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Efficiency of MAS Relative to Individual 

Selection 

Lande and Thompson (1990)  

500% 
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Proportion of genetic variation explained by the markers 
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400% 

Problem: Cannot identify QTL that account for even moderate 

proportion of genetic variation with  lowly heritable traits 



Detection of QTL 

 

• Also requires phenotypic data 

• Low Heritability Traits 

– Cannot Establish Marker-QTL associations  

– MAS is Most Needed for Such Traits 

PARADOX 



Potential Solution  
 

• Genome Wide MAS (GMAS) 

– Meuwissen et al 2001 

– Uses all Markers 

– Dense 
• Every 1cM 

 

M1 Q1 M2 Q2 M3 

1CM 1CM 



Implementation (Meuwissen et al, 2001) 

• Combine All Data In 

Mixed Model 

– QTL effect Assumed 

Sampled From 

Distribution 

– Random Effect  ZGXBY
where Gi represents the genetic effect of the ith haplotype, Zi is an incidence 

matrix and has a 0, 1, 2 for the number of haplotypes of type Gi present in 

the jth animal 


i

iij GZGEBVY ˆ


Estimation 

Prediction 



Estimation 

• Requires Multiple Generations of Data 

– All Individuals  

• Genotyped at All Loci (Z matrix) 

• Phenotypes Measured for All Traits (Y Matrix) 

– As Many Traits as Desired 

• Fixed Effects (Age, Sex, Block, etc) 

– Recorded 

– (X Matrix) 

 ZGXBY



Maximum Likelihood Estimation 

of B and G 
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Assumes that genetic variance associated with each marker 

is equal to the total genetic variance divided by the total 

number of makers (Bayesian Ridge Regression) 



How Well Does it Work? 

Compare Accuracy of  

Genomic EBV (GEBV) With 

BLUP EBV (BEBV)  

Using Gene Level Simulations 



Assumptions are Critical 

• All MAS requires Linkage Disequilibrium 

(LD) 

– What is LD 

– How is it generated 



Linkage Disequilibrium 

mA 

ma 

QB 

Qb 

mA 

ma 

Qb 

QB 

Coupling Phase 

Repulsion Phase 

Genotype/Haplotype Frequency 

p(AB/ab) 

p(Ab/aB) 

LD=p(AB/ab)-p(Ab/aB) 

Any factor changing the relative frequency of coupling vs. repulsion phase 

impacts LD   



LD Generation 

• All forces that change allele frequencies 

– Mutation 

– Migration 

– Selection 

– Genetic Drift 

 



Starting Conditions 

• Hardy-Weinberg Equilibrium 

– Within and between loci 

– Generate LD by Random Drift 

• Mutation-Drift Equilibrium 

– Pre-existing LD 

– LD has not decayed from original mutation 
event 

– Dependent on mutation rates (types of 
makers) and population size  



Mutation Drift Equilibrium (MDE) 

Ne=100 Generations=1000 
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Generations of Training 

Duration and Accuracy of Prediction 

Accuracy=Correlation Between Predicted and True Breeding Value 

Generation Genotype 
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Results 



Starting in HWE Starting in MDE 

GEBV 

Accuracy with h2=.5 

N=128, Ne=16 



Starting in HWE Starting in MDE 

GEBV 

Accuracy with h2=.1 

N=128, Ne=16 



Effect of Random vs. Directional Selection 

on Accuracy 

h2=.1 N=256, Ne=32, 100/100 Marker/QTL loci distributed on 100cM.   

(average over 60 replicates, SEM=.02). 

Starting in HWE Starting in MDE 

Random Directional 
Random Directional 

Continued Random 

Continued Random 
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Alternative Approach  

Genomic Relationship Matrix 
• Assumes 

– Dense markers evenly spaced across the genome 

– Assumes markers are in LD with QTL affecting trait(s) 
of interest 

– Alike in State (AIS) alleles were at one time a result of 
a single mutation, thus IBD when traced back in 
evolutionary time 

– Each marker account for an equal proportion of 
genetic variance (infinitesimal model) 

– Genetic Effects are Normally Distributed 
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Compute (AIS) relationship matrix (G) 
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*GG A

TAk=total allelic relationship at kth locus 

TAk=2x coefficient of relationship 

(Malecot. 1948) 

2

*A

Is the additive genetic variance 

associated with the markers for 

the trait 

22

* AA  

Note: with low marker density the 

markers may not capture any 

genetic variance 
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1 2 1 2 1 2 1 2 1 2

1 2 2 1 1 1 2 1 1 2 2 1 2

2 1 2 1 2 2 2 1 2 1 1

3 1 2 1 1 1 2 1 2 1 2

4 2 2 1 1 2 2 1 1 2 1 3 4 5 6

5 2 1 1 2 2 2 1 1 2 1

6 2 2 1 1 2 2 1 1 2 1

individuals (X,Y) Total rxy

x=1 2 2 1 1 1 2 1 1 2 2

y=1 2 2 1 1 1 2 1 1 2 2

sum 4 4 2 4 4

shared alleles 2 2 1 2 2 9 1.8

x=1 2 2 1 1 1 2 1 1 2 2

y=2 1 2 1 2 2 2 1 2 1 1

sum 2 2 2 2 0

shared alleles 1 1 1 1 0 4 0.8

AIS G=GRM IBD PEDIGREE A

1 2 3 4 5 6

1 1.8 0.8 1.2 1.6 1.2 1.6 1 0 0.5 0.5 0.5 0.5

2 0.8 1.4 1 1.2 1.2 1.2 0 1 0.5 0.5 0.5 0.5

3 1.2 1 1.2 1.2 1.8 1.2 0.5 0.5 1 0.5 0.5 0.5

4 1.6 1.2 1.2 1.8 1.4 1.8 0.5 0.5 0.5 1 0.5 0.5

5 1.2 1.2 1 1.4 1.4 1.4 0.5 0.5 0.5 0.5 1 0.5

6 1.6 1.2 1.2 1.8 1.4 1.8 0.5 0.5 0.5 0.5 0.5 1

Parents assumed not related (False) Parents assumed non inbred (false) Full sibs assumed = relationship (false)

Pedigree

Individual

LOCUS

A B C D E
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G* Computed Directly from M 
22=1

1 2 1 2 1 2 1 2 1 2 12=0

1 2 2 1 1 1 2 1 1 2 2 11=-1

2 1 2 1 2 2 2 1 2 1 1

3 1 2 1 1 1 2 1 2 1 2

4 2 2 1 1 2 2 1 1 2 1

5 2 1 1 2 2 2 1 1 2 1

6 2 2 1 1 2 2 1 1 2 1

M N individuals x p markers M' p markers x N individuals

1 1 -1 0 -1 1 1 0 0 1 0 1

2 0 0 1 0 -1 -1 0 -1 -1 0 -1

3 0 -1 0 0 0 0 1 0 1 1 1

4 1 -1 1 -1 0 -1 0 0 -1 -1 -1

5 0 0 1 -1 0 1 -1 0 0 0 0

6 1 -1 1 -1 0

0.8 -0.2 0.2 0.6 0.2 0.6 1.8 0.8 1.2 1.6 1.2 1.6

-0.2 0.4 0 0.2 0.2 0.2 0.8 1.4 1 1.2 1.2 1.2

0.2 0 0.2 0.2 0 0.2 1.2 1 1.2 1.2 1 1.2

0.6 0.2 0.2 0.8 0.4 0.8 1.6 1.2 1.2 1.8 1.4 1.8

0.2 0.2 0 0.4 0.4 0.4 1.2 1.2 1 1.4 1.4 1.4

0.6 0.2 0.2 0.8 0.4 0.8 1.6 1.2 1.2 1.8 1.4 1.8

MM'/5 G*

dimension nxn Note that 1+MM'/5=G*

The are the same

Individual

LOCUS

A B C D E
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Mixed Model Equations 
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Example 
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Note, only ½ the additive genetic variance was captured by the markers 
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Y Z

7 1 0 0 0 0 0 V(A)= 5

9 0 1 0 0 0 0 V(E)= 20

10 0 0 1 0 0 0

6 0 0 0 1 0 0 X'X

9 0 0 0 0 1 0 6

11 0 0 0 0 0 1

X MM'/5 X'Y

1 0.8 -0.2 0.2 0.6 0.2 0.6 52

1 -0.2 0.4 0 0.2 0.2 0.2

1 0.2 0 0.2 0.2 0 0.2

1 0.6 0.2 0.2 0.8 0.4 0.8

1 0.2 0.2 0 0.4 0.4 0.4

1 0.6 0.2 0.2 0.8 0.4 0.8

v(A*)G*Z'X V(A*)GZ'Z+V(E)I V(A*)GZ'Y

11 24 -1 1 3 1 3 89

4 -1 22 0 1 1 1 37

4 1 0 21 1 0 1 34

15 3 1 1 24 2 4 126

8 1 1 0 2 22 2 68

15 3 1 1 4 2 24 126

6 1 1 1 1 1 1 b 52

11 24 -1 1 3 1 3 u1 89

4 -1 22 0 1 1 1 u2 37

4 1 0 21 1 0 1 u3 34

15 3 1 1 24 2 4 u4 126

8 1 1 0 2 22 2 u5 68

15 3 1 1 4 2 24 u6 126

LHS RHS

b 0.238268 -0.00798 -0.01022 -0.01037 -0.00629 -0.00886 -0.00629 52 8.762384

u1 -0.07865 0.045659 0.005799 0.001807 -0.00248 0.001686 -0.00248 89 -0.25929

u2 -0.03389 0.003561 0.047264 0.001527 -0.00087 -0.00061 -0.00087 37 0.094488

u3 -0.03092 -0.00058 0.001379 0.04919 -0.00075 0.001505 -0.00075 34 =' -0.02194

u4 =' -0.11254 -0.00078 0.003063 0.003334 0.046655 0.001074 -0.00335 126 -0.1648

u5 -0.06107 0.000807 0.000747 0.003012 -0.0015 0.048432 -0.0015 68 -0.05796

u6 -0.11254 -0.00078 0.003063 0.003334 -0.00335 0.001074 0.046655 126 -0.1648
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Equivalent Model  

Estimation of Marker effects 
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M' M

1 0 0 1 0 1 1 -1 0 -1 1

-1 0 -1 -1 0 -1 0 0 1 0 -1

0 1 0 1 1 1 0 -1 0 0 0

-1 0 0 -1 -1 -1 1 -1 1 -1 0

1 -1 0 0 0 0 0 0 1 -1 0

MM' 1 -1 1 -1 0

3 -3 2 -3 1 M'X M'Y Y X

-3 4 -2 3 -1 3 24 7 1

2 -2 4 -3 -1 -4 -34 9 1

-3 3 -3 4 -1 4 35 10 1

1 -1 -1 -1 2 -4 -33 6 1

I 0 -2 9 1

1 0 0 0 0 11 1

0 1 0 0 0

0 0 1 0 0 V(A)= 5 X'X

0 0 0 1 0 V(E)= 20 6

0 0 0 0 1

LHS RHS X'Y

6 3 -4 4 -4 0 B 52 52

3 23 -3 2 -3 1 g1 24

-4 -3 24 -2 3 -1 g2 -34

4 2 -2 24 -3 -1 g3 =' 35

-4 -3 3 -3 24 -1 g4 -33

0 1 -1 -1 -1 22 g5 -2

inverse(LHS) RHS

B 0.238268 -0.02055 0.030921 -0.03165 0.029414 0.002238 52 8.762384

g1 -0.02055 0.046795 0.002074 -0.00012 0.002068 -0.00194 24 -0.08491

g2 =' 0.030921 0.002074 0.047116 -0.00139 -0.00057 0.001958 -34 =' 0.021935

g3 -0.03165 -0.00012 -0.00139 0.047031 0.00085 0.002119 35 0.012177

g4 0.029414 0.002068 -0.00057 0.00085 0.047091 0.002059 -33 0.070134

g5 0.002238 -0.00194 0.001958 0.002119 0.002059 0.045822 -2 -0.08231

M g

u1 1 -1 0 -1 1 -0.08491 -0.25929

u2 0 0 1 0 -1 0.021935 0.094488

u3 =' 0 -1 0 0 0 0.012177 =' -0.02194 same as before

u4 1 -1 1 -1 0 0.070134 -0.1648

u5 0 0 1 -1 0 -0.08231 -0.05796

u6 1 -1 1 -1 0 -0.1648



Genomic Selection in Poultry, 

Results with Broilers and 

Comparison with Traditional 

BLUP 
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Potential Benefits 

• Reduced Generation Interval 
– Select breeders as chicks 

– Housing and feed savings 

• Increased accuracy 
– Low heritability traits 

• Alternative for difficult or expensive traits to 
measure 
– Feed efficiency 

– Carcass composition 

– Disease resistance 

– Can address animal wellbeing concerns 

 



Design of experiment 

• Lines  

– Male line 

– Female line 

• Traits of selection 

– Breast Meat (high h2) 

– Weight  (medium h2) 



Methods for estimation of breeding 

values (EBVs and GEBVs) 
• EBV’s  

– BLUP (multi-trait) 

• GEBVs 
– GBLUP (multi-trait) 

– Single Step (ssGBLUP) 
– Aguilar, I., I. Misztal, D. L. Johnson, A. Legarra, S. Tsuruta et al.  2010 Hot topic: A unified approach to 

utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. 
Journal Of Dairy Science 93: 743-752. 

– Legarra, A., I. Aguilar, and I. Misztal, 2009 A relationship matrix including full pedigree and genomic 
information. Journal Of Dairy Science 92: 4656-4663. 

– Advantages 
• Corrects for multi-trait selection bias 

– Vitezica, Z. G., I. Aguilar, I. Misztal, and A. Legarra, 2011 Bias in genomic predictions for populations under selection. Genetics 

Research 93: 357-366. 

• Utilizes records from ungenotyped animals 
– Concurrent 

– Ancestral 

 



EBVs and GEBVs combined using 

an index 

• Equal weight to all traits 

• Standardized relative to additive variance 

(standard deviation) 



GBLUP and BLUP Training 

• Two training generations  

– no selection  

– used historical phenotypes 

– Banked DNA samples  

• Numbers genotyped (GBLUP) 

– 2,500 each line 

• Phenotypes  

– BLUP and GBLUP 

– 280,000 each line 
 



Selection Program-GEBV 

• Tiered 

– Tier 1 
• 800 Genotyped and Phenotyped 

– Tier 2 
• 200 Phenotyped  

• Plays into strength of ssGBLUP 

– Uses all records 

• Only birds from Tier 1 selected  based on index 

• Number selected 

– 20 Males 

– 200 Females 

 

 



Selection Program BLUP 

• Tiered 

– Tier 1 (800) phenotyped 

– Tier 2 (200) phenotyped 

• Only birds from Tier 1 selected  based on 

index 

• Number selected 

– 20 Males 

– 200 Females 

 



Duration 

• 3 generations of selection 

• Generation 4 

– Expanded to 4,000 

– Phenotyped only 

• Progeny test of Generation 3 

• Bases for comparison between methods 



Accuracy 

• Correlation between the true and 
predicted breeding values 
– Don’t know true EBV 

• Equivalent formula 
– Legarra, A., C. Robert- Granie´, E. Manfredi, and J. 

M. Elsen. 2008. Performance of genomic selection in 
mice.  Genetics 180: 611-618 

– Chen, C. Y., I. Misztal, I. Aguilar, A. Legarra, and W. 
M. Muir, 2011 Effect of different genomic relationship 
matrices on accuracy and scale. Journal Of Animal 

Science 89: 2673-2679  

– Does not require true value of EBV to 
be known 

– Requires heritability to be known 

– Calculation of EBV does not include 
phenotypes of the generations they 
were estimated in 
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Results 

Generations 3-4 



Accuracy 

Chen, C. Y., I. Misztal, I. Aguilar, A. Legarra, and W. 

M. Muir, 2011 Effect of different genomic relationship 

matrices on accuracy and scale. Journal Of Animal 

Science 89: 2673-2679  
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Genetic Trend 

Female Line Index 
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Genetic Trend  

Male Line Index 
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Challenges 

GBLUP lines 

• Some mismatch in early generations between 
DNA  samples, pedigree, phenotypes 

• Impact 

 

– Reduced selection intensity in GBLUP lines 
• Mismatches were random 

• Proportion of those selected was therefore at random 

– Reduced accuracy in GBLUP program 
• Training and SNP effects were updated each 

generation including current generation 

• Inaccurate SNP effects (phenotype- genotype 
relationships were incorrect) 

 

 

 

aG *intensity*accuracy



Opportunities 
• Blood sampling on a large scale by farm workers in a 

chicken house. 
– Sample identification and tracking 

– Bar-coding, portable scanners and printers suitable for a 
chicken house 

• Timely pedigree checking 
– Parent and offspring pedigree checking where possible 

– Full sib pedigree checking when parent information is not 
available 

• Sample processing and genotyping to allow timely 
error checking 
– Timing is critical in chicken breeding (weeks not months) 

– Ability to keep selection candidates for pedigree 
verification if necessary 

– Space for storing selection candidates  

– Very different to cattle breeding..less space, less time 



Conclusions 

• GBLUP more accurate than BLUP 

• Genetic trends reflect increased accuracy of 
GBLUP 

• GBLUP at a minimum was able to keep up 
with BLUP 

• Quality control essential for translation of 
technology to applications 

• For some traits, especially those measured 
late in life, being as good as BLUP is good 
enough 

 

 



Conclusions 

• Results are very encouraging  

• Company will continue GBLUP program, 

particularly for 

– low heritability traits 

– Traits difficult or expensive to measure 

– Traits measured late in life cycle 

 

 


