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Nowadays, in some populations, the number of genotyped animals is too large to obtain the inverse of the
genomic relationship matrix. The algorithm for proven and young animals (APY) can be used to overcome
this problem. In the present work, different strategies for defining core animals in APY were tested using
either simulated or real data. In particular, core definitions based on random choice or on the contribu-
tion to the genomic relationship matrix (GCONTR) calculated using Principal Component Analysis were
tested. Core sizes able to explain 90, 95, 98, and 99% of the total variance of the genomic relationship
matrix (G) were used. Analyzed phenotypes were three simulated traits for 3 000 individuals, and milk-
ability records for 136 406 Italian Simmental cows. The number of genotypes was 4 100 for the simulated
dataset, and 11 636 for the Simmental data, respectively. The GCONTR values in Simmental dataset were
moderately correlated with the analyzed phenotype, and they showed a decreasing trend according to
the year of birth of genotyped animals. The accuracy increased as the size of the core increased in both
datasets. The inclusion in the core of animals with largest GCONTR values led to the lowest accuracies (0.50
and 0.71 for the simulated and Simmental datasets, respectively; average across traits and core sizes). On
the contrary, the selection of animals with the lowest rank according to their contribution to the G pro-
vided slightly higher accuracies, especially in the simulated dataset (0.68 for the simulated dataset, and
0.76 for the Simmental data; average across traits and core sizes). In real data, particularly for larger sizes
of core animals, the criteria of choice appear less important, confirming the results of earlier studies.
Anyway, the inclusion in the core of animals with the lowest values of GCONTR led to increases in accuracy.
These are preliminary results based on a small sample size that need to be confirmed on a larger number
of genotypes.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Implications

The number of genotypes for some species and breeds is now
too large to obtain the inverse of the genomic relationship matrix.
The algorithm of proven and young animals, which identifies core
and non-core animals, has been proposed to solve this problem.
This study aimed to test different criteria to select core animals.
The accuracy increased as the size of the core increased, and the
accuracies decreased with the inclusion of top animals in the core.
Introduction

The single-step genomic BLUP (ssGBLUP) has enabled genomic
selection use in livestock breeds where only a portion of the ani-
mals in the pedigree is genotyped. The blending of the genomic
relationship matrix (G) with the pedigree matrix into the H matrix
(Aguilar et al., 2010) has been the evolution of the early two-step
approach of genomic selection (Meuwissen et al., 2001), providing
an easier tool to be implemented in routine genetic evaluations.
However, the standard ssGBLUP requires the inversion of G, which
is computationally feasible for up to 150 000 genotyped individu-
als (Bradford et al., 2017). After more than ten years of genomic
selection, the number of genotyped animals in some populations
has exceeded one million (https://queries.uscdcb.com/Geno-
type/counts.html) thus reiterating the ‘‘curse of dimensionality”
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issue of genomics. The Algorithm for Proven and Young (APY) has
been developed to solve this problem (Misztal et al., 2014). In APY,
genotyped animals are partitioned into two groups, core and non-
core. Only the portion of G corresponding to core animals is
directly inverted in solving mixed model equations. The applica-
tion of APY allowed for using large datasets in genomic selection,
up to 4 M of genotyped individuals in the ssGBLUP model
(Cesarani et al., 2022).

The optimum size of APY core animals and the criteria for their
definition are still debated (Abdollahi-Arpanahi et al., 2022).
Pocrnic et al. (2016), working on simulated data, found that APY
could provide the same accuracy for genomic estimated breeding
values (GEBV) of the standard ssGBLUP with the full G, when the
core size is equal to the number of independent chromosome seg-
ments segregating in the population. The number of independent
chromosome segments is defined as four times the effective popu-
lation size times the genome length in Morgans (Stam, 1980), and
they can be approximated by the number of eigenvalues of G able
to explain the 98% of the variance (Pocrnic et al., 2016). If core size
is lower than the number of independent chromosome segments,
then the core definition becomes important. Different strategies
to select core animals have been tested (Ostersen et al., 2016;
Bradford et al., 2017). The random choice seems to be the best
option (Fragomeni et al., 2015; Bradford et al., 2017), and it is cur-
rently used in APY ssGBLUP evaluations. Abdollahi-Arpanahi et al.
(2022) found the best prediction accuracy when core animals are
well distributed across generations. Recently, Pocrnic et al.
(2022) proposed an iterative algorithm for optimizing core compo-
sition based on their distance in a covariance sense.

A possible option for developing an analytic method for core
definition should further exploit results of the G eigen decomposi-
tion, in order to identify key components of its structure (McVean,
2009). The coefficients of the eigenvectors of G have been used to
calculate the genetic contributions of animals to genetic popula-
tion covariance for identifying key individuals for sequencing and
imputation purposes (Neuditschko et al., 2017). In the present
work, the effectiveness of this approach for choosing core animals
in APY ssGBLUP has been tested both on real and on simulated
data. Moreover, the values computed using this approach were
investigated to decipher their meaning.
Material and methods

Data

The first analyzed dataset (Table 1) was simulated for the XVII
QTL MAS workshop (Usai et al., 2014). It consisted of five non-
overlapping generations with a total population size of 4 100 indi-
viduals (100 males). Five chromosomes, each one with 4 000
equally spaced SNPs spread into 100 Mb and with a total of 50
quantitative trait loci, were simulated. Three phenotypes – mim-
icking milk yield, fat yield, and fat content – were also available
for females with heritabilities of 0.35, 0.35, and 0.50, respectively.
The phenotypes were not simulated for the females of the last gen-
eration. True breeding values were available for all animals.

The real dairy dataset (Table 1) included 136 406 milkability
records of Italian Simmental cattle (one record per cow). This trait
is scored at farm level using a scale from 1 to 3 (where 1 means
Table 1
Data structure for the simulated and cattle datasets.

Dataset Phenotypes Genotypes Animals in the analysis

Simulated 3 000 4 100 4 100
Simmental 136 406 11 636 279 032
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slow milking speed, whereas 3 means fast milking speed). The her-
itability of the trait was 0.12. The pedigree file contained a total of
1 182 789 animals, and it was tracked back for three generations
from animals with phenotypes or genotypes (Lourenco et al.,
2014; Cesarani et al., 2021a). A total of 11 636 individuals geno-
typed at 42 141 SNPs were retained for the analyses. This is an
updated dataset of the one used in Cesarani et al. (2021b), where
other details about the investigated data are available.

Mixed model analysis

The breeding values for the simulated dataset were estimated
using the following animal model:

y ¼ 1lþ Zaþ e ð1Þ
where y is the vector of the phenotype (traits 1, 2, or 3), 1 is a vector
of ones and l is the general mean, a is the vector of animal random
additive genetic effect, and e is the vector of random residuals.

Breeding values for milkability records of Simmental cattle
were estimated with the following single-trait animal model:

y ¼ Xbþ Zaþ e ð2Þ
where y is the vector of milkability records; b is the vector of fixed
effects of herd x year subclass (29 623 levels), age at parity (63
levels), calving season (six levels), and days in milk (linear and
quadratic covariates) fixed effects; a is the vector of random addi-
tive genetic effects, and e is the vector of random residuals. The X
and Z are the incidence matrices relating milkability records to
effects in b and a, respectively. The vector e was distributed as
Nð0; Ir2

eÞ where I is an identity matrix and r2
e is the variance asso-

ciated with the residual error.
The ssGBLUP was used for the analyses, where awas distributed

as Nð0;Hr2
aÞ, with H the realized relationship matrix, r2

a the addi-
tive genetic variance, and Vg is genetic (co)variance matrix for an
individual. The inverse of H was obtained using (i) the direct G�1

or (ii) G�1 from APY (G�1
APY), with different core definitions. In all

cases, GEBV were estimated using iteration on data with the soft-
ware BLUP90IOD2OMP1 (ver. 3.122; Tsuruta et al., 2001; Tsuruta
and Misztal, 2008).

Core definition

Different strategies were used for the core definition. First, four
sizes of core were fixed at the number of eigenvalues able to
explain 90 (V90), 95 (V95), 98 (V98) and 99% (V99) of the total
variance of the G matrix, respectively. Within each size, animals
were chosen according to two criteria: (1) RANDOM; (2) TOP or
BOTTOM animals ranked according to their contribution to the G
(GCONTR). The latter was derived by using the principal component
analysis applied to the genomic relationship matrix. In particular,
GCONTR was calculated as:

GCONTR ¼
Xi¼k

i¼1

aijffiffiffiffi
ki

p
� �2

where a is the coefficient of the i-th eigenvector for the j-th animal;
k is the i-th eigenvalue; k is the number of retained non-null eigen-
vectors (i.e., equal to the number of animals-1).

In order to better understand the GCONTR values, their correla-
tion with the involved traits (in terms of true breeding values for
the simulated dataset or GEBV for the Simmental dataset) was
computed. Moreover, since GCONTR reflects the G matrix, the corre-
lations with pedigree parameters were also estimated. In particu-
lar, we computed the number of offspring in the pedigree and
the pedigree-based inbreeding for each genotyped animal. More-
over, the GCONTR trend according to the year of birth was computed



Table 3
Correlations between the contribution to the genomic relationship matrix and the
breeding values or the number of offspring in the simulated and cattle datasets.

Scenario Type Trait Correlation with GCONTR

Simulated True breeding value Milk yield 0.03
Fat yield 0.04
Fat percentage 0.01NS

Number of offspring �0.28
Pedigree inbreeding �0.20

Simmental GEBV Milkability �0.17
Number of offspring �0.07
Pedigree inbreeding �0.23

Abbreviations: GCONTR = contribution to the genomic relationship matrix;
GEBV = Genomic Estimated Breeding Value; NS = not significant.
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for Simmental animals (the only dataset for which the years of
birth were available).

Model validation

Two different validation strategies were tested: i) use of true
breeding values for all animals in the last available generation
(simulated data); ii) validation of candidate genotyped cows (Sim-
mental data).

In particular, the accuracy of model used on the simulated data-
set was evaluated by calculating the correlation between the GEBV
estimated for the 1 000 animals in the last generation (without
own phenotypes) and their true breeding values.

For Simmental data, two analyses were carried out: (i) complete
dataset, with phenotypes of cows born from 1985 to 2019; (ii)
reduced dataset, with phenotypes of cows born from 1985 to
2016. The focus group of animals consisted of the youngest geno-
typed cows (n = 321, born from 2017 to 2019) with no available
phenotypes in the reduced dataset. The accuracy for Simmental
data was based on the correlation between GEBV estimated for
the focus group in the complete (with available phenotypes) and
reduced (without phenotypes) datasets. This parameter indicates
the stability of the model, i.e., how much the consecutive evalua-
tions are consistent with the addition of new data. For all correla-
tions used to evaluate the accuracy of the different scenarios, the
95% confidence intervals were computed using Fisher’s z-
transformation (Fisher, 1921).

Moreover, GEBV from all core definitions were compared
against the model that used the direct G�1 in order to quantify
the impact of the APY algorithm.

Results

Investigation of the contribution to the genomic relationship matrix

The number of eigenvalues (and thus of animals) able to explain
a fixed amount of variance (from 90 to 99%) of G in the two data-
sets are reported in Table 2. The simulated dataset showed the
lowest number of eigenvalues for all considered thresholds. These
numbers were then used as core size in the different four consid-
ered scenarios.

Table 3 shows the correlations between the GCONTR values and
the true or estimated breeding values in the two investigated data-
sets. As far as the simulated data, correlations were very low, with
the one computed for fat percentage not significantly different
from zero. The GCONTR values were almost independent from the
number of offspring in Simmental animals (R = �0.07), whereas a
moderate negative correlation was estimated between GCONTR

and the number of offspring in the simulated dataset (Table 3).
Moreover, GCONTR showed a moderate and negative correlation
with the pedigree-based inbreeding in both simulated and Sim-
mental datasets. GCONTR estimated for the genotyped animals in
the Simmental populations were weakly and negatively correlated
Table 2
Number of eigenvalues (and core sizes) to explain 90, 95, 98, and 99% of variance of
the G matrix in the simulated and cattle datasets.

Core size

Scenario Variance explained (%) Simulated Simmental

V90 90 108 354
V95 95 195 786
V98 98 376 1 593
V99 99 568 2 358

3

with the milkability GEBV. The distribution of the GCONTR in the
simulated dataset set exhibited a bimodal shape, whereas it was
skewed on the right of the real dataset (Fig. 1). Fig. 2 shows the
analysis of GCONTR computed for the Simmental data: a significant
difference was observed between GCONTR of males and females,
with the latter group showing lower values (Fig. 2A). Moreover, a
correlation of �0.23 was computed between the GCONTR and the
year of birth, as demonstrated also by the decreasing trend
observed for GCONTR according to the year of birth of the Simmental
genotyped animals (Fig. 2B). In this breed, old animals with geno-
types are only bulls (the first genotyped female was born in 2000),
confirming the larger GCONTR computed for males (Fig. 2A). Of
interest are the correlations of the GCONTR with the investigated
traits. Whereas basically no relationships were detected in the sim-
ulated dataset, moderate negative correlation was obtained on
Simmental real data.

Table 4 shows the correlations between GEBV estimated for the
candidate animals with the direct inversion of the G matrix and
those estimated using the different APY scenarios. Values for the
Simmental dataset ranged from 0.71 (TOP animals in the V90 sce-
nario) to 0.95 (RANDOM animals in the V99 scenario). Correlations
for the simulated dataset ranged from 0.54 (average across traits
for TOP animals in the V90 scenario) to 0.95 (average across traits
for BOTTOM animals in the V90 scenario). Correlations between
GEBV estimated using or not the APY algorithm for all animals in
the analyses were larger and close to the unity in the V98 and
V99 scenarios (data not shown).
Validation accuracy

Table 5 shows the results about the validation in the different
scenarios. Prediction accuracies of the simulated dataset were lar-
ger for the second trait in all the considered scenarios. The stan-
dard ssGBLUP provided larger accuracies compared to
ssGBLUP_APY, especially for the smaller core sizes (Table 5). The
accuracies were affected by core size and definition. As the number
of core animals increases, an increase in accuracies and a reduction
of differences among criteria for core definition can be observed. In
ssGBLUP_APY, the choice of bottom-ranked GCONTR animals yielded
higher accuracies for almost all considered scenarios, with the lar-
gest differences observed in the smallest core sizes (V90 and V95).
The lowest accuracies were obtained when only TOP animals for
GCONTR were included in the core.

Also for the Italian Simmental, an improvement of accuracy can
be observed as the size of the core increased, together with a
reduction among differences between core size definition criteria
(Table 5). Moreover, the inclusion of BOTTOM GCONTR ranked ani-
mals provided larger accuracies for all core scenarios, whereas
the lowest accuracy was found when only TOP animals were
included in the core.



Fig. 1. Histograms of the contribution to the genomic relationship matrix (GCONTR) computed in the simulated and cattle datasets.
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Discussion

After about twelve years of genomic selection, calculation prob-
lems due to the huge increase of genotyped animals in many live-
stock species (Cesarani et al., 2022) have raised again the issue of
influent individual detection. In particular, with the introduction
of single-step methodology, a main point is the proper definition
of core animals for optimizing genomic predictions using the APY
algorithm. Results of the present study basically confirm the
importance of core definition in APY, both in terms of size and of
choice criteria, although some interesting aspects can be pin-
pointed. Theoretically, to maximize the reliability of genomic pre-
dictions genotyped animals should represent all the genetic
variability of the population, usually identified in the number of
segregating independent chromosome segments (Misztal, 2016).
Previous studies identified the value of 98% of the variance
explained as the threshold for a good approximation of indepen-
dent chromosome segments of the population (Pocrnic et al.,
2022): a core size equal to the number of eigenvalues explaining
4

this amount of variance should lead to the same results of using
the full G. The same justification could be valid also for the corre-
lations between GEBV estimated using or not the APY algorithm for
the candidate animals (Table 4). As expected, the correlations
increased as the core size increased. The inclusion of only TOP ani-
mals in the core resulted in the lowest correlations in both data-
sets. Looking at the core size V90, correlations for TOP were on
average 0.13 (simulated dataset) and 0.07 (Simmental dataset)
points lower than BOTTOM or RANDOM.

Most of the studies aimed at investigating various strategies for
defining core individuals have concluded that, when the size is no
more a limiting factor, selection criteria are less relevant and, in
any case, the random choice of animals is the best option
(Bradford et al., 2017; Abdollahi-Arpanahi et al., 2022). In the pre-
sent paper, an analytical approach for choosing core animals is pre-
sented and it has been compared with random selection. Core
animals were selected based on their contribution to the genomic
relationship matrix, obtained by squaring the sum of the correla-
tions of the individual with each G eigenvector (Neuditschko



Fig. 2. (A) Differences between the contribution to the genomic relationship matrix (GCONTR) estimated for males (average value of 0.026) and females (average value of
0.024) in the Italian Simmental cattle breed. (B) Trend of the contribution to the genomic relationship matrix according to the year of birth of the genotyped animals.

Table 4
Correlations between the genomic estimated breeding values assessed using or not
the algorithm for proven and young animals in the simulated and cattle datasets.

Simulated Simmental

Scenario Core definition Trait 1 Trait 2 Trait 3 Milkability

V90 Bottom 0.77 0.81 0.78 0.81
Top 0.52 0.55 0.56 0.71
Random 0.69 0.70 0.72 0.76

V95 Bottom 0.86 0.88 0.83 0.86
Top 0.63 0.64 0.64 0.81
Random 0.75 0.78 0.81 0.86

V98 Bottom 0.93 0.94 0.91 0.91
Top 0.77 0.78 0.72 0.90
Random 0.88 0.89 0.88 0.92

V99 Bottom 0.95 0.96 0.95 0.95
Top 0.83 0.84 0.80 0.95
Random 0.93 0.94 0.93 0.95

Abbreviations: Bottom = animals with lowest values of contribution to the genomic
relationship matrix; Top = animals with highest values of contribution to the
genomic relationship matrix; Random = animals randomly selected.
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et al., 2017). This total R2 coefficient provides the amount of the
total G variance explained by each individual and, thus, we expect
that animals with a larger impact on G (i.e., the most important
animals in the population) have larger contributions. The larger
GCONTR values of the most important animals were confirmed by
the negative correlation between these values and the pedigree
inbreeding coefficients: very old animals that contributed mostly
to the recent population have lower inbreeding. On the contrary,
recent animals that have a smaller impact on the population have
larger inbreeding and lower GCONTR. This pattern was also con-
firmed by the GCONTR trend according to the year of birth high-
lighted in the Simmental population. However, the negative
5

correlation between GCONTR and the number of offspring in the
pedigree seems to disagree with the importance of the animals
in the population. However, it should be considered that this cor-
relation in the real dataset was very low (�0.07). As reported in
Table 3, the GCONTR values seem to be population specific. For
example, these values were basically not related with phenotypic
traits in the simulated dataset, whereas they showed moderate
and negative correlations with milkability in the Simmental data.
The negative correlation observed between GEBV and GCONTR in
the real dataset seems to confirm the larger contributions of old
animals. In fact, GEBVs are expected to increase during the time:
recent animals (that contribute less to the population) have usually
larger GEBV and, thus, lower GCONTR. The moderate relationship of
the contributions to the Gmatrix with the investigated phenotypes
suggests that this metrics is able to capture, at least to a certain
extent, a portion of the variability of G that is related with the con-
sidered production traits.

As far as the GEBV accuracies, two strategies were tested to rep-
resent different breeding programs. In the simulated dataset, all
animals in the last generation were considered as potential candi-
dates, whereas in the Simmental population, the attention was
focused only on young genotyped cows. The adoption of the GCONTR

as a criterion for core definition has resulted in differences, in some
cases moderate, in genomic prediction accuracies. Considering the
meaning of this metrics, it was reasonable to hypothesize that ani-
mals that mostly contribute to the variance of G (i.e., TOP animals)
were those that better represent the genetic composition of the
population and therefore, the most suitable for being considered
as core individuals in APY. On the contrary, in the present study,
best accuracies were provided when animals with smallest GCONTR

were included in the APY core. This result could be due to the rela-
tionship between the impact of genotyped animals in the popula-



Table 5
Accuracies of predicted breeding values estimated in the different scenarios for the simulated and cattle datasets in terms of correlation (and 95% confidence interval).

Simulated Simmental

Scenario Core definition Trait 1 Trait 2 Trait 3 Milkability

ssGBLUP 0.73 (0.70–0.76) 0.77 (0.74–0.79) 0.76 (0.73–0.79) 0.83 (0.79–0.86)
ssGBLUP APY
V90 Bottom 0.62 (0.58–0.66) 0.66 (0.62–0.69) 0.59 (0.55–0.63) 0.71 (0.65.0.76)

Top 0.38 (0.33–0.43) 0.42 (0.37–0.47) 0.41 (0.36–0.46) 0.60 (0.53–0.67)
Random 0.50 (0.45–0.55) 0.60 (0.56–0.64) 0.49 (0.44–0.54) 0.63 (0.56–0.69)

V95 Bottom 0.68 (0.65–0.71) 0.69 (0.66–0.72) 0.61 (0.57–0.65) 0.73 (0.67–0.78)
Top 0.48 (0.43–0.53) 0.50 (0.45–0.55) 0.44 (0.39–0.49) 0.69 (0.63–0.74)
Random 0.53 (0.48–0.57) 0.59 (0.55–0.63) 0.62 (0.58–0.66) 0.71 (0.65.0.76)

V98 Bottom 0.71 (0.68–0.74) 0.74 (0.71–0.77) 0.70 (0.67–0.73) 0.79 (0.74–0.83)
Top 0.57 (0.53–0.61) 0.58 (0.54–0.62) 0.49 (0.44–0.54) 0.77 (0.72–0.81)
Random 0.67 (0.63–0.70) 0.71 (0.68–0.74) 0.67 (0.63–0.70) 0.78 (0.73–0.82)

V99 Bottom 0.71 (0.68–0.74) 0.75 (0.72–0.78) 0.70 (0.67–0.73) 0.81 (0.77–0.84)
Top 0.60 (0.56–0.64) 0.63 (0.59–0.67) 0.55 (0.51–0.59) 0.78 (0.73–0.82)
Random 0.70 (0.67–0.73) 0.74 (0.71–0.77) 0.72 (0.69–0.75) 0.80 (0.76–0.84)

Abbreviations: ssGBLUP = single-step genomic BLUP; APY = algorithm for proven and young animals; Bottom = animals with lowest values of contribution to the genomic
relationship matrix; Top = animals with highest values of contribution to the genomic relationship matrix; Random = animals randomly selected.
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tion and their GCONTR. As pointed out before, the older animals with
a larger contribution in the population have high GCONTR: these ani-
mals are largely considered through the pedigree, and they are
already reflected in the phenotypes of their offspring. Thus, there
are no improvements by adding those animals in the core set. On
the contrary, young animals are usually less represented in pedi-
gree and data; when these young animals with low GCONTR are
included in the core, they increase the amount of information con-
sidered for the GEBV estimation.

Recently, Pocrnic et al. (2022) developed an iterative algorithm
based on the conditional covariance for the core definition that
aims at choosing animals that are distant in covariance sense. Their
approach provided more stable prediction results in ssGBLUP APY
compared to the random choice of animals, especially when the
core size is under the optimum. The results of Pocrnic et al.
(2022) can be considered in agreement with those of the present
study, where slightly better accuracies were obtained when ani-
mals with smaller GCONTR were considered in the core. In any case,
observed differences among the various tested scenarios suggest
that an optimization of core definition criteria could represent a
way for improving genomic prediction accuracy, especially when
the size of core animals is limited. Maybe there are more criteria,
not only one, that could help in an optimum core definition. Some
papers have highlighted that is important that core animals are
uniformly distributed across different generations (Bradford
et al., 2017; Abdollahi-Arpanahi et al., 2022) and also across breeds
in case of crossbred populations or multibreed analysis
(Mäntysaari et al., 2017; Vandenplas et al., 2018; Cesarani et al.,
2022). The proposed method here presented offers one analytical
approach that could be integrated with others. The peculiarity of
the use of GCONTR is that selected animals (i.e., the BOTTOM ranked)
are not related to a particular classification criterion in all the con-
sidered datasets, but they changed according to the data structure
(i.e., the oldest in the simulated dataset, and the youngest in the
Simmental population).

Genotyped populations considered in the present study were of
small size, representative of different genetic structures. However,
the calculation of GCONTR in large datasets could be hampered by
the huge computing requirements due to the need for the eigen-
value analysis of the G. To address this issue, the GCONTR-based
approach for core definition could be improved by implementing
algorithms for the optimization of memory use in PCA
(Rachakonda et al., 2016). On the other hand, in the present form,
it could be efficient in medium size populations that have already
started their genomic programs.
6

Conclusion

Results of the present study confirmed that the choice of ani-
mals to be included in the core set of the APY is more important
when the core size is not well representing the number of indepen-
dent chromosome segments. The proposed approach of core defini-
tion, based on the individual contribution to the Gmatrix, provided
an improvement of GEBV accuracy for the smallest core size con-
sidered. However, even if the number of core animals was large
enough, the inclusion of BOTTOM animals selected according to
their contribution to the G matrix led to small increases in
accuracy.
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