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ABSTRACT

Fatty acid (FA) profile is one of the most important 
aspects of the nutritional properties of milk. The FA 
content in milk is affected by several factors such as 
diet, physiology, environment, and genetics. Recently, 
principal component analysis (PCA) and multivariate 
factor analysis (MFA) have been used to summarize 
the complex correlation pattern of the milk FA pro-
file by extracting a reduced number of new variables. 
In this work, the milk FA profile of a sample of 993 
Sarda breed ewes was analyzed with PCA and MFA 
to compare the ability of these 2 multivariate statisti-
cal techniques in investigating the possible existence 
of latent substructures, and in studying the influence 
of physiological and environmental effects on the new 
extracted variables. Individual scores of PCA and MFA 
were analyzed with a mixed model that included the 
fixed effects of parity, days in milking, lambing month, 
number of lambs born, altitude of flock location, and 
the random effect of flock nested within altitude. Both 
techniques detected the same number of latent variables 
(9) explaining 80% of the total variance. In general, 
PCA structures were difficult to interpret, with only 
4 principal components being associated with a clear 
meaning. Principal component 1 in particular was the 
easiest to interpret and agreed with the interpretation 
of the first factor, with both being associated with the 
FA of mammary origin. On the other hand, MFA was 
able to identify a clear structure for all the extracted 
latent variables, confirming the ability of this technique 
to group FA according to their function or metabolic 
origin. Key pathways of the milk FA metabolism were 
identified as mammary gland de novo synthesis, ruminal 
biohydrogenation, desaturation performed by stearoyl-
coenzyme A desaturase enzyme, and rumen microbial 

activity, confirming previous findings in sheep and in 
other species. In general, the new extracted variables 
were mainly affected by physiological factors as days 
in milk, parity, and lambing month; the number of 
lambs born had no effect on the new variables, and 
altitude influenced only one principal component and 
factor. Both techniques were able to summarize a larger 
amount of the original variance into a reduced number 
of variables. Moreover, factor analysis confirmed its 
ability to identify latent common factors clearly related 
to FA metabolic pathways.
Key words: fatty acids, principal components, factor 
analysis, milk

INTRODUCTION

The interest by the scientific community and con-
sumers in the nutritional and health-related properties 
of milk and dairy products has increased over the last 
decades. Strategies for improving the milk content of 
some categories of fatty acids (FA) considered benefi-
cial for human health, such as PUFA and CLA, have 
been developed. Most of them rely on feeding manage-
ment (Dewhurst et al., 2006; Toral et al., 2010; Nudda 
et al., 2014) with diet being one of the most important 
factors affecting milk FA profile (Nudda et al., 2014). 
However, other factors such as physiology (De La 
Fuente et al., 2009), environment (Sevi et al., 2002), 
and genetics (Carta et al., 2008; Correddu et al., 2019) 
can affect milk FA composition. Thus, for example, ge-
nomic strategies to improve milk FA profile have been 
also proposed (Cesarani et al., 2019; Gebreyesus et al., 
2019).

The elucidation of FA metabolic pathways and the 
knowledge of factors affecting their regulation are of 
great interest for improving milk nutritional proper-
ties. In particular, the complex phenotypic and genetic 
correlation pattern existing among individual milk FA 
hampers the modification of FA profile via feeding and 
genetic strategies (Cecchinato et al., 2019). Dimension-
reduction multivariate statistical methods have been 
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suggested for investigating such a complex correlation 
network. In particular, principal component analysis 
(PCA; Fievez et al., 2003; Kadegowda et al., 2008) and 
multivariate factor analysis (MFA; Mele et al., 2016; 
Correddu et al., 2017; Palombo et al., 2020) have been 
used to highlight common metabolic pathways of FA in 
ruminant species.

Being both based on the factorization of the covari-
ance or correlation matrix, and on the representation 
of the multivariate system with a lower number of new 
variables, PCA and MFA appear somewhat similar. 
However, the way the factorization is carried out dif-
fers between the 2 techniques. Principal component 
analysis is a model-free approach aimed at compress-
ing the variance of the system in a smaller number of 
new variables. On the other hand, MFA starts from a 
model of the covariance structure of the multivariate 
system. In particular, the factor model assumes that 
the covariance of a system could be partitioned in a 
component shared by all the variables (communality) 
plus a component specific of each variable (uniqueness). 
Multivariate factor analysis aims at investigating the 
covariance structure of the system by identifying a set 
of common latent variables (factors) that generate the 
quota of shared covariance among the original variables 
(Morrison et al., 1976; Krzanowski, 2000).

Principal component analysis of cattle milk FA com-
position was able to assess the relationship between in-
dividual milk FA and diet-induced milk fat depression 
(Kadegowda et al., 2008), and to investigate metabolic 
relationships among milk FA and to describe their ori-
gin (Fievez et al., 2003). Principal component analysis 
has been also used to analyze meat FA profile to differ-
entiate lamb meat according to their origin (Díaz et al., 
2005), and to study the relationship between quality 
traits of carcass and meat of light lamb (Cañeque et 
al., 2014). Multivariate factor analysis was successfully 
exploited to elucidate relationship between milk FA in 
dairy cows (Conte et al., 2016; Mele et al., 2016), sheep 
(Palombo et al., 2020), and buffalo (Correddu et al., 
2017).

The use of the 2 methods on the same data may pro-
vide different and complementary results. In a study of 
cattle lactation curve traits, for example, PCA was able 
to extract from the correlation matrix of test day re-
cords 2 new variables related to the whole lactation and 
to the shape of the lactation curve, respectively. On the 
same data, MFA generates 2 latent factors related to 
the first and the second part of lactation, respectively 
(Macciotta et al., 2006).

The aim of this work was to compare results of MFA 
and PCA in the analysis of milk FA profile in sheep to 
assess their ability to investigate the complex correla-
tion pattern that exists among these variables.

MATERIALS AND METHODS

Animals and Milk Samples

The study was carried out on individual milk samples 
of 993 Sarda dairy ewes farmed in 48 flocks located in 
the island of Sardinia (Italy). Individual milk samples 
(one per sheep) were collected from April to July 2014, 
during the morning milking, by the Provincial Associa-
tion of Animal Breeders. The FA profile of the milk 
samples was measured using GC as previously described 
(Correddu et al., 2017).

Statistical Analysis

Data for a total of 49 individual FA (expressed as 
g/100 g of total FA) were analyzed with PCA and MFA 
using SAS PRINCOMP and FACTOR procedures, re-
spectively (SAS Institute Inc., Cary, NC). The number 
of principal components (PC) to retain was defined ac-
cording to the amount of explained variance (≥80%). In 
MFA, the number of factors to be extracted was based 
on their eigenvalue (>1; Morrison et al., 1976), on their 
readability in terms of relationships with the original 
variables and biological meaning, and on the amount of 
explained variance. Factor interpretation was improved 
through a VARIMAX rotation. The VARIMAX is an 
orthogonal rotation, based on the maximization of the 
sum of squares of factor loadings (Kaiser, 1958; Forina 
et al., 1989).

Scores of PC and factors were then calculated for 
each of the 993 ewes and treated as new phenotypes.

The PC and factor scores were analyzed with the 
following mixed linear model:

	 yijklmno = μ + PARj + DIMk + LMl + LBm + ALTn 	  

+ f(ALT)o + eijklmno,

where yijklmno was the principal component or factor 
score; μ was the overall mean; PAR is the fixed effect of 
the jth parity class (8 classes from 1 to >7); DIM is the 
fixed effect the kth days in milking interval (5 intervals: 
<110, 110 to 140, 141 to 170, 171 to 200, and >200); 
LM is the fixed effect of the lth class of lambing month 
(1: January; 2: February and March; 3: October and 
November; 4: December); LB is the fixed effect of the 
mth number of lambs born (2 classes: single and mul-
tiple birth); ALT is the fixed effect of the nth altitude 
of location of flocks (mountain >500 m above sea level, 
hill ≤500 and ≥200 m above sea level, and plain <200 
m above sea level). Finally, f(ALT) is the random effect 
of the oth flock nested within the nth class of altitude, 
and eijklmno is the residual term. Covariance matrices for 
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random effects were Iσf ALT( )
2  and Iσe

2,  where I is an 

identity matrix and σf ALT( )
2  and σe

2  are the variance 

components associated with the effect of the flock 
nested within the altitude and with the residuals, re-
spectively.

The contribution of the flock nested within the alti-
tude factor (r2

f(ALT)) was calculated as

	 .r2
2

2 2
f ALT
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RESULTS AND DISCUSSION

Descriptive statistics of detailed milk FA composi-
tion of the 993 samples of sheep milk are reported in 
Supplemental Table S1 (https:​/​/​doi​.org/​10​.3168/​jds​
.2020​-19087).

Principal Component Analysis

Nine out of 49 PC were able to explain about 80% of 
the total variance of the system (Table 1). The variance 
explained ranged from about 25% for PC1 to about 
3% for PC9, respectively. The PC scores are often used 
in dispersion plots to highlight possible clustering or 
trends in the observations. In the present work, no 
clear clustering of observations has been detected in 
the space of the first 2 PC, even though an overlapped 
stratification according to parity (Figure 1a) or DIM 
class (Figure 1b) could be appreciated. However, when 
the number of carbons and the level of unsaturation 
were used to highlight possible effects on the PC load-
ings, a partial clustering was observed. In Figure 2 the 
PC1 and PC2 scores were classified based on 4 classes 
of quartile distribution of the mean carbon chain length 
and mean of unsaturation level, calculated according to 
Kaylegian et al. (2009). An effect of carbon chain length 
classes can be observed on the PC1 scores (Figure 2a) 
that is able to separate, even if not in a clear manner, 
animals with milk FA profile characterized by different 
means of carbon chain length. Animals belonging to the 
class with the lower levels of carbon chain length had 
lower scores PC1; as the levels of carbon chain length 
increased, the animals exhibited increasing PC1 scores. 
The effect of the mean of unsaturation level was less 
evident in separating animals across the PC2 scores 
(Figure 2b).

The analysis of eigenvector structure is a way for 
assigning a meaning to the extracted PC in terms of 
relationship with the original variables. In the present 

study, the interpretation of the extracted PC on the 
basis of their eigenvectors (Table 1) was rather diffi-
cult. The correlation circles (Figure 3) are often used 
to assess the meaning of the PC, by looking for specific 
clusters among the original variables in the new space 
of the PC, and to interpret the relationship between 
the variables and the extracted PC. Indeed, in Figure 3 
the considered FA are represented by their correlation 
with the first 2 extracted PC. These correlations are 
approximated by the angle between the vectors, with 
small angles indicating positive correlations and angles 
close to 180 degrees indicating negative correlations. 
However, in the present work no clear clustering was 
observed among original variables based on the PC 
loadings (as an example see the loadings plot of the 
first 2 PC in Figure 3).

Considering a threshold of ≥0.20 (absolute value), 
half of the FA exhibited coefficients exceeding this 
value in at least 2/3 different PC, whereas 4 FA showed 
no loading >0.20 for any extracted PCA (Table 1). 
This was particularly true for PC4, PC5, PC7, and 
PC9. An interpretation was attempted for the other 
PC, even if caution should be taken for the interpreta-
tion of the PC6 and PC8 due to the low percentage of 
their explained variance (5.27 and 2.89%, respectively).

The first PC (PC1, variance explained 25.06%) pre-
sented the highest loadings for most of the short- and 
medium-chain FA (negatives), some iso FA, C18:1 
cis-9, and long-chain SFA (positives). That is in ac-
cordance with the effect of carbon chain length on 
the PC scores, above discussed. Most of these FA are 
totally or partially synthetized in the mammary gland 
(Chilliard et al., 2000). Therefore, animals that have 
large PC1 scores are characterized by a higher content 
of FA of mammary gland origin; thus, this PC could be 
considered as an index of FA synthesis in this organ. As 
an example, Figure 4 reports the averages of some milk 
FA of animals classified according to PC1 score classes 
(based on PC1 score distribution quartiles). It can be 
seen that the average concentration of FA with larger 
negative loadings on PC1 (e.g., C10:0) decreases across 
PC1 classes, whereas the FA with positive loadings 
(e.g., C18:1 cis-9) exhibit the opposite trend. Finally, 
FA with a loading close to zero (e.g., C16:0) do not show 
a clear pattern. The PC scores could therefore be used 
as a new individual synthetic phenotype that character-
izes animals on the basis of the FA of mammary gland 
origin. The high positive loadings for PC1 showed by 
C20:0, C18:1 cis-9, and iso C17:0 are also represented 
in Figure 3, which shows a positive correlation between 
these FA and PC1. Correlations between C20:0, C18:1 
cis-9, and iso C17:0 and PC1 were 0.86, 0.80, and 0.75, 
respectively. On the contrary, C8:0, C10:0, C12:0, and 
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C6:0 are negatively correlated with PC1 (Table 1 and 
Figure 3): correlations between these FA and PC1 were 
−0.82, −0.84, −0.80, and −0.77, respectively.

The PC2 (variance explained 15.06%) had high 
negative loadings on anteiso C13:0, C14:0, C16:0, C14:1 
cis-9, C16:1 cis-9, and C18:​3n​-6 and positives on some 

biohydrogenation (BH) products and C18:​3n​-3 (Table 
1 and Figure 3). The association with FA of different 
origin and metabolic pathways does not allow us to 
assign a clear meaning to this PC. The only feature 
shared by FA associated with this PC is their relation-
ship with diet quality, especially with the use of graz-
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Table 1. Eigenvectors, eigenvalues, and percentage of variance explained of the first 9 principal components (PC) extracted from the correlation 
matrix of the 49 fatty acids

Fatty acid1

PC

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

C4:0 −0.054 0.143 0.006 −0.205* 0.123 0.041 −0.287* −0.160 0.099
C6:0 −0.219* 0.039 0.119 −0.099 0.239* 0.031 −0.036 −0.062 0.054
C8:0 −0.233* 0.009 0.124 −0.033 0.237* 0.011 0.052 −0.047 0.013
C10:0 −0.239* −0.044 0.124 0.015 0.216* −0.005 0.110 −0.006 0.036
C10:1 −0.189 −0.074 0.044 0.101 0.095 −0.035 0.103 0.116 0.005
C11:0 −0.201* −0.173 0.102 0.167 0.068 −0.010 0.042 0.056 −0.048
C12:0 −0.228* −0.094 0.109 0.068 0.190 −0.022 0.151 0.045 0.019
iso C13:0 0.192 0.019 0.113 −0.114 −0.042 −0.072 0.099 0.137 0.143
anteiso C13:0 −0.094 −0.246* 0.071 0.217* −0.029 −0.051 0.096 0.181 −0.032
iso C14:0 0.198 −0.008 0.155 0.096 0.054 −0.100 −0.065 0.013 0.281*
C14:0 −0.170 −0.206* 0.092 0.005 0.011 −0.021 0.091 0.198 0.174
iso C15:0 0.210* 0.044 0.134 0.030 0.024 −0.213* 0.033 0.063 0.004
anteiso C15:0 0.090 0.128 0.198 0.193 0.101 −0.278* −0.057 0.041 −0.027
C14:1 cis-9 −0.011 −0.288* −0.010 0.188 −0.199 −0.010 −0.022 0.172 −0.008
C15:0 0.019 0.049 0.224* 0.275* 0.040 −0.098 −0.019 0.110 0.146
iso C16:0 0.151 0.048 0.130 0.186 0.180 −0.137 −0.149 0.059 0.136
C16:0 0.038 −0.245* −0.001 −0.118 −0.199 0.087 −0.147 0.031 0.249*
iso C17:0 0.214* 0.035 −0.035 0.092 0.183 −0.131 0.032 0.025 −0.207*
C16:1 trans-9 −0.114 0.213 0.023 0.106 −0.202* −0.180 0.077 −0.311* 0.147
anteiso C17:0 0.127 0.105 0.096 0.241* 0.249* −0.148 −0.060 −0.014 −0.211*
C16:1 cis-9 0.039 −0.248* −0.024 0.194 −0.289* 0.018 −0.108 0.036 −0.103
C17:0 0.126 0.052 0.212* 0.205* 0.127 0.120 0.088 0.014 0.037
C17:1 cis-9 0.133 −0.103 0.076 0.281* −0.147 0.032 −0.022 −0.083 −0.196
C18:0 0.155 0.191 −0.021 −0.212* 0.160 −0.078 0.107 0.109 −0.158
C18:1 trans-4 0.096 0.030 −0.246* −0.041 0.107 −0.015 0.245* 0.202* 0.147
C18:1 trans-5 0.054 0.027 −0.263* 0.031 0.119 0.007 0.274* 0.117 0.185
C18:1 trans-6+8 0.030 0.038 −0.344* 0.106 0.060 −0.087 0.147 0.056 0.116
C18:1 trans-9 0.025 0.064 −0.339* 0.107 0.002 −0.121 0.121 0.008 0.067
C18:1 trans-10 −0.007 −0.013 −0.245* 0.194 0.086 −0.003 0.093 −0.066 0.131
C18:1 trans-11 −0.122 0.233* −0.033 0.104 −0.138 −0.214* 0.081 −0.263* 0.186
C18:1 trans-13+t14 −0.154 0.216* −0.080 0.125 0.088 0.117 −0.154 0.156 0.001
C18:1 cis-9 0.229* −0.018 −0.089 −0.012 −0.100 −0.030 −0.012 −0.059 −0.336*
C18:1 cis-12 0.071 −0.043 −0.294* 0.095 0.126 0.089 −0.090 0.032 0.037
C18:1 trans-16+cis-14 −0.090 0.284* −0.073 0.056 0.064 0.117 −0.160 0.210* −0.128
C18:2 trans-9,trans-12 −0.030 0.013 −0.159 0.253* 0.033 0.152 0.031 0.001 0.205*
C18:2 cis-9,trans-13 −0.139 0.162 −0.101 0.253* −0.091 0.119 −0.166 0.124 −0.174
C18:2 cis-9,trans-12 −0.087 0.192 −0.139 0.190 −0.012 0.143 −0.197 0.176 −0.121
C18:​2n​-6 0.093 −0.056 −0.063 0.149 0.133 0.312* −0.249* −0.268* 0.134
C20:0 0.245* 0.003 0.010 −0.020 −0.015 0.034 −0.018 0.157 0.172
C18:​3n​-6 0.020 −0.205* −0.001 0.076 0.193 0.118 −0.103 −0.150 0.125
C18:​3n​-3 −0.105 0.212* 0.105 0.015 −0.150 0.289* −0.066 0.072 0.129
C18:2 cis-9,trans-11 −0.111 0.150 −0.027 0.193 −0.267* −0.224* 0.076 −0.306* 0.085
C22:0 0.205* 0.114 0.119 0.019 −0.070 0.102 −0.102 0.142 0.267*
C20:​3n​-6 0.144 −0.121 −0.044 0.090 0.213* 0.131 0.001 −0.280* 0.027
C20:​4n​-6 0.153 −0.160 −0.019 0.064 0.193 0.141 0.059 −0.326* −0.077
C20:​5n​-3 (EPA) −0.039 0.176 0.169 0.088 −0.104 0.259* 0.277* −0.004 −0.028
C24:0 0.189 0.147 0.127 −0.002 −0.066 0.118 −0.070 0.092 0.205*
C22:​5n​-3 (DPA) 0.090 0.137 0.150 0.064 −0.069 0.299* 0.367* −0.072 −0.087
C22:​6n​-3 (DHA) 0.120 0.044 0.098 0.022 −0.052 0.313* 0.346* −0.043 −0.081
Eigenvalues 12.28 7.38 6.55 3.84 2.61 2.58 1.53 1.42 1.26
Variance explained (%) 25.06 15.06 13.37 7.83 5.32 5.27 3.13 2.89 2.57
1EPA = eicosapentaenoic acid; DPA = docosapentaenoic acid; DHA = docosahexaenoic acid.
*A number with an asterisk indicates the absolute value of eigenvectors ≥0.2 that has been considered the threshold for the association between 
a original variable to the considered PC.
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ing. In dairy cattle (Fievez et al., 2003) the 2 first PC 
were mostly associated with FA belonging to 4 groups. 
Two included FA that originate in the mammary gland 
from de novo synthesis or desaturase activity; the other 
2 consist of FA produced in the rumen from BH activ-
ity or from microbial synthesis.

The PC3 (variance explained 13.37%) presented high 
positive loadings for C15:0 and C17:0, and negative for 
several positional isomers of trans C18:1 and on C181 
cis-12, respectively. This PC could be related to the FA 
BH processes occurring in the rumen (Shingfield et al., 
2010). The PC3 had also high loadings on some odd- 
and branched-chain FA (OBCFA) of microbial origin. 
The OBCFA profile has been proposed as a useful tool 
to predict shifts in microbial population associated in 
particular with the diet (Vlaeminck et al., 2006). The 
PC6 (variance explained 5.27%) showed the largest 
positive loadings for PUFA n-3 (DHA, DPA C18:​3n​-3, 
EPA) and C18:​2n​-6, but negative loadings for C18:1 

trans-11 and C18:2 cis-9,trans-11 [i.e., the substrates 
(with positive loadings) and products (with negative 
loadings) of ruminal FA BH]. This pattern is confirmed 
by the correlations between these FA and PC; positive 
correlations were observed for C18:​2n​-6 (0.51), DHA 
(0.50), DPA (0.48), C18:​3n​-3 (0.46), and EPA (0.42), 
but negative correlations for C18:2 cis-9,trans-11 
(−0.36) and C18:1 trans-11 (−0.34). The FA profile of 
animals that have large PC6 scores is characterized by 
low content in PUFA and high content in 2 of their BH 
products. Thus, PC6 could be considered as an indicator 
of PUFA BH activity in the rumen: the lower the PC6 
scores the higher the BH activity. The PC8 (variance 
explained 2.89%) had large positive loadings on C14:0, 
C18:​1trans​-4, and 18:1 trans-16+cis-14, and negative 
on C16:1 trans-9, C18:​1trans​-11, C18:​2n​-6, C18:​2cis​-9​
,trans​-11, C20:​3n​-6, and C20:​4n​-6 (negatives). Consid-
ering the high loadings exhibited by PUFA n-6 and 
by the main products of the BH of C18:​2n​-6 (C18:1 
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Figure 1. Plots of the scores for the first 2 principal components 
(Prin1 and Prin2; variance explained: 25.06% and 15.06%, respective-
ly) of animals belonging to different classes of DIM (from 1 to 5 in 
panel a, and averaged in mid and late lactation in panel b).

Figure 2. Plots of the scores for the first 2 principal components 
(Prin1 and Prin2; variance explained: 25.06% and 15.06%, respec-
tively) of animals belonging to different classes (from 1 to 4) of mean 
carbon chain length (a) and of mean unsaturation level (b).
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trans-11 and C18:2 cis-9,trans-11), this PCA could be 
interpreted as an indicator of PUFA n-6 in the diet.

In previous studies on milk FA, PCA was effective 
in grouping animals according to diet they were fed 
(Bernard et al., 2009; Correddu et al., 2016). Principal 
component analysis was also applied on lamb meat FA 
to differentiate animals according to their geographical 
origin (Díaz et al., 2005), or to study the relationship 
between quality traits of carcass and meat of light lambs 
(Cañeque et al., 2004). Such a different discriminating 
power among studies could be ascribed to the amount 
of variance accounted for by the first 2 PC: 40% in the 
present study and 90% in the paper of Correddu et al. 
(2016).

Factor Analysis

The suitability of the data set to the theoretical as-
sumptions of the MFA was assessed through the cal-
culation of the Kaiser measure of sampling adequacy 
(MSA). This index estimates the decrease of partial 
correlations compared with Pearson correlations be-
tween the observed variables. In the present work, the 
measure of sampling adequacy was 0.75, close to the 
value of 0.80 indicated as the optimal threshold for the 
suitability of a data set to MFA (Cerny and Kaiser, 
1977). This result was similar to previous reports on 
the use of MFA on milk FA profile (Mele et al., 2016; 
Correddu et al., 2017). Nine factors able to explain 
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Figure 3. Correlation circle. Plot of the loadings of the 2 principal components (Prin1 and Prin2; variance explained: 25.06% and 15.06%, 
respectively).
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about 80% of the total variance of the system were 
extracted (Table 2). The pattern of explained variance 
across the different factors was smoother compared 
with PC (Table 1).

The communality of original variables was on average 
0.81 (±0.11), similar to the value reported for buffalo 
(0.79; Correddu et al., 2017) and higher than in cattle 
(0.69; Conte et al., 2016; Mele et al., 2016). The 2 FA 
with the lowest value of communality (0.54 for C18:2 
trans-9,trans-12 and C18:​3n​-6) were the same as re-
ported in a work on buffalo (C18:2 trans-9,trans-12 and 
C18:​3n​-6; Correddu et al., 2017). Therefore, in both 
species, these 2 FA are characterized by about 50% 
of independent variation. Largest communalities, in 
agreement with previous studies, have been found for 
short- and medium-chain SFA (e.g., C6:0, C8:0, C10:0, 
C12:0), associated with the first or second latent fac-
tor. The high values observed for these FA, and the 
agreement among studies, confirm that the variability 
of these FA is mostly related to a unique metabolic 
pathway, similar among species.

The adequateness of the factor model for fitting the 
FA correlation matrix was confirmed by the simple 
structure of the rotated pattern (Morrison, 1976). In 
particular, each factor showed large loadings with few 
variables and small loadings with the other variables 
(Table 2), respectively. Each variable had a large load-
ing in only one factor, with only one exception (C16:0). 
In total, 42 out of 49 FA exhibited a loading value 
≥0.60, considered as an empirical threshold for declar-
ing a variable associated with a factor (Macciotta et al., 
2015). The statistical difference of each factor loading 
from 0.60 was tested according to Browne et al. (2008).

The first latent factor (F1) was positively correlated 
with short- and medium-chain FA (apart from C4:0 
and C16:0) and negatively with C18:1 cis-9 and some 
long-chain SFA (C20:0, C22:0, and C24:0). Thus, it was 
considered an index of “mammary gland FA synthesis.” 
A peculiarity of F1 is its structural similarity with PC1. 
A concordance between the results of the first PC and 
the first factor extracted from the same data set was 
observed in a study on body conformation traits in 
cows (Olasege et al., 2019). The F1 structure partially 
agrees with previous studies where it was associated 
with mammary gland ability to maintain an optimal 
milk fat fluidity and with the FA neosynthesis (Conte et 
al., 2016; Correddu et al., 2017; Palombo et al., 2020). 
The negative loadings of F1 for long-chain SFA (C20:0, 
C22:0, and C24:0) was not observed in previous studies. 
In a recent investigation on Comisana sheep, they were 
associated with a factor interpreted as branched fatty 
acid metabolism (Palombo et al., 2020). In cows they 
were associated with a different factor together with 
other saturated and unsaturated long-chain FA (Conte 
et al., 2016; Mele et al., 2016), whereas in buffalo they 
characterized a specific factor (Correddu et al., 2017). 
These results could be partially explained by the sam-
pling effect. However, some differences among species 
could exist, especially related to the farming system.

Being positively associated with the odd, iso, and 
anteiso FA (except iso C13:0), F2 was named OBCFA. 
These FA are almost completely synthesized by rumen 
microorganisms (Vlaeminck et al., 2006). This result is 
in agreement with a previous report on sheep (Palombo 
et al., 2020), whereas 2 distinct factors associated 
with odd-chain FA (OCFA) and branched-chain FA 
(BCFA) were found in cattle and buffalo (Conte et 
al., 2016; Correddu et al., 2017). The relative milk con-
centration of these FA depends on the composition of 
the microbial population (Vlaeminck et al., 2006). The 
diet, especially its forage to concentrate ratio, is one 
of the main factors affecting the relative abundance 
of microbial populations. Thus, feeding management 
could affect the proportions of OCFA and BCFA in 
milk. Sheep involved in the present study are farmed in 
the typical Mediterranean semi-extensive systems with 
pasture as main feeding source (Macciotta et al., 1999; 
Molle et al., 2007). Under these conditions, forage to 
concentrate ratio in the diet should be approximately 
similar in the various flocks and, therefore, also the 
rumen microbial composition to a certain extent. As 
a consequence, the correlation pattern of all OBCFA 
is similar, and the underling pathway of variation is 
summarized in one unique latent factor.

Factor 3 and 4 were positively associated with all 
isomers of C18:1 and C18:2 originating from the rumi-
nal BH of PUFA, with the exception of C18:1 trans-11 
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Figure 4. Relationship between fatty acid (FA) concentration (%) 
and principal component (PC) 1 scores for 3 FA: C10:0, C16:0, and 
C18:1 cis-9, chosen as representative FA with negative, close to zero, 
and positive loadings for PC1, respectively.
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(vaccenic acid) and C18:2 cis-9,trans-11 (rumenic acid). 
In particular, F3 was associated with trans isomer of 
C18:1 from the fourth to the tenth position, C18:​1cis​
-12, and to a lesser extent, with C18:2 trans-9,trans-12. 

Factor 4 was associated with trans isomer of C18:1 from 
the 13th to the 16th position, C18:2 cis-9,trans-12, 
C18:2 cis-9,trans-13, and C18:3 cis-9,cis-12,cis-15 (C18:​
3n​-3, α-linolenic acid, LNA). Although it is very dif-
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Table 2. Rotated factor pattern and communality

Fatty acid1

Factor2

Com3F1 F2 F3 F4 F5 F6 F7 F8 F9

C12:0 0.95* −0.06 −0.11 0.03 0.06 0.02 −0.01 −0.06 −0.03 0.94
C10:0 0.95* −0.08 −0.19 0.06 −0.11 0.06 0.00 −0.06 −0.01 0.96
C8:0 0.87* −0.09 −0.24 0.12 −0.28 0.07 −0.01 −0.05 −0.03 0.93
C11:0 0.83* −0.05 −0.17 0.06 0.41 0.01 −0.08 0.03 −0.03 0.91
C6:0 0.77* −0.13 −0.29 0.14 −0.42 0.05 −0.05 −0.03 0.05 0.89
C10:1 0.73* −0.06 0.00 0.12 0.17 0.04 −0.05 −0.12 −0.01 0.59
C14:0 0.73* −0.17 −0.12 −0.17 0.35 −0.13 −0.11 −0.14 0.25 0.83
iso C13:0 −0.48 0.36 −0.08 −0.41 −0.08 −0.20 0.18 −0.18 0.17 0.68
C24:0 −0.58 0.45 −0.15 0.01 −0.18 −0.08 0.35 0.01 0.32 0.82
C22:0 −0.60* 0.49 −0.11 −0.02 −0.10 −0.13 0.29 0.03 0.40 0.88
C20:0 −0.66* 0.37 0.14 −0.25 0.02 −0.31 0.13 0.07 0.21 0.82
C18:1 cis-9 −0.79* 0.10 0.11 −0.18 0.16 −0.18 0.02 0.10 −0.37 0.88
anteiso C15:0 −0.08 0.86* −0.19 0.01 −0.06 0.20 0.01 −0.14 −0.13 0.85
iso C16:0 −0.20 0.81* −0.03 −0.05 −0.02 −0.06 −0.04 0.16 0.06 0.73
anteiso C17:0 −0.15 0.80* 0.02 0.12 −0.07 −0.01 0.04 0.14 −0.38 0.84
C15:0 0.19 0.72* −0.20 0.10 0.19 0.16 0.16 −0.03 0.14 0.72
iso C14:0 −0.35 0.69* −0.08 −0.33 0.06 −0.07 0.07 0.15 0.24 0.82
C17:0 −0.07 0.67* −0.16 −0.02 0.05 −0.10 0.48 0.22 0.03 0.76
iso C15:0 −0.47 0.66* −0.08 −0.34 −0.02 −0.07 0.07 −0.12 −0.07 0.81
iso C17:0 −0.48 0.53 0.26 −0.14 −0.05 −0.22 0.00 0.11 −0.37 0.80
C18:1 trans-6 + 8 −0.18 −0.12 0.89* 0.14 0.00 0.10 −0.19 0.02 −0.08 0.92
C18:1 trans-9 −0.23 −0.14 0.83* 0.17 0.00 0.21 −0.21 −0.02 −0.13 0.90
C18:1 trans-5 −0.13 −0.08 0.82* −0.02 −0.10 −0.08 0.03 0.00 0.02 0.71
C18:1 trans-4 −0.27 −0.05 0.76* −0.08 −0.14 −0.21 0.01 −0.10 0.02 0.73
C18:1 trans-10 0.04 −0.06 0.68* 0.15 0.13 0.15 −0.11 0.25 −0.05 0.60
C18:1 cis-12 −0.25 −0.12 0.65* 0.18 0.07 −0.20 −0.22 0.35 −0.05 0.75
C18:2 trans-9,trans-12 0.11 0.00 0.49 0.34 0.19 0.13 0.08 0.29 0.15 0.54
C18:2 cis-9,trans-13 0.16 −0.08 0.11 0.87* 0.11 0.27 0.03 −0.06 −0.07 0.90
C18:2 cis-9,trans-12 0.01 −0.04 0.22 0.86* −0.07 0.13 0.00 −0.03 −0.02 0.81
C18:1 trans-16 + cis-14 0.02 0.02 0.09 0.82* −0.41 0.08 0.08 −0.21 −0.03 0.91
C18:1 trans-13 + trans-14 0.29 −0.03 0.14 0.80* −0.29 0.17 0.01 −0.09 0.07 0.86
C18:​3n​-3 0.09 −0.11 −0.30 0.56 −0.23 0.21 0.43 −0.12 0.36 0.85
C14:1 cis-9 0.14 −0.08 0.02 −0.14 0.88* −0.16 −0.16 0.07 0.10 0.89
C16:1 cis-9 −0.14 −0.10 −0.07 −0.09 0.88* −0.05 −0.14 0.17 0.01 0.87
C12:1 cis-9 0.55 0.06 −0.02 −0.10 0.71* −0.12 −0.08 0.00 0.00 0.84
C17:1 cis-9 −0.30 0.35 −0.11 −0.04 0.62* 0.02 0.18 0.28 −0.19 0.75
C18:0 −0.50 0.22 0.13 −0.10 −0.61* −0.23 0.13 −0.27 −0.23 0.89
C4:0 0.00 −0.14 −0.23 0.17 −0.63* 0.07 −0.19 0.08 0.13 0.57
C18:2 cis-9,trans-11 0.08 0.00 0.04 0.22 0.09 0.92* −0.02 −0.17 −0.05 0.93
C16:1 trans-9 0.10 0.02 −0.05 0.21 −0.17 0.88* 0.07 −0.19 0.03 0.91
C18:1 trans-11 0.13 0.03 0.11 0.25 −0.26 0.86* −0.01 −0.22 0.03 0.95
C22:​5n​-3 (DPA) −0.20 0.17 −0.12 0.03 −0.08 0.04 0.88* 0.03 −0.05 0.87
C22:​6n​-3 (DHA) −0.25 0.07 −0.04 −0.11 0.02 −0.15 0.77* 0.12 −0.03 0.71
C20:​5n​-3 (EPA) 0.11 0.09 −0.23 0.27 −0.10 0.20 0.75* −0.12 0.07 0.78
C18:​2n​-6 −0.20 0.06 0.10 0.14 0.06 −0.13 0.06 0.80* 0.13 0.76
C20:​4n​-6 −0.18 0.12 0.12 −0.39 0.13 −0.25 0.13 0.67* −0.24 0.81
C20:​3n​-6 −0.18 0.17 0.20 −0.28 0.07 −0.21 0.07 0.66* −0.13 0.68
C18:​3n​-6 0.21 0.03 0.04 −0.22 0.20 −0.25 −0.12 0.56 0.07 0.54
C16:0 −0.05 −0.07 −0.04 −0.04 0.06 0.00 −0.07 0.04 0.42* 0.75
Eigenvalue 8.92 5.47 4.79 4.74 4.70 3.47 3.04 2.81 1.53  
Variance explained (%) 17.62 10.80 9.46 9.36 9.29 6.86 6.00 5.54 3.01  
1EPA = eicosapentaenoic acid; DPA = docosapentaenoic acid; DHA = docosahexaenoic acid. 
2F1 = mammary gland FA synthesis; F2 = odd- and branched-chain fatty acids; F3 = biohydrogenation; F4 = LNA (α-linolenic acid) BH; F5 
= desaturase; F6 = CLA; F7 = n-3; F8 = n-6; F9 = C16.
3Communality.
*Absolute value of factor loadings ≥0.60 that were considered significant for the interpretation of the factor pattern.
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ficult to unequivocally ascertain the metabolic origin 
of a specific minor BH intermediate (Shingfield et al., 
2010), the separation of these FA into 2 different latent 
factors can suggest different metabolic pathways un-
derlying the BH of PUFA. In particular, FA associated 
with the 3th factor are often produced in the rumen 
during the BH process of C18:2 cis-9,cis-12 (C18:​2n​
-6, linoleic acid; Shingfield et al., 2010). This result is 
in agreement with a previous report in cattle where an 
association of C18:​2n​-6 and its intermediate products 
in the same latent factor was found (Mele et al., 2016). 
In the present study C18:2 cis-9,cis-12 was not associ-
ated with F3 and, consequently, we decided to assign 
the generic name of BH. Considering the association of 
C18:​3n​-3 and of some of its ruminal BH intermediates 
with the F4, this factor was named LNA-BH. Almost 
all FA here found to be associated with F3 and F4 were 
found in a single latent factor, together with vaccenic 
and rumenic acids, in previous studies on cattle, buf-
falo, and sheep (Conte et al., 2016; Correddu et al., 
2017; Palombo et al., 2020).

The fifth latent factor was named desaturase, being 
positively associated with some products of stearoyl 
CoA desaturase (SCD) activity (C12:1 cis-9, C14:1 cis-
9, C16:1 cis-9, and C17:1 cis-9) and negatively with the 
preferred substrate of this enzyme (C18:0). The other 
SCD products, C18:1 cis-9 and C18:2 cis-9,trans-11, 
were highly correlated with the first and seventh latent 
factors, respectively. This result is in agreement with 
previous investigations in buffalo (Correddu et al., 
2017) and, partially, in cattle (Conte et al., 2016; Mele 
et al., 2016), where the C17:1 cis-9 was not associated 
with the factor related to SCD activity, but with the 
same factor including C18:1 cis-9. Results of the pres-
ent study are also in partial agreement with a previous 
report in sheep (Palombo et al., 2020). However, in this 
study the C17:1 cis-9 did not correlate with any factor. 
Interestingly, the desaturase factor presented a high 
loading value for C4:0 (−0.63), which is different from 
previous studies where this FA was associated with a 
factor of C6:0 (Mele et al., 2016), or was not associated 
with any factor (Conte et al., 2016; Correddu et al., 
2017).

Factor 6 was named CLA because it showed large 
correlations with C18:2 cis-9,trans-11 (rumenic acid) 
and C18:1 trans-11 (vaccenic acid). It was associated 
with synthesis of the most abundant and important 
milk CLA isomer (C18:2 cis-9,trans-11) operated by 
the SCD in the mammary gland. Rumenic and vac-
cenic acids are of great importance in the nutritional 
quality of milk (Banni et al., 2003) and much research 
has been aimed at finding strategies for increasing 
their concentration (Chilliard et al., 2001; Nudda et 
al., 2014). The milk of animals with higher CLA factor 

scores is richer in these FA, with an improvement of its 
nutritional value. The partition of the SCD products 
into 3 different factors is in agreement with the work 
of Mele et al. (2016), which explained this result with 
the chain length and the unsaturation degree of the 
substrate on SCD activity. Conversely, rumenic and 
vaccenic acids were associated with the BH factor in 
Comisana sheep (Palombo et al., 2020). In the present 
study also C16:1 trans-9 was correlated with the CLA 
factor. A similar result, even though to a lesser extent, 
was reported by Mele et al. (2016). In another work, 
it was correlated with the factor associated with the 
long-chain FA (Conte et al., 2016).

The seventh and eighth latent factors were named 
n-3 and n-6 as they were positively correlated with 
FA of the PUFA n-3 family and the PUFA n-6 family, 
respectively. The extraction of 2 different factors for 
PUFA n-3 and PUFA n-6 is in agreement with a recent 
report on buffalo (Correddu et al., 2017), whereas in 
cattle they were associated with a unique latent factor 
(Conte et al., 2016; Mele et al., 2016). This result could 
arise from differences in the metabolism of these FA, 
in particular from the capacity to promote C18:​3n​-3 
and C18:​2n​-6 elongation, or differences in the dietary 
concentration of these 2 FA (Correddu et al., 2016). 
Although their milk concentration is not high (0.5% of 
total FA, n-3 + n-6 excluding C18:​3n​-3 and C18:​2n​-6), 
these FA have great nutritional importance (Connor, 
2000). In particular high concentrations of PUFA along 
with a low n-6 to n-3 ratio are considered important for 
good health and normal development in humans (Si-
mopoulos, 2002). The ninth factor explained 3% of the 
total variance and did not show relevant loading values.

Mixed-Model Analysis

Results of the mixed-model analysis carried out on 
the individual scores of the 9 PC and of the 9 extracted 
factors are reported in Table 3.

Principal Components

On average, the contribution of the flock to the PC 
variance was around 46%, with the highest value exhib-
ited by PC3 (69%) and the lowest by PC8 (31%). The 
high contribution of the flock to the variance of PC3 
could arise from the great influence of environmental 
factors such as diet, climate, and farming practices on 
the ruminal microbial environment (Henderson et al., 
2015), which, in turn, influences the FA BH process 
and the production of OBCFA. For similar reasons, a 
low contribution of flock to the PC8 variance was not 
expected, with this PC being interpreted as an indica-
tor of PUFA n-6 in the diet.

Correddu et al.: MULTIVARIATE ANALYSIS OF MILK FATTY ACIDS



5088

Journal of Dairy Science Vol. 104 No. 4, 2021

The DIM class significantly affected PC1, PC2, and 
PC9 (Table 3). Least squares means of PC1 scores ex-
hibited an increasing trend across lactation stages (Fig-
ure 5). This trend underlines a reduction in de novo FA 
synthesis as the lactation proceeds (they have negative 
loadings) together with an increase of C18:​1cis​-9 syn-
thesis, in agreement with the reports of Timmen and 
Patton (1988). Although the same trend was observed 
for PC9, its scores of this PC were lower compared 

with PC1. Whereas the PC2 showed an opposite pat-
tern (Figure 5).

Parity significantly affected PC1, PC5, PC6, and PC8. 
First lambing ewes exhibited the largest least squares 
mean of PC1 scores (Table 4), which was statistically 
different from later parities. The PC5 scores decreased 
across parities, even if with some fluctuations. Scores 
of PC6 decreased from the first to the fifth parity and 
then increased until the seventh, whereas PC8 showed 
the opposite behavior (Table 4). Interestingly, the effect 
of parity on PC6 underlines a high concentration of 
both n-3 and n-6 PUFA in primiparous sheep, followed 
by a decrease in the intermediate parities and then 
by an increase in the last parities. Similarly to other 
milk composition traits, FA profile is affected by parity 
due to changes in energy and overall metabolism of 
the ewes as the lactation number proceeds (González-
García et al., 2015). The results of the present study 
partially agree with previous research that found higher 
proportions of more desirable FA in milk of first parity 
compared with later parities both in sheep and cows 
(Mierlita et al., 2011; Bilal et al., 2014). The larger con-
tent of favorable FA especially in first-parity animals 
is also in agreement with the pattern of PC8 scores 
(Table 4).

The lambing month significantly affected PC1, PC5, 
PC6, and PC9. Scores for all these PC, except from 
PC6 (Figure 6), were negative from October to De-
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Table 3. Effect of DIM, parity, month, and number of lambs born, and altitude of flock on the 9 principal components and 9 latent factors

Item

P-value

r2
f(ALT)

1DIM Parity
Lambing 
month

Lambs 
born Altitude

Principal component (PC)            
  PC1 <0.001* <0.001* <0.001* 0.683 0.469 0.53
  PC2 <0.001* 0.647 0.413 0.213 0.831 0.53
  PC3 0.762 0.635 0.249 0.267 0.545 0.69
  PC4 0.067 0.157 0.072 0.934 0.407 0.36
  PC5 0.195 0.008* 0.006* 0.177 0.343 0.42
  PC6 0.153 0.006* 0.029* 0.744 0.526 0.51
  PC7 0.187 0.180 0.469 0.079 0.156 0.39
  PC8 0.186 0.018* 0.691 0.209 0.938 0.31
  PC9 0.032* 0.688 <0.001* 0.337 0.042* 0.37
Latent factor (F)2            
  F1: Mammary FA synthesis <0.001* 0.022* <0.001* 0.860 0.921 0.43
  F2: OBCFA <0.001* <0.001* <0.001* 0.559 0.907 0.49
  F3: Biohydrogenation 0.137 0.800 0.025* 0.486 0.596 0.53
  F4: LNA-BH <0.001* 0.588 <0.001* 0.059 0.222 0.39
  F5: Desaturase <0.001* 0.614 0.143 0.187 0.425 0.25
  F6: CLA <0.001* 0.209 0.002* 0.350 0.583 0.40
  F7: n-3 0.062 0.001* 0.213 0.140 0.445 0.55
  F8: n-6 0.122 0.007* <0.001* 0.901 0.501 0.50
  F9: C16 0.004* 0.500 0.016* 0.175 0.031* 0.52
1r2

f(ALT) = proportion of variance explained by the random effect of flock.
2FA, fatty acid; BCFA = odd- and branched-chain fatty acids; LNA-BH = α-linolenic acid (C18:3 cis-9,cis-12,cis-15) biohydrogenation; n-3 = 
PUFA belonging to the n-3 family; n-6 = PUFA belonging to the n-6 family; C16 = palmitic acid (C16:0).
*P < 0.05.

Figure 5. Least squares means of principal component (PC) 1, 
PC2, and PC9 scores for classes of DIM.
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cember and positive from January to March. The PC1 
exhibited larger absolute values in comparison to PC5 
and PC9. Altitude of location of flock affected only 
PC9 scores, with a decreasing trend passing from plain 
to mountain. The number of lambs born did not affect 
any of the 9 PC.

Latent Factors

Results of the mixed-model analysis factor scores are 
reported in Table 3. On average, the contribution of 
the flock effect to the total variance was 45%, with 
the highest values for the n-3 (55%) and the lowest 
for the desaturase (25%) factors, respectively. This 
finding is consistent with the larger effect of environ-
mental and management factors on the milk content of 
FA arising from the diet (i.e., PUFA) compared with 
those of endogen production (i.e., MUFA produced by 
delta-9 desaturase; Stoop et al., 2008; Correddu et al., 

2019). According to the high value observed for PC3, 
the OBCFA and BH factors exhibited high values of 
variance explained by the flock effect (0.49 and 0.53, 
respectively).

The number of lambs born and the altitude of flock 
location did not affect any of the extracted factors. The 
DIM significantly affected mammary activity, OBCFA, 
LNA-BH, desaturase, and CLA factor scores. In partic-
ular least squares means for scores of mammary activ-
ity, LNA-BH, and CLA decreased along the lactation, 
whereas OBCFA and desaturase exhibited an opposite 
trend (Figure 7). The effect of DIM class on the mam-
mary activity factor confirmed results obtained for PC1. 
The higher contents of de novo FA and lower of C18:1 
cis-9 in early compared with late lactation evidenced 
by F1 pattern (Figure 7) are in agreement with previ-
ous reports in buffalo (Correddu et al., 2017). In dairy 
cows, a different behavior was observed (Conte et al., 
2016; Mele et al., 2016). Such differences could be par-
tially ascribed to differences in the metabolism among 
species, even if the data distribution along the lactation 
should also be considered. In the typical Mediterranean 
sheep farming system, the milk of the first month of 
lactation is suckled by the lamb. Thus, milk tests con-
sidered in the present work were available only from 45 
d after parturition. The lack of data for the first month 
could have therefore hampered the modeling of a trend 
of FA metabolic pathway in early lactation. Lactation 
patterns of LNA-BH and CLA factors evidenced a 
trend similar to mammary gland FA synthesis. Such a 
decreasing pattern underlined a higher activity of LNA 
ruminal BH and of CLA synthesis (due to the increase 
of SCD substrate C18:1 trans-11) in the first part of 
lactation compared with the last part. This finding was 
in agreement to that observed for the PC2, and it could 
be explained by the high content of C18:​3n​-3 in spring 
Mediterranean pastures (Cabiddu et al., 2005), which 
tends to decrease as in late spring-summer. The pattern 
of the desaturase factor underlines an increasing SCD 
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Table 4. Least squares means (±SE) of the principal components affected by parity

Parity

Principal component (PC)

PC1 PC51 PC6 PC8

1 1.98a ± 0.45 0.54 ± 0.21 0.29a ± 0.23 −0.09ab ± 0.15
2 0.60b ± 0.45 0.30 ± 0.21 0.03ab ± 0.23 0.10ab ± 0.16
3 0.30b ± 0.44 0.44 ± 0.21 −0.26ab ± 0.23 0.08ab ± 0.15
4 0.53b ± 0.44 0.34 ± 0.20 −0.27b ± 0.23 0.27a ± 0.15
5 0.47b ± 0.45 0.28 ± 0.21 −0.28ab ± 0.23 0.07ab ± 0.16
6 0.42b ± 0.46 0.02 ± 0.22 −0.03ab ± 0.24 −0.04ab ± 0.16
7 0.56b ± 0.49 −0.03 ± 0.24 0.16ab ± 0.26 −0.20b ± 0.18
8 0.49ab ± 0.64 −0.35 ± 0.32 −0.17ab ± 0.34 −0.32ab ± 0.26
a,bLeast squares means with different superscript letters within a column differ (P < 0.05).
1Although PC5 was significantly affected by parity, differences among contrasts did not reach statistical sig-
nificance (α = 0.05).

Figure 6. Least squares means of principal component (PC) 1, 
PC5, PC6, and PC9 scores for different lambing months. Errors bars 
indicate SEM.
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activity as the lactation proceeds, as observed in cattle 
and buffalo (Mele et al., 2016; Correddu et al., 2017). 
According to Mele et al. (2016), the increasing trend 
of OBCFA factor along the lactation can be related to 
the variation of forage to concentrate ratio. A higher 
amount of concentrate is usually provided in early 
lactation to meet energy needs of the animals; as the 
lactation proceeds, there is an increase of the propor-
tion of forages in the diet resulting in an increase of FA 
produced by the ruminal microorganism, in particular 
by cellulolytic bacteria (Vlaeminck et al., 2006). Higher 
scores for BCFA factors were observed in cows fed a 
diet with a higher percentage of forage (Conte et al., 
2016).

Parity had a significant effect on mammary activity, 
OBCFA, n-3, and n-6. Mammary activity exhibited an 
increasing trend from first to third parity (Table 5) and 
then decreased until the 8 parity. The OBCFA scores 
were rather constant from the first to the fourth parity 
and then rapidly decrease in the seventh and eighth 
parities. The n-3 and n-6 factors showed a similar wav-
ing pattern (Table 5). There is a lack of consensus on the 
effect parity on latent factors extracted from milk FA. 
Some works evidenced a large effect (Mele et al., 2016), 
whereas others showed a minor or no effect (Conte et 
al., 2016; Correddu et al., 2017). The effect of parity on 
milk FA is mainly due to the larger PUFA content in 
primiparous compared with pluriparous animals, which 
exhibit a higher amount of SFA. These figures have been 
observed both in cows and sheep (Mierlita et al., 2011; 
Bilal et al., 2014). Differences between parities in the 
extent of tissue mobilization and in the content of FA 
synthase in the mammary gland, as well as the rumen 
microflora, can partially explain the effect of parity on 
milk FA (Miller et al., 2006; Friggens et al., 2007). In 
the present work, first lambing animals exhibited lower 
scores for mammary activity, and higher for n-3 and 
n-6 factors, respectively. Scores of the OBCFA factor 

underlined a decreasing pattern of ruminal derived FA 
with age, as previously reported in cows and buffalo 
(Mele et al., 2016; Correddu et al., 2017).

The month of lambing significantly influenced (P < 
0.05) all the latent factors, except for desaturase and 
n-3. Mammary activity, LNA-BH, and CLA factors 
exhibited positive scores for lambings occurring from 
October to December and negative scores for those 
from January to March, respectively (Figure 8). An 
opposite trend could be observed for OBCFA, BH, and 
n-6. Sheep lambing is strictly seasonal; thus, the evalu-
ation of the effect of lambing month on a productive 
response has a different meaning in comparison, for 
example, with dairy cattle.

In the typical farming system of Sarda sheep there 
is a confounding between lambing season, production 
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Figure 7. Least squares means of mammary fatty acid (FA) syn-
thesis, odd- and branched-chain fatty acid (OBCFA), linolenic acid 
biohydrogenation (LNA-BH), desaturase, and CLA factor scores for 
classes of DIM.

Table 5. Least squares means (±SE) of the latent factors affected by parity

Parity

Latent factor1

Mammary FA 
synthesis OBCFA n-3 n-6

1 −0.37b ± 0.13 0.23ab ± 0.14 0.09ab ± 0.14 0.35a ± 0.14
2 −0.06ab ± 0.13 0.15ab ± 0.15 −0.03abc ± 0.14 0.11ab ± 0.14
3 0.04a ± 0.13 0.23a ± 0.14 −0.24c ± 0.14 0.08ab ± 0.13
4 −0.04ab ± 0.13 0.21a ± 0.14 −0.21bc ± 0.14 −0.07b ± 0.13
5 −0.08ab ± 0.13 0.08abc ± 0.15 −0.15abc ± 0.14 −0.05b ± 0.14
6 −0.10ab ± 0.14 −0.01abc ± 0.15 0.05a ± 0.15 0.01ab ± 0.14
7 −0.16ab ± 0.15 −0.15bc ± 0.16 0.06abc ± 0.16 0.15ab ± 0.15
8 −0.29ab ± 0.20 −0.45c ± 0.21 −0.14abc ± 0.20 −0.01ab ± 0.20
a–cLeast squares means with different superscript letters within a column differ (P < 0.05).
1OBCFA = odd- and branched-chain fatty acids; n-3 = PUFA belonging to the n-3 family; n-6 = PUFA be-
longing to the n-6 family.
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season, and parity. Pluriparous ewes lamb in late fall-
early winter, whereas first-parity animals lamb in late 
winter-early spring. Regardless their parity order, the 
ewes are generally dried off at the beginning of sum-
mer. As a consequence, the number of autumn lambing 
ewes is larger, and they also have longer lactations. 
Autumn-lambing sheep were sampled in late lactation, 
whereas winter-lambing sheep were sampled in mid lac-
tation. Thus, the effects on FA profile of the physiologi-
cal condition of the animal (stage of lactation, parity) 
and of the environment (mainly pasture quality) on the 
FA profile are difficult to disentangle. For example, the 
larger scores for mammary activity found in autumn 
lambing sheep reflect higher activity of the mammary 
gland in the FA synthesis in late lactation, whereas 
winter lambing sheep showed higher content of FA de-
rived from body reserve mobilization in early lactation 
to meet energy requirements. The lower scores of LNA-
BH and CLA factors observed in milk of sheep lambing 
in winter underline a lower activity of rumen LNA BH, 
which results in low milk contents of LNA and its BH 
intermediates, C18:1 trans-11 and C18:2 cis-9,trans-11. 
This pattern reflects, probably, the lower quality of 
pastures in late spring compared with late winter-early 
spring. This finding has interesting implications on the 
quality of milk in relationship to the season of lamb-
ing and to the availability of high-quality pasture, evi-
dencing higher content of desired FA in milk of sheep 
lambed in autumn.

Comparison of the 2 Techniques

The comparison of the 2 different dimension-reduc-
tion methods for analyzing the FA profile of sheep milk 
provided interesting insights to assess the usefulness of 
these 2 multivariate techniques in deciphering complex 
correlation patterns and in generating new phenotypes 
that could be further used for management or genetic 
purposes.

The continuous development of analytical technology 
has remarkably increased the number of potentially 
detectable FA. Thus, the number of original variables 
investigated in the present research was larger in com-
parison with studies carried out some years ago. In 
many cases, the newly measured FA were probably not 
distinguishable from other FA in the previous analyses. 
Instead of being a simple addition of new variables, 
this increase of system dimensionality may have added 
further complexity to the correlation structure of FA. 
Both PCA and MFA were able to summarize the 49 
dimensions of the original multivariate system with 9 
new axes that accounted for about 80% of the original 
variance. Some authors suggest that, when the number 
of original variables is large, PC and factors tend to 
coincide (Schneeweiss and Mathes, 1995). However, in 
the present study, some differences have been found in 
the meaning of the extracted variables.

In general, PCA structures were difficult to interpret, 
also in comparison with previous research on milk FA 
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Figure 8. Least squares means of mammary fatty acid synthesis, odd- and branched-chain fatty acid (OBCFA), biohydrogenation, linolenic 
acid biohydrogenation (LNA-BH), CLA, and n-6 factor scores for different lambing months. PC = principal component. Errors bars indicate 
SEM.
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profile. On the other hand, in spite of the large number 
of starting variables, MFA was able to identify a clear 
structure of the extracted latent variables through the 
factor pattern rotation. In particular, the ability of this 
technique to group FA according to their function or 
metabolic origin was confirmed. In agreement with pre-
vious works carried out in other ruminant species, MFA 
identified key pathways of the milk FA metabolism, 
as mammary gland de novo synthesis, ruminal BH, 
desaturation performed by SCD enzyme, and rumen 
microbial activity, that control a relevant quota (80%) 
of the complex correlation pattern among individual 
FA.

Some partial concordances between the 2 techniques 
have been observed. Both PC1 and F1 were related to 
the FA of mammary origin, and the correlation between 
their scores (Table 6) was rather large (about −0.80). A 
latent variable related to mammary gland FA synthesis 
able to explain the largest amount of variance was also 
obtained in other studies (Mele et al., 2016; Palombo et 
al., 2020). These results suggest the hypothesis of a role 
of the main driving force in regulating milk FA (co)vari-
ance patterns for the mammary FA synthesis pathway. 
Other large correlations were observed between F9 and 
PC9 (−0.87), BH factor (F3), and PC3 (−0.76), n-3 
factor (F7), and PC7 (−0.66). This amount of covaria-
tion among PC and factors arise from the fact that both 
techniques start from the factorization of the correla-
tion matrix. On the other hand, differences still remain 
due to the different assumptions on the covariance of 
the system. This fact, together with the possibility of 
rotating the factor pattern to improve its interpreta-
tion, provides more power to the MFA in identifying 
the real dimensions of milk FA profile system.

Principal component analysis confirmed its ability in 
reducing the dimension of the system, but it was not 
able to efficiently discriminate observations. It has to 
be considered that the animal sample of the present 
study was taken from commercial flocks where no spe-
cific experimental treatments were applied. Previous 

studies where PCA was able to distinguish clusters of 
observations were usually feeding trials where experi-
mental diets aimed at modifying milk FA composition 
were tested. These treatments may have therefore 
enhanced differences between animals and emphasized 
the clustering of observations in the PC space.

A major criticism of MFA is the indeterminacy of 
its solutions and the lack of robustness against outliers 
(Wang et al., 2017). However, it should be pointed out 
that the various studies on the use of MFA for analyz-
ing milk FA, carried out in different species and under 
different experimental conditions, led to very similar 
results. Such a consistency across studies could be con-
sidered as a proof for the adequacy of the MFA model 
to fit the covariance structure of milk FA composition.

Individual scores of latent factors extracted from the 
correlation matrix of FA were able to discriminate cows 
farmed in herds with different feeding management 
(Mele et al., 2016). They could therefore be used as 
synthetic indicators of milk FA metabolism for manage-
ment purposes. Moreover, genetic parameters of latent 
factors have been estimated in dairy cattle (Cecchinato 
et al., 2019). Some latent variables, such as the one 
related to the activity of the SCD factor, showed mod-
erate heritability (0.31), thus suggesting a possible use 
of factor scores as novel phenotypes in breeding plans. 
Instead of being considered simple traits, factor scores 
should be regarded as aggregate phenotypes and their 
inclusion as breeding goals should be aimed at improv-
ing milk nutritional quality through the modification of 
specific metabolic pathways.

CONCLUSIONS

The 2 multivariate statistical techniques used in this 
study were able to efficiently summarize the milk FA 
profile of sheep with a reduced number of new variables. 
However, due to the partitioning of the variance in a 
large number of extracted variables, PCA was not able 
to distinguish stratification in the considered sample of 
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Table 6. Correlation matrix between the scores of principal components (PC) and latent factors

Factor1 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

F1: Mammary FA synthesis −0.78*** −0.25*** 0.24*** 0.16*** 0.43*** −0.03NS 0.23*** 0.05NS 0.11***
F2: OBCFA 0.41*** 0.21*** 0.45*** 0.51*** 0.37*** −0.36*** −0.07* 0.18*** 0.13***
F3: Biohydrogenation 0.12*** 0.04NS −0.76*** 0.25*** 0.25*** −0.09** 0.42*** 0.16*** 0.26***
F4: LNA-BH −0.32*** 0.50*** −0.20*** 0.40*** −0.05NS 0.35*** −0.43*** 0.30*** −0.23***
F5: Desaturase 0.03NS −0.61*** 0.01NS 0.55*** −0.51*** −0.01NS 0.04NS 0.20*** −0.13***
F6: CLA −0.26*** 0.37*** −0.02NS 0.29*** −0.42*** −0.36*** 0.11*** −0.60*** 0.22***
F7: n-3 0.14*** 0.26*** 0.31*** 0.12*** −0.12*** 0.59*** 0.66*** −0.03NS −0.05NS

F8: n-6 0.18*** −0.27*** −0.10** 0.28*** 0.34*** 0.45*** −0.31*** −0.62*** 0.12***
F9, — −0.04NS −0.01NS 0.11*** −0.09NS −0.23*** 0.24*** −0.20*** 0.26*** 0.87***
1OBCFA = odd- and branched-chain fatty acids; BH = biohydrogenation; LNA-BH = linolenic acid biohydrogenation.
NS > 0.05; * < 0.05; ** < 0.01; *** < 0.001.
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animals. On the other hand, the MFA revealed the ex-
istence of latent factors controlling the correlation pat-
tern of milk FA. In particular, some independent factors 
were associated with metabolic pathways involved in 
the synthesis and modification of milk FA, both in the 
mammary gland and in the rumen. Moreover, essential 
FA of dietary origin (PUFA n-3 and PUFA n-6) were 
associated with 2 independent factors, confirming diet 
as an important factor affecting milk FA profile. The 
results of the mixed linear model showed a weak influ-
ence of the fixed effects on the extracted factors. The 
clear meaning of the extracted latent factors suggests 
their possible role as novel phenotypes for breeding and 
management purposes.
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