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ABSTRACT

Genome-wide selection aims to predict genetic merit
of individuals by estimating the effect of chromosome
segments on phenotypes using dense single nucleotide
polymorphism (SNP) marker maps. In the present pa-
per, principal component analysis was used to reduce
the number of predictors in the estimation of genomic
breeding values for a simulated population. Principal
component extraction was carried out either using all
markers available or separately for each chromosome.
Priors of predictor variance were based on their con-
tribution to the total SNP correlation structure. The
principal component approach yielded the same ac-
curacy of predicted genomic breeding values obtained
with the regression using SNP genotypes directly, with
a reduction in the number of predictors of about 96%
and computation time of 99%. Although these accu-
racies are lower than those currently achieved with
Bayesian methods, at least for simulated data, the im-
proved calculation speed together with the possibility of
extracting principal components directly on individual
chromosomes may represent an interesting option for
predicting genomic breeding values in real data with a
large number of SNP. The use of phenotypes as depen-
dent variable instead of conventional breeding values
resulted in more reliable estimates, thus supporting
the current strategies adopted in research programs of
genomic selection in livestock.
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INTRODUCTION

Marker assisted selection programs had limited com-
mercial applications until the early 2000s because of the
fact that most of reported marker-QTL associations had
been found within families but were in linkage equilib-
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rium across the population (Hayes and Goddard, 2001;
Dekkers, 2004; Khatkar et al., 2004). The availability
of genome-wide dense marker maps for several animal
species has recently allowed the prediction of genomic
breeding values (GEBV) by estimating marker hap-
lotype effects on phenotypes (Meuwissen et al., 2001;
Goddard and Hayes, 2007). Genome-wide selection
relies on highly dense markers whose effects on pheno-
types are estimated on a training population and then
used to calculate GEBV for both training individuals
and animals with only marker genotypes available (for
example, young animals without phenotypes or EBV).
A reduction in generation interval, an increase of ac-
curacy in the cow side of the pedigree, and a decrease
of selection costs are the expected advantages of an ef-
ficient genome-wide selection over traditional selection
(Schaeffer, 2006; Konig et al., 2009).

High density SNP maps fulfill the basic requirement
of genome-wide selection (i.e., the analysis of genome
bits having large and persisting population-wide linkage
disequilibrium; Muir, 2007). However, the use of dense
marker platforms results in a large number of effects to
be estimated (many thousands) in comparison with the
relatively small number of phenotypes available (often
just a few thousand). Such data asymmetry raises sev-
eral statistical issues, such as collinearity among pre-
dictors and multiple testing (Gianola and van Kaam,
2008). To cope with such a problem, several methods of
reduction of the number of predictors without a large
decrease in accuracy have been proposed.

Selection of relevant SNP by single marker regression
on phenotypes may improve results in genome-wide as-
sociation studies (Aulchenko et al., 2007; Long et al.,
2007), but it leads to a decrease of GEBV accuracy
(Meuwissen et al., 2001). Bayesian methods that select
SNP by evaluating their individual contribution to the
variance of the trait, such Bayes B method (Meuwissen
et al., 2001; Fernando et al., 2007; VanRaden, 2008),
usually give best GEBV accuracies when simulated
data with few QTL are modeled. However, results on
actual data indicate that BLUP estimation, which as-
sumes an equal contribution of all marker intervals to
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the genetic variance, performs only slightly worse than
Bayesian methods in GEBV prediction (Hayes et al.,
2009; VanRaden et al., 2009). Moreover in all the above-
mentioned techniques, markers are selected according
to their relevance on the variability of the phenotype
analyzed. Consequently, specific sets of markers may be
required for different traits (Habier et al., 2009).

Multivariate dimension reduction techniques may of-
fer an alternative approach based on the evaluation of
the contribution of each marker locus to the total SNP
(co)variance structure. Principal component analysis
(PCA) has been used for analyzing complex genetic
patterns in human genetics (Cavalli Sforza and Feldman,
2003; Paschou et al., 2007) and for selecting markers in
genome-wide association studies. Solberg et al. (2009)
used PCA and partial least squares regression to reduce
the dimensionality of predictors in genomic selection.
Both PCA and partial least squares regression showed
comparable accuracies with Bayes B when lower marker
densities were fitted, whereas the gap between methods
increased with the number of markers used. Solberg et
al. (2009) concluded that reduction in computational
complexity provided by multivariate methods did not
counterbalance their lower accuracy compared with
Bayes B. Such considerations are justified by the low
cost of calculation time and by the computational speed
that can be provided by optimized techniques such as
parallel computing. On the other hand, it is reasonable
to expect that denser SNP platforms will be available
very soon for livestock species and dimensionality will
again represent a relevant problem.

In their proposal, Solberg et al. (2009) regressed phe-
notypes on principal component (PC) scores extracted
from the SNP matrix using the single value decomposi-
tion approach with an assumption of equal variance of
each PC score. The choice of priors of marker effects
represents a crucial point for genomic models (de los
Campos et al., 2009). On the other hand, the ordinary
method for calculating PC relies on the eigenvalues of
the correlation matrix of starting variables that mea-
sure the contribution of each PC to the original vari-
ance of predictors. Thus, eigenvalues can be used as
priors of predictor effect for the calculation of GEBV.
It is worth remembering that eigenvalues have already
been incorporated in mixed model algorithms to op-
timize calculations for variance component estimation
(Dempster et al., 1984; Taylor et al., 1985).

In the present paper, PCA is used to perform a BLUP
prediction of GEBV in a simulated data set to test the
ability of this technique to reduce the number of predic-
tors without decreasing GEBV accuracy. Moreover, the
feasibility of extracting PC from dense, commercially
available SNP platforms is tested.
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MATERIALS AND METHODS

Data

The data set was generated for the XII QTLs-MAS
workshop (http://www.computationalgenetics.se/QTL-
MAS08/QTLMAS/DATA html). The base population
consisted of 100 individuals (50 males, 50 females). The
genome had 6 chromosomes (total length 6 M), with
6,000 biallelic SNP, equally spaced at a distance of 0.1
cM. A total of 48 biallelic QTL were generated, with
positions sampled from the genetic map of the mouse
genome. Quantitative trait loci effects were sampled
from a gamma distribution with parameters estimated
by Hayes and Goddard (2001). Initial allelic frequencies
of both SNP and QTL were set to 0.5. Then 50 gen-
erations of random mating followed. Generations 51 to
57 were used to create the experimental population of
5,865 individuals. Generations 51 to 54 (4,665 individu-
als; TRAIN data set) had pedigree, phenotype, and
marker information available. The last 3 generations
(1,200 individuals; PRED data set) had only pedigree
and marker information available. True breeding values
(TBV) were considered as the sum of all QTL effects
across the entire genome. Phenotypes were generated
by adding environmental noise to the TBV. Further
details on the simulation can be found in Lund et al.
(2009).

Polygenic breeding values, being among the most fre-
quently used dependent variable in GEBV prediction
with real data, were also predicted. Polygenic breed-
ing values and additive genetic (07,) and residual (o?,)
variance components were estimated with a single trait
animal model that included the fixed effects of sex and
generation and the random additive genetic effect of
the animal. The pedigree relationship matrix included
5,939 animals.

PCA Analysis

Principal component analysis aims to synthesize in-
formation contained in a set of n observed variables
(My,...,M,) by seeking a new set of k (k < n) or-
thogonal variables (PCy,...,PCy) named PC, which are
calculated from the eigen decomposition of the covari-
ance (or correlation) matrix M. The jth PC is a linear
combination of the observed variables

PCJ = Otlel + . + OLann,
where coefficients ay; are the elements of the eigenvec-

tor corresponding to jth eigenvalue. Principal compo-
nents are usually extracted in a descending order of
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the corresponding eigenvalue that measures the quota
of variance of original variables explained by each PC
(Morrison, 1976; Krzanowsky, 2003).

An SNP data matrix M with m rows (m = 5,865,
the number of individuals in the entire data set) and n
columns (n = 5,925, the number of SNP markers that
were found to be polymorphic) was created. Each ele-
ment (i,j) corresponded to the genotype at the the jth
marker for the ith individual. Genotypes were coded as
—1, 0, or 1 according to the notation used by Solberg
et al. (2009).

Data editing is usually recommended when handling
dense marker maps (Wiggans et al., 2009), either to
correct for data quality (i.e., genotyping not success-
fully performed) or to avoid possible estimation biases
because of a severe imbalance of genotypes. However,
considering that in the present simulated data only 288
markers had minor allele frequency <0.05, whereas 47
deviated significantly (P < 0.01) from the Hardy-Wein-
berg equilibrium, this deviation may be attributable
to drift; only the 75 monomorphic SNP were discarded
from the analysis. Such a choice is at least partially
supported by results of Chan et al. (2009), who pointed
out that SNP attributes commonly considered in SNP
data editing, such as minor allele frequency or deviation
from Hardy-Weinberg equilibrium, have actually a very
small effect on overall false positive rate in genome-
wide association studies.

Principal component analysis was carried out on M,
and the number of PC (k) retained for further analysis
was based on both the sum of their eigenvalues and the
obtained GEBV accuracy. Principal component extrac-
tion was performed either on all SNP simultaneously
(PC_SNP_ALL) or separately for each chromosome
(PC_SNP_CHROM). Scores of the k selected PC
were calculated for all individuals. Marker haplotypes
may be more efficient than genotypes in capturing
marker-QTL association, especially in outbred popula-
tions where it may differ between families (Calus et al.,
2008). Thus, PCA was performed also on haplotypes
constructed from pairs of adjacent marker loci, using ei-
ther all loci together (PC_HAP_ALL) or separately
per chromosome (PC_HAP_CHROM).

Predictor Effect Estimation and GEBYV Calculations

Dependent variables used in the analysis were either
phenotypes or polygenic breeding values. For the esti-
mation of the effects of predictors, records of the 4,665
individuals of the TRAIN data set were analyzed with
the following mixed linear model:

2767
y =Xb + Zg + e,

where y is the vector of either phenotypes or polygenic
breeding values, X is the design matrix of fixed effects
(mean, sex = 1, 2, generation = 1, 2, 3, 4 for pheno-
types; only mean for polygenic breeding values); b is
the vector of solutions for fixed effects; Z is the (m X
k) design matrix of random effects, where each element
corresponds to the score of the kth component for the
mth animal of the training generations; g is the vector of
solution for random regression coefficients of PC scores;
and e is the random residual. Covariance matrices of
random PC effects (G) and residuals (R) were modeled
as diagonal I(c°,;) and I(o?,), respectively. The BLUP
methods used for estimating SNP effects usually assume
an equal contribution of each SNP locus to the variance
of the trait, sampled from the same normal distribution
(i.e., ozaj = 07,/n; Meuwissen et al., 2001; VanRaden et
al., 2009). In the present work, 2 different options were
compared. The first is the above-mentioned equality
of variances. The second starts from the consideration
that PC scores were used as predictor variables and
their contribution to the original SNP covariance struc-
ture is quantified by the corresponding eigenvalue (X).
Thus, variances of PC effects were calculated as 0233- =
(0%./k) x N;.

The G matrix diagonality, commonly implemented
in BLUP methodologies for estimating SNP marker ef-
fects (Meuwissen et al., 2001; VanRaden, 2008), relies
on the assumption that marker effects in a large popu-
lation are uncorrelated (VanRaden et al., 2009). With
the use of PC scores, such an assumption is consistent
with the orthogonality between PC (Morrison, 1976).
The BLUP solutions were estimated using Henderson’s
normal equations (Henderson, 1985).

To have a comparison with the most straightforward
estimation method, SNP effects were estimated directly
by using the same mixed linear model but with Z indi-
cating the design matrix of the 5,925 polymorphic SNP
genotypes [coded as 0, 1, and 2 (i.e., on the basis of the
number of alleles)]. Covariance matrix G was assumed
to be diagonal as I(o%/n). A Cholesky decomposition
was used to solve mixed model equations (Harville,
1997).

Overall mean and effects of PC scores or SNP geno-
types (&) estimated on the TRAIN data set were then
used to predict GEBV both in TRAIN and PRED
individuals as

GEBV = + Z8,

Journal of Dairy Science Vol. 93 No. 6, 2010



2768

180 4
160 §
140 4
120
100
80
60
40
20

Eigenvalue

0 100 200

300 400 500 600 700 800 900 1000

Principal component

Figure 1. Pattern of the eigenvalues of the correlation matrix of
SNP markers.

where GEBYV is the vector of predicted GEBV and Z
is the matrix of the PC scores or SNP genotypes of all
individuals.

Accuracies of prediction were evaluated by calculating
Pearson correlations between GEBV and TBV for the
PRED generations. Bias of prediction was assessed by
examining the regression coefficient of TBV on GEBV
(Meuwissen et al., 2001). Goodness of prediction was
evaluated also by the mean squared error of prediction
(MSEP), calculated as

2
n |TBV, — GEBY,
MSEP = Z[ - —,

i=1 n

where n is the number of individuals in the PRED
generations and by its partition in different sources of
variation related to systematic and random errors of
prediction (Tedeschi, 2006).

RESULTS

The pattern of eigenvalues of the correlation matrix
of SNP genotypes obtained with PCA of all markers
simultaneously is reported in Figure 1 (only the first
1,000 eigenvalues are plotted for brevity). A smooth
decrease in the amount of variance explained by each
successive PC can be observed, with a plateau between
250 and 300 PC (about 84% of variance explained).
Thus, between 200 and 300 PC could be considered
adequate for describing the original variance of the
system.

The GEBV accuracies for different numbers of re-
tained PC (50-600) using all SNP simultaneously and
eigenvalues as variance priors are reported in Figure
2. Accuracy for both training and prediction genera-
tions increases until a plateau, reached at about 250
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Figure 2. Pattern of correlations between genomic breeding values
(GEBV) and true breeding values (TBV) when principal components
(PC) are extracted from all SNP genotypes simultaneously and eigen-
values are used as priors, for different numbers of retained PC (white
bars = training individuals, black bars = prediction individuals). The
continuous line represents the amount of variance explained by the
corresponding number of PC.

to 300 PC. Further increasing the number of retained
PC does not result in an increase of accuracy, probably
because of the small amount of variance explained by
each additional variable. Similar results were obtained
by Solberg et al. (2009), who report best accuracies
when 350 PC were extracted from 8,080 biallelic mark-
ers distributed on 10 chromosomes. However, Solberg
et al. (2009) found a rather decreasing trend of the cor-
relation between GEBV and TBYV for larger numbers
of PC. Based on the accuracy of GEBV prediction, 279
PC (83% of the original variance) were retained in the
present work for PC_SNP_ALL and PC_HAP_ALL
approaches. In the analysis carried out on individual
chromosomes, to keep the same number of predictors of
the previous approach, 46 and 47 PC for chromosomes
1 to 3 and 4 to 6, respectively, were retained.

Average GEBV accuracies obtained using phenotypes
are, for the 3 prediction generations, around 0.70 (Table
1) when an equal contribution of PC score on the vari-
ance of the trait is assumed, similar to those reported by
Solberg et al. (2009). Accuracies increase by about 10%
(to an average of 0.75) when eigenvalues are used in the
diagonal of the G™' matrix of mixed model equations.
In general, results are of the same order as in previous
literature reports for BLUP estimation on simulated
(Meuwissen et al., 2001, 2009; Fernando et al., 2007)
and real (Hayes et al., 2009; VanRaden et al., 2009)
data. Correlations obtained when all SNP were used
as predictors are equal to those obtained with PC with
eigenvalues as priors. On the other hand, a remarkable
difference in calculation speed between the 2 methods
has been observed: about 6 h for the SNP_ALL ap-
proach and 3 min for the PC, using a computer with a
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Table 1. Pearson correlations between predicted genomic breeding
values and true breeding values for different estimation methods using
either phenotypes or polygenic breeding values for the prediction
generations and assuming either equal variance contribution for each
principal component or eigenvalues as variance priors

Method' Phenotype Polygenic breeding value
SNP_ALL 0.76 0.41
Equal variance
PC_SNP_ALL 0.69 0.53
PC_SNP_CHROM 0.70 0.55
PC_HAP_ALL 0.68 0.54
PC_HAP_CHROM 0.71 0.56
Eigenvalues
PC_SNP_ALL 0.76 0.57
PC_SNP_CHROM 0.73 0.56
PC_HAP_ALL 0.75 0.56
PC_HAP_CHROM 0.73 0.55

'SNP_ALL = all 5,925 SNP; PC_SNP_ALL = principal components
extracted from all SNP genotypes simultaneously; PC_SNP_CHROM
= principal components extracted from SNP genotypes separately for
each chromosome; PC_HAP_ALL = principal components extracted
from all SNP haplotypes simultaneously; PC_HAP_CHROM = prin-
cipal components extracted from haplotypes separately for each chro-
mosome.

dual core processor (2.33 GHz and 3.26 MB of random
access memory). Slight differences can be observed be-
tween estimates of PC carried on all chromosomes or
separately for each of them. Moreover, the same results
have been basically obtained when genotypes at single

O SNP_ALL
2 PC_SNP_ALL
O PC_SNP_CHROM
1+ B PC_HAP_ALL
0.9 & PC_HAP_CHROM
0.8 -

0.7
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0.1 1

Correlations TBV, GEBV

Generation

Figure 3. Correlations between genomic breeding values (GEBV)
and true breeding values (TBV) in the different approaches when
phenotypes were used as dependent variables (SNP_ALL = all 5,925
SNP; PC_SNP_ALL = principal components extracted from all SNP
genotypes simultaneously; PC_SNP_CHROM = principal compo-
nents extracted from SNP genotypes separately for each chromosome;
PC_HAP_ALL = principal components extracted from all SNP hap-
lotypes simultaneously; PC_HAP_CHROM = principal components
extracted from haplotypes separately for each chromosome).
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markers or haplotypes were used, in agreement with
previous reports for high density markers (Hayes et al.,
2007; Calus et al., 2008).

The GEBV accuracies are larger when phenotypes
instead of polygenic breeding values are used as depen-
dent variables (Table 1). This is particularly evident
when all SNP are used as predictors (on average 0.73
vs. 0.55 for phenotypes and polygenic breeding values,
respectively). Also, the decrease in accuracy between
TRAINING and PRED generations is more evident for
polygenic breeding value-based predictions (Figures 3
and 4). These findings are confirmed by values of regres-
sion coefficients of TBV on GEBV (Table 2). Moreover,
b-values for methods based on PC are similar to those
reported by Solberg et al. (2009) when equal variances
were assumed, whereas they are closer to 1 (about 0.85)
when eigenvalues are used as variance priors.

The decomposition of the MSEP for some of the
considered scenarios is reported in Table 3. The MSEP
is always smaller (about half) when GEBV are calcu-
lated using phenotypes. Its partition highlights a great
relevance of components related to the bias of predic-
tion (i.e., mean bias, inequality of variances) in the ap-
proach that directly fits SNP genotypes (about 79%).
Methods based on PC extraction are characterized by
a prevalence (about 80%) of random terms, measured
by the random error and by the incomplete covariation.
The use of eigenvalues as variance priors results in the
lowest MSEP and, compared with the other PC-based
method, in a reduction of the slope bias and the highest
relevance of random variation. These differences can
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OPC_SNP_CHROM
» 08+ .
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= 0.6- 2
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Figure 4. Correlations between genomic breeding values (GEBV)
and true breeding values (TBV) in the different approaches when poly-
genic breeding values were used as dependent variables (SNP_ALL =
all 5,925 SNP; PC_SNP_ALL = principal components extracted from
all SNP genotypes simultanecously; PC_SNP_CHROM = principal
components extracted from SNP genotypes separately for each chro-
mosome; PC_HAP_ALL = principal components extracted from all
SNP haplotypes simultaneously; PC_HAP_CHROM = principal com-
ponents extracted from haplotypes separately for each chromosome).
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Table 2. Regression coefficients (brgyrpy) of true breeding value (TBV) on predicted genomic breeding
value (GEBV) for the different estimation methods using either phenotypes or polygenic breeding values for
the prediction generations and assuming either equal variance contribution for each principal component or
eigenvalues as variance priors

Phenotype Polygenic breeding value

Method' brpv ceEBY SE brpv.ceBy SE
SNP_ALL 1.08 0.027 1.15 0.073
Equal variance

PC_SNP_ALL 0.63 0.019 1.08 0.049

PC_SNP_CHROM 0.67 0.019 1.13 0.048

PC_HAP_ALL 0.61 0.019 1.08 0.049

PC_HAP_CHROM 0.65 0.018 1.11 0.047
Eigenvalues

PC_SNP_ALL 0.88 0.021 1.33 0.055

PC_SNP_CHROM 0.84 0.022 1.28 0.055

PC_HAP_ALL 0.88 0.022 1.32 0.056

PC_HAP_CHROM 0.83 0.023 1.26 0.056

'SNP_ALL = all 5,925 SNP; PC_SNP_ALL = principal components extracted from all SNP genotypes si-
multaneously; PC_SNP_CHROM = principal components extracted from SNP genotypes separately for each
chromosome; PC_HAP_ALL = principal components extracted from all SNP haplotypes simultaneously;

PC_HAP_CHROM = principal components extracted from haplotypes separately for each chromosome.

be clearly seen from the plots of TBV versus GEBV
for the PC_SNP_ALL approach using equal (Figure
5a) or eigenvalue-based (Figure 5b) variance. The lat-
ter shows a regression slope closer to the equivalence
line (y = x) and a smaller value for the intercept that
indicates a smaller systematic underestimation of TBV.
The composition of MSEP becomes very similar across
the different methods when polygenic breeding values
are used as dependent variables, with a reduced inci-
dence of random components and a larger relevance of
unequal variances compared with the phenotype-based
estimates (Table 3). Actually, the comparison of plots of

TBV versus GEBV estimated with the PC_SNP_ALL
approach using phenotypes (Figure 5a) or polygenic
breeding values (Figure 5¢) clearly shows a reduced
range of variability and a higher underestimation (as
evidenced by the larger value of the regression inter-
cept) for polygenic breeding value-based GEBV.

An interesting feature of PCA is the possible tech-
nical interpretation of extracted variables. Figure 6
reports score averages for the first 2 PC that together
explain about 5% of the original variance of the system,
calculated for each generation. Averages of the second
PC ranged gradually from negative values for the first

Table 3. Mean squared error of prediction (MSEP) decomposition (%) and coefficient of determination (r?) for
the prediction generations in some scenarios using either phenotypes or polygenic breeding values'?

Item SNP_ALL PC_SNP_ALL 1 PC_SNP_ALL 2

Phenotype
MSEP 1.55 1.48 1.02
Mean bias (Uy) 72.2 53.5 56.9
Unequal variances (Ug) 6.9 0.6 1.9
Incomplete covariation (Uc) 21.9 45.9 41.2
Slope bias (Ug) 0.22 11.1 1.1
Random errors (Up) 27.6 35.4 42.0
r’ 0.57 0.48 0.57

Polygenic breeding values
MSEP 2.96 2.88 2.72
Mean bias (Uy) 72.0 75.1 74.6
Unequal variances (Ug) 13.9 8.9 11.9
Incomplete covariation (Uc) 14.1 16.0 13.5
Slope bias (Uy) 0.01 0.00 0.7
Random errors (Up) 27.9 24.9 24.7
r’ 0.17 0.28 0.33

ISNP_ALL = all 5,925 SNP; PC_SNP_ALL 1 = principal components extracted from all SNP genotypes
simultaneously and equal contribution of each SNP to the variance of the trait; PC_SNP_ALL 2 = principal
components extracted from all SNP genotypes simultaneously and contribution of each SNP to the variance of
the trait proportional to the eigenvalue.

Uy + Ug + Ue = Uy + U + Up = 100%.

Journal of Dairy Science Vol. 93 No. 6, 2010
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Figure 5. a) Plot of true breeding values versus genomic breeding
values predicted using phenotypes when principal components (PC)
are extracted from all SNP genotypes simultaneously and variance
contribution of the PC scores in the estimation step is assumed equal.
b) Plot of true breeding values versus genomic breeding values pre-
dicted using phenotypes when PC are extracted from all SNP geno-
types simultaneously and variance contribution of the PC scores in the
estimation step is based on their eigenvalues. ¢) Plot of true breeding
values versus genomic breeding values predicted using genomic breed-
ing values when PC are extracted from all SNP genotypes simultane-
ously and variance contribution of the PC scores in the estimation step
is based on their eigenvalues. (Continuous line = regression line of true
breeding values on genomic breeding values; dotted line = equivalence
line, y = x.)
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Figure 6. Plot of the average scores of the first 2 principal compo-
nents (Prin) for 7 generations.

3 generations to positive for the last 3 generations. A
possible explanation of the ability of the second PC
to distinguish individuals of different generations can
be found in its negative correlation with the average
observed heterozygosity per animal (—0.26) that tends
to decrease from older to younger generations (Figure

7).

DISCUSSION

The main objectives of this work were to assess the
effect of reducing predictor dimensionality in GEBV es-
timation using PCA and to test the effect of structuring
the variance contribution of PC with their eigenvalues

Principal component analysis allows an efficient de-
scription of the correlation matrix of biallelic SNP with
a markedly smaller number of new variables (4.7%)
compared with the original dimension of the system.
Such a huge decrease has a straightforward effect on
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Figure 7. Pattern of the average observed heterozygosity in differ-
ent generations.
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the calculation speed of GEBV, with a reduction of
more than 99% of computing time achieving the same
accuracy of predicted GEBV using all SNP. Compared
with other methods of reduction of predictors where
SNP are selected based on their position along the
chromosome (VanRaden et al., 2009) or their relevance
with the trait considered (Hayes et al., 2009), the mul-
tivariate reduction approach limits the loss of informa-
tion because each SNP is involved in the composition
of each PC.

The GEBV accuracies obtained in the present work
agree with a previous report on the use of PCA to
estimate GEBV (Solberg et al., 2009) when an equal
contribution of each PC to the variance of pheno-
types is assumed. This approach follows the common
BLUP assumption of equality of variance of predictors,
usually criticized for its inadequacy to fit the widely
assessed distribution of QTL (i.e., many loci with a
small effect and very few with large effect; Hayes and
Goddard, 2001). However, when eigenvalues are used
as prior of PC variance, accuracies increase by about
10%. These figures highlight the importance of an ac-
curate modeling of the variance structure of random ef-
fects in GEBV estimation. Bayesian methods estimate
variances of different chromosome segments combining
information from prior distribution and data (Meuwis-
sen et al., 2001). These methods usually give the best
performance (accuracies >80%) when simulated data
are fitted, whereas results obtained on real data seem
to indicate a substantial equivalence with the BLUP
approach (Hayes et al., 2009; VanRaden et al., 2009). A
common explanation is that, in Bayes method, assump-
tions on prior distributions of parameters are more dif-
ficult to infer when real data are handled. The use of
eigenvalues as variance priors relies only on data (i.e.,
the SNP correlation structure) and does not require
assumptions on prior distribution.

A potential drawback in the calculation of GEBV
using PCA is represented by PC extraction. In the
present work, about 40 min were needed to process an
SNP data matrix of 5,865 rows and 5,925 columns. The
commercially available SNP panel for cattle has 54,000
marker loci, although about 40,000 are retained on av-
erage after editing (Hayes et al., 2009). Such a marked
increase of columns, usually not accompanied by a
comparable increase of rows (i.e., phenotypic records),
may lead to statistical and computational problems
if PC are extracted treating all SNP simultaneously.
However, results of the present study indicate that PC
may be calculated separately for each chromosome,
keeping the same GEBYV accuracy. It should be remem-
bered that the number of SNP per chromosome is not
far from current dairy data (on average 1,200-1,300;
Hayes et al., 2009; VanRaden et al., 2009; Wiggans et
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al., 2009). Thus, PCA carried out on individual chro-
mosomes may be of great interest for real data, also
considering the substantial biological orthogonality
among chromosomes. The availability of denser marker
maps (i.e., 500,000 SNP) will represent a challenge for
the method, although the number of PC to be retained
does not seem to increase linearly with the number
of original variables. Missing genotypes is a potential
problem for computation of PCA, which requires data
in each cell. Although edits that are normally carried
out on SNP data leave only a few missing cells per
animal, they are spread across different markers and
this may lead to a severe reduction in the number of
records. Missing data can be reconstructed using ap-
propriate algorithms as those described by Gengler et
al. (2007) or others implemented in software of common
use such as fastPHASE (Scheet and Stephens, 2006) or
PLINK (Purcell et al., 2006).

Of particular interest is the difference in GEBV ac-
curacy obtained when using phenotypes versus poly-
genic breeding values as dependent variable. Polygenic
breeding values are phenotypes corrected for additive
relationships among animals based on pedigree infor-
mation. On the other hand, in GEBV predictions the
genetic similarity between animals is accounted for
by the specific combination of marker genotypes pos-
sessed by each individual. Therefore, the use of poly-
genic breeding values as dependent variable in GEBV
prediction may be regarded as redundant in terms of
exploitation of genetic relationships. This behavior is
particularly evident for the regression using all SNP
markers. In this form, the calculation of GEBV is
equivalent to the use of an animal model with the ad-
ditive genetic effect structured by the genomic relation-
ship matrix (Goddard, 2009). Such a double counting
of genetic relationship resulted in an evident reduction
of the variability of GEBV compared with TBV. From
a statistical standpoint, polygenic breeding values
are model-predicted values and may not be suitable
as a dependent variable in further analyses (Tedeschi,
2006). Results of the present study, although obtained
on simulated data, may more accurately reflect the
reality of genomic selection programs in cattle. In pre-
vious studies, polygenic breeding values were generally
the dependent variable. This is because TBV are not
available on real data and polygenic breeding values
estimated with a high accuracy (>0.90) may represent
a sort of golden standard for cross validations. How-
ever, the tendency now seems to move toward the use
of partially corrected phenotypes such as deregressed
proofs or daughter yield deviations (Hayes et al., 2009;
VanRaden et al., 2009).

Finally, an interesting side product of PCA used to
reduce the dimensionality of predictors in genome-wide
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selection is represented by the extraction of synthetic
variables that can have a technical meaning. Studies in
human and animal genetics have highlighted the role
of PC as indicators of population genetic structure.
For example, the top eigenvectors of the covariance
matrix often show a geographic interpretation (Price
et al., 2006; Chessa et al., 2009). Usually, the mean-
ing of the ith PC in terms of relationship with the
original variables is inferred from the structure of its
eigenvector. In the present study, such an evaluation
was not feasible, probably because of both the rela-
tively small amount of variance explained by each PC
and the large number of original variables considered
(i.e., the 5,925 SNP). However, one of the top PC was
able to reflect the genetic variation among generations,
although the discrimination between individuals of dif-
ferent generations was rather fuzzy, as expected, given
the small amount of variance explained. However, this
last point deserves some additional consideration. An
assessed criterion in choosing which PC to retain is to
look at their eigenvalues. However, sometimes the PC
associated with the largest eigenvalue does not have a
defined meaning, whereas successive PC characterized
by smaller eigenvalues may contain more relevant or
biological information (Jombart et al., 2009). In the
case of the present work, a meaning of the second PC
as indicator of genetic drift, which should be the only
reason of variation of genotypic frequencies in the
simulated generations (Lund et al., 2009), could be
hypothesized.
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