# The data set

# Description of files:

<u>data3.txt:</u> 1: animal ID 2: generation 3: sex 4: phenotype 5: true breeding value (TBV)

ped3.txt: 1: animal ID 2: sire ID 3: dam ID

### snp3.2k:

1: animal ID 2: SNP genotype

<u>mrkmap.txt</u>:

- 1: SNP ID
- 2: Chromosome
- 3: position

- Files are available on the website. Use curl to download it to your Linux or Mac device: curl http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=lab3\_UF.zip -o lab3.zip
- 1. Run renumf90 program using renum.par parameter file to renumber the data.

 Single-step GWAS (ssGWAS): SNP effects computed based on GEBV are used to compute SNP weights or variance explained by SNP. The default way to calculate SNP weight (W) in postGSf90 is:

$$w_i = 2p_i(1-p_i)a_i^2$$

where **p** is the allele frequency and *a* is SNP effect. A new method that has better convergence properties has been recently implemented in **postGSf90**. This method is called nonlinearA and is described in VanRaden (2008) as:

$$w_i = \mathrm{CT}^{\frac{|\widehat{a}_i|}{sd(\widehat{a})} - 2}$$

where CT is a constant set to 1.125, and  $\frac{|\widehat{a_l}|}{sd(\widehat{a})}$  is capped to 5 by default. To use this method, the following option should be used in postGSf90: OPTION which\_weight nonlinearA Run postGSf90 including an option to calculate variance based on a window of 20 SNPs and an option to generate Manhattan plots. Use the default linear weight and the nonlinearA weight. Check the output files and compare results.

Hint 1: Although variance explained by SNP (SNP weight) is useful in the context of breeding and genetics, p-values can be computed to declare significance of SNP. This computation requires the inverse of the LHS of the MME (Aguilar et al., 2019 - <u>https://doi.org/10.1186/s12711-019-0469-3</u>). To obtain p-values for SNP, both blupf90 and postGSf90 should include the following option: OPTION snp\_p\_value

Hint 2: postGSf90 prints Manhattan plots on the screen and also creates files for printing in R (Sft1e2.R, Vft1e2.R, Pft1e2.R) and in Gnuplot (Sft1e2.gnuplot, Vft1e2.gnuplot and Pft1e2.gnuplo).

Hint 3: Check all the options related to GWAS here: <u>http://nce.ads.uga.edu/wiki/doku.php?id=readme.pregsf90</u>

Hint 4: Although this exercise was based on ssGBLUP, you can use the tricks from yesterday to switch to GBLUP.

 Files are available on the website. Use curl to download it to your Linux or Mac device:

curl http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=lab3\_UF.zip -o lab3.zip

1. Run renumf90 program using renum.par parameter file to renumber the data.

| DATAFILE                        |
|---------------------------------|
| data3.txt                       |
| TRAITS                          |
| 4                               |
| FIELDS_PASSED TO OUTPUT         |
| 2                               |
| WEIGHT(S)                       |
|                                 |
| RESIDUAL_VARIANCE               |
| 0.60                            |
| EFFECT                          |
| 3 cross alpha                   |
| EFFECT                          |
| 1 cross alpha                   |
| RANDOM                          |
| animal                          |
| FILE                            |
| ped3.txt                        |
| FILE_POS<br>1 2 3 0 0           |
|                                 |
| SNP_FILE<br>snp3.2k             |
| PED_DEPTH                       |
| 0                               |
| INBREEDING                      |
| pedigree                        |
| (CO)VARIANCES                   |
| 0.40                            |
| OPTION map_file mrkmap.txt      |
| of 1207 map_111C mit kindp. exc |

renum.par

Data provided: data3.txt mrkmap.txt ped3.txt snp3.2k

# Running renumf90 and saving the log file
renumf90 renum.par | tee renum.log

Run postGSf90 including an option to calculate variance based on a window of 20 SNPs and an option to generate Manhattan plots. Use the default linear weight and the nonlinearA weight. Check the output files and compare results.

## ssgblup.par

#### DATAFILE ../renf90.dat NUMBER\_OF\_TRAITS NUMBER\_OF\_EFFECTS OBSERVATION(S) 1 WEIGHT(S) EFFECTS: POSITIONS\_IN\_DATAFILE NUMBER\_OF\_LEVELS 2 cross 2 3 12010 cross RANDOM\_RESIDUAL VALUES 0.60000 RANDOM\_GROUP RANDOM\_TYPE add\_an\_upginb FILE ./renadd02.ped (CO)VARIANCES 0.40000 OPTION SNP file .../snp3.2k OPTION map\_file ../mrkmap.txt OPTION no\_quality\_control OPTION saveGInverse OPTION saveA22Inverse

## **LINEAR WEIGHTS**

# LINEAR WEIGHTS
mkdir linear ; cd linear
# Run blupf90 to save Gi, A22i and obtain solutions
cp ../renf90.par ssgblup.par . #copying and renaming

echo ssgblup.par | blupf90 | tee blup.log

Run postGSf90 including an option to calculate variance based on a window of 20 SNPs and an option to generate Manhattan plots. Use the default linear weight and the nonlinearA weight. Check the output files and compare results.

# postgs\_lin.par

# **LINEAR WEIGHTS**

| # BLUPF90 parameter file created by RENUMF90    |  |
|-------------------------------------------------|--|
| DATAFILE                                        |  |
| /renf90.dat                                     |  |
| NUMBER_OF_TRAITS                                |  |
|                                                 |  |
| NUMBER_OF_EFFECTS                               |  |
| 2                                               |  |
| OBSERVATION(S)                                  |  |
| 1                                               |  |
| WEIGHT(S)                                       |  |
|                                                 |  |
| EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS |  |
| 2 2 cross<br>3 12010 cross                      |  |
| 3 12010 cross                                   |  |
| RANDOM_RESIDUAL VALUES                          |  |
| 0.60000                                         |  |
| RANDOM_GROUP                                    |  |
| 2                                               |  |
| RANDOM_TYPE                                     |  |
| add_an_upginb                                   |  |
| FILE                                            |  |
| /renadd02.ped                                   |  |
| (CO)VARIANCES                                   |  |
| 0.40000                                         |  |
| OPTION SNP_file/snp3.2k                         |  |
| OPTION map_file/mrkmap.txt                      |  |
| OPTION no_quality_control                       |  |
| OPTION readGInverse                             |  |
| OPTTON readA22Inverse                           |  |
| OPTION Manhattan_plot                           |  |
| OPTION windows_variance 20                      |  |
|                                                 |  |

# # Run postGSf90 cp ../renf90.par postgs\_lin.par echo "OPTION Manhattan\_plot" >> postgs\_lin.par #Variance per window of 20 SNP echo "OPTION windows\_variance 20" >> postgs\_lin.par echo postgs\_lin.par | postGSf90 | tee postgs.log

#TWO Manhattan plots will be generated: -variance by snp -variance by window

#### \*\*\*\*\* TIP \*\*\*\*\*\*\*

Run postGSf90 including an option to calculate variance based on a window of 20 SNPs and an option to generate Manhattan plots. Use the default linear weight and the nonlinearA weight. Check the output files and compare results.

## ssgblup.par

#### DATAFILE ../renf90.dat NUMBER\_OF\_TRAITS NUMBER\_OF\_EFFECTS OBSERVATION(S) 1 WEIGHT(S) EFFECTS: POSITIONS\_IN\_DATAFILE NUMBER\_OF\_LEVELS 2 cross 2 3 12010 cross RANDOM\_RESIDUAL VALUES 0.60000 RANDOM\_GROUP RANDOM\_TYPE add\_an\_upginb FILE ./renadd02.ped (CO)VARIANCES 0.40000 OPTION SNP file .../snp3.2k OPTION map\_file ../mrkmap.txt OPTION no\_quality\_control OPTION saveGInverse OPTION saveA22Inverse

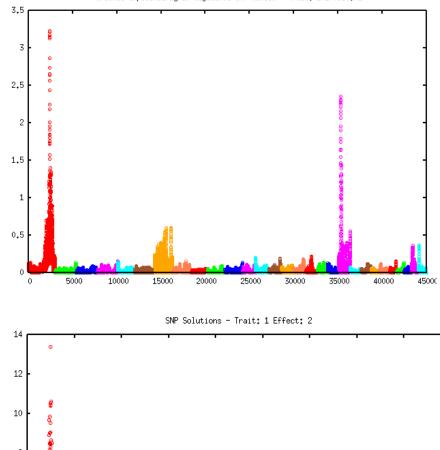
# **NONLINEAR WEIGHTS**

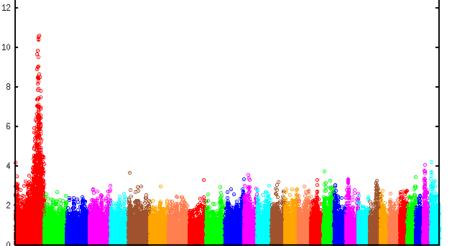
#### # NONLINEAR WEIGHTS

mkdir non\_linear ; cd non\_linear
# Run blupf90 to save Gi, A22i and obtain solutions

cp ../renf90.par/renf90.par ssgblup.par .
echo ssgblup.par | blupf90 | tee blup.log

Run postGSf90 including an option to calculate variance based on a window of 20 SNPs and an option to generate Manhattan plots. Use the default linear weight and the nonlinearA weight. Check the output files and compare results.

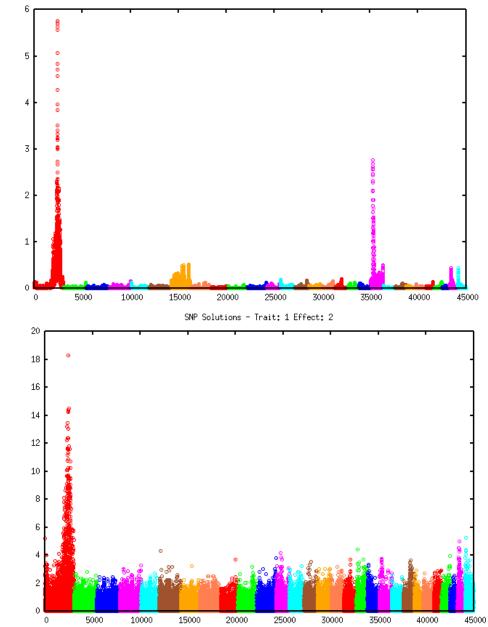

# postgs\_lin.par


# **NONLINEAR WEIGHTS**

| # DLUDEOO                                                                                                        |                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre># BLUPF90 parameter file created by RENUMF90 DATAFILE/renf90.dat NUMBER_OF_TRAITS 1 NUMBER_OF_EFFECTS</pre> | <pre># Run postGSf90 cp/ssgblup/renf90.par postgs_non.par echo "OPTION Manhattan_plot" &gt;&gt; postgs_non.par echo "OPTION windows_variance 20" &gt;&gt; postgs_non.par echo "OPTION which_weight nonlinearA" &gt;&gt; postgs_non.par</pre> |
| OBSERVATION(S)                                                                                                   | echo postgs_non.par   postGSf90   tee postgs.log                                                                                                                                                                                             |
| WEIGHT(S)                                                                                                        | ***** TIP ********<br>#The two graphs will be displayed automatically after postgsf90                                                                                                                                                        |
| EFFECTS: POSITIONS_IN_DATAFILE NUMBER_OF_LEVELS<br>2 2 cross<br>3 12010 cross                                    | #However, they can be displayed at any time using the command:<br>gnuplot Sftle2.gnuplot<br>gnuplot Vftle2.gnuplot                                                                                                                           |
| RANDOM_RESIDUAL VALUES<br>0.60000<br>RANDOM_GROUP                                                                | #The same graphs can also be displayed in R (See *.R files in the fo                                                                                                                                                                         |
| 2<br>RANDOM_TYPE<br>add_an_upginb                                                                                |                                                                                                                                                                                                                                              |
| FILE<br>/renadd02.ped<br>(CO)VARIANCES                                                                           |                                                                                                                                                                                                                                              |
| 0.40000<br>OPTION SNP file/snp3.2k<br>OPTION map_file/mrkmap.txt                                                 |                                                                                                                                                                                                                                              |
| OPTION no_quality_control<br>OPTION readGInverse                                                                 |                                                                                                                                                                                                                                              |
| OPTION readA22Inverse<br>OPTION Manhattan_plot<br>OPTION windows_variance_20                                     |                                                                                                                                                                                                                                              |
| OPTION which_weight nonlinearA                                                                                   |                                                                                                                                                                                                                                              |

# **LINEAR WEIGHTS**

Variance explained by 20 adjacents SNP window - Trait: 1 Effect: 2

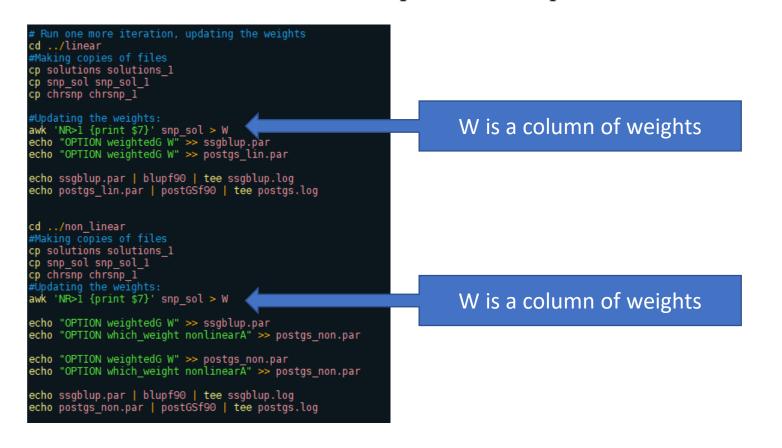







# **NONLINEAR WEIGHTS**

Variance explained by 20 adjacents SNP window - Trait: 1 Effect: 2




3. Iterative WssGBLUP: The weights computed in exercise 2 can be used to construct a weighted genomic relationship matrix  $G_w = \frac{ZDZ'}{2\sum p_i(1-p_i)}$ , and this matrix is used to compute new GEBV assuming SNP explain different proportions of variance. In this way, ssGBLUP becomes a weighted ssGBLUP (WssGBLUP). The WssGBLUP is an iterative method, where weights are used in several rounds, until there is no more change between weights in iteration t and t-1. Usually, 3 to 5 rounds are enough to obtain convergence. Run two rounds of blupf90 and postGSf90 for both linear and nonlinearA methods. Compare Manhattan plots and maximum variance explained.

Hint 1: blupf90 and postGSf90 read a file with weights for each SNP if OPTION weightedG file\_name is used. By default, all SNP have the same weight, so this file is actually a vector of dimension N x 1; where N is the number of SNP. If there are 50,000 SNP, the following command will create a vector of dimension 50,000 x 1: awk 'BEGIN {for (i==1;i<50000;i++) print 1}' > w.txt

```
Hint 2: updated weights are in column 7 of snp_sol (output from postGSf90). Use
the following Unix command to create the new weight file (dimension N x 1) to be
used in the second round of blupf90 and postGSf90.
awk '{if (1=1) print $7}' snp_sol > W
```

3. Iterative WssGBLUP: The weights computed in exercise 2 can be used to construct a weighted genomic relationship matrix  $G_w = \frac{ZDZ'}{2\sum p_i(1-p_i)}$ , and this matrix is used to compute new GEBV assuming SNP explain different proportions of variance. In this way, ssGBLUP becomes a weighted ssGBLUP (WssGBLUP). The WssGBLUP is an iterative method, where weights are used in several rounds, until there is no more change between weights in iteration t and t-1. Usually, 3 to 5 rounds are enough to obtain convergence. Run two rounds of blupf90 and postGSf90 for both linear and nonlinearA methods. Compare Manhattan plots and maximum variance explained.



3. Iterative WssGBLUP: The weights computed in exercise 2 can be used to construct a weighted genomic relationship matrix  $G_w = \frac{ZDZ'}{2\sum p_i(1-p_i)}$ , and this matrix is used to compute new GEBV assuming SNP explain different proportions of variance. In this way, ssGBLUP becomes a weighted ssGBLUP (WssGBLUP). The WssGBLUP is an iterative method, where weights are used in several rounds, until there is no more change between weights in iteration t and t-1. Usually, 3 to 5 rounds are enough to obtain convergence. Run two rounds of blupf90 and postGSf90 for both linear and nonlinearA methods. Compare Manhattan plots and maximum variance explained.

#### #Example of iteration script for WssGBLUP

```
#Use a bash file for running this loop in the server
awk 'BEGIN { for (i==1;i<45000;i++) print 1}' > W
for i in {1..2}
do
echo ssgblup.par | blupf90 | tee ssgblup.log_$i
cp solutions solutions $i
echo postgs.par | postGSf90 | tee postgs.log_$i
cp snp_sol snp_sol_$i
cp snp_sol snp_sol_$i
cp chrsnp chrsnp_$i
cp W & $i
cp Sftle2.R plots/Sftle2_$i.R
cp Vftle2.R plots/Vftle2_$i.R
awk 'NR>1 {print $7}' snp_sol > W
done
```

## Use a loop!