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ABSTRACT

The large number of markers available compared
with phenotypes represents one of the main issues in
genomic selection. In this work, principal component
analysis was used to reduce the number of predictors
for calculating genomic breeding values (GEBV). Bulls
of 2 cattle breeds farmed in Italy (634 Brown and 469
Simmental) were genotyped with the 54K Illumina
beadchip (Illumina Inc., San Diego, CA). After data
editing, 37,254 and 40,179 single nucleotide polymor-
phisms (SNP) were retained for Brown and Simmental,
respectively. Principal component analysis carried out
on the SNP genotype matrix extracted 2,257 and 3,596
new variables in the 2 breeds, respectively. Bulls were
sorted by birth year to create reference and prediction
populations. The effect of principal components on der-
egressed proofs in reference animals was estimated with
a BLUP model. Results were compared with those ob-
tained by using SNP genotypes as predictors with either
the BLUP or Bayes_A method. Traits considered were
milk, fat, and protein yields, fat and protein percent-
ages, and somatic cell score. The GEBV were obtained
for prediction population by blending direct genomic
prediction and pedigree indexes. No substantial differ-
ences were observed in squared correlations between
GEBV and EBV in prediction animals between the
3 methods in the 2 breeds. The principal component
analysis method allowed for a reduction of about 90%
in the number of independent variables when predict-
ing direct genomic values, with a substantial decrease
in calculation time and without loss of accuracy.
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INTRODUCTION

Advancements in genome sequencing technology have
been implemented into high-throughput platforms able
to simultaneously genotype tens of thousands of SNP
markers distributed across the whole genome of live-
stock species (Van Tassell et al., 2008). Dense marker
maps are today used in cattle breeding for genome-wide
association studies (Price et al., 2006; Cole et al., 2009)
and for predicting genomic breeding values (GEBV)
of candidates to become sires and dams in genomic
selection (GS) programs (Meuwissen et al., 2001). The
basic framework of genomic selection involves 2 steps.
First, effects of chromosomal segments are estimated in
a set of reference animals with known phenotypes and
SNP genotypes. Then, estimates are used to predict di-
rect genomic values (DGV) of animals for which only
marker genotypes are known. The DGV are usually
blended with other measures of genetic merit such as
official pedigree index (PI) to obtain the final GEBV
(Ducrocq and Liu, 2009; VanRaden et al., 2009). Dif-
ferent countries have implemented GS programs to
evaluate young bulls entering progeny testing, achiev-
ing reliabilities greater than those of PI (Hayes et al.,
2009a; VanRaden et al., 2009). Expected benefits of GS
are a reduction in generation interval, increase in EBV
accuracy for females, and a cost reduction for progeny
testing (Schaeffer, 2006; Konig et al., 2009).

However, several issues still need to be addressed
in GS. Examples are the assessment of the frequency
of marker effect re-estimation along generations (Sol-
berg et al., 2009), the impact of population structure
on estimated effects (Habier et al., 2010), and the
choice of the most suitable mathematical model and
dependent variable for the estimation step (Guo et al.,
2010). Apart from situations in which the number of
genotyped animals is quickly approaching or exceeding
the number of markers used, as in the North American
genomic project (VanRaden and Sullivan, 2010), the
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huge imbalance between predictors and observations
still represents the main constraint to the implementa-
tion of GS programs, especially for breeds other than
Holstein.

One way to reduce this data asymmetry could be to
combine data from different populations of the same
breed or from different breeds in a common reference
set, both within and across countries (Boichard et al.,
2010). Reports on simulated and real data show some
increases in DGV accuracy, but results are strongly
dependent on the genetic similarity between breeds and
on the trait analyzed (de Roos et al., 2009; Hayes et
al., 2009b).

A different strategy is based on the reduction of the
number of predictors used in the estimation equations.
A straightforward approach is to perform a preliminary
selection of markers based on their relationship with
the phenotype or of their chromosomal location (Hayes
et al., 2009a; Moser et al., 2010; Vazquez et al., 2010).
An alternative is represented by the Bayes_B method,
which retains markers with nonzero effects on pheno-
types directly during the estimation step (Meuwissen et
al., 2001; VanRaden, 2008). Other approaches of SNP
selection have been proposed mainly for genome-wide
association analyses (Gianola et al., 2006; Aulchenko
et al., 2007; Long et al., 2007; Gianola and van Kaam,
2008). In the above-mentioned methodologies, selection
of SNP is based on their relevance to the considered
phenotype. Thus, specific sets of markers may be re-
quired for different traits.

An alternative to marker selection for reducing pre-
dictor dimensionality is represented by their synthesis
via multivariate reduction techniques. In particular,
principal component analysis (PCA) and partial least
squares regression have been proposed for estimating
DGV (Solberg et al., 2009). In fact, in the partial least
squares regression approach, the extraction of latent
variables from predictors is carried out by maximizing
their correlation with the dependent variable(s). Thus,
reduction of the system dimension is still based on the
magnitude of the predictor effects on the considered
trait. In contrast, PCA is based entirely on the factor-
ization of the SNP (co)variance (or correlation) ma-
trix. This technique allows for a huge reduction of the
number of independent variables (>90%) in the esti-
mation of DGV while achieving accuracies comparable
to those obtained using all SNP genotypes (Solberg et
al., 2009; Macciotta et al., 2010). A recent compari-
son highlighted the high accuracy of both dimension
reduction techniques in predicting DGV for milk yield
in US Holsteins (Long et al., 2011). Compared with
other approaches of predictor reduction, PCA limits
the loss of information because each SNP is involved
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in the composition of each principal component (PC).
Moreover, extracted PC are orthogonal, thus avoiding
multicollinearity problems. The PCA approach also al-
lows the variance structure of predictors in the BLUP
normal equations to be modeled by using eigenvalues as
variance priors (Macciotta et al., 2010). Furthermore,
PCA has been used in genome-wide association studies
to reduce the number of dependent variables (Bolormaa
et al., 2010).

The reduction of predictor dimensionality is a straight-
forward strategy when implementing GS with reference
populations of limited size. This situation may occur
in minor cattle breeds or in larger populations in the
early stages of GS programs. This was the case for the
SELMOL project recently started in Italy that involves
different cattle breeds (both dairy and beef). The aim
of this study was to calculate GEBV for dairy traits in
populations of limited sizes of Italian Brown and Sim-
mental bulls by using the PCA approach for reducing
the number of predictors. The PCA-based method was
compared with other approaches that directly fit all
SNP genotypes available as predictors.

MATERIALS AND METHODS
Data

A total of 775 Italian Brown and 493 Italian Sim-
mental bulls were genotyped at 54,001 SNP loci with
the Ilumina Bovine SNP50 54K bead chip (Illumina
Inc., San Diego, CA). Considering the limited size of
the sample, the priority in the edit was to keep the
number of bulls as large as possible. A stringent selec-
tion was performed on markers. Edits were based on
the percentage of missing data (<0.025), Mendelian
inheritance conflicts, absence of heterozygous loci,
minor allele frequency (<0.05), and deviance from
Hardy-Weinberg equilibrium (<0.01; Wiggans et al.,
2009). Edits on animals were based on the number of
missing genotypes (<1,000) and on inconsistencies in
the Mendelian inheritance (96 and 70 father-son pairs
were included in the archives for Italian Brown and
Simmental, respectively). An overall accuracy >99%
was obtained by double-genotyping some animals. A
summary of the initial and final number of bulls and
SNP, together with the effect of the different elimina-
tion steps, is reported in Table 1. In the final data,
missing genotypes (in general <0.5%) were replaced by
the means of the observed genotypes at that specific
locus.

Phenotypes used were multiple across-country evalu-
ation (MACE) deregressed proofs (DRPF) provided
by the 2 breed associations. Traits considered were
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Table 1. Number of animals and markers discarded in the different edit steps

Mendelian Final

Data set/breed Repeated' inheritance” Missing® MAF* HW® data set
Animals

Brown 17 3 6 634

Simmental 6 2 6 469
SNP markers

Brown 23 1,118 15,046 560 37,254

Simmental 21 999 12,215 587 40,179

"Number of animals genotyped twice to check genotyping quality.

?Animals that showed >2,000 Mendelian conflicts or SNP that showed Mendelian conflicts in >2.5% father-son pairs.
*Animals with >1,000 missing genotypes or SNP with >2.5% missing genotypes.

‘SNP with a minor allele frequency (MAF) <0.05.

"SNP that deviate significantly (P < 0.01) from Hardy-Weinberg (HW) equilibrium.

milk, fat, and protein yields (kg), fat and protein per-
centages, and SCS. Average reliabilities of DRPF were
0.87 (£0.08) and 0.92 (40.04) for Italian Brown and
Simmental bulls, respectively.

Animals were sorted by year of birth and the data
set split into reference (REF) and prediction (PRED)
subsets, comprising older and younger animals, respec-
tively. Three ratios of REF:PRED animals were con-
sidered (70:30, 80:20, 90:10). The distribution of years
of birth in the different breeds is depicted in Figure 1.

Figure 1. Distribution of number of bulls across year of birth.

Journal of Dairy Science Vol. 95 No. 6, 2012

Statistical Models

Principal component analysis was used to extract la-
tent variables from the SNP data matrix M with m rows
(m = number of individuals in the entire data set; i.e.,
REF plus PRED) and n columns (n = number of SNP
retained after edits). Each element (3,5) corresponded to
the genotype at the jth marker for the ith individual.
Genotypes were coded as —1 and 1 for the 2 homo-
zygotes, and 0 for the heterozygote, respectively. The
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PCA was performed separately for each chromosome.
On simulated data, whether analyses were carried out
on the whole genome simultaneously or separately by
chromosome did not affect DGV accuracy (Macciotta
et al., 2010). The PCA was carried out on the whole
data set (REF + PRED) separately for each breed. The
number of principal components retained (k) was based
on the sum of their eigenvalues. An empirical threshold
of 80% of explained variance was fixed according to
indications of other authors (Bolormaa et al., 2010).
Scores of the selected components were calculated for
all individuals.

For each breed, the estimation of predictor effects on
the REF data set was carried out using the following
BLUP model (PCA_BLUP):

y=1lu + Zg + e,

where y is the vector of DRPF, 1 is a vector of ones, u
is the general mean, Z is the matrix of PC scores, g is
the vector of PC regression coefficients treated as ran-
dom, and e is the vector of random residuals. Covari-
ance matrices of random PC effects (G) and residuals
(R) were modeled as diagonal I afj)\ and T2, respec-
tively. In particular, the contribution of each jth princi-
pal component to the genetic variance was assumed to
be proportional to its corresponding eigenvalue (\);
that is, 0]2.7; = (03) x ); (Macciotta et al., 2010). Variance

components were those currently supplied by breed as-
sociations for Interbull evaluations (http://www-inter-
bull.slu.se/national _ges_info2/framesida-ges.htm).

The BLUP solutions were estimated using Henderson’s
normal equations (Henderson, 1985) solved by using an
LU (lower-upper) factorization, where the left-hand-
side part of mixed model equations was decomposed
into the product of a lower and a upper triangular ma-
trix, respectively (Burden and Faires, 2005).

To evaluate the effect of the PCA reduction of pre-
dictors on DGV accuracy, the estimation step was also
carried out with 2 methods that fit all available SNP
genotypes, but with different assumptions on the distri-
bution of their effects.

The first was the BLUP method (SNP_BLUP)
that assumed an equal contribution of each marker
locus to the variance of the trait, sampled from the
same normal distribution (Meuwissen et al., 2001). In
this case, Z was the matrix of SNP genotypes coded as
0, 1, and 2. Mixed model equations were solved using a
Gauss-Seidel iterative algorithm.

The second was the Bayes_A method, which allowed
variance to differ across chromosome segments on the
assumption that a large number of SNP have small
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effects and few have a large effect (Meuwissen et al.,
2001). The fitted model (BAYES_A) was

y=1lu + Zg + Wu + e,

where u is a vector of polygenic breeding values as-
sumed to be normally distributed, with u, ~ N (O, Aaf),

where A is the average relationship matrix and o7 is the
additive genetic variance. Prior structure and hyper-
parameters were chosen according to Meuwissen et al.
(2001). A scaled inverted chi-squared prior distribution
was assumed for SNP specific variances, under the hy-
pothesis that most of markers have almost zero effects
(i.e., markers not linked to any QTL) and only a few
have large effects. In total, 20,000 iterations were per-
formed, discarding the first 10,000 as burn-in and con-
sidering no thinning interval. A residual updating algo-
rithm was implemented to reduce computational time
(Legarra and Misztal, 2008).

The general mean (p) and the vector (g) of the prin-
cipal component or marker effects estimated either
with BLUP (SNP_BLUP) or Bayes A (BAYES_A) in
the REF population were used to calculate the DGV
for the jth animal in the PRED subset for each breed:

k
DGVj = N+Zz'ij g,
i1

where z is the vector of component scores or marker
genotypes and k is the number of PC or markers used
in the analysis.

The DGV obtained with PC_BLUP, SNP_BLUP,
or BAYES_A were blended with PI to obtain GEBV,
using the equivalent daughter contributions (EDC) as
weighting factors:

GEBV, = DGV, -edcG + PI, - edc,,

where edcG and edc are the EDC for DGV or PI,
respectively. Values of edcG were calculated from the
approximate DGV reliabilities, obtained as RELpqy =
(r*nev.prer) /RELprer (Hayes et al., 2009b):

edCG =k x RELDGv/(l — RELDG\/),

where k = (4 — h?)/h% The same approach was used
to calculate edc for PI. The procedure followed was
that used to validate the international GEBV of Italian
Simmental approved in November 2011 (http://www.
interbull.org).
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Finally, to evaluate the efficiency of genomic predic-
tions versus the traditional polygenic evaluations in
PRED individuals, squared correlations between GEBV
and EBV (R%ggv.cepy) were computed and compared
with those between PI and EBV (RZEBV,pI). Bias was
assessed by evaluating regression coefficients of EBV on
predicted GEBV.

RESULTS

A common criterion for choosing the number of PC
to retain is visual inspection of their eigenvalue pat-
tern. As an example, Figure 2 reports the chromosome-
wide variance explained by each successive component
extracted from SNP located on BTA6 in the Brown
breed. The eigenvalue was small for the top 2 compo-
nents (about 7 and 5%, respectively), with a smooth
decrease followed by a plateau reached at about 100
PC (86% of variance explained) for this chromosome.
The number of retained PC genome-wide was 3,596
and 2,257 for the Simmental and Brown breeds, respec-
tively. A similar number of components was retained
by Long et al. (2011). In any case, a large reduction
of predictor dimensionality (<10% of the number of
original variables) was realized.

The extracted PC were able to distinguish Brown
from Simmental bulls. Individual scores of the first
PC of BTAG6, for example, discriminated the 2 breeds,

PINTUS ETAL.

whereas the third PC highlighted a larger heteroge-
neity within the Brown sample (Figure 3). In PCA,
the meaning of each extracted component is usually
inferred by looking at eigenvector coefficients; that is,
the weights of each original variable (in this case, the
SNP genotype) in the component. However, it would
be very hard to achieve an interpretation by examining
thousands of correlations. The meaning of extracted
variables could be assessed indirectly by looking at
their relationships with other characteristics of the
considered individuals. For example, the third PC for
BTAG6 in the Brown breed was negatively correlated
with the observed average individual heterozygosity
(—0.43), and its score average showed a progressive
decrease across year of birth of bulls. Such an ability of
PCA to cluster individuals based on causes of variation
of SNP genotype frequency has also been reported for
simulated data (Macciotta et al., 2010).

Squared correlations between GEBV or PI and EBV
are reported in Tables 2 and 3 for the 2 breeds. The
RQGEBVA’EBV values were substantially lower for Brown
than for Simmental, except for fat and protein per-
centages, which showed the opposite behavior. Squared
correlations for GEBV were generally higher than those
for PI in the Brown breed. Similar behavior could also
be observed for the Simmental, except for fat and pro-
tein percentages. The PC_BLUP and BAYES_A meth-
ods performed better than the SNP_BLUP method in

Figure 2. Pattern of the proportion of variance (%) accounted for by each successive principal component extracted from the correlation

matrix of SNP markers for chromosome 6 in the Brown breed.

Journal of Dairy Science Vol. 95 No. 6, 2012
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Figure 3. Plot of the individual scores of the first 3 principal components (PC1, PC2, and PC3) extracted from chromosome 6 in the 2 breeds

(circles = Brown; pyramids = Simmental).

Brown bulls. Finally, increasing the ratio REF:PRED
seemed to increase RQEBV“’GEBV in Brown, whereas no
such effect was observed in Simmental.

In particular, squared correlations ranged from 0.01
to 0.39 for Italian Brown (Table 2). The lowest values

were obtained for yield traits, in particular for milk
and protein (on average <0.1). The highest RQEBVQEBV
were observed for fat percentage, protein percentage,
and SCS (on average 0.35, 0.32, and 0.15, respectively).
Olson et al. (2011) reported the same value of genomic

Table 2. Squared correlations between genomic breeding values obtained using principal component scores
(PC_BLUP) as predictors, or SNP genotypes with BLUP (SNP_BLUP) or Bayes A (BAYES_A) methods, or
pedigree indexes (PI) and polygenic EBV for different scenarios in the Brown breed*

Estimation method

Scenario/trait PC_BLUP SNP_BLUP BAYES_A PI
Ref:Pred 70:30
Milk yield 4.5 1.6 3.6 4.6
Fat yield 9.3 6.0 9.9 5.7
Protein yield 2.7 1.1 2.5 3.5
SCC 13.9 13.2 13.4 12.5
Fat percentage 35.1 30.4 35.2 25.6
Protein percentage 38.4 30.5 34.9 29.8
Ref:Pred 80:20
Milk yield 9.0 4.6 7.8 8.6
Fat yield 9.7 8.1 10.4 6.3
Protein yield 2.4 1.0 2.3 2.2
SCC 11.7 11.2 10.9 9.7
Fat percentage 38.5 34.4 36.7 26.7
Protein percentage 34.2 28.8 30.6 24.5
Ref:Pred 90:10
Milk yield 12.3 7.1 6.6 6.6
Fat yield 22.9 19.2 18.4 8.3
Protein yield 12.6 3.5 2.9 0.4
SCC 21.0 22.0 19.8 20.9
Fat percentage 36.7 34.1 34.5 28.4
Protein percentage 37.6 26.3 27.1 20.4

Ref:Pred scenarios = ratio between number of animals included in the reference and prediction populations,

respectively.
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Table 3. Squared correlations between genomic breeding values obtained using principal component scores
(PC_BLUP) as predictors, or SNP genotypes with a BLUP (SNP_BLUP) or Bayes A (BAYES_A) methods,
or pedigree indexes (PI), and polygenic EBV for different scenarios in the Simmental breed’

Estimation method

Scenario/trait PC_BLUP SNP_BLUP BAYES_A PI
Ref:Pred 70:30
Milk yield 36.6 354 35.8 34.5
Fat yield 34.3 33.8 33.9 33.3
Protein yield 35.3 34.1 34.4 34.1
SCC 20.1 20.4 20.3 20.5
Fat percentage 14.8 15.0 14.7 15.4
Protein percentage 20.2 19.0 19.4 21.0
Ref:Pred 80:20
Milk yield 36.7 35.3 35.7 33.1
Fat yield 31.2 30.0 30.3 28.8
Protein yield 33.0 30.6 31.0 30.5
SCC 20.3 20.5 20.6 20.6
Fat percentage 12.7 14.9 14.1 15.9
Protein percentage 17.9 16.5 174 16.9
Ref:Pred 90:10
Milk yield 36.6 30.4 31.8 24.8
Fat yield 294 27.3 27.8 23.4
Protein yield 32.7 24.0 25.1 20.5
SCC 18.2 18.3 17.8 18.2
Fat percentage 5.2 6.0 5.5 7.0
Protein percentage 11.9 15.2 13.3 15.0

Ref:Pred scenarios = ratio between number of animals included in the reference and prediction populations,

respectively.

prediction accuracy for SCS in a study on 1,188 Brown
Swiss bulls. These authors observed higher values for
yield traits. Accuracies for protein percentages reported
in Table 2 agree with results obtained in Australian
Holsteins and Jerseys using different approaches and a
comparable size of reference population (Hayes et al.,
2009b; Moser et al., 2009). The best results in genomic
predictions for protein percentage were observed in US
Holsteins (VanRaden et al., 2009).

The RZEBV,GEBV obtained for the Simmental bulls
ranged from 0.05 to 0.37 (Table 3). Values for milk
yield were, on average, about 5 times that of the Brown
breed (0.35 across all scenarios and methods). Yield
traits had higher values compared with composition
traits. For some scenarios, squared correlations for
protein yield were similar to those recently reported
for Fleckvieh cattle (Gredler et al., 2010). Intermedi-
ate values were obtained for SCS (0.20 on average).
The PC_BLUP and BAYES_A methods slightly out-
performed the SNP_BLUP approach. As in the case
of Italian Brown cattle, PC_BLUP gave slightly larger
values than BAYES_A for yield traits and smaller for
composition traits, respectively. Other than values for
fat and protein percentages, RZEBV7GEBV were higher
than RQEBV,PI for all estimation methods.

Regression coefficients of EBV on GEBV (Table 4)
showed variability across breeds, methods, and traits.
Differences between breeds were evident for yield traits,

Journal of Dairy Science Vol. 95 No. 6, 2012

with lower values for Brown bulls. For these traits,
regression slopes were close to unity for all 3 meth-
ods and for all scenarios in the Simmental breed. For
composition traits and SCS, regression coefficients were
<1, indicating underprediction of EBV for high values
and overprediction for low values. The opposite behav-
ior was observed for Brown. The PC_BLUP method
showed the lowest variability across traits.

DISCUSSION

In this paper, GEBV for some dairy traits were es-
timated by reducing the dimensionality of predictors
with PCA. Such a reduction aimed at simplifying data
handling and reducing computational burdens while
retaining most of the information. The PCA approach
was compared with two of the most popular methods
used to predict GEBV—BLUP regression and Bayes
A—that directly fit all marker genotypes available but
with different theoretical assumptions on the distribu-
tion of their effects.

The BLUP methodology overcomes the problem of
degrees of freedom in the estimation step by fitting
SNP effects as random rather than fixed (Meuwissen
et al., 2001; Muir, 2007). However, the curse of dimen-
sionality still represents the most important theoreti-
cal constraint for GS implementation. This problem is
enhanced when a small number of genotyped animals
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Table 4. Regression coefficients of polygenic breeding values on genomic breeding values (bpgygrsy) or pedigree index (bpgyp;) for dairy
traits in Brown and Simmental prediction animals using principal component scores (PC_BLUP), SNP genotypes (SNP_BLUP), or Bayes A
(BAYES_A) estimation methods for different proportions of reference and prediction population size (70:30, 80:30, or 90:10)"

Brown Simmental
Trait Method 70:30 80:20 90:10 70:30 80:20 90:10
Milk yield PC_BLUP 0.49 0.66 0.86 1.09 1.00 0.96
SNP_BLUP 0.26 0.45 0.59 1.12 1.10 1.01
BAYES_ A 0.47 0.71 0.70 1.12 1.06 1.04
PI 0.31 0.44 0.41 0.91 0.88 0.73
Fat yield PC_BLUP 0.80 0.83 1.26 1.05 1.06 1.20
SNP_BLUP 0.56 0.66 1.00 1.09 1.11 1.38
BAYES_ A 0.93 0.99 1.34 1.09 1.11 1.38
PI 0.39 0.43 0.48 0.93 0.94 1.05
Protein yield PC_BLUP 0.42 0.41 1.01 1.00 0.99 1.10
SNP_BLUP 0.22 0.23 0.47 1.02 0.99 1.04
BAYES_ A 0.43 0.44 0.62 1.04 0.99 1.07
PI 0.29 0.25 0.13 0.87 0.85 0.79
SCS PC_BLUP 2.27 2.17 2.53 0.73 0.73 0.83
SNP_BLUP 1.95 1.86 2.28 0.78 0.77 0.88
BAYES_ A 2.28 2.15 2.57 0.78 0.77 0.87
PI 0.80 0.73 0.94 0.73 0.72 0.81
Fat percentage PC_BLUP 1.33 1.35 1.48 0.59 0.64 0.47
SNP_BLUP 1.20 1.31 1.29 0.65 0.65 0.59
BAYES_ A 1.46 1.54 1.46 0.64 0.64 0.56
PI 0.78 0.80 0.80 0.53 0.54 0.46
Protein percentage PC_BLUP 1.29 1.18 1.45 0.88 0.93 0.72
SNP_BLUP 1.13 1.18 1.21 0.96 0.88 0.89
BAYES_A 1.33 1.32 1.32 0.96 0.91 0.85
PI 0.81 0.76 0.77 0.83 0.73 0.68

"Regression coefficients of polygenic breeding values and pedigree index (PI) are also reported.

is available, as in this study. In fact, PCA does not
completely address such an issue because of the data
structure. The SNP correlation matrix is singular and
therefore the number of eigenvalues different from zero
is equal to the number of animals (i.e., the rows) minus
1 (Bumb, 1982; Patterson et al., 2006; Dimauro et al.,
2011). In this study, PCA was carried out separately
for each chromosome. At this level, the gap between
predictors and observations was reduced and the num-
ber of components retained per chromosome (on aver-
age 75 and 120 in Brown and Simmental, respectively)
was markedly smaller than the number of markers and
number of animals.

In agreement with previous findings on both simu-
lated and real data, PCA was able to efficiently de-
scribe the correlation matrix of SNP genotypes (80% of
explained variance) with fewer than 10% of the original
variables. Such a reduction had a straightforward effect
on calculation time. The PC_BLUP approach required
about 2 min using a personal computer with a 2.33-
GHz quad core processor and 3.25 Gb of RAM. On the
other hand, 6 to 9 h was needed, on average, for the
SNP_BLUP and Bayes_A approaches, using a Linux
server with 4 x 4 quad core processors and 128 Gb of
RAM. The PCA required approximately 30 min, but it
had to be done just once at the beginning of the work.

Although calculation speed is not usually considered a
technical priority for GS (compared with genotyping
costs, for example), it is likely to become more relevant
with the recent development of a larger (800K) SNP
platform and the upcoming very low cost sequencing
technologies (Van Raden et al., 2011).

Of great interest is that such a huge reduction of cal-
culation time did not result in a lower value of squared
correlations between GEBV and polygenic EBV. The
similarity of results between the PC_BLUP approach
and the other 2 methods considered in the present pa-
per confirms previous findings obtained with another
multivariate dimension reduction technique, partial
least squares regression (Moser et al., 2009, 2010; Long
et al., 2011). The reduction in predictor dimensionality
obtained by selecting subsets of SNP based on their
chromosomal location or on their relevance to the trait
usually results in a decrease of GEBV accuracy (Van-
Raden et al., 2009; Vazquez et al., 2010). Compared
with subset SNP selection, the multivariate reduction
has the advantages of not discarding any marker and of
using uncorrelated predictors. The latter feature is con-
firmed by the observed lower bias of the PCA method
compared with the SNP_BLUP method.

The similar results obtained when using methods
characterized by different theoretical foundations indi-
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cates the need for further considerations. The BLUP
assumption of an equal effect of all markers on the vari-
ance of the trait is commonly considered inadequate to
fit the assessed distribution of QTL; that is, many loci
with a small effect and a few with large effects (Hayes
and Goddard, 2001). On the other hand, the superior-
ity of the Bayesian approach that fits heterogeneous
variances across chromosome segments is marked in
simulations but not in real data (Hayes et al., 2009a;
Moser et al., 2009; VanRaden et al., 2009). Genome-
wide association studies on human height suggest that
genetic variation is explained by many loci with small
additive effects (Yang et al., 2010). Moreover, a superior
predicting ability of GEBV for models that assume a
heavy-tailed distribution of gene effects compared with
finite locus models has recently been reported (Cole et
al., 2009). Thus, BLUP methodology, even though not
very accurate in terms of description of gene effect dis-
tribution, may offer robust DGV estimates (Goddard,
2009) with reasonable accuracy.

A possible criticism of the use of PCA is the lack
of biological meaning in the extracted variables. Such
a feature is in contrast to the general aims of the
use of molecular markers in animal breeding; that is,
overcoming the “black box” approach of traditional
quantitative genetics. However, even though a clear in-
terpretation based on eigenvectors is not feasible, some
results obtained in this work are worth mentioning.
The extracted PC scores were able to cluster animals
of the 2 breeds, confirming the ability of this technique
to capture genetic variation across and within popula-
tions, as has been highlighted in human genetic studies
(Cavalli-Sforza and Feldman, 2003; Price et al., 2006;
Paschou et al., 2007). Moreover, evidence was found
of a relationship between one of the extracted PC and
average individual heterozygosity. It is interesting to
note that, in the case reported for BTAG, it was not the
first extracted component that showed a relationship
with heterozygosity but the third one. This is a dis-
tinguishing feature of PCA: the first extracted compo-
nent seldom contains biologically relevant information,
whereas it may be retrieved in components associated
with smaller eigenvalues (Jombart et al., 2009).

In general, R’spyv grpy Were rather low, as expected
because of the reduced size of the sample of bulls
considered and their distribution across years of birth.
In the Brown breed, composition traits showed larger
values of squared correlations compared with yield
traits. These results, in agreement with previous find-
ings (Hayes et al., 2009a; VanRaden et al., 2009), may
reflect some variation in the genetic determinism of
the trait (Cole et al., 2009). In particular, genes with
large effects for fat and protein percentages have been
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discovered (Grisart et al., 2002; Cohen-Zinder et al.,
2005; Cole et al., 2009). Thus, considering that genomic
predictions work by tracking the inheritance of causal
mutations (VanRaden et al., 2009), the method may be
more efficient for traits in which few loci affect a large
proportion of the genetic variance.

Observed R? of genomic predictions were similar to
or slightly higher than those of traditional pedigree
indexes, except for fat and protein percentages for Sim-
mental bulls. Even though genomic predictions have
been reported to be more accurate than PI (VanRaden
et al., 2009; de los Campos et al., 2010; Olson et al.,
2011), these are expected results considering the lim-
ited size of the populations considered in this study.

Squared correlations were characterized by a relevant
variation both within and between breeds. In par-
ticular, the Brown breed showed a higher variation in
RQEB\/’GEBV across traits compared with the Simmental.
Differences in genomic accuracies between traits have
been reported in other papers (Hayes et al., 2009a;
VanRaden et al., 2009; Su et al., 2010), although not of
this magnitude. Moreover, most of the literature deals
with Holstein cattle. Apart from the different genetic
background of the considered traits, the sample size
and the wide range of birth year of bulls can reasonably
be considered the main causes of the present results.
Reasons for the different behavior of the Simmental
breed (less variation between traits, higher values for
milk yield) remain unclear. A partial explanation can
be found in the pattern of birth year of bulls, which was
narrower for Simmental compared with Brown. More-
over, the lower accuracy for fat percentage compared
with that in Brown could be ascribed to the known
fixation of the favorable mutation at the acylCoA-
diacylglycerol-acyltransferase 1 (DGAT1I) locus in the
Ttalian Simmental.

CONCLUSIONS

Principal component analysis was effective in reduc-
ing the number of predictors needed for calculating
genomic breeding values for dairy traits in Brown and
Simmental bulls. Such a reduction did not affect GEBV
precision and allowed for a relevant decrease in calcu-
lation time. The obtained accuracies of squared cor-
relations, although moderate to low mainly due to the
number of animals considered, were of the same order
or slightly higher than those of the traditional pedigree
index. Moreover, some differences between traits and
breeds were highlighted. Results of the present work
suggest the PCA approach as a possible alternative to
the use of SNP genotypes for predicting GEBV, espe-
cially for populations of limited size.
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