Lab 1 - BLUPF90 family of programs

Prepared by I. Aguilar & D. Lourenco

Estimation of breeding values and reliabilities

- 1. Documentation for BLUPF90 program in the wiki: https://nce.ads.uga.edu/wiki/doku.php?id=documentation#tutorial
- Browse through FAQ for blupf90 programs (<u>https://nce.ads.uga.edu/wiki/doku.php?id=faq</u>). Read information on frequent mistakes in data, pedigree, and parameter files.
- 3. Using the following example (from Mrode and Thompson, 2005 *Linear Models for Predicting Animal Breeding Value*), create data, pedigree, and parameter file to run **renumf90**. Run **renumf90**, check the log (screen), and the output files created by the program.
- 4. Run **blupf90+** to obtain solutions and reliabilities based on SE using Unix tools, and then with OPTION store_accuracy.

Reliability for animal i can also be calculated as: $Rel_i = 1 - PEV_i/VarA$ Where:

PEV is the prediction error variance (S.E. = sqrt(PEV)) VarA is the additive genetic variance

Example 3.1 Consider the following data set (Table 3.1) for the pre-weaning gain (WWG) of beef calves. The objective is to estimate the effects of sex and predict breeding values for all animals. Assume that $\sigma_a^2 = 20$ and $\sigma_e^2 = 40$; therefore $\alpha = \frac{40}{20} = 2$.

5

6

3.5

5.0

Table 3.1.	Pre-weaning gain (kg) for five beef calves.						
Calf	Sex	Sire	Dam	WWG (kg)			
4	Male	1	Unknown	4.5			
5	Female	3	2	2.9			
6	Female	1	2	3.9			

4

3

The model to describe the observations is:

Male

Male

 $y_{ij} = p_i + a_j + e_{ij}$

7

8

where: y_{ij} = the WWG of the *j*th calf of the *i*th sex, p_i = the fixed effect of the *i*th sex, a_j = random effect of the *j*th calf, and e_{ij} = random error effect. In matrix notation the model is the same as that described in equation [3.1].

Solutions from the example are:

Effects	Solutions					
Sex*		The r^2 , r and	d SEP for animals in F	xample 3.	1 are:	
1	4.358	1110 1) 1 111		indimpilo o		
2	3.404					
Animal		Animal	Diagonals of inverse	r ²	r	SEP
1	0.098	4	0.471	0.059	0.241	4 9 4 1
2	-0.019		0.471	0.056	0.241	4.341
3	-0.041	2	0.492	0.016	0.126	4.436
4	_0.009	3	0.456	0.088	0.297	4.271
5	-0.186	4	0.428	0.144	0.379	4.138
6	0.177	5	0.428	0.144	0.379	4.138
7	-0.249	6	0.442	0.116	0.341	4.205
8	0.183	7	0.442	0.116	0.341	4.205
***	famala (thusuahaut ah	8	0.422	0.156	0.395	4.109

Variance components estimation

- 5. Read documentation for **blupf90+** program in the wiki: <u>https://nce.ads.uga.edu/wiki/doku.php</u>
- 6. Parameter files for the following exercises are on the website. Download them to your laptop.
- 7. Files with *99 contain data for up to 14 traits. Parameter file exmr99s1 uses these files for a single-trait model, exmr99s2 uses for a two-trait model, and exmr99s for a three-trait model.

Estimate variance components by EM-REML and AI-REML in **blupf90+** using the parameter file exmr99s1.

Record the number of rounds and CPU time using the following command: *time blupf90+ renf90.par* | *tee reml.log*

The CPU time will be printed on the screen after the program stops.

Extend the model to 2 traits by adding the observations in column 4 (parameter file exmr99s2).

Estimate variance components for the two-trait model using EM-REML and AI-REML in **blupf90+**. Add the option to get SE for heritability and genetic correlations when running AI-REML. Look at wiki to add the correct options.

How much slower is REML and how longer are the computations in the two-trait case?

- 8. Run **gibbsf90+** for the single trait example; use the number of samples 1000 and burn-in 0. Run **postgibbsf90** with burn-in of 0; try burn-in of 200. For graphical output, **postgibbsf90** requires a plotting package GNUPLOT and X (e.g., as provided by X emulation packages: Xming in Windows or XQuartz in MacOS).
- 9. Estimate breeding values using **gibbsf90+**. Initial values should be replaced by posterior means. Check the manual to find the correct option to get EBV and SE. Use 1000 samples and burn-in of 200.

OPTIONAL

Random regression models using renumf90 and blupf90+
Parameter, data, and pedigree files (renrr.par, datrr.leg, pedrr) for this exercise are in the directory lab3_une

This data is for a random regression model using Legendre polynomials from example 7.2 of Mrode and Thompson, 2005 - *Linear Models for Predicting Animal Breeding Value*, Example 7. Look at the parameter file and identify components in the **renumf90** parameter file. Run **blupf90+** to obtain solutions.