111212022011022010:
832	12101001	112	0011211110021112220111112122221210201111020221002112221001212111121012111110:
900	21010011	022	012212121102110212101212022121212110111111
901	12100102	022	112121221001000212020111122111212200111111

Quality control

• Call rate

Which software in the BLUPF90 family?

- Animals
- SNP
- Minor Allele Frequency (MAF)
- Hardy-Weinberg Equilibrium (HWE)
- Non-mapped SNP
- Mendelian Conflicts
- Duplicate genotypes
- Linkage disequilibrium (LD)

• Interface program to the genomic module to process the genomic information in the BLUPF90 family of programs

• Performs Quality Control of SNP information

- Creates the genomic relationship matrix (G)
 - and relationships based on pedigree (A₂₂)
 - Inverse of relationship matrices

- Same parameter file as for all BLUPF90 programs
- Needs an extra OPTION in renf90.par
 - OPTION SNP_file marker.geno
- Reads 2 extra files (besides data and pedigree):
 - marker.geno
 - marker.geno_XrefID(created by renumf90)

Run renumf90 before preGSf90

• Use renumf90 for renumbering data and creating XrefID and files

EFFECT 1 cross alpha RANDOM animal FILE ped3.txt FILE POS 12300 SNP FILE marker.geno PED DEPTH 0 (CO) VARIANCES 0.30

Parameter files

RENUMF90 BLUPF90 renf90.par renum.par DATAFILE DATAFILE renf90.dat phenotypes.txt NUMBER_OF_TRAITS TRAITS 1 З NUMBER_OF_EFFECTS FIELDS_PASSED TO OUTPUT 2 OBSERVATION(S) WEIGHT(S) 1 WEIGHT(S) RESIDUAL_VARIANCE EFFECTS: POSITIONS_IN_DATAFILE NUMBE 0.9038 1 cross 2 EFFECT 15800 cross з 1 cross alpha # mu RANDOM_RESIDUAL VALUES EFFECT 0.90380 2 cross alpha # animal RANDOM_GROUP RANDOM 2 animal RANDOM_TYPE add_animal FILE FILE pedigree renadd02.ped SNP FILE (CO)VARIANCES marker.geno 0.99510E-01 (CO)VARIANCES OPTION SNP_file marker.geno. 0.9951E-01

New pedigree file from RENUMF90

- 1 renumbered animal ID
- 2 parent 1 number or UPG
- 3 parent 2 number or UPG
- 4 3 minus number of known parents
- 5 known or estimated year of birth
- 6 number of known parents

if animal is genotyped 10 + number of known parents

- 7 number of records
- 8 number of progenies as parent 1
- 9 number of progenies as parent 2
- 10 original animal ID

SNP file, XrefID, and ped from renumf90

SNP File First col: original ID Second col: SNP genotypes {codes: 0,1,2, and 5 (missing)} All SNP should start in the same column!!!

SNP map file

- OPTION map_file <*file*>
 - For GWAS and QC
- Format:
 - A header must be provided
 - Names for SNP, chromosome, and physical position are mandatory
 - SNPID for SNP
 - CHR for chromosome
 - POS for position

SNPID NUM CHR POS NUM2 31428 14 7928189 ARS-BFGL-BAC-1020 2 32005 14 31819743 ARS-BFGL-BAC-10245 3 31371 14 6133529 ARS-BFGL-BAC-10345 31679 14 17544926 ARS-BFGL-BAC-10591 7 32053 14 34639444 ARS-BFGL-BAC-10867 8 31993 14 31267746 ARS-BFGL-BAC-10919 9 23506 10 18882288 ARS-BFGL-BAC-10952 10 23550 10 20609250 ARS-BFGL-BAC-10960 23566 10 21225382 ARS-BFGL-BAC-10975 12 23612 10 26527257 ARS-BFGL-BAC-10986 13 24705 10 78512500 ARS-BFGL-BAC-10993 14 24712 10 79252023 ARS-BFGL-BAC-11000 15 24732 10 80410977 ARS-BFGL-BAC-11003 16 24741 10 80783719 ARS-BFGL-BAC-11007 17 24827 10 84516867 ARS-BFGL-BAC-11025 18 25865 11 21276136 ARS-BFGL-BAC-11039 21

Saving 'clean' files

- OPTION saveCleanSNPs
- Save clean genotype data without excluded SNP and individuals
 - For example, for a SNP_file named *marker.geno*
 - Clean files will be:
 - *marker.geno*_clean
 - *marker.geno_clean_*XrefID
 - Removed SNP/animals will be output in files:
 - *marker.geno*_SNPs_removed
 - *marker.geno*_Animals_removed

Only QC in preGSf90

- preGSf90 does:
 - Quality control
 - Genomic relationship matrices and inverses
 - Inverse is costly
- How to do only QC avoiding the inverses:
 - OPTION SNP_file marker.geno
 - OPTION saveCleanSNPs
 - OPTION stop_after_quality_control

No QC in application programs

• ONLY use:

- If QC was performed in a previous run
- and "clean" genotype file is used
- OPTION SNP_file marker.geno_clean
- OPTION no_quality_control

Use in application programs

• Use renumf90 to renumber and create XrefID and files

- Run preGSf90 with quality control, saving clean files
- Run further programs with clean files as needed
 - blupf90+,gibbs2f90+,...

PreGSf90 wiki

- Performs Quality Control of SNP information
- Creates the genomic relationship matrix (G)
 - and relationships based on pedigree (A₂₂)
 - Inverse of relationship matrices

PreGSf90

• Created to construct the matrices using in ssGBLUP

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$$
$$\mathbf{G} \qquad \mathbf{G}^{-1}$$
$$\mathbf{A}_{22} \qquad \mathbf{A}_{22}^{-1}$$
$$\mathbf{G}^{-1} - \mathbf{A}_{22}^{-1}$$

Genomic Relationship Matrix - G

- Z = matrix for SNP marker
- Dimension of $Z = n^*i$
- *n* animals
- *i* markers

Genotype Codes

- 0 Homozygous
- 1 Heterozygous
- 2 Homozygous
- 5 No Call (Missing)

80	21101011002012011011010110111111211111210100
8014	21110101511101120221110111511112101112210100
516	21100101202252021120210121102111202212111101
181	21110111112201120550200020101022212211111100

PreGSf90

- Efficient methods
 - create the genomic relationship matrix and the relationship matrix based on pedigree
 - Invert the relationship matrices

- Computes statistics for the matrices
 - Means, Var, Min, Max
 - Correlations between diagonals
 - Correlations for off-diagonals
 - Correlations for the full matrices
 - Regression coefficients

Genomic Matrix default options

$$\mathbf{G_0} = \frac{\mathbf{ZZ'}}{2\sum p_i(1-p_i)} = \frac{(\mathbf{M}-\mathbf{2P})(\mathbf{M}-\mathbf{2P})'}{2\sum p_i(1-p_i)}$$

(VanRaden, 2008)

• With:

Z centered using current allele frequencies: Current genotyped animals

Genomic Matrix Options

• OPTION which freq x

- 0: read from file *freqdata* or other specified name (needs OPTION FreqFile)
- 1:0.5
- 2: current calculated from genotypes (default)
- OPTION FreqFile *file*
 - Reads allele frequencies from a file

Genomic Matrix default options

- Blending to avoid singularity problems $\mathbf{G} = 0.95^*\mathbf{G}_0 + 0.05^*\mathbf{A}_{22}$
 - OPTION AlphaBeta 0.95 0.05 #(default)
 - Beta may vary from 0.2 to 0.01

Genomic Matrix default options

• Tuning

- Adjust **G** to have mean of diagonals and off-diagonals equal to A_{22}
- OPTION tunedG 2 #(default) Chen et al. (2011)

- Base of GBLUP is *genotyped* animals
- Base of pedigree is *founders of the pedigree*
- For SSGBLUP modelled as a mean for genotyped animals
 - $-p(\boldsymbol{u}_2) = N(\mathbf{1}\mu, \mathbf{G})$
 - Integrate μ : $\mathbf{G}^* = 11'\lambda + (1 \lambda/2)\mathbf{G}$
 - $-\mu$ = (Genomic base) (Pedigree base)
 - Vitezica et al. 2011

Options for matching G to A_{22}

- OPTION tunedG x
 - 0: no adjustment
 - 1: mean(diag(G))=1, mean(offdiag(G))=0
 - 2: mean(diag(G))=mean(diag(A₂₂)), mean(offdiag(G))=mean(offdiag(A₂₂)) (default)
 - 3: mean(G)=mean(A₂₂)
 - 4: Use Fst adjustment. Powell et al. (2010) & Vitezica et al. (2011)

$$\lambda = \frac{1}{n^2} (\sum_{i} \sum_{j} \mathbf{A}_{22_{ij}} - \sum_{i} \sum_{j} \mathbf{G}_{ij}) \qquad \mathbf{G}^* = 11'\lambda + (1 - \lambda/2)\mathbf{G}$$

Storing and Reading Matrices

• preGSf90 saves $G^{-1} - A_{22}^{-1}$ by default (file: GimA22i)

To save 'raw' **G**:

- OPTION saveG [all]
 - If the optional *all* is present all intermediate **G** matrices will be saved!!!

To save G⁻¹

- OPTION saveGInverse
 - Only the final **G**, after blending, scaling, etc. is inverted !!!

To save \mathbf{A}_{22} and inverse

• OPTION saveA22 and OPTION saveA22Inverse

Saves in binary format!!!

Storing with Original IDs

- Some matrices could be stored in text files with the original IDs extracted from *renaddxx.ped* created by the RENUMF90 program (col #10)
- For example:
 - OPTION saveGOrig
 - OPTION saveDiagGOrig
 - OPTION saveHinvOrig
- Values
 - origID_i, origID_j, val

Genomic Matrix - Population structure

OPTION plotpca

Plot first two principal components to look for stratification in the population.

OPTION extra_info_pca file col

Reads from file the column col to plot with different colors for different classes.

Genomic Matrix - Population structure

Tricks to setup **G** for GBLUP #1

- Tricks are needed because preGSf90 is set up for ssGBLUP
- 1) Use a dummy pedigree

200

2) Use PED_DEPTH 1 in renumf90

- 3) Change blending parameters
 - OPTION AlphaBeta 1.00 0.00 \rightarrow G = 1.00*G + 0.00*I
 - OPTION AlphaBeta 0.95 0.05 \rightarrow G = 0.95*G + 0.05*I

4) No adjustment for compatibility with A_{22}

• OPTION tunedG 0

Tricks to setup **G** for GBLUP #2

1) In renum.par, remove any information about the pedigree. Example:

FILE

pedigree.txt

FILE_POS

1 2 3 0 0

PED_DEPTH

3

3) Change blending parameters

- OPTION AlphaBeta 1.00 0.00 → G = 1.00*G + 0.00*I
- OPTION AlphaBeta 0.95 0.05 → G = 0.95*G + 0.05*I

4) No adjustment for compatibility with A_{22}

• OPTION tunedG 0

PreGSf90 inside BLUPF90 ??

- Almost all programs from BLUPF90 support creating genomic relationship matrices
- OPTION SNP_file xxxx
- Why preGSF90 ?
 - Same genomic relationship matrix for several models, traits, etc.
 - Just do it once and store GimA22i or Gi and A22i separate

Use in application programs

• Use renumf90 for renumbering and creating of XrefID and files SNP_FILE marker.geno

• Option 1:

run blupf90+ right after renumf90

• Option 2:

run preGSf90 with quality control, saving clean files run blupf90+ with clean files