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ABSTRACT

Functional traits, such as fertility and lactation per-
sistency, are becoming relevant breeding goals for dairy 
cattle. Fertility is a key element for herd profitability 
and animal welfare; in particular, calving interval (CIN) 
is an indicator of female fertility that can be easily 
recorded. Lactation persistency (LPE; i.e., the ability 
of a cow to maintain a high milk yield after the lacta-
tion peak) is economically important and is related to 
several other traits, such as feed efficiency, health, and 
reproduction. The selection of these functional traits 
is constrained by their low heritability. In this study, 
variance components for CIN and LPE in the Italian 
Simmental cattle breed were estimated using genomic 
and pedigree information under the single-step genomic 
framework. A data set of 594,257 CIN records (from 
275,399 cows) and 285,213 LPE records (from 1563,389 
cows) was considered. Phenotypes were limited up to 
the third parity. The pedigree contained about 2 million 
animals, and 7,246 genotypes were available. Lactation 
persistency was estimated using principal component 
analysis on test day records, with higher values of the 
second extracted principal component (PC2) values 
associated with lower LPE, and lower PC2 values as-
sociated with higher LPE. Heritability of CIN and LPE 
were estimated using single-trait repeatability models. 
A multiple-trait analysis using CIN and production 
traits (milk, fat, and protein yields) was performed to 
estimate genetic correlations among these traits. Heri-
tability for CIN in the single-trait model was low (0.06 
± 0.002). Unfavorable genetic correlations were found 
between CIN and production traits. A measure of LPE 
was derived using principal component analysis on test 
day records. The heritability and repeatability of LPE 
were 0.11 ± 0.004 and 0.20 ± 0.02, respectively. Ge-

netic correlation between CIN and LPE was weak but 
had a favorable direction. Despite the low heritability 
estimates, results of the present work suggest the possi-
bility of including these traits in the Italian Simmental 
breeding program. The use of a single-step approach 
may provide better results for young genotyped animals 
without their own phenotypes.
Key words: fertility, persistency, genomic selection

INTRODUCTION

In the last century, the combined action of genetic, 
management, and feeding advancements has led to a 
substantial improvement of dairy cow performances. 
However, such results have been accompanied by a 
general deterioration in fitness traits (Sun et al., 2019). 
The progressive reduction of cow fertility is one of the 
most relevant examples of the unfavorable consequences 
of selection for production traits (Ma et al., 2019). Re-
lationships between fertility and genetic improvement 
for milk production have been investigated (Castillo-
Juarez et al., 2000; Lucy, 2001; Hayes et al., 2009; 
Walsh et al., 2011). Reproduction traits have therefore 
been included in breeding programs (López-Gatius, 
2003; Philipsson and Lindhé, 2003; Miglior et al., 2005) 
even though a clear definition of phenotypes is still an 
issue. For example, fertility traits can be defined in 
many ways: time lengths (i.e., days open) or frequen-
cies (i.e., number of inseminations needed to conceive). 
Generally, these traits are difficult to record routinely 
and have low heritability. Among fertility traits, calv-
ing interval (CIN) is one of the easiest to record (Dal 
Zotto et al., 2007); however, it can be biased by not 
being available for cows that do not re-calve because 
of poor fertility. Other traits, such as conception or 
pregnancy rates, could be better fertility traits, but 
they need additional resources to be collected. A longer 
CIN is usually a consequence of more inseminations 
needed for the cow to conceive, with increased costs for 
the herd, and therefore is undesirable. Moreover, cows 
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with longer CIN will have fewer calvings in their life. 
Selection for shorter CIN would increase herd profit-
ability: more calvings per cow means more offspring 
that can be sold or used as replacement, decreased feed 
costs, and fewer reproductive problems (Esslemont et 
al., 2001; Groenendaal et al., 2004; Atashi et al., 2013).

Reproductive performance is also strongly related to 
lactation persistency (LPE); that is, the ability of the 
cow to maintain high levels of production after the lac-
tation peak (Dekkers et al., 1998). Lactation persistency 
is a production trait connected to health, reproduction, 
and feed costs (Koloi et al., 2018). The relationship 
between CIN and LPE in cattle has been investigated 
(Atashi et al., 2013; Němečková et al., 2015). Muir et 
al. (2004) reported a moderate, positive genetic correla-
tion between CIN and LPE, suggesting an unfavorable 
and antagonistic relationship between these 2 traits. 
This result was confirmed by Atashi et al. (2013), who 
found that cows with shorter CIN were less persistent 
in milk production. Although there is a general consen-
sus on the basic concept of LPE, generally defined as 
the ratio between the milk measured in a certain period 
and the total milk yield, several measurements have 
been proposed for this trait (Sölkner and Fuchs, 1987; 
Gengler, 1996; Cole and VanRaden, 2006; Strabel and 
Jamrozik, 2006; Togashi and Lin, 2006). Macciotta et 
al. (2006) have defined the LPE in Italian Simmental 
using a principal component (PC) approach. The ad-
vantage of this approach is that the measure of LPE is 
independent of milk production.

The Italian Simmental is a dual-purpose cattle breed 
farmed mostly in Northeastern Italy. Its breeding pro-
gram aims to improve both dairy and beef traits, and 
an economic selection index has been developed for 
this purpose. Recently, the introduction of new func-
tional traits such as CIN and LPE has been suggested; 
however, variance components for these traits were not 
available for this breed in Italy. Thus, to investigate 
the genetic background of these 2 traits, the present 
study focused on the estimation of genetic parameters 
for CIN and its relationship with production traits and 
LPE in Italian Simmental cattle using a genomic ap-
proach.

MATERIALS AND METHODS

Calving Interval

Calving interval phenotypes recorded from 275,399 
cows in the period 1983 to 2017 were used. The number 
of parities per cow ranged from 1 to 3, and the first 
record was mandatory to include a cow in the analysis. 
A total of 594,257 CIN records that were greater than 
300 d and lower than 700 d were retained for analysis.

Heritability and repeatability for CIN were estimated 
using a repeatability single-trait model:

	 y = hy + par + a + pe + e,	 [1]

where y was the CIN record; hy was the fixed effect 
of herd-year combination (103,467 levels); par was the 
fixed effect of parity (3 levels: 1 to 2, 2 to 3, or 3 to 
4); a was the random additive genetic effect (465,633 
animals in the relationship matrix); pe was the random 
effect of permanent environment (465,633 levels); and e 
was the random residual.

Genetic correlations between fertility and produc-
tion traits were estimated using a multiple-trait animal 
model with the same structure as Equation [1], con-
sidering CIN and 305-d yields of milk (MY), fat, and 
protein (kg). All available records for these 4 traits were 
included in the analysis (713,376 records from 274,759 
cows). Average values (±SD) of 5,687 ± 1,676 kg, 221 
± 81 kg, and 194 ± 70 kg were observed for MY, fat 
yield, and protein yield, respectively.

Lactation Persistency

Genetic parameters for LPE were investigated using 
a data set with 285,213 lactation records of 156,389 
cows (parities ranging from 1 to 3) farmed in 5,344 
herds. Each lactation (from 5 to 305 d in milk) was 
divided into 7 intervals, and 1 record per interval was 
kept. When more than 1 test day per interval was 
available, the average value was used. Seven intervals 
were chosen, because the majority of cows have this 
number of controls available in the routine evaluation 
system of Italian Simmental. The availability of at least 
1 record before the 45th day of lactation and after the 
245th day of lactation was mandatory to include a cow 
in the analysis. Because milk, fat, and protein daily 
yields showed similar decreasing trends along lactation, 
we decided to consider only milk yield to define LPE. 
Thus, data were arranged in a multivariate framework, 
and a PC analysis using SAS PROC PRINCOMP (ver-
sion 9.2, SAS Institute Inc., Cary, NC) was performed 
to extract eigenvalues and eigenvectors of the pheno-
typic correlation matrix of test day records. The second 
extracted principal component (PC2) was used as an 
indicator of persistency (Macciotta et al., 2006). The 
PC2 scores were analyzed using the following single-
trait repeatability animal model:

	 y = hy + par + a + pe + e,	 [2]

where y was the value of PC2 scores (i.e., LPE); hy was 
the combination of herd and year (49,638 levels); par 
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was the effect of parity (3 levels: 1, 2, and 3); a was the 
random additive genetic effect (333,003 levels); pe was 
the random effect of permanent environment (333,003 
levels); and e was the random residual. Finally, a 
2-trait model was used to estimate genetic correlations 
between CIN and LPE of the corresponding lactation: 
CIN records between 2 consecutive parities (1 to 2, 2 
to 3, and 3 to 4) and the LPE estimated for the cor-
responding lactations (first, second, or third lactation) 
were used, for a total of 340,573 records.

Genetic Parameter Estimation

Variance component and heritability (h2) estima-
tion for all the described models was performed using 
a single-step genomic REML (ssGREML) approach 
with a combined relationship matrix (H) built as de-
scribed in Aguilar et al. (2010). Analyses were also per-
formed with a pedigree relationship matrix (A), with 
very similar results (not shown). Before the analyses, 
pedigree was traced back for 5 generations. The full 
pedigree contained 1,981,728 animals, of which 7,246 
were genotyped for 40,200 markers. Among all the gen-
otyped animals, 3,358 were females with phenotypes, 
and 2,045 were sires. The females with both pheno-
types and genotypes came from 250 different herds and 
could be dams of other phenotyped females. The other 
genotyped animals without phenotypes were half-sibs 
or relatives of phenotyped females. Table 1 shows the 
distribution of genotyped animals by year of birth. 
Variance components were estimated using the average 
information REML (AIREML) algorithm implemented 
in the blupf90 family programs (Misztal et al., 2014).

RESULTS AND DISCUSSION

Calving Interval in a Single-Trait Repeatability Model

The phenotypic average of CIN for Italian Simmental 
(397.50 ± 68.32) is consistent with previous reports on 
other cattle breeds. Values between 387 and 398 were 
reported for UK Holsteins (Wall et al., 2003) and Aus-
tralian Holsteins (Haile-Mariam et al., 2003), respec-
tively. Calving intervals of 400 d or more were found 
in Spanish dairy cattle (González-Recio and Alenda, 
2005) and in Mexican Holsteins (Montaldo et al., 2010). 
Large values of CIN were also reported for US Holsteins 
(Tiezzi et al., 2017).

Heritability (0.06 ± 0.002) and repeatability (0.11 
± 0.002) for CIN in the present study, using a single-
trait model, were quite low. However, they were slightly 
higher than previous literature reports. Values of 0.02 
were estimated in Mexican Holsteins (Montaldo et al., 
2010) and in Xinjiang Browns (Fu et al., 2017). Esti-
mates ranging from 0.03 to 0.05 were reported for Aus-
tralian dairy cattle (Haile-Mariam et al., 2003, 2008), 
UK Holsteins (Wall et al., 2003), Irish Holsteins (Olori 
et al., 2002), Spanish dairy cattle (González-Recio and 
Alenda, 2005), and Italian Brown Swiss cattle (Dal 
Zotto et al., 2007). It should be noted that heritabil-
ity for fertility traits is generally low, as reported in a 
recent review (Ma et al., 2019).

Lactation Persistency

About 90% of the total phenotypic variance of test 
day records was explained by the first 2 PC. The first 
PC (PC1) was related to the average level of milk yield, 
whereas PC2 was associated with the shape of the lac-
tation curve. They explained about 78% and 12% of 
test day phenotypic variance, respectively. The PC1 
scores ranged from −7.60 to 14.54, with an average 
value of 0.14 ± 2.37, and showed a correlation of 0.97 
with 305-d MY. Scores for PC2 ranged from −4.53 to 
4.71. Animals were grouped according to their PC2 
scores into 4 classes: class 1 = −4.53 to −1.04; class 2 
= −1.03 to −0.57; class 3 = −0.56 to −0.15; and class 
4 = −0.14 to 4.71. Average milk yield for all 7 test day 
records were calculated separately for each PC2 class. 
These average lactation curves for different PC2 classes 
are shown in Figure 1. It can be clearly seen that the 
average lactation curve for PC2 class 4 exhibited the 
steepest negative slope. The LPE tends to increase for 
higher PC2 classes, reaching the maximum in class 1. 
These results confirm the meaning of PC2 score as an 
indicator of the shape of the lactation curve.

The second PC (i.e., LPE) and MY showed a pheno-
typic correlation of −0.03, which was expected because 
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Table 1. Distribution of genotyped animals by birth year

Year of birth Animals (no.)

1963 to 1980 38
1981 to 1990 245
1991 to 2000 816
2001 118
2002 126
2003 148
2004 196
2005 179
2006 169
2007 196
2008 238
2009 269
2010 318
2011 336
2012 427
2013 859
2014 1,048
2015 790
2016 389
2017 265
2018 76
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PC2 was defined to be independent of milk production 
in the calculations. However, the genetic correlation 
between PC2 and MY was unfavorable (0.35 ± 0.03) 
because higher values of PC2—that is, lower LPE—are 
associated with higher MY. In fact, animals belong-
ing to class 1 (those with the highest LPE) showed a 
slightly lower 305-d MY compared with the animals 
of class 4 (those with the lowest LPE). The LPE in 
this study was not defined by combining production 
levels at different lactation stages, but by using the 
PC2 values that just capture the shape of lactation 
curve, without considering production levels (PC are 
orthogonal). Thus, the genetic correlation observed 
between LPE and MY are likely a spurious result medi-
ated by other variables. In the literature, estimates of 
genetic correlation between LPE and MY show differ-
ent magnitudes and signs according to the LPE defini-
tion (Haile Mariam et al., 2003; Muir et al., 2004). Cole 
and Null (2009) found that genetic correlation between 
LPE and MY changed magnitudes and signs according 
to the considered breed. Some studies reported unfavor-
able genetic correlation between LPE and MY (Cobuci 

and Costa, 2012; Khorshidie et al., 2012; Pereira et al., 
2012), whereas other studies reported favorable genetic 
correlation between these 2 traits (Muir et al., 2004; 
Yamazaki et al., 2013).

Heritability (0.11 ± 0.004) and repeatability (0.20 ± 
0.003) of LPE in a single-trait model were rather low. 
Macciotta et al. (2006) reported lower heritability and 
repeatability for LPE using a smaller, older data set 
that comprised only phenotypic and pedigree informa-
tion from the same Italian Simmental population. In 
fact, heritability estimates for LPE in the literature 
exhibit considerable variation, with values ranging 
from 0.01 (Otwinowska-Mindur and Ptak, 2015) to 0.50 
(Koloi et al., 2018). Such relevant differences can be 
ascribed to statistical model, breed, and trait defini-
tion. No consensus currently exists in the literature for 
measuring LPE. Grayaa et al. (2019) defined LPE as 
the difference between milk production at 280 DIM and 
at the lactation peak, and estimated heritability using 
different multi-trait models; the estimates ranged from 
0.05, when milk fat percentage was considered, to 0.21 
when MY was included among the response variables. 
Strabel and Jamrozik (2006) reported heritability es-
timates for LPE that ranged from 0.07 to 018 using 
the eigenvectors of the variance or covariance matrices 
of RRM coefficients. Higher heritability (0.18 ± 0.02) 
was reported for LPE for first-lactation Canadian Hol-
steins (Muir et al., 2004). Additionally, Cole and Null 
(2009) observed large heterogeneity in the h2 of LPE 
in several dairy cattle breeds: from 0.09 to 0.26 and 
0.18 to 0.28 for Milking Shorthorn and Guernsey cattle, 
respectively.

Calving Interval, Production Traits,  
and Lactation Persistency

Heritability for CIN obtained with the multiple-trait 
model was slightly higher compared with the single-
trait analysis (Table 2). Heritabilities for production 
traits were close to the current estimates for the Ital-
ian Simmental breed. Unfavorable, moderate genetic 
correlations were found between CIN and production 
traits (Table 2), as generally reported in literature. The 
magnitude of the estimates obtained in the present 
study is not far from previous reports of about 0.5 to 
0.6 (Pryce et al., 2000; Dal Zotto et al., 2007; Fu et al., 
2017). Deb et al. (2008) reported a genetic correlation 
of 0.4 between CIN and MY in a native breed from 
Bangladesh. Antagonistic genetic correlation between 
MY and CIN was also observed by Haile-Mariam et al. 
(2003) and by Strapáková et al. (2016). Strapáková et 
al. (2016) reported a genetic correlation of 0.51 ± 0.11, 
with higher MY observed for cows with longer calv-
ing interval. Other similar reproductive traits, such as 

Cesarani et al.: VARIANCE COMPONENTS OF FUNCTIONAL TRAITS

Figure 1. Average shape of the lactation curve using quartiles of 
the second principal component (PC2), associated with lactation per-
sistency. Each curve is made using the average value of milk produc-
tion (kilograms per day) of all animals belonging to the first (class 1), 
second (class 2), third (class 3), and fourth (class 4) quartiles of PC2.
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days open and days from calving to first service, show 
undesirable genetic correlations with milk production 
traits (Abe et al., 2009).

Heritability estimates for CIN and LPE using the 
univariate or bivariate models were similar. A weak, 
positive genetic correlation was observed between these 
2 traits, whereas a phenotypic correlation near 0 was 
observed (Table 3). The positive genetic correlation 
reflected a favorable association between CIN and 
LPE because high values of CIN are associated with 
high values of PC2, which means lower LPE. On the 
contrary, lower values of CIN (desirable) are related 
to lower values of PC2 and, therefore, to higher LPE 
(desirable). However, reports about the genetic associa-
tion between CIN and LPE are not always consistent. 
An undesirable association between CIN and LPE was 
reported by Atashi et al. (2013), who found that cows 
with short CIN had lower LPE. Unfavorable genetic 
correlation between CIN and LPE was also reported by 
Muir et al. (2004). Němečková et al. (2015) reported 
no significant association between these 2 traits, and 
Andersen et al. (2011) found no significant differences 
in peak yield and peak day (i.e., traits associated with 
LPE) among different CIN groups. Haile-Mariam et al. 
(2003) concluded that the genetic correlation between 
LPE and CIN was almost 0. Apart from sampling ef-
fect, it should be pointed out that the different defini-
tion of LPE used in the various studies may strongly 
affect the results.

An antagonistic relationship between productive and 
reproductive performances in cattle has been observed: 
animals need energy to simultaneously produce milk 
and conceive, and, therefore, the energy balance dur-
ing lactation is of great interest. However, fertility and 
production traits are associated in a complex causal 
pattern because this relationship strongly depends on 

the considered period of the lactation. Attention can be 
focused mainly on energy balance during lactation: MY 
affects energy balance mostly in the first part of the 
lactation, when cows are inseminated; in this period, 
body reserve mobilization and negative energy balance 
frequently occur, and the cow has insufficient energy to 
conceive (Collard et al., 2000; Andersen et al., 2011). 
Thus, a high level of milk production in early lacta-
tion (before or around the peak) could reduce fertility, 
with a subsequent delay of pregnancy. In late lacta-
tion, a change in the causal link between productive 
and reproductive performance occurs: in this period, 
energy requirements for fetal development are higher 
than in the first part of lactation, and, therefore, preg-
nancy prioritizes energy needs, with an effect on milk 
production (milk production in the late stages can be 
identified as LPE). More persistent cows with lower 
peak yield usually suffer a less strong energy imbalance 
during the lactation (Haile-Mariam et al., 2003). The 
results of the present study highlight quite a strong 
unfavorable genetic correlation between CIN and MY, 
confirming the negative relationship between reproduc-
tive and productive performance. A slightly favorable 
genetic correlation between LPE and CIN was also 
observed. However, such a relationship between LPE 
and CIN could be influenced by MY, because selection 
for CIN is unlikely to cause decline in MY, but selec-
tion for MY ignoring CIN would have more negative 
effects on fertility due to the high unfavorable genetic 
correlation between these 2 traits. Nevertheless, LPE 
has some positive consequences for dairy cows, because 
persistent cows may have fewer health and reproduc-
tion problems, they are easier to manage, and they have 
lower feeding costs (Sölkner and Fuchs, 1987; Atashi et 
al., 2013). Thus, the findings of the present work sug-
gest the possibility of limiting the fertility deterioration 
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Table 2. Heritability (diagonal), phenotypic (above diagonal), and genetic (below diagonal) correlations for 
calving interval and production traits using a 4-trait model

Item Calving interval Milk yield Fat yield Protein yield

Calving interval 0.09 ± 0.02 0.17 0.15 0.16
Milk yield 0.64 ± 0.02 0.26 ± 0.02 0.88 0.96
Fat yield 0.63 ± 0.02 0.86 ± 0.01 0.25 ± 0.02 0.89
Protein yield 0.56 ± 0.02 0.95 ± 0.01 0.90 ± 0.01 0.22 ± 0.02

Table 3. Heritability, repeatability, and correlations (phenotypic and genetic) for calving interval and lactation 
persistency using the 2-trait model

Item Heritability Repeatability  

Correlation

Phenotypic Genetic

Calving interval 0.05 ± 0.01 0.11 ± 0.01   −0.05 0.25 ± 0.03
Lactation persistency 0.11 ± 0.01 0.20 ± 0.01  
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caused by selection for MY by including CIN and LPE 
as breeding goals.

In spite of the low h2 for CIN and LPE that has been 
confirmed in the present study, it should be pointed out 
that genomic selection offers interesting perspectives for 
improving these functional traits, if more phenotypes 
and genotypes are collected. García-Ruiz et al. (2016) 
showed that the genetic gain per year achieved in US 
Holsteins has been markedly larger for low heritability 
traits because of the considerable amount of data (e.g., 
SCS, productive life, and daughter pregnancy rate). In 
estimating variance components, the main benefit of 
using genomic information in a single-step approach 
is the availability of more data, which is reflected in 
smaller standard errors (Forni et al., 2011; Veerkamp et 
al., 2011). The use of combined pedigree and genomic 
information using the single-step approach could have 
benefits for young candidates that have genotypes but 
no phenotypic records. However, in our case, using A 
instead of H gave very close estimates (data not shown) 
because of the small number of genotyped animals. The 
similar results found using BLUP or single-step genomic 
BLUP, even with a small number of genotyped animals, 
showed the robustness of the latter methodology and 
the possibility of obtaining better results by increasing 
the amount of genomic information.

CONCLUSIONS

Although of small magnitude, the heritabilities for 
CIN and LPE show that these traits can be improved 
via genomic selection. The use of multi-trait models 
allowed better understanding of the genetic connection 
between CIN and LPE, showing that both traits should 
be included as breeding objectives, to prevent deterio-
ration of fertility.
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