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  ABSTRACT 

  The aim of this study was to elucidate the structure 
of relationships between milk yield, composition, and 
coagulation properties of Brown Swiss cattle. Multi-
variate factor analysis was used to derive new synthetic 
variables that can be used for selection purposes. For 
this reason, genetic parameters of these new variables 
were estimated. Individual records on milk yield, fat 
and protein percentages, casein content, lactose per-
centage, somatic cell count, titratable acidity, and pH 
were taken on 1,200 Italian Brown Swiss cows located 
in 38 herds. Factor analysis was able to extract 4 latent 
variables with an associated communality equal to 70% 
of the total original variance. The 4 latent factors were 
interpreted as indicators of milk composition, coagula-
tion, acidity, and mammary gland health, respectively. 
Factor scores calculated for each animal exhibited 
coherent patterns along the lactation and across dif-
ferent parities. Estimation of genetic parameters of 
factor scores carried out with a multiple-trait Bayesian 
hierarchical model showed moderate to low heritabili-
ties (raging from 0.10 to 0.23) and genetic correlations 
(from −0.15 to 0.46). Results of the present study sup-
port the hypothesis of a simpler structure that controls, 
at least in part, the covariance of milk composition and 
coagulation properties. Moreover, extracted variables 
may be useful for both breeding and management pur-
poses, being able to represent, with a single value for 
each animal, complex traits such as milk coagulation 
properties or health status of the mammary gland. 
  Key words:    milk coagulation property ,  milk composi-
tion ,  factor analysis 

  INTRODUCTION 

  Breeding goals currently included in selection pro-
grams for dairy cattle are related to milk yield and qual-
ity, milkability, type, longevity, health, and reproduc-
tion. The aggregation of all of these traits in economic 
selection indexes is often complex. In particular, the es-
timation of a coherent (co)variance matrix is hampered 
by collinearity between some traits and by the need for 
different models (linear, censored, threshold). A further 
complication is difficulty in estimating selection index 
weights and in understanding their proper meaning. 

  An example of the situation described above is repre-
sented by quality traits related to milk nutritional value 
and technological properties. Fatty acid composition 
(Soyeurt et al., 2006), protein composition (Rutten et 
al., 2011), and milk coagulation properties (MCP; Dal 
Zotto et al., 2008; Cecchinato et al., 2009; De Marchi 
et al., 2009) are becoming increasingly important be-
cause of consumer concerns. Actually, milk nutritional 
and technological properties are defined by several 
variables, among which exist a complicated correlation 
structure that is rather difficult to interpret (Ikonen et 
al., 2004). Studies on correlations between milk produc-
tion traits and coagulation properties carried out with 
standard multiple-trait genetic models have reported 
conflicting results in terms of both magnitude and sign 
of the estimated values (Ikonen et al., 2004; Cassandro 
et al., 2008; Cecchinato et al., 2011; Vallas et al., 2010). 
Apart from possible effects of sampling and differences 
in the statistical approaches used, such variability in 
the results could be because the nature of genetic rela-
tionships among these traits is only partially known. In 
particular, with common statistical genetic approaches, 
such as univariate or multivariate animal models, it is 
rather difficult to assess the covariance because of the 
direct linkage between 2 variables from the quota that 
could be ascribed to an indirect relationship because of 
other variables defining the system or due to environ-
mental factors. An approach able to identify a possible 
simpler underlying structure would be advisable. 
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On the contrary, the choice of a single variable for 
representing milk technological properties may not be 
the optimal strategy, given that each of the MCP is 
related to specific aspects of the coagulation process 
and that some technical issues in their measurement 
still exist (Bittante, 2011). In addition, from a prac-
tical standpoint, farmers often prefer to deal with a 
combined index instead of several single traits (Glantz 
et al., 2011). An alternative approach could be aimed 
at exploiting the correlation structure between original 
variables to derive synthetic indexes without any a 
priori definition.

Multivariate statistics offer a set of efficient tools 
for analyzing complex correlation patterns. A suitable 
technique for investigating the correlation structures of 
variables defining milk quality is the factor analysis. 
This is because its basic theoretical assumption is that 
the (co)variance of a complex multivariate system can 
be partitioned into 2 quotas (Morrison, 1976). The first 
is shared by all variables and is called communality, 
whereas the second is peculiar to each variable and is 
termed uniqueness. The common covariance is gener-
ated by a set of one or more latent variables, termed 
common factors. Thus, factor analysis can be used to 
investigate relationships between the original variables, 
and values of common factors (scores) can be treated 
as new phenotypes and considered for further analyses. 
A further feature of interest for factors is that they 
are uncorrelated or, in the case of rotations, correlated 
weekly. For example, Todaro et al. (2005) used factor 
analysis to study the yield, chemical composition, and 
coagulation properties of goat milk. They derived 3 
latent factors from 11 original variables. Factors were 
related to coagulation speed, milk yield, and curd firm-
ness, respectively.

Previously, factor analysis has been used in animal 
science to find indicators of management and produc-
tion levels for dairy cattle herds (Enevoldsen et al., 
1996), to evaluate relationships between longevity and 
type traits (Vukasinovic et al., 1997), and to model the 
shape of the lactation curve (Wilmink et al., 1987; Mac-
ciotta et al., 2004; Macciotta et al., 2006; Aspilcueta-
Borquis et al., 2011). However, no studies dealing with 
factor analysis applied to MCP and milk quality traits 
in dairy cattle are available in the literature.

The aim of this paper was to study the structure of 
relationships between milk yield, milk composition, and 
MCP of Brown Swiss cattle farmed in Italy. In particu-
lar, multivariate factor analysis was used to derive new 
synthetic variables with a possible technical meaning 
that could be used for selection purposes. For this rea-
son, the genetic parameters of these new variables were 
also estimated.

MATERIALS AND METHODS

Sample Collection and Analysis of MCP  
and Milk Quality Traits 

A total of 1,200 Italian Brown Swiss cows were milk-
sampled during the period from June 2006 to July 2007. 
Cows were progeny of 50 AI sires and were reared in 30 
herds located in northern Italy. Individual milk samples 
(1 per animal) were collected during the morning milk-
ing of a test day. After collection and with no pre-
servative added, milk samples were stored in portable 
refrigerators (4°C) and transferred to the milk quality 
laboratory of the Veneto Agricoltura Institute (Thiene, 
Italy). Measures of MCP were obtained by using a 
computerized renneting meter (Polo Trade, Monselice, 
Italy). This measuring device has been widely used to 
investigate MCP (Ikonen et al., 1999; Cassandro et 
al., 2008; Bonfatti et al., 2011). The principle of the 
computerized renneting meter is based on control of 
the oscillation, which is driven by an electromagnetic 
field created by a swinging pendulum immersed in the 
milk container. A survey system measures differences 
in the electromagnetic field caused by milk coagula-
tion: the greater the extent of coagulation, the smaller 
the pendulum swing. The analysis produces a diagram, 
as reported by Dal Zotto et al. (2008). Milk samples 
(10 mL) were heated to 35°C, and 200 μL of rennet 
(Hansen standard 190 with 63% of chymosin and 37% 
of pepsin; Pacovis Amrein AG, Bern, Switzerland), 
diluted to 1.6% in distilled water, was added to the 
milk. Measurement of MCP ended within 31 min after 
addition of the clotting enzyme. This analysis provided 
measurements of rennet coagulation time (the time in-
terval, in minutes, from addition of the clotting enzyme 
to the beginning of the coagulation process) and a30 
(the width, in millimeters, of the diagram at 31 min 
after the addition of rennet, which is a measure of curd 
firmness). Samples that did not coagulate within 31 
min were classified as noncoagulating milk.

In addition to MCP, measures of milk fat percentage, 
milk protein percentage, milk CN content, lactose per-
centage, titratable acidity (expressed in Soxhlet-Henkel 
degrees), milk pH, and SCC were available. Values of 
SCC were log-transformed to SCS (Ali and Shook, 
1980).

Pedigree information was supplied by the Italian 
Brown Swiss Cattle Breeders Association (ANARB, 
Verona, Italy) and included cows with phenotypic re-
cords for the investigated traits and all their known 
ancestors. Each animal with phenotypic records had 
at least 4 known ancestors in the pedigree data. Means 
and standard deviations of the considered traits are 
reported in Table 1.
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Statistical Analysis

Theory of Multivariate Factor Analysis. Multi-
variate factor analysis aims at synthesizing information 
contained in a set of n observed variables (y1, ..., yn) 
by seeking a new set of p (p < n) variables (X1,…
Xp), termed common latent factors. Factor analysis as-
sumes that the variance of each original variable can be 
decomposed into its common and unique components, 
termed communality and uniqueness, respectively. In 
matrix notation, the partitioning of the correlation (or 
covariance) matrix of the original variables (S) can be 
written as

 S = BB  + Ψ,  [1]

where BB  is the communality and Ψ is the residual 
(co)variance matrix (Morrison, 1976; McDonald, 1985). 
As a consequence of (co)variance modeling, each of 
the n original variables can be represented as a linear 
combination of p common factors that generates covari-
ances between variables plus a residual specific variable 
(Morrison, 1976):

y1 = b11Xl + b12X2 +...+ b1pXp + e1,

 ym = bm1Xl + bm2X2 +...+ bmpXp + e,  [2]

where Xj is the jth common factor, bij are factor co-
efficients (or loadings, i.e., correlations between the 
jth common factor), and ei is the ith residual specific 
variable. Loadings are the elements of the B matrix 
used in model [1]. Common factors generate covari-
ances between original variables, whereas the residual 
specifically contributes only to the individual variation. 
Factor analysis was performed on all composition traits 
and MCP using a varimax rotation (SAS Institute, 
2008). The analysis was carried out on raw data. No 

precorrection was performed to evaluate the relation-
ship between latent variables and some systematic fac-
tors.

The first step in assessing the suitability of a data set 
for factor analysis is based on a comparison between 
phenotypic Pearson and partial correlations values, 
with the latter measuring relationships among each 
pair of variables conditional on all possible effects of 
the other variables (Macciotta et al., 2004). This dif-
ference is measured by the Kaiser measure of sampling 
adequacy, which quantifies the difference between the 
off-diagonal elements of S and the anti-image corre-
lation matrix Q = PS−1P, where P = [diag(S−1)]−1 
(Cerny and Kaiser, 1977).

No reference criterion is available for assessing the 
number of factors that should be retained (Schmitt, 
2011). Thus, in the present work, the number of la-
tent variables was chosen according to the amount of 
variance explained by the extracted factors, according 
to their readability in terms of biological meaning and 
relationships with the original variables (Morrison, 
1976), and according to the outcome of the Bartlett 
chi-squared test, which compares S with BB  correla-
tion matrices (Lawley and Maxwell, 1971).

Factor scores calculated for each cow were treated as 
a new variable and analyzed with the following univari-
ate linear model (SAS Institute, 2008):

 yijkl = HERDi + PARj + DIMk + eijkl,  [3]

where y is the score of the pth factor of the lth cow; 
HERD is the fixed effect of the ith herd (38 levels); 
PAR is the fixed effect of the jth parity (5 levels: 1, 2, 
3, 4, >4); DIM is the fixed effect of lactation stage k 
(10 intervals of DIM of 30 d, each starting from parturi-
tion); and e is the random residual, ~N(0, σ2

e). Least 
squares means of the DIM effect allow the reconstruc-
tion of the average lactation curve of the considered 
trait corrected for other effects included in the model 
(Stanton et al., 1992).

Genetic Analysis. Statistical inference was based 
on a set of bivariate analyses, which considered pairs 
of traits. These traits were factor scores and individual 
milk yield. Each bivariate analysis was based on the 
following linear mixed model:

y = Xb + Z1h + Z2a + e,

where y was a vector of records for traits 1 and 2; X, 
Z1, and Z2 were the appropriate incidence matrices for 
systematic effects in b, herd effects in h, and animal 
additive genetic effects in a, respectively; and e was a 
vector of random residuals.

Table 1. Mean and standard deviation of milk yield, composition, and 
coagulation traits 

Trait Mean SD

Milk yield (kg) 29.16 7.75
TS (%) 9.32 0.47
Fat percentage 3.93 0.83
Protein percentage 3.66 0.35
CN percentage 2.85 0.27
Lactose percentage 4.96 0.22
SCC (×1,000/mL) 188 432
Titratable acidity 3.30 0.44
pH 6.67 0.15
Rennet coagulation time (min) 14.91 4.70
Rate of firming (min) 3.60 3.24
Curd firmness (mm) 40.05 11.38
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Bayesian Inference. (Co)variance components and 
related parameters were estimated using a Bayesian 
approach and Markov-chain Monte Carlo methods (So-
rensen and Gianola, 2002). All traits were continuous 
variables, and their values were assumed to be sampled 
from the following multivariate normal distribution:

p(y|b, h, a, R) ~ MVN(Xb + Z1h + Z2a, I  R),

where y, b, h, a, X, Z1, and Z2 are defined above, R 
is a 2 × 2 matrix of residual (co)variances, and I is a 
2 × 2 identity matrix. The data were properly ordered 
within the vectors and the vectors a and h contained 
the effects for both traits, individual by individual.

In a Bayesian setting, we assumed

p(a|G) ~ MVN(0, A  G), and

p(h|H) ~ MVN(0, I  H),

where G is a 2 × 2 matrix of additive-genetic (co)
variances, A is the numerator of Wright’s relationship 
matrix between individuals, H is a 2 × 2 (co)variance 
matrix for herd effects, and I is a 2 × 2 identity matrix. 
Flat priors were assumed for effects in b, as well as for 
G, H, and R.

Gibbs Sampler. Marginal posterior distributions of 
unknown parameters were estimated by performing nu-
merical integration using the Gibbs sampler (Gelfand 
and Smith, 1990). This was used to obtain autocorre-
lated samples from the joint posterior distributions and 
subsequently from the marginal posterior distributions 
of all unknowns in the model. The lengths of the chain 
and of the burn-in period were assessed by visual inspec-
tion of trace plots, as well as by the diagnostic tests of 
Geweke (1992) and Gelman and Rubin (1992). After a 
preliminary run, we decided to construct a single chain 
consisting of 850,000 iterations and to discard the first 
50,000 iterations as a very conservative burn-in. Subse-
quently, 1 in every 200 successive samples was retained, 
to store draws that were more loosely correlated. Thus, 
4,000 samples were used to determine the posterior 
distributions of unknown parameters. The lower and 
upper bounds of the highest 95% probability density re-
gions for parameters of concern were obtained from the 
estimated marginal densities. Moreover, the posterior 
probability for heritability >0.1 was computed using 
the estimated marginal densities. The posterior median 
was used as the point for all parameters. Autocorrela-
tions between samples and estimates of Monte Carlo 
standard errors (Geyer, 1992) were calculated.

RESULTS AND DISCUSSION

Several studies have shown the difficulty in manag-
ing and interpreting relationships between the large 
number of variables used to define milk nutritional and 
technological quality (Ikonen et al., 2004; Vallas et al., 
2010). This fact represents, together with the costs of 
measuring the traits, a constraint for the large-scale im-
plementation of selection for milk technological quality. 
Moreover, the analysis of correlated traits with sam-
pling errors that tend to be correlated may add further 
difficulty in the interpretation of results (Bolormaa et 
al., 2010). Thus, a reduction in the dimensionality of 
the system by factor analysis may be of great applica-
tive interest. A single variable or a few variables, well 
defined in terms of technical and biological meaning, 
and uncorrelated with each other or with a low level of 
correlation, may be desirable indicators of the different 
aspects of milk quality.

In the present study, the marked difference between 
Pearson and partial correlations (Table 2) indicated 
that a latent correlation structure exists. Overall, the 
Kaiser measure of sampling adequacy was equal to 0.62. 
This value is not too far from the empirical threshold 
of 0.8, which is the optimal value to consider a data 
set suitable for factor analysis, and is higher than the 
lower limit of 0.5 proposed for accepting data for factor 
analysis (Cerny and Kaiser, 1977).

Four latent common factors with an associated com-
munality equal to 70% of the total original variance 
of the system were extracted. Rotated factor patterns 
and communalities of original variables are reported in 
Table 3. The structure was quite easy to interpret: few 
variables with large loadings and many variables with 
small loadings could be observed within each factor, 
respectively. This result suggested the hypothesis of a 
simpler structure that controls, at least in part, the 
covariance of milk quality traits. The partitioning of 
explained variance between extracted factors was quite 
balanced, with an expected slight predominance of the 
factor 1 (eigenvalue = 0.29), whereas the eigenvalues of 
the other 3 factors ranged between 0.1 and 0.19 (Table 
3). This is a peculiarity of factor analysis in comparison 
with principal components analysis, another multivari-
ate dimension reduction technique. In principal compo-
nents analysis, the first component is usually associated 
with a larger amount of variance in comparison with 
successive variables (Jombart et al., 2009).

The unexplained variance consists largely of random, 
unpredictable variations and systematic error (En-
evoldsen et al., 1996). In the present study, the larger 
uniqueness (i.e., 1 − communality) was found for traits 
such as SCC, fat percentage, and curd firming time 
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(Table 3), that is, variables that are known to show a 
large amount of random variation.

The first latent variable, which explained about 
30% of the original variance, was positively associ-
ated with TS, fat, protein, and CN contents. It was 
therefore considered an indicator of milk composition 
(Composition). The second common factor, explaining 
about 20% of the variance, was positively associated 
with renneting and curd firming time and negatively 
associated with curd firmness, respectively. It was con-
sidered a Coagulation factor. Its scores were therefore 
negatively correlated with the overall technological 
quality of milk. In Girgentana breed goats, Todaro et 
al. (2005) found 2 different factors related to MCP, 
one associated with renneting time and another with 
curd firmness, respectively. Such a difference could be 
related to the faming system (extensive in goats vs. 
semi-intensive in cows), but also to differences in the 

genetic control of these traits in the 2 species. Finally, 
it should be remembered that in this study, the curd 
firming time was not found to be related to any of the 
extracted factors. Actually, this variable is considered 
the most problematic among MCP in terms of the fea-
sibility of measurement and the repeatability of results 
(Bittante, 2011). The third extracted latent variable 
was associated with measures of acidity. It could be 
termed Acidity. Finally, the fourth common factor was 
positively correlated with lactose content and nega-
tively with SCC. Larger scores were therefore associ-
ated with higher lactose and lower SCC, that is, with 
a better health status of the mammary gland, with 
milk lactose content and SCC being 2 indicators of the 
integrity of mammary gland cells (Dohoo and Meek, 
1982; Hamann and Kromker, 1997). The factor was 
termed Udder_Health. Similar results were obtained 
when SCS was used instead of SCC.

Table 2. Pearson (above the diagonal) and partial (under the diagonal) phenotypic correlations among milk composition traits and milk 
coagulation properties1 

Item TS FP PP CAS LAC SCC SH pH RCT k20 a30

TS * 0.20 0.71 0.77 0.41 −0.12 0.40 −0.10 0.08 −0.09 0.17
FP −0.01 * 0.36 0.40 −0.15 0.04 0.04 0.05 −0.04 0.02 0.12
PP 0.34 −0.23 * 0.94 −0.09 0.02 0.35 0.02 0.13 0.01 0.08
CAS 0.03 0.34 0.89 * 0.47 −0.04 0.39 −0.01 0.11 −0.05 0.14
LAC 0.54 −0.24 −0.65 0.12 * −0.30 0.28 −0.21 −0.05 −0.22 0.26
SCC 0.02 −0.001 −0.03 0.03 −0.19 * −0.16 0.11 0.07 0.06 −0.16
SH −0.01 −0.09 0.09 0.05 0.12 −0.06 * −0.51 −0.05 0.02 0.11
pH −0.02 −0.02 0.02 0.06 −0.02 0.005 −0.51 * −0.001 0.04 −0.06
RCT −0.01 −0.07 0.04 0.02 0.05 0.03 −0.07 0.09 * 0.25 −0.32
k20 0.01 0.06 0.05 −0.06 −0.07 −0.04 −0.13 0.13 0.16 * −0.36
a30 −0.03 0.13 0.04 −0.02 0.13 −0.07 0.28 −0.21 −0.25 −0.26 *
1Standard errors were in the ranges of 0.010 to 0.029 and 0.013 to 0.029 for Pearson correlations and partial correlations, respectively. FP = fat 
percentage; PP = protein percentage; CAS = CN content; LAC = lactose percentage; SH = titratable acidity; RCT = rennet coagulation time; 
k20 = curd firming time; a30 = curd firmness.

Table 3. Rotated factor pattern and variable communality 

Item Factor 1 Factor 2 Factor 3 Factor 4 Communality

Original variable1

 TS 0.8142 0.006 −0.136 0.378 0.82
 FP 0.5262 −0.241 0.120 −0.403 0.51
 PP 0.9402 0.075 −0.080 −0.093 0.90
 CAS 0.9622 0.009 −0.090 0.047 0.93
 LAC 0.074 −0.159 −0.169 0.8182 0.73
 SCC −0.011 0.101 0.008 −0.6512 0.43
 SH 0.347 −0.106 −0.7792 0.171 0.77
 pH 0.082 0.110 0.9002 −0.045 0.83
 RCT 0.138 0.7432 0.034 0.095 0.58
 k20 −0.021 0.6672 0.020 −0.208 0.49
 a30 0.148 −0.7292 −0.193 0.166 0.62
Eigenvalue 0.29 0.19 0.122 0.10  
1FP = fat percentage; PP = protein percentage; CAS = CN content; LAC = lactose percentage; SH = titrat-
able acidity; RCT = rennet coagulation time; k20 = curd firming time; a30 = curd firmness.
2Values indicate loadings greater than 0.60 that have been considered to be significant for the interpretation 
of the factor pattern.
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The highest communalities were observed for CN 
and protein contents, whereas the lowest was for SCC 
(Table 2). Results for protein agreed with the report of 
Todaro et al. (2005).

Individual scores for Composition were affected by 
all the main effects included in model [3] (P < 0.001). 
The lowest values were for cows in the fifth or higher 
parity (Table 4) and were significantly different (P 
< 0.001) from those of younger cows. The pattern of 
Composition along the lactation (Figure 1, upper left 
panel), obtained by plotting least squares means of 
DIM against the month of lactation, was quite similar 
to the lactation curve for milk composition traits.

Coagulation scores were affected by herd and the DIM 
interval (P < 0.001), but not by parity (P = 0.27). The 
absence of a relationship between lactation number and 
MCP has been reported in several studies (Lindström 
et al., 1984; Davoli et al., 1990; Ikonen et al., 1999). 
The effect of herd was probably related to differences 

in management and feeding practices. Tyrisevä et al. 
(2004) reported a slight improvement in MCP as well 
as in milk, fat, and protein yields associated with an 
increased frequency of concentrate feeding. However, 
Ojala et al. (2005) reported that herd had markedly 
lower effects on the MCP variation than on milk yield 
traits in dairy cows. The pattern of Coagulation along 
the lactation was characterized by an increase, even 
though it was together with relevant variability (Figure 
1, upper right panel). Given that this factor is nega-
tively related to the technological properties of milk, 
the pattern indicates a worsening of MCP properties 
along the lactation. The variation in MCP across DIM 
could be related to changes in physical and chemical 
characteristics of the milk during lactation, particularly 
macrocomponents, the CN micelle structure, and the 
salt equilibrium.

The factor Acidity was affected by all the main ef-
fects included in model [3] (P ≤ 0.01). As expected, 

Table 4. Least squares means ± SE of the 4 extracted factors for different levels of parity 

Parity Composition Coagulation Acidity Udder_Health

First 0.00 ± 0.06A 0.022 ± 0.08 −0.245 ± 0.06A 0.535 ± 0.07A

Second −0.132 ± 0.04A 0.064 ± 0.06 −0.047 ± 0.04AB 0.078 ± 0.05B

Third −0.206 ± 0.05A −0.103 ± 0.07 0.065 ± 0.05B −0.137 ± 0.06B

Fourth −0.274 ± 0.06A −0.039 ± 0.08 0.109 ± 0.06B −0.261 ± 0.08BC

Fifth or greater −0.656 ± 0.08B −0.135 ± 0.10 0.162 ± 0.08B −0.764 ± 0.10BCD

A–DMeans within columns with different superscripts differ (P < 0.001).

Figure 1. Pattern of the extracted common factor scores along the lactation (upper left: Composition; upper right: Coagulation; lower left: 
Acidity; lower right: Udder_Health).
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given its positive correlation with pH, the average score 
for Acidity increased significantly (P < 0.001) from 
the first to later parities (Table 4). The pattern along 
the lactation can be observed in the lower left panel of 
Figure 1: the values of the scores show a slight increase 
in the first part of lactation and a subsequent smooth 
decrease.

Finally, scores for Udder_Health were also affected 
by all the effects included in model [3] (P < 0.001). A 
clear pattern across parities could be observed (Table 
4), with the highest value (indicating the best condi-
tion of the mammary gland) for first-calving cows and 
a progressive decrease for older parities. In addition, 
the progressive decrease in Udder_Health scores along 
the lactation, after an initial increase, (Figure 1, lower 
right panel) was expected. It mimics quite closely the 
standard shape of the lactation curve for milk yield.

Posterior medians of heritability for the 4 latent fac-
tors and milk yield were low to moderate (Table 5). In 
particular, the heritability for Coagulation was similar 
to values reported for MCP for the Italian Simmental, 
Brown Swiss, and Holstein breeds (Bonfatti et al., 2011; 
Cecchinato et al., 2011), whereas it was lower than 
those reported by other authors for Estonian Holstein 
(Vallas et al., 2010) and Finnish Ayrshire cows (Ikonen 
et al., 2004). Actually, methodologies for MCP assess-
ment sometimes vary markedly across different studies. 
Estimates for Composition are in agreement with previ-
ous reports obtained for fat and protein percentages 
(Vallas et al., 2010) in data sets of comparable size. The 

median heritability for Acidity was of the same order 
of magnitude as values reported for pH and titratable 
acidity in Italian Holsteins (Cecchinato et al., 2011). 
The heritability of the Udder_Health factor was similar 
to values reported for the incidence of mastitis (Ap-
puhamy et al., 2009) and for SCS (Shook and Schutz, 
1994).

In addition, genetic correlations between extracted 
factors and milk yield exhibited low to moderate values 
(Table 6). The Coagulation factor showed a moderate 
positive correlation with Acidity, confirming previous 
reports (Ikonen et al., 2004; Cassandro et al., 2008), 
and a low and negative correlation with Composition 
and milk yield. No genetic relationships were detected 
between Coagulation and Udder_Health. The Compo-
sition factor showed a moderate negative correlation 
with milk yield and Acidity, as expected, and a low 
relationship with Udder_Health.

When latent factors were extracted, their scores were 
uncorrelated. The low genetic correlations observed 
between latent variable scores are a consequence of the 
rotation procedure adopted, which, from a geometric 
standpoint, corresponds to a rotation of the axis of 
the factor space to obtain the pattern of loadings that 
could be most easily interpreted (Krzanowsky, 2003). 
In any case, the bounds of the 95% probability density 
region of the marginal posterior densities of the ge-
netic correlations always included zero. Although this 
result does not add further elements to the assessment 
of correlations between different aspects of milk qual-
ity, it actually highlights a positive feature of the new 
variables. The low correlation allows a largely indepen-
dent selection of different characteristics of milk when 
extracted latent variables are used as breeding goals in 
a selection program.

CONCLUSIONS

The use of a few variables with a low degree of rela-
tionship between them and a clear technical meaning 
may represent a valuable option for both management 
and breeding purposes. Compared with the original 
traits, latent factors are able to represent some spe-
cific aspects of milk quality more efficiently; that is, 

Table 5. Features of the marginal posterior distribution of heritability 
for the investigated traits1 

Trait

Heritability

Median HPD95 P (h2 > 0.1)

Composition factor 0.203 0.081; 0.398 0.94
Coagulation factor 0.227 0.106; 0.413 0.98
Acidity factor 0.102 0.050; 0.190 0.52
Udder_Health factor 0.137 0.041; 0.288 0.74
Milk yield (kg) 0.085 0.010; 0.231 0.40
1Median = median of the marginal posterior density of the parameter; 
HPD95 = lower and upper bounds of the 95% highest posterior den-
sity region; P(h2 > 0.1) = posterior probability of heritability being 
greater than 0.1.

Table 6. Estimates of genetic correlations between milk yield, composition, coagulation, health, and acidity factors1 

Trait Composition Coagulation Acidity Udder_Health

Milk yield (kg) −0.297 (−0.84, 0.58) −0.147 (−0.74, 0.63) 0.345 (−0.39, 0.94) 0.132 (−0.72, 0.89)
Composition  −0.116 (−0.59, 0.52) −0.281 (−0.71, 0.20) 0.126 (−0.51, 0.68)
Coagulation   0.458 (−0.008, 0.81) 0.008 (−0.57, 0.54)
Acidity    0.168 (−0.43, 0.63)
1Estimates are the medians (lower and upper bound of the 95% probability density region in parentheses) of the marginal posterior densities of 
the genetic correlations.
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the number of traits is drastically reduced. It is often 
easier, in practice, to focus on aggregate indexes in-
stead of evaluating different variables that do not have 
well-defined estimates of relationships between them. 
The combination of original traits in factor scores is not 
carried out by fixing a priori weights but is based on 
loadings that are derived from the original correlation 
matrix. Multivariate factor analysis allows calculations 
to be simplified by using a reduced variable space but 
without excluding any trait. In general, the extracted 
variables exhibited a coherent behavior across levels 
of fixed factors considered in this research, such as 
parity and lactation stage. As far as the meaning of 
the extracted variables is concerned, of particular in-
terest are the factors Coagulation and Udder_Health, 
which are able to represent each complex animal trait 
with a single value.All new variables exhibited genetic 
variation, almost in agreement with results for origi-
nal variables. Thus, their inclusion as breeding goals 
in selection programs for improving milk quality could 
be implemented. In any case, relationships with other 
traits, such as reproduction or type, have to be care-
fully assessed. The derivation of their economic weights 
should be based on the milk market scenarios, farm-
ing systems, feed supply and costs, and industry goals 
(Shook, 2006). A reduced number of variables, com-
pared with the use of simple traits, should simplify the 
calculation of weights. Moreover, the low degree of cor-
relation between factors could provide the advantage 
of an independent selection for these variables. It could 
therefore be more feasible and simpler, for example, to 
place different economic emphasis on milk composition 
and on its coagulation properties. This may be of great 
interest for cattle breeds whose milk is primarily pro-
cessed into typical cheeses. The breeding goals of dairy 
cattle are in continuous development, and several new 
phenotypes yielded by the increasing implementation of 
precision farming may be available in the near future 
(Boichard and Brochard, 2012). Technologies such as 
mid-infrared spectroscopy may automate, and there-
fore reduce, the measurement costs of traits such as 
MCP and milk FA composition. However, such a huge 
amount of information will require adequate statistical 
tools to make inferences about the causes of variation 
and to study the pattern of relationships. Factor analy-
sis could represent a valuable option in this sense.
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