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ABSTRACT

Fatty acid (FA) profile is one of the most important
aspects of the nutritional properties of milk. The FA
content in milk is affected by several factors such as
diet, physiology, environment, and genetics. Recently,
principal component analysis (PCA) and multivariate
factor analysis (MFA) have been used to summarize
the complex correlation pattern of the milk FA pro-
file by extracting a reduced number of new variables.
In this work, the milk FA profile of a sample of 993
Sarda breed ewes was analyzed with PCA and MFA
to compare the ability of these 2 multivariate statisti-
cal techniques in investigating the possible existence
of latent substructures, and in studying the influence
of physiological and environmental effects on the new
extracted variables. Individual scores of PCA and MFA
were analyzed with a mixed model that included the
fixed effects of parity, days in milking, lambing month,
number of lambs born, altitude of flock location, and
the random effect of flock nested within altitude. Both
techniques detected the same number of latent variables
(9) explaining 80% of the total variance. In general,
PCA structures were difficult to interpret, with only
4 principal components being associated with a clear
meaning. Principal component 1 in particular was the
easiest to interpret and agreed with the interpretation
of the first factor, with both being associated with the
FA of mammary origin. On the other hand, MFA was
able to identify a clear structure for all the extracted
latent variables, confirming the ability of this technique
to group FA according to their function or metabolic
origin. Key pathways of the milk FA metabolism were
identified as mammary gland de novo synthesis, ruminal
biohydrogenation, desaturation performed by stearoyl-
coenzyme A desaturase enzyme, and rumen microbial
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activity, confirming previous findings in sheep and in
other species. In general, the new extracted variables
were mainly affected by physiological factors as days
in milk, parity, and lambing month; the number of
lambs born had no effect on the new variables, and
altitude influenced only one principal component and
factor. Both techniques were able to summarize a larger
amount of the original variance into a reduced number
of variables. Moreover, factor analysis confirmed its
ability to identify latent common factors clearly related
to FA metabolic pathways.

Key words: fatty acids, principal components, factor
analysis, milk

INTRODUCTION

The interest by the scientific community and con-
sumers in the nutritional and health-related properties
of milk and dairy products has increased over the last
decades. Strategies for improving the milk content of
some categories of fatty acids (FA) considered benefi-
cial for human health, such as PUFA and CLA, have
been developed. Most of them rely on feeding manage-
ment (Dewhurst et al., 2006; Toral et al., 2010; Nudda
et al., 2014) with diet being one of the most important
factors affecting milk FA profile (Nudda et al., 2014).
However, other factors such as physiology (De La
Fuente et al., 2009), environment (Sevi et al., 2002),
and genetics (Carta et al., 2008; Correddu et al., 2019)
can affect milk FA composition. Thus, for example, ge-
nomic strategies to improve milk FA profile have been
also proposed (Cesarani et al., 2019; Gebreyesus et al.,
2019).

The elucidation of FA metabolic pathways and the
knowledge of factors affecting their regulation are of
great interest for improving milk nutritional proper-
ties. In particular, the complex phenotypic and genetic
correlation pattern existing among individual milk FA
hampers the modification of FA profile via feeding and
genetic strategies (Cecchinato et al., 2019). Dimension-
reduction multivariate statistical methods have been
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suggested for investigating such a complex correlation
network. In particular, principal component analysis
(PCA,; Fievez et al., 2003; Kadegowda et al., 2008) and
multivariate factor analysis (MFA; Mele et al., 2016;
Correddu et al., 2017; Palombo et al., 2020) have been
used to highlight common metabolic pathways of FA in
ruminant species.

Being both based on the factorization of the covari-
ance or correlation matrix, and on the representation
of the multivariate system with a lower number of new
variables, PCA and MFA appear somewhat similar.
However, the way the factorization is carried out dif-
fers between the 2 techniques. Principal component
analysis is a model-free approach aimed at compress-
ing the variance of the system in a smaller number of
new variables. On the other hand, MFA starts from a
model of the covariance structure of the multivariate
system. In particular, the factor model assumes that
the covariance of a system could be partitioned in a
component shared by all the variables (communality)
plus a component specific of each variable (uniqueness).
Multivariate factor analysis aims at investigating the
covariance structure of the system by identifying a set
of common latent variables (factors) that generate the
quota of shared covariance among the original variables
(Morrison et al., 1976; Krzanowski, 2000).

Principal component analysis of cattle milk FA com-
position was able to assess the relationship between in-
dividual milk FA and diet-induced milk fat depression
(Kadegowda et al., 2008), and to investigate metabolic
relationships among milk FA and to describe their ori-
gin (Fievez et al., 2003). Principal component analysis
has been also used to analyze meat FA profile to differ-
entiate lamb meat according to their origin (Dfaz et al.,
2005), and to study the relationship between quality
traits of carcass and meat of light lamb (Caneque et
al., 2014). Multivariate factor analysis was successfully
exploited to elucidate relationship between milk FA in
dairy cows (Conte et al., 2016; Mele et al., 2016), sheep
(Palombo et al., 2020), and buffalo (Correddu et al.,
2017).

The use of the 2 methods on the same data may pro-
vide different and complementary results. In a study of
cattle lactation curve traits, for example, PCA was able
to extract from the correlation matrix of test day re-
cords 2 new variables related to the whole lactation and
to the shape of the lactation curve, respectively. On the
same data, MFA generates 2 latent factors related to
the first and the second part of lactation, respectively
(Macciotta et al., 2006).

The aim of this work was to compare results of MFA
and PCA in the analysis of milk FA profile in sheep to
assess their ability to investigate the complex correla-
tion pattern that exists among these variables.
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MATERIALS AND METHODS

Animals and Milk Samples

The study was carried out on individual milk samples
of 993 Sarda dairy ewes farmed in 48 flocks located in
the island of Sardinia (Italy). Individual milk samples
(one per sheep) were collected from April to July 2014,
during the morning milking, by the Provincial Associa-
tion of Animal Breeders. The FA profile of the milk
samples was measured using GC as previously described
(Correddu et al., 2017).

Statistical Analysis

Data for a total of 49 individual FA (expressed as
g/100 g of total FA) were analyzed with PCA and MFA
using SAS PRINCOMP and FACTOR procedures, re-
spectively (SAS Institute Inc., Cary, NC). The number
of principal components (PC) to retain was defined ac-
cording to the amount of explained variance (>80%). In
MFA, the number of factors to be extracted was based
on their eigenvalue (>1; Morrison et al., 1976), on their
readability in terms of relationships with the original
variables and biological meaning, and on the amount of
explained variance. Factor interpretation was improved
through a VARIMAX rotation. The VARIMAX is an
orthogonal rotation, based on the maximization of the
sum of squares of factor loadings (Kaiser, 1958; Forina
et al., 1989).

Scores of PC and factors were then calculated for
each of the 993 ewes and treated as new phenotypes.

The PC and factor scores were analyzed with the
following mixed linear model:

yzjklmno = U —+ PAR7 + DIMk + LMZ + LBm + ALTn
+ f(ALT)o + ei]'klmnm

where  y;mm, Was the principal component or factor
score; p was the overall mean; PAR is the fixed effect of
the jth parity class (8 classes from 1 to >7); DIM is the
fixed effect the kth days in milking interval (5 intervals:
<110, 110 to 140, 141 to 170, 171 to 200, and >200);
LM is the fixed effect of the lth class of lambing month
(1: January; 2: February and March; 3: October and
November; 4: December); LB is the fixed effect of the
mth number of lambs born (2 classes: single and mul-
tiple birth); ALT is the fixed effect of the nth altitude
of location of flocks (mountain >500 m above sea level,
hill <500 and >200 m above sea level, and plain <200
m above sea level). Finally, f(ALT) is the random effect
of the oth flock nested within the nth class of altitude,
and e, is the residual term. Covariance matrices for



Correddu et al.: MULTIVARIATE ANALYSIS OF MILK FATTY ACIDS

random effects were Io;( apr) and Io?, where I is an

identity matrix and a/%( ALT) and o’ are the variance

components associated with the effect of the flock
nested within the altitude and with the residuals, re-
spectively.

The contribution of the flock nested within the alti-
tude factor (r*y;7) was calculated as

2
Tr(aLT)
2 2"

r’f(ALT) =
TfaLt) T 0

RESULTS AND DISCUSSION

Descriptive statistics of detailed milk FA composi-
tion of the 993 samples of sheep milk are reported in
Supplemental Table S1 (https://doi.org/10.3168/jds
.2020-19087).

Principal Component Analysis

Nine out of 49 PC were able to explain about 80% of
the total variance of the system (Table 1). The variance
explained ranged from about 25% for PC1 to about
3% for PC9, respectively. The PC scores are often used
in dispersion plots to highlight possible clustering or
trends in the observations. In the present work, no
clear clustering of observations has been detected in
the space of the first 2 PC, even though an overlapped
stratification according to parity (Figure la) or DIM
class (Figure 1b) could be appreciated. However, when
the number of carbons and the level of unsaturation
were used to highlight possible effects on the PC load-
ings, a partial clustering was observed. In Figure 2 the
PC1 and PC2 scores were classified based on 4 classes
of quartile distribution of the mean carbon chain length
and mean of unsaturation level, calculated according to
Kaylegian et al. (2009). An effect of carbon chain length
classes can be observed on the PC1 scores (Figure 2a)
that is able to separate, even if not in a clear manner,
animals with milk FA profile characterized by different
means of carbon chain length. Animals belonging to the
class with the lower levels of carbon chain length had
lower scores PC1; as the levels of carbon chain length
increased, the animals exhibited increasing PC1 scores.
The effect of the mean of unsaturation level was less
evident in separating animals across the PC2 scores
(Figure 2b).

The analysis of eigenvector structure is a way for
assigning a meaning to the extracted PC in terms of
relationship with the original variables. In the present
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study, the interpretation of the extracted PC on the
basis of their eigenvectors (Table 1) was rather diffi-
cult. The correlation circles (Figure 3) are often used
to assess the meaning of the PC, by looking for specific
clusters among the original variables in the new space
of the PC, and to interpret the relationship between
the variables and the extracted PC. Indeed, in Figure 3
the considered FA are represented by their correlation
with the first 2 extracted PC. These correlations are
approximated by the angle between the vectors, with
small angles indicating positive correlations and angles
close to 180 degrees indicating negative correlations.
However, in the present work no clear clustering was
observed among original variables based on the PC
loadings (as an example see the loadings plot of the
first 2 PC in Figure 3).

Considering a threshold of >0.20 (absolute value),
half of the FA exhibited coefficients exceeding this
value in at least 2/3 different PC, whereas 4 FA showed
no loading >0.20 for any extracted PCA (Table 1).
This was particularly true for PC4, PC5, PC7, and
PC9. An interpretation was attempted for the other
PC, even if caution should be taken for the interpreta-
tion of the PC6 and PC8 due to the low percentage of
their explained variance (5.27 and 2.89%, respectively).

The first PC (PC1, variance explained 25.06%) pre-
sented the highest loadings for most of the short- and
medium-chain FA (negatives), some iso FA, C18:1
cis-9, and long-chain SFA (positives). That is in ac-
cordance with the effect of carbon chain length on
the PC scores, above discussed. Most of these FA are
totally or partially synthetized in the mammary gland
(Chilliard et al., 2000). Therefore, animals that have
large PC1 scores are characterized by a higher content
of FA of mammary gland origin; thus, this PC could be
considered as an index of FA synthesis in this organ. As
an example, Figure 4 reports the averages of some milk
FA of animals classified according to PC1 score classes
(based on PC1 score distribution quartiles). It can be
seen that the average concentration of FA with larger
negative loadings on PC1 (e.g., C10:0) decreases across
PC1 classes, whereas the FA with positive loadings
(e.g., C18:1 c¢is-9) exhibit the opposite trend. Finally,
FA with a loading close to zero (e.g., C16:0) do not show
a clear pattern. The PC scores could therefore be used
as a new individual synthetic phenotype that character-
izes animals on the basis of the FA of mammary gland
origin. The high positive loadings for PC1 showed by
C20:0, C18:1 c¢is-9, and iso C17:0 are also represented
in Figure 3, which shows a positive correlation between
these FA and PC1. Correlations between C20:0, C18:1
cis-9, and iso C17:0 and PC1 were 0.86, 0.80, and 0.75,
respectively. On the contrary, C8:0, C10:0, C12:0, and
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Table 1. Eigenvectors, eigenvalues, and percentage of variance explained of the first 9 principal components (PC) extracted from the correlation

matrix of the 49 fatty acids

PC

Fatty acid’ PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PCY

C4:0 —0.054 0.143 0.006 —0.205* 0.123 0.041 —0.287%  —0.160 0.099
C6:0 —0.219* 0.039 0.119 —0.099 0.239%* 0.031 —0.036 —0.062 0.054
C8:0 —0.233* 0.009 0.124 —0.033 0.237* 0.011 0.052 —0.047 0.013
C10:0 —0.239%  —0.044 0.124 0.015 0.216*  —0.005 0.110 —0.006 0.036
C10:1 —0.189 —0.074 0.044 0.101 0.095 —0.035 0.103 0.116 0.005
C11:0 —0.201%  —0.173 0.102 0.167 0.068 —0.010 0.042 0.056 —0.048
C12:0 —0.228%  —0.094 0.109 0.068 0.190 —0.022 0.151 0.045 0.019
iso C'13:0 0.192 0.019 0.113 —0.114 —0.042 —0.072 0.099 0.137 0.143
anteiso C13:0 —0.094 —0.246* 0.071 0.217%  —0.029 —0.051 0.096 0.181 —0.032
iso C14:0 0.198 —0.008 0.155 0.096 0.054 —0.100 —0.065 0.013 0.281%*
C14:0 —0.170 —0.206* 0.092 0.005 0.011 —0.021 0.091 0.198 0.174
iso C'15:0 0.210* 0.044 0.134 0.030 0.024 —0.213* 0.033 0.063 0.004
anteiso C15:0 0.090 0.128 0.198 0.193 0.101 —0.278%  —0.057 0.041 —0.027
C14:1 ¢is-9 —0.011 —0.288%  —0.010 0.188 —0.199 —0.010 —0.022 0.172 —0.008
C15:0 0.019 0.049 0.224%* 0.275* 0.040 —0.098 —0.019 0.110 0.146
iso C16:0 0.151 0.048 0.130 0.186 0.180 —0.137 —0.149 0.059 0.136
C16:0 0.038 —0.245%  —0.001 —0.118 —0.199 0.087 —0.147 0.031 0.249%*
iso C17:0 0.214%* 0.035 —0.035 0.092 0.183 —0.131 0.032 0.025 —0.207*
C16:1 trans-9 —0.114 0.213 0.023 0.106 —0.202%  —0.180 0.077 —0.311* 0.147
anteiso C17:0 0.127 0.105 0.096 0.241%* 0.249%  —0.148 —0.060 —0.014 —0.211*
C16:1 cis-9 0.039 —0.248%  —0.024 0.194 —0.289* 0.018 —0.108 0.036 —0.103
C17:0 0.126 0.052 0.212* 0.205* 0.127 0.120 0.088 0.014 0.037
C17:1 ¢is-9 0.133 —0.103 0.076 0.281*%  —0.147 0.032 —0.022 —0.083 —0.196
C18:0 0.155 0.191 —0.021 —0.212% 0.160 —0.078 0.107 0.109 —0.158
C18:1 trans-4 0.096 0.030 —0.246%  —0.041 0.107 —0.015 0.245* 0.202* 0.147
C18:1 trans-5 0.054 0.027 —0.263* 0.031 0.119 0.007 0.274%* 0.117 0.185
C18:1 trans-6+8 0.030 0.038 —0.344* 0.106 0.060 —0.087 0.147 0.056 0.116
C18:1 trans-9 0.025 0.064 —0.339* 0.107 0.002 —0.121 0.121 0.008 0.067
C18:1 trans-10 —0.007 —0.013 —0.245% 0.194 0.086 —0.003 0.093 —0.066 0.131

C18:1 trans-11 —0.122 0.233*  —0.033 0.104 —0.138 —0.214* 0.081 —0.263* 0.186
C18:1 trans-13+t14 —0.154 0.216*  —0.080 0.125 0.088 0.117 —0.154 0.156 0.001
C18:1 cis-9 0.229%*  —0.018 —0.089 —0.012 —0.100 —0.030 —0.012 —0.059 —0.336*
C18:1 cis-12 0.071 —0.043 —0.294* 0.095 0.126 0.089 —0.090 0.032 0.037
C18:1 trans-16+4cis-14 —0.090 0.284*  —0.073 0.056 0.064 0.117 —0.160 0.210%*  —0.128
C18:2 trans-9,trans-12 —0.030 0.013 —0.159 0.253* 0.033 0.152 0.031 0.001 0.205*
C18:2 cis-9,trans13 —0.139 0.162 —0.101 0.253*  —0.091 0.119 —0.166 0.124 —0.174

C18:2 cis-9,trans-12 —0.087 0.192 —0.139 0.190 —0.012 0.143 —0.197 0.176 —0.121

('18:2n-6 0.093 —0.056 —0.063 0.149 0.133 0.312%  —0.249%*  —0.268* 0.134

20:0 0.245* 0.003 0.010 —0.020 —0.015 0.034 —0.018 0.157 0.172

(18:3n-6 0.020 —0.205%  —0.001 0.076 0.193 0.118 —0.103 —0.150 0.125

(18:3n-3 —0.105 0.212* 0.105 0.015 —0.150 0.289*  —0.066 0.072 0.129

C18:2 cis-9,trans-11 —0.111 0.150 —0.027 0.193 —0.267%  —0.224* 0.076 —0.306* 0.085

©22:0 0.205% 0.114 0.119 0.019 —0.070 0.102 —0.102 0.142 0.267*
(20:3n-6 0.144 —0.121 —0.044 0.090 0.213* 0.131 0.001 —0.280* 0.027
(€20:4n-6 0.153 —0.160 —0.019 0.064 0.193 0.141 0.059 —0.326%  —0.077
C20:5n-3 (EPA) —0.039 0.176 0.169 0.088 —0.104 0.259* 0.277%  —0.004 —0.028

€24:0 0.189 0.147 0.127 —0.002 —0.066 0.118 —0.070 0.092 0.205*
(22:5n-3 (DPA) 0.090 0.137 0.150 0.064 —0.069 0.299%* 0.367*  —0.072 —0.087
(22:6n-3 (DHA) 0.120 0.044 0.098 0.022 —0.052 0.313* 0.346*  —0.043 —0.081

Eigenvalues 12.28 7.38 6.55 3.84 2.61 2.58 1.53 1.42 1.26

Variance explained (%) 25.06 15.06 13.37 7.83 5.32 5.27 3.13 2.89 2.57

'EPA = eicosapentaenoic acid; DPA = docosapentaenoic acid; DHA = docosahexaenoic acid.

*A number with an asterisk indicates the absolute value of eigenvectors >0.2 that has been considered the threshold for the association between

a original variable to the considered PC.

C6:0 are negatively correlated with PC1 (Table 1 and
Figure 3): correlations between these FA and PC1 were
—0.82, —0.84, —0.80, and —0.77, respectively.

The PC2 (variance explained 15.06%) had high
negative loadings on anteiso C13:0, C14:0, C16:0, C14:1
cis-9, C16:1 c¢is-9, and C18:3n-6 and positives on some

Journal of Dairy Science Vol. 104 No. 4, 2021

biohydrogenation (BH) products and C18:3n-3 (Table
1 and Figure 3). The association with FA of different
origin and metabolic pathways does not allow us to
assign a clear meaning to this PC. The only feature
shared by FA associated with this PC is their relation-
ship with diet quality, especially with the use of graz-
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Figure 1. Plots of the scores for the first 2 principal components
(Prinl and Prin2; variance explained: 25.06% and 15.06%, respective-
ly) of animals belonging to different classes of DIM (from 1 to 5 in
panel a, and averaged in mid and late lactation in panel b).

ing. In dairy cattle (Fievez et al., 2003) the 2 first PC
were mostly associated with FA belonging to 4 groups.
Two included FA that originate in the mammary gland
from de novo synthesis or desaturase activity; the other
2 consist of FA produced in the rumen from BH activ-
ity or from microbial synthesis.

The PC3 (variance explained 13.37%) presented high
positive loadings for C15:0 and C17:0, and negative for
several positional isomers of trans C18:1 and on C181
cis-12, respectively. This PC could be related to the FA
BH processes occurring in the rumen (Shingfield et al.,
2010). The PC3 had also high loadings on some odd-
and branched-chain FA (OBCFA) of microbial origin.
The OBCFA profile has been proposed as a useful tool
to predict shifts in microbial population associated in
particular with the diet (Vlaeminck et al., 2006). The
PC6 (variance explained 5.27%) showed the largest
positive loadings for PUFA n-3 (DHA, DPA C18:3n-3,
EPA) and C18:2n-6, but negative loadings for C18:1
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trans-11 and C18:2 cis-9,trans-11 [i.e., the substrates
(with positive loadings) and products (with negative
loadings) of ruminal FA BH]. This pattern is confirmed
by the correlations between these FA and PC; positive
correlations were observed for C18:2n-6 (0.51), DHA
(0.50), DPA (0.48), C18:3n-3 (0.46), and EPA (0.42),
but negative correlations for C18:2 ¢is-9,trans-11
(—0.36) and C18:1 trans-11 (—0.34). The FA profile of
animals that have large PC6 scores is characterized by
low content in PUFA and high content in 2 of their BH
products. Thus, PC6 could be considered as an indicator
of PUFA BH activity in the rumen: the lower the PC6
scores the higher the BH activity. The PC8 (variance
explained 2.89%) had large positive loadings on C14:0,
C18:1trans-4, and 18:1 trans-16+cis-14, and negative
on C16:1 trans-9, C18:1trans-11, C18:2n-6, C18:2¢is-9
,trans-11, C20:3n-6, and C20:4n-6 (negatives). Consid-
ering the high loadings exhibited by PUFA n-6 and
by the main products of the BH of C18:2n-6 (C18:1

a)
Chain
length
N
£ &
a . 2
« 3
© 4
b)
Mean
Unsat.
‘E e 1
a .2
3
- 4

-5 0 5 10
Prini

Figure 2. Plots of the scores for the first 2 principal components
(Prinl and Prin2; variance explained: 25.06% and 15.06%, respec-
tively) of animals belonging to different classes (from 1 to 4) of mean
carbon chain length (a) and of mean unsaturation level (b).
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trans-11 and C18:2 c¢is-9,trans-11), this PCA could be
interpreted as an indicator of PUFA n-6 in the diet.

In previous studies on milk FA, PCA was effective
in grouping animals according to diet they were fed
(Bernard et al., 2009; Correddu et al., 2016). Principal
component analysis was also applied on lamb meat FA
to differentiate animals according to their geographical
origin (Diaz et al., 2005), or to study the relationship
between quality traits of carcass and meat of light lambs
(Caneque et al., 2004). Such a different discriminating
power among studies could be ascribed to the amount
of variance accounted for by the first 2 PC: 40% in the
present study and 90% in the paper of Correddu et al.
(2016).

5084

Factor Analysis

The suitability of the data set to the theoretical as-
sumptions of the MFA was assessed through the cal-
culation of the Kaiser measure of sampling adequacy
(MSA). This index estimates the decrease of partial
correlations compared with Pearson correlations be-
tween the observed variables. In the present work, the
measure of sampling adequacy was 0.75, close to the
value of 0.80 indicated as the optimal threshold for the
suitability of a data set to MFA (Cerny and Kaiser,
1977). This result was similar to previous reports on
the use of MFA on milk FA profile (Mele et al., 2016;
Correddu et al., 2017). Nine factors able to explain

0.3

C18:1trans-16 + c14

C18:1trans-11

C18:1trans-13 + trans-14

C18:3n3
C16:1trans-9

0.2
C18:2cis-9,trans-12

EPA

C18:2cis-9,trans-13
C18:2cis-9,trans-11

C18:0

C24:0
DPA
anteiso C15:0

C22:0
anteiso C17:0

C18:1trans-9

C150 oo™ iso 160
C18:1trans-6 + 8
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iso C15:0
iso C17:0

iso C13:0

o C8:0 C18:2trans-9,trans-12
£ o0 €200
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c10:0 C18:1cis-12
C18:2n6
c1o:1
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C14:1c9
-03
-02 -0.1 0.0 0.1 0.2
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Figure 3. Correlation circle. Plot of the loadings of the 2 principal components (Prinl and Prin2; variance explained: 25.06% and 15.06%,

respectively).
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about 80% of the total variance of the system were
extracted (Table 2). The pattern of explained variance
across the different factors was smoother compared
with PC (Table 1).

The communality of original variables was on average
0.81 (+£0.11), similar to the value reported for buffalo
(0.79; Correddu et al., 2017) and higher than in cattle
(0.69; Conte et al., 2016; Mele et al., 2016). The 2 FA
with the lowest value of communality (0.54 for C18:2
trans-9,trans-12 and C18:3n-6) were the same as re-
ported in a work on buffalo (C18:2 trans-9,trans-12 and
(C18:3n-6; Correddu et al., 2017). Therefore, in both
species, these 2 FA are characterized by about 50%
of independent variation. Largest communalities, in
agreement with previous studies, have been found for
short- and medium-chain SFA (e.g., C6:0, C8:0, C10:0,
C12:0), associated with the first or second latent fac-
tor. The high values observed for these FA, and the
agreement among studies, confirm that the variability
of these FA is mostly related to a unique metabolic
pathway, similar among species.

The adequateness of the factor model for fitting the
FA correlation matrix was confirmed by the simple
structure of the rotated pattern (Morrison, 1976). In
particular, each factor showed large loadings with few
variables and small loadings with the other variables
(Table 2), respectively. Each variable had a large load-
ing in only one factor, with only one exception (C16:0).
In total, 42 out of 49 FA exhibited a loading value
>0.60, considered as an empirical threshold for declar-
ing a variable associated with a factor (Macciotta et al.,
2015). The statistical difference of each factor loading
from 0.60 was tested according to Browne et al. (2008).

m1stQu
FA with scores close Al

30 to zero for PC1 w3rd Qu
H4th Qu

25 FA with positive

scores for PC1
20

15

FA with negative
scores for PC1

FA concentration (%)

10

C10:0

C16:0 C18:1cis-9

FA % according to PC1 scores quartiles (Qu)
Figure 4. Relationship between fatty acid (FA) concentration (%)
and principal component (PC) 1 scores for 3 FA: C10:0, C16:0, and

C18:1 cis-9, chosen as representative FA with negative, close to zero,
and positive loadings for PC1, respectively.
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The first latent factor (F1) was positively correlated
with short- and medium-chain FA (apart from C4:0
and C16:0) and negatively with C18:1 ¢is-9 and some
long-chain SFA (C20:0, C22:0, and C24:0). Thus, it was
considered an index of “mammary gland FA synthesis.”
A peculiarity of F1 is its structural similarity with PC1.
A concordance between the results of the first PC and
the first factor extracted from the same data set was
observed in a study on body conformation traits in
cows (Olasege et al., 2019). The F1 structure partially
agrees with previous studies where it was associated
with mammary gland ability to maintain an optimal
milk fat fluidity and with the FA neosynthesis (Conte et
al., 2016; Correddu et al., 2017; Palombo et al., 2020).
The negative loadings of F1 for long-chain SFA (C20:0,
(22:0, and C24:0) was not observed in previous studies.
In a recent investigation on Comisana sheep, they were
associated with a factor interpreted as branched fatty
acid metabolism (Palombo et al., 2020). In cows they
were associated with a different factor together with
other saturated and unsaturated long-chain FA (Conte
et al., 2016; Mele et al., 2016), whereas in buffalo they
characterized a specific factor (Correddu et al., 2017).
These results could be partially explained by the sam-
pling effect. However, some differences among species
could exist, especially related to the farming system.

Being positively associated with the odd, iso, and
anteiso FA (except iso C13:0), F2 was named OBCFA.
These FA are almost completely synthesized by rumen
microorganisms (Vlaeminck et al., 2006). This result is
in agreement with a previous report on sheep (Palombo
et al., 2020), whereas 2 distinct factors associated
with odd-chain FA (OCFA) and branched-chain FA
(BCFA) were found in cattle and buffalo (Conte et
al., 2016; Correddu et al., 2017). The relative milk con-
centration of these FA depends on the composition of
the microbial population (Vlaeminck et al., 2006). The
diet, especially its forage to concentrate ratio, is one
of the main factors affecting the relative abundance
of microbial populations. Thus, feeding management
could affect the proportions of OCFA and BCFA in
milk. Sheep involved in the present study are farmed in
the typical Mediterranean semi-extensive systems with
pasture as main feeding source (Macciotta et al., 1999;
Molle et al., 2007). Under these conditions, forage to
concentrate ratio in the diet should be approximately
similar in the various flocks and, therefore, also the
rumen microbial composition to a certain extent. As
a consequence, the correlation pattern of all OBCFA
is similar, and the underling pathway of variation is
summarized in one unique latent factor.

Factor 3 and 4 were positively associated with all
isomers of C18:1 and C18:2 originating from the rumi-
nal BH of PUFA, with the exception of C18:1 trans-11
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Table 2. Rotated factor pattern and communality

Factor®

Fatty acid F1 F2 F3 F4 F5 F6 F7 F8 F9 Com®
C12:0 0.95%  —0.06 —0.11 0.03 0.06 0.02 —0.01 —0.06 —0.03 0.94
C10:0 0.95%  —0.08 —0.19 0.06 —0.11 0.06 0.00 —0.06 —0.01 0.96
C8:0 0.87*  —0.09 —0.24 0.12 —0.28 0.07 —0.01 —0.05 —0.03 0.93
C11:0 0.83*  —0.05 -0.17 0.06 0.41 0.01 —0.08 0.03 —0.03 0.91
C6:0 0.77%  —0.13 —0.29 0.14 —0.42 0.05 —0.05 —0.03 0.05 0.89
C10:1 0.73*  —0.06 0.00 0.12 0.17 0.04 —0.05 —0.12 —0.01 0.59
C14:0 0.73%  —0.17 —0.12 -0.17 0.35 —0.13 —0.11 -0.14 0.25 0.83
iso C13:0 —0.48 0.36 —0.08 —0.41 —0.08 —0.20 0.18 —0.18 0.17 0.68
C24:0 —0.58 0.45 —0.15 0.01 —0.18 —0.08 0.35 0.01 0.32 0.82
C22:0 —0.60* 0.49 —0.11 —0.02 —0.10 -0.13 0.29 0.03 0.40 0.88
C20:0 —0.66* 0.37 0.14 —0.25 0.02 —0.31 0.13 0.07 0.21 0.82
C18:1 ¢is-9 —0.79* 0.10 0.11 —0.18 0.16 —-0.18 0.02 0.10 —0.37 0.88
anteiso C15:0 —0.08 0.86* —0.19 0.01 —0.06 0.20 0.01 —0.14 —0.13 0.85
iso C16:0 —0.20 0.81*  —0.03 —0.05 —0.02 —0.06 —0.04 0.16 0.06 0.73
anteiso C17:0 —0.15 0.80%* 0.02 0.12 —-0.07 —0.01 0.04 0.14 —0.38 0.84
C15:0 0.19 0.72*  —0.20 0.10 0.19 0.16 0.16 —0.03 0.14 0.72
iso C14:0 —0.35 0.69* —0.08 —0.33 0.06 —0.07 0.07 0.15 0.24 0.82
C17:0 —0.07 0.67*  —0.16 —0.02 0.05 —0.10 0.48 0.22 0.03 0.76
iso C15:0 —0.47 0.66* —0.08 —0.34 —0.02 —-0.07 0.07 —0.12 -0.07 0.81
iso C17:0 —0.48 0.53 0.26 —0.14 —0.05 —0.22 0.00 0.11 —0.37 0.80
C18:1 trans-6 + 8 —0.18 —0.12 0.89* 0.14 0.00 0.10 —0.19 0.02 —0.08 0.92
C18:1 trans-9 —0.23 —0.14 0.83* 0.17 0.00 0.21 —0.21 —0.02 —0.13 0.90
C18:1 trans-5 -0.13 —0.08 0.82%* —0.02 —0.10 —0.08 0.03 0.00 0.02 0.71
C18:1 trans-4 —0.27 —0.05 0.76*  —0.08 —0.14 —0.21 0.01 —0.10 0.02 0.73
C18:1 trans-10 0.04 —0.06 0.68* 0.15 0.13 0.15 —0.11 0.25 —0.05 0.60
C18:1 cis-12 —0.25 —0.12 0.65* 0.18 0.07 —0.20 —0.22 0.35 —0.05 0.75
C18:2 trans-9,trans-12 0.11 0.00 0.49 0.34 0.19 0.13 0.08 0.29 0.15 0.54
C18:2 cis-9,trans-13 0.16 —0.08 0.11 0.87* 0.11 0.27 0.03 —0.06 —0.07 0.90
C18:2 cis-9,trans-12 0.01 —0.04 0.22 0.86* —0.07 0.13 0.00 —0.03 —0.02 0.81
C18:1 trans-16 + cis-14 0.02 0.02 0.09 0.82*  —0.41 0.08 0.08 —0.21 —0.03 0.91
C18:1 trans-13 + trans-14 0.29 —0.03 0.14 0.80%* —0.29 0.17 0.01 —0.09 0.07 0.86
C18:3n-3 0.09 —0.11 —0.30 0.56 —0.23 0.21 0.43 —0.12 0.36 0.85
C14:1 cis-9 0.14 —0.08 0.02 —0.14 0.88%  —0.16 —0.16 0.07 0.10 0.89
C16:1 c¢is-9 —0.14 —-0.10 —0.07 —0.09 0.88*  —0.05 —0.14 0.17 0.01 0.87
C12:1 cis-9 0.55 0.06 —0.02 —0.10 0.71%*  —0.12 —0.08 0.00 0.00 0.84
C17:1 ¢is-9 —0.30 0.35 —0.11 —0.04 0.62* 0.02 0.18 0.28 —0.19 0.75
C18:0 —0.50 0.22 0.13 —0.10 -0.61*  —0.23 0.13 —0.27 —0.23 0.89
C4:0 0.00 —0.14 —0.23 0.17 —0.63* 0.07 —0.19 0.08 0.13 0.57
C18:2 cis-9,trans-11 0.08 0.00 0.04 0.22 0.09 0.92*  —0.02 —0.17 —0.05 0.93
C16:1 trans-9 0.10 0.02 —0.05 0.21 -0.17 0.88* 0.07 —0.19 0.03 0.91
C18:1 trans-11 0.13 0.03 0.11 0.25 —0.26 0.86*  —0.01 —0.22 0.03 0.95
C22:5n-3 (DPA) —0.20 0.17 —0.12 0.03 —0.08 0.04 0.88* 0.03 —0.05 0.87
C22:6n-3 (DHA) —0.25 0.07 —0.04 —0.11 0.02 —0.15 0.77* 0.12 —0.03 0.71
C20:5n-3 (EPA) 0.11 0.09 -0.23 0.27 —0.10 0.20 0.75%  —0.12 0.07 0.78
C18:2n-6 —0.20 0.06 0.10 0.14 0.06 —0.13 0.06 0.80* 0.13 0.76
C20:4n-6 —0.18 0.12 0.12 —0.39 0.13 —0.25 0.13 0.67* —0.24 0.81
C20:3n-6 —0.18 0.17 0.20 —0.28 0.07 —0.21 0.07 0.66* —0.13 0.68
C18:3n-6 0.21 0.03 0.04 —0.22 0.20 —0.25 —0.12 0.56 0.07 0.54
C16:0 —0.05 —-0.07 —0.04 —0.04 0.06 0.00 —0.07 0.04 0.42%* 0.75
Eigenvalue 8.92 5.47 4.79 4.74 4.70 3.47 3.04 2.81 1.53

Variance explained (%) 17.62 10.80 9.46 9.36 9.29 6.86 6.00 5.54 3.01

'EPA = eicosapentaenoic acid; DPA = docosapentaenoic acid; DHA = docosahexaenoic acid.

’F1 = mammary gland FA synthesis; F2 = odd- and branched-chain fatty acids; F3 = biohydrogenation; F4 = LNA (a-linolenic acid) BH; F5
= desaturase; F6 = CLA; F7 = n-3; F8 = n-6; F9 = C16.

*Communality.
*Absolute value of factor loadings >0.60 that were considered significant for the interpretation of the factor pattern.

(vaccenic acid) and C18:2 cis-9,trans-11 (rumenic acid). Factor 4 was associated with trans isomer of C18:1 from
In particular, F3 was associated with trans isomer of the 13th to the 16th position, C18:2 c¢is-9,trans-12,
C18:1 from the fourth to the tenth position, C18:1cis C18:2 ¢is-9,trans-13, and C18:3 ¢is-9,cis-12,cis-15 (C18:
-12, and to a lesser extent, with C18:2 trans-9,trans-12.  3n-3, a-linolenic acid, LNA). Although it is very dif-
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ficult to unequivocally ascertain the metabolic origin
of a specific minor BH intermediate (Shingfield et al.,
2010), the separation of these FA into 2 different latent
factors can suggest different metabolic pathways un-
derlying the BH of PUFA. In particular, FA associated
with the 3th factor are often produced in the rumen
during the BH process of C18:2 cis-9,cis-12 (C18:2n
-6, linoleic acid; Shingfield et al., 2010). This result is
in agreement with a previous report in cattle where an
association of C18:2n-6 and its intermediate products
in the same latent factor was found (Mele et al., 2016).
In the present study C18:2 ¢is-9,cis-12 was not associ-
ated with F3 and, consequently, we decided to assign
the generic name of BH. Considering the association of
C18:3n-3 and of some of its ruminal BH intermediates
with the F4, this factor was named LNA-BH. Almost
all FA here found to be associated with F3 and F4 were
found in a single latent factor, together with vaccenic
and rumenic acids, in previous studies on cattle, buf-
falo, and sheep (Conte et al., 2016; Correddu et al.,
2017; Palombo et al., 2020).

The fifth latent factor was named desaturase, being
positively associated with some products of stearoyl
CoA desaturase (SCD) activity (C12:1 ¢is-9, C14:1 cis-
9, C16:1 cis-9, and C17:1 ¢is-9) and negatively with the
preferred substrate of this enzyme (C18:0). The other
SCD products, C18:1 c¢is-9 and C18:2 cis-9,trans-11,
were highly correlated with the first and seventh latent
factors, respectively. This result is in agreement with
previous investigations in buffalo (Correddu et al.,
2017) and, partially, in cattle (Conte et al., 2016; Mele
et al., 2016), where the C17:1 cis-9 was not associated
with the factor related to SCD activity, but with the
same factor including C18:1 cis-9. Results of the pres-
ent study are also in partial agreement with a previous
report in sheep (Palombo et al., 2020). However, in this
study the C17:1 cis-9 did not correlate with any factor.
Interestingly, the desaturase factor presented a high
loading value for C4:0 (—0.63), which is different from
previous studies where this FA was associated with a
factor of C6:0 (Mele et al., 2016), or was not associated
with any factor (Conte et al., 2016; Correddu et al.,
2017).

Factor 6 was named CLA because it showed large
correlations with C18:2 c¢is-9,trans-11 (rumenic acid)
and C18:1 trans-11 (vaccenic acid). It was associated
with synthesis of the most abundant and important
milk CLA isomer (C18:2 cis-9,trans-11) operated by
the SCD in the mammary gland. Rumenic and vac-
cenic acids are of great importance in the nutritional
quality of milk (Banni et al., 2003) and much research
has been aimed at finding strategies for increasing
their concentration (Chilliard et al., 2001; Nudda et
al., 2014). The milk of animals with higher CLA factor
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scores is richer in these FA, with an improvement of its
nutritional value. The partition of the SCD products
into 3 different factors is in agreement with the work
of Mele et al. (2016), which explained this result with
the chain length and the unsaturation degree of the
substrate on SCD activity. Conversely, rumenic and
vaccenic acids were associated with the BH factor in
Comisana sheep (Palombo et al., 2020). In the present
study also C16:1 trans-9 was correlated with the CLA
factor. A similar result, even though to a lesser extent,
was reported by Mele et al. (2016). In another work,
it was correlated with the factor associated with the
long-chain FA (Conte et al., 2016).

The seventh and eighth latent factors were named
n-3 and n-6 as they were positively correlated with
FA of the PUFA n-3 family and the PUFA n-6 family,
respectively. The extraction of 2 different factors for
PUFA n-3 and PUFA n-6 is in agreement with a recent
report on buffalo (Correddu et al., 2017), whereas in
cattle they were associated with a unique latent factor
(Conte et al., 2016; Mele et al., 2016). This result could
arise from differences in the metabolism of these FA,
in particular from the capacity to promote C18:3n-3
and C18:2n-6 elongation, or differences in the dietary
concentration of these 2 FA (Correddu et al., 2016).
Although their milk concentration is not high (0.5% of
total FA, n-3 + n-6 excluding C18:3n-3 and C18:2n-6),
these FA have great nutritional importance (Connor,
2000). In particular high concentrations of PUFA along
with a low n-6 to n-3 ratio are considered important for
good health and normal development in humans (Si-
mopoulos, 2002). The ninth factor explained 3% of the
total variance and did not show relevant loading values.

Mixed-Model Analysis

Results of the mixed-model analysis carried out on
the individual scores of the 9 PC and of the 9 extracted
factors are reported in Table 3.

Principal Components

On average, the contribution of the flock to the PC
variance was around 46%, with the highest value exhib-
ited by PC3 (69%) and the lowest by PC8 (31%). The
high contribution of the flock to the variance of PC3
could arise from the great influence of environmental
factors such as diet, climate, and farming practices on
the ruminal microbial environment (Henderson et al.,
2015), which, in turn, influences the FA BH process
and the production of OBCFA. For similar reasons, a
low contribution of flock to the PC8 variance was not
expected, with this PC being interpreted as an indica-
tor of PUFA n-6 in the diet.
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Table 3. Effect of DIM, parity, month, and number of lambs born, and altitude of flock on the 9 principal components and 9 latent factors

P-value
Lambing Lambs
Ttem DIM Parity month born Altitude r? A LT>1
Principal component (PC)
PC1 <0.001* <0.001* <0.001* 0.683 0.469 0.53
PC2 <0.001%* 0.647 0.413 0.213 0.831 0.53
PC3 0.762 0.635 0.249 0.267 0.545 0.69
PC4 0.067 0.157 0.072 0.934 0.407 0.36
PC5 0.195 0.008* 0.006* 0.177 0.343 0.42
PC6 0.153 0.006* 0.029* 0.744 0.526 0.51
PC7 0.187 0.180 0.469 0.079 0.156 0.39
PC8 0.186 0.018* 0.691 0.209 0.938 0.31
PC9 0.032%* 0.688 <0.001%* 0.337 0.042* 0.37
Latent factor (F)?
F1: Mammary FA synthesis <0.001%* 0.022* <0.001* 0.860 0.921 0.43
F2: OBCFA <0.001%* <0.001* <0.001* 0.559 0.907 0.49
F3: Biohydrogenation 0.137 0.800 0.025%* 0.486 0.596 0.53
F4: LNA-BH <0.001%* 0.588 <0.001* 0.059 0.222 0.39
F5: Desaturase <0.001%* 0.614 0.143 0.187 0.425 0.25
F6: CLA <0.001* 0.209 0.002* 0.350 0.583 0.40
F7: n-3 0.062 0.001* 0.213 0.140 0.445 0.55
F8: n-6 0.122 0.007* <0.001* 0.901 0.501 0.50
F9: C16 0.004* 0.500 0.016* 0.175 0.031* 0.52
lrzf(A 1) = proportion of variance explained by the random effect of flock.

*FA, fatty acid; BCFA = odd- and branched-chain fatty acids; LNA-BH = a-linolenic acid (C18:3 ¢is-9,¢is-12,cis-15) biohydrogenation; n-3 =
PUFA belonging to the n-3 family; n-6 = PUFA belonging to the n-6 family; C16 = palmitic acid (C16:0).

*P < 0.05.

The DIM class significantly affected PC1, PC2, and
PC9 (Table 3). Least squares means of PC1 scores ex-
hibited an increasing trend across lactation stages (Fig-
ure 5). This trend underlines a reduction in de novo FA
synthesis as the lactation proceeds (they have negative
loadings) together with an increase of C18:1¢is-9 syn-
thesis, in agreement with the reports of Timmen and
Patton (1988). Although the same trend was observed
for PC9, its scores of this PC were lower compared
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Figure 5. Least squares means of principal component (PC) 1,
PC2, and PC9 scores for classes of DIM.
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with PC1. Whereas the PC2 showed an opposite pat-
tern (Figure 5).

Parity significantly affected PC1, PC5, PC6, and PCS.
First lambing ewes exhibited the largest least squares
mean of PC1 scores (Table 4), which was statistically
different from later parities. The PC5 scores decreased
across parities, even if with some fluctuations. Scores
of PC6 decreased from the first to the fifth parity and
then increased until the seventh, whereas PC8 showed
the opposite behavior (Table 4). Interestingly, the effect
of parity on PC6 underlines a high concentration of
both n-3 and n-6 PUFA in primiparous sheep, followed
by a decrease in the intermediate parities and then
by an increase in the last parities. Similarly to other
milk composition traits, FA profile is affected by parity
due to changes in energy and overall metabolism of
the ewes as the lactation number proceeds (Gonzilez-
Garcia et al., 2015). The results of the present study
partially agree with previous research that found higher
proportions of more desirable FA in milk of first parity
compared with later parities both in sheep and cows
(Mierlita et al., 2011; Bilal et al., 2014). The larger con-
tent of favorable FA especially in first-parity animals
is also in agreement with the pattern of PCS8 scores
(Table 4).

The lambing month significantly affected PC1, PC5,
PC6, and PC9. Scores for all these PC, except from
PC6 (Figure 6), were negative from October to De-
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Figure 6. Least squares means of principal component (PC) 1,
PC5, PC6, and PC9 scores for different lambing months. Errors bars
indicate SEM.

cember and positive from January to March. The PC1
exhibited larger absolute values in comparison to PC5
and PC9. Altitude of location of flock affected only
PC9 scores, with a decreasing trend passing from plain
to mountain. The number of lambs born did not affect
any of the 9 PC.

Latent Factors

Results of the mixed-model analysis factor scores are
reported in Table 3. On average, the contribution of
the flock effect to the total variance was 45%, with
the highest values for the n-3 (55%) and the lowest
for the desaturase (25%) factors, respectively. This
finding is consistent with the larger effect of environ-
mental and management factors on the milk content of
FA arising from the diet (i.e., PUFA) compared with
those of endogen production (i.e., MUFA produced by
delta-9 desaturase; Stoop et al., 2008; Correddu et al.,
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2019). According to the high value observed for PC3,
the OBCFA and BH factors exhibited high values of
variance explained by the flock effect (0.49 and 0.53,
respectively).

The number of lambs born and the altitude of flock
location did not affect any of the extracted factors. The
DIM significantly affected mammary activity, OBCFA,
LNA-BH, desaturase, and CLA factor scores. In partic-
ular least squares means for scores of mammary activ-
ity, LNA-BH, and CLA decreased along the lactation,
whereas OBCFA and desaturase exhibited an opposite
trend (Figure 7). The effect of DIM class on the mam-
mary activity factor confirmed results obtained for PC1.
The higher contents of de novo FA and lower of C18:1
cis-9 in early compared with late lactation evidenced
by F1 pattern (Figure 7) are in agreement with previ-
ous reports in buffalo (Correddu et al., 2017). In dairy
cows, a different behavior was observed (Conte et al.,
2016; Mele et al., 2016). Such differences could be par-
tially ascribed to differences in the metabolism among
species, even if the data distribution along the lactation
should also be considered. In the typical Mediterranean
sheep farming system, the milk of the first month of
lactation is suckled by the lamb. Thus, milk tests con-
sidered in the present work were available only from 45
d after parturition. The lack of data for the first month
could have therefore hampered the modeling of a trend
of FA metabolic pathway in early lactation. Lactation
patterns of LNA-BH and CLA factors evidenced a
trend similar to mammary gland FA synthesis. Such a
decreasing pattern underlined a higher activity of LNA
ruminal BH and of CLA synthesis (due to the increase
of SCD substrate C18:1 trans-11) in the first part of
lactation compared with the last part. This finding was
in agreement to that observed for the PC2, and it could
be explained by the high content of C18:3n-3 in spring
Mediterranean pastures (Cabiddu et al., 2005), which
tends to decrease as in late spring-summer. The pattern
of the desaturase factor underlines an increasing SCD

Table 4. Least squares means (£SE) of the principal components affected by parity

Principal component (PC)

Parity PC1 pPCs! PC6 PCS8

1 1.98* + 0.45 0.54 + 0.21 0.29" + 0.23 —0.09" + 0.15
2 0.60" + 0.45 0.30 + 0.21 0.03®® + 0.23 0.10° + 0.16
3 0.30" + 0.44 0.44 + 0.21 —0.26™ + 0.23 0.08" + 0.15
4 0.53" + 0.44 0.34 + 0.20 —0.27" + 0.23 0.27* + 0.15
5 047" + 0.45 0.28 + 0.21 —0.28" + 0.23 0.07™ + 0.16
6 0.42" + 0.46 0.02 + 0.22 —0.03" + 0.24 —0.04*" £+ 0.16
7 0.56" + 0.49 —0.03 £ 0.24 0.16™ + 0.26 —0.20" + 0.18
8 0.49°" + 0.64 —0.35 + 0.32 —0.17"" + 0.34 —0.32"" 4+ 0.26

*"Least squares means with different superscript letters within a column differ (P < 0.05).

!'Although PC5 was significantly affected by parity, differences among contrasts did not reach statistical sig-

nificance (o = 0.05).
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Table 5. Least squares means (£SE) of the latent factors affected by parity
Latent factor'
Mammary FA

Parity synthesis OBCFA n-3 n-6

1 —0.37" + 0.13 023" + 0.14 0.09"" + 0.14 0.35" + 0.14
2 —0.06™ + 0.13 0.15® + 0.15 —0.03™° + 0.14 0.11%* + 0.14
3 0.04* + 0.13 0.23* + 0.14 —0.24° + 0.14 0.08" + 0.13
4 —0.04*" + 0.13 0.21* + 0.14 —0.21" + 0.14 —0.07" £ 0.13
5 —0.08" 4+ 0.13 0.08" + 0.15 —0.15"° + 0.14 —0.05" + 0.14
6 —0.10™ + 0.14 —0.01™ + 0.15 0.05* + 0.15 0.01°" + 0.14
7 —0.16™ + 0.15 —0.15" + 0.16 0.06™ + 0.16 0.15° + 0.15
8 —0.29" + 0.20 —0.45° + 0.21 —0.14%" + 0.20 —0.01*" £ 0.20

*“Least squares means with different superscript letters within a column differ (P < 0.05).
!OBCFA = odd- and branched-chain fatty acids; n-3 = PUFA belonging to the n-3 family; n-6 = PUFA be-

longing to the n-6 family.

activity as the lactation proceeds, as observed in cattle
and buffalo (Mele et al., 2016; Correddu et al., 2017).
According to Mele et al. (2016), the increasing trend
of OBCFA factor along the lactation can be related to
the variation of forage to concentrate ratio. A higher
amount of concentrate is usually provided in early
lactation to meet energy needs of the animals; as the
lactation proceeds, there is an increase of the propor-
tion of forages in the diet resulting in an increase of FA
produced by the ruminal microorganism, in particular
by cellulolytic bacteria (Vlaeminck et al., 2006). Higher
scores for BCFA factors were observed in cows fed a
diet with a higher percentage of forage (Conte et al.,
2016).

Parity had a significant effect on mammary activity,
OBCFA, n-3, and n-6. Mammary activity exhibited an
increasing trend from first to third parity (Table 5) and
then decreased until the 8 parity. The OBCFA scores
were rather constant from the first to the fourth parity
and then rapidly decrease in the seventh and eighth
parities. The n-3 and n-6 factors showed a similar wav-
ing pattern (Table 5). There is a lack of consensus on the
effect parity on latent factors extracted from milk FA.
Some works evidenced a large effect (Mele et al., 2016),
whereas others showed a minor or no effect (Conte et
al., 2016; Correddu et al., 2017). The effect of parity on
milk FA is mainly due to the larger PUFA content in
primiparous compared with pluriparous animals, which
exhibit a higher amount of SFA. These figures have been
observed both in cows and sheep (Mierlita et al., 2011;
Bilal et al., 2014). Differences between parities in the
extent of tissue mobilization and in the content of FA
synthase in the mammary gland, as well as the rumen
microflora, can partially explain the effect of parity on
milk FA (Miller et al., 2006; Friggens et al., 2007). In
the present work, first lambing animals exhibited lower
scores for mammary activity, and higher for n-3 and
n-6 factors, respectively. Scores of the OBCFA factor
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underlined a decreasing pattern of ruminal derived FA
with age, as previously reported in cows and buffalo
(Mele et al., 2016; Correddu et al., 2017).

The month of lambing significantly influenced (P <
0.05) all the latent factors, except for desaturase and
n-3. Mammary activity, LNA-BH, and CLA factors
exhibited positive scores for lambings occurring from
October to December and negative scores for those
from January to March, respectively (Figure 8). An
opposite trend could be observed for OBCFA, BH, and
n-6. Sheep lambing is strictly seasonal; thus, the evalu-
ation of the effect of lambing month on a productive
response has a different meaning in comparison, for
example, with dairy cattle.

In the typical farming system of Sarda sheep there
is a confounding between lambing season, production

mammary FA synthesis

10 - OBCFA

0.8 -
06 -
04 -
02 -
0.0
-0.2
0.4
-0.6
0.8
-1.0

- desaturase

Factor score

Class of DIM

Figure 7. Least squares means of mammary fatty acid (FA) syn-
thesis, odd- and branched-chain fatty acid (OBCFA), linolenic acid
biohydrogenation (LNA-BH), desaturase, and CLA factor scores for
classes of DIM.
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season, and parity. Pluriparous ewes lamb in late fall-
early winter, whereas first-parity animals lamb in late
winter-early spring. Regardless their parity order, the
ewes are generally dried off at the beginning of sum-
mer. As a consequence, the number of autumn lambing
ewes is larger, and they also have longer lactations.
Autumn-lambing sheep were sampled in late lactation,
whereas winter-lambing sheep were sampled in mid lac-
tation. Thus, the effects on FA profile of the physiologi-
cal condition of the animal (stage of lactation, parity)
and of the environment (mainly pasture quality) on the
FA profile are difficult to disentangle. For example, the
larger scores for mammary activity found in autumn
lambing sheep reflect higher activity of the mammary
gland in the FA synthesis in late lactation, whereas
winter lambing sheep showed higher content of FA de-
rived from body reserve mobilization in early lactation
to meet energy requirements. The lower scores of LNA-
BH and CLA factors observed in milk of sheep lambing
in winter underline a lower activity of rumen LNA BH,
which results in low milk contents of LNA and its BH
intermediates, C18:1 trans-11 and C18:2 cis-9,trans-11.
This pattern reflects, probably, the lower quality of
pastures in late spring compared with late winter-early
spring. This finding has interesting implications on the
quality of milk in relationship to the season of lamb-
ing and to the availability of high-quality pasture, evi-
dencing higher content of desired FA in milk of sheep
lambed in autumn.

0.8
0.6
0.4
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Comparison of the 2 Techniques

The comparison of the 2 different dimension-reduc-
tion methods for analyzing the FA profile of sheep milk
provided interesting insights to assess the usefulness of
these 2 multivariate techniques in deciphering complex
correlation patterns and in generating new phenotypes
that could be further used for management or genetic
purposes.

The continuous development of analytical technology
has remarkably increased the number of potentially
detectable FA. Thus, the number of original variables
investigated in the present research was larger in com-
parison with studies carried out some years ago. In
many cases, the newly measured FA were probably not
distinguishable from other FA in the previous analyses.
Instead of being a simple addition of new variables,
this increase of system dimensionality may have added
further complexity to the correlation structure of FA.
Both PCA and MFA were able to summarize the 49
dimensions of the original multivariate system with 9
new axes that accounted for about 80% of the original
variance. Some authors suggest that, when the number
of original variables is large, PC and factors tend to
coincide (Schneeweiss and Mathes, 1995). However, in
the present study, some differences have been found in
the meaning of the extracted variables.

In general, PCA structures were difficult to interpret,
also in comparison with previous research on milk FA

B mammary FA synthesis

m OBCFA

I M biohydrogenation

0.2 I
0.0

!

-

PC scores

Oct-Nov Dec

I
[

Jan

LNA-BH
CLA

n-6

Feb-Mar

Month of lambing

Figure 8. Least squares means of mammary fatty acid synthesis, odd- and branched-chain fatty acid (OBCFA), biohydrogenation, linolenic
acid biohydrogenation (LNA-BH), CLA, and n-6 factor scores for different lambing months. PC = principal component. Errors bars indicate

SEM.
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Table 6. Correlation matrix between the scores of principal components (PC) and latent factors

Factor’ PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9
F1: Mammary FA synthesis —0.78FFF  _Q.25%FF  24FFk 0 16FFE 0.43FFF 0,03 0.23%%* (.05 0.11%%%
F2: OBCFA 0.41FFF  Q21%FF%  45%¥k¥  QB1FRF 037FFF _(36%F*F  —0.07% 0.18%%F  (.13%%*
F3: Biohydrogenation 0.12F%%  0.04%  _0.76%FF  0.25FFF  0.25%FFF  _(.00%* 0.42FF%  .16%FF  (.26%F*
F4: LNA-BH —0.32%FF%F 0. B0%FFF —0.20%FF  0.40%FF  —0.05™ 0.35%FF  _(.43%Fk () 30RHEK () 23k
F5: Desaturase 0.03%  —0.61%%* 001 0.55%F%  —Q.51%F% (.01 0.04™5 0.20%F% (). 13%**
F6: CLA —0.26%%%  0.37%%F 0,02 0.20%%%  _Q42FFF  _(36¥FF (. 11FFF  _(.60FFF  (.22%F*
F7: n-3 0.14%FF  026%Fk  (31FFF 28Rk 0 12%FF 0 509%FF 0 66%FF  —0.03%  —0.05"
F8: n-6 0.18%F*% .27+ (0 10%* 0.28%%% (34K Q4FFRE _(3PFRE (2R () ]2%FF
F9, — —0.04™  —0.01™ 0.11%%F 009N —0.23Fkk  Q24%kx  _(20%FF  (0.26%FF  (.87FF*

!OBCFA = odd- and branched-chain fatty acids; BH = biohydrogenation; LNA-BH = linolenic acid biohydrogenation.

NS > 0.05; * < 0.05; ** < 0.01; *** < 0.001.

profile. On the other hand, in spite of the large number
of starting variables, MFA was able to identify a clear
structure of the extracted latent variables through the
factor pattern rotation. In particular, the ability of this
technique to group FA according to their function or
metabolic origin was confirmed. In agreement with pre-
vious works carried out in other ruminant species, MFA
identified key pathways of the milk FA metabolism,
as mammary gland de novo synthesis, ruminal BH,
desaturation performed by SCD enzyme, and rumen
microbial activity, that control a relevant quota (80%)
of the complex correlation pattern among individual
FA.

Some partial concordances between the 2 techniques
have been observed. Both PC1 and F1 were related to
the FA of mammary origin, and the correlation between
their scores (Table 6) was rather large (about —0.80). A
latent variable related to mammary gland FA synthesis
able to explain the largest amount of variance was also
obtained in other studies (Mele et al., 2016; Palombo et
al., 2020). These results suggest the hypothesis of a role
of the main driving force in regulating milk FA (co)vari-
ance patterns for the mammary FA synthesis pathway.
Other large correlations were observed between F9 and
PC9 (—0.87), BH factor (F3), and PC3 (—0.76), n-3
factor (F7), and PC7 (—0.66). This amount of covaria-
tion among PC and factors arise from the fact that both
techniques start from the factorization of the correla-
tion matrix. On the other hand, differences still remain
due to the different assumptions on the covariance of
the system. This fact, together with the possibility of
rotating the factor pattern to improve its interpreta-
tion, provides more power to the MFA in identifying
the real dimensions of milk FA profile system.

Principal component analysis confirmed its ability in
reducing the dimension of the system, but it was not
able to efficiently discriminate observations. It has to
be considered that the animal sample of the present
study was taken from commercial flocks where no spe-
cific experimental treatments were applied. Previous
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studies where PCA was able to distinguish clusters of
observations were usually feeding trials where experi-
mental diets aimed at modifying milk FA composition
were tested. These treatments may have therefore
enhanced differences between animals and emphasized
the clustering of observations in the PC space.

A major criticism of MFA is the indeterminacy of
its solutions and the lack of robustness against outliers
(Wang et al., 2017). However, it should be pointed out
that the various studies on the use of MFA for analyz-
ing milk FA, carried out in different species and under
different experimental conditions, led to very similar
results. Such a consistency across studies could be con-
sidered as a proof for the adequacy of the MFA model
to fit the covariance structure of milk FA composition.

Individual scores of latent factors extracted from the
correlation matrix of FA were able to discriminate cows
farmed in herds with different feeding management
(Mele et al., 2016). They could therefore be used as
synthetic indicators of milk FA metabolism for manage-
ment purposes. Moreover, genetic parameters of latent
factors have been estimated in dairy cattle (Cecchinato
et al., 2019). Some latent variables, such as the one
related to the activity of the SCD factor, showed mod-
erate heritability (0.31), thus suggesting a possible use
of factor scores as novel phenotypes in breeding plans.
Instead of being considered simple traits, factor scores
should be regarded as aggregate phenotypes and their
inclusion as breeding goals should be aimed at improv-
ing milk nutritional quality through the modification of
specific metabolic pathways.

CONCLUSIONS

The 2 multivariate statistical techniques used in this
study were able to efficiently summarize the milk FA
profile of sheep with a reduced number of new variables.
However, due to the partitioning of the variance in a
large number of extracted variables, PCA was not able
to distinguish stratification in the considered sample of
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animals. On the other hand, the MFA revealed the ex-
istence of latent factors controlling the correlation pat-
tern of milk FA. In particular, some independent factors
were associated with metabolic pathways involved in
the synthesis and modification of milk FA, both in the
mammary gland and in the rumen. Moreover, essential
FA of dietary origin (PUFA n-3 and PUFA n-6) were
associated with 2 independent factors, confirming diet
as an important factor affecting milk FA profile. The
results of the mixed linear model showed a weak influ-
ence of the fixed effects on the extracted factors. The
clear meaning of the extracted latent factors suggests
their possible role as novel phenotypes for breeding and
management purposes.
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