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  ABSTRACT 

  The large number of markers available compared 
with phenotypes represents one of the main issues in 
genomic selection. In this work, principal component 
analysis was used to reduce the number of predictors 
for calculating genomic breeding values (GEBV). Bulls 
of 2 cattle breeds farmed in Italy (634 Brown and 469 
Simmental) were genotyped with the 54K Illumina 
beadchip (Illumina Inc., San Diego, CA). After data 
editing, 37,254 and 40,179 single nucleotide polymor-
phisms (SNP) were retained for Brown and Simmental, 
respectively. Principal component analysis carried out 
on the SNP genotype matrix extracted 2,257 and 3,596 
new variables in the 2 breeds, respectively. Bulls were 
sorted by birth year to create reference and prediction 
populations. The effect of principal components on der-
egressed proofs in reference animals was estimated with 
a BLUP model. Results were compared with those ob-
tained by using SNP genotypes as predictors with either 
the BLUP or Bayes_A method. Traits considered were 
milk, fat, and protein yields, fat and protein percent-
ages, and somatic cell score. The GEBV were obtained 
for prediction population by blending direct genomic 
prediction and pedigree indexes. No substantial differ-
ences were observed in squared correlations between 
GEBV and EBV in prediction animals between the 
3 methods in the 2 breeds. The principal component 
analysis method allowed for a reduction of about 90% 
in the number of independent variables when predict-
ing direct genomic values, with a substantial decrease 
in calculation time and without loss of accuracy. 
  Key words:    single nucleotide polymorphism ,  genomic 
selection ,  principal component analysis ,  accuracy 

INTRODUCTION

  Advancements in genome sequencing technology have 
been implemented into high-throughput platforms able 
to simultaneously genotype tens of thousands of SNP 
markers distributed across the whole genome of live-
stock species (Van Tassell et al., 2008). Dense marker 
maps are today used in cattle breeding for genome-wide 
association studies (Price et al., 2006; Cole et al., 2009) 
and for predicting genomic breeding values (GEBV) 
of candidates to become sires and dams in genomic 
selection (GS) programs (Meuwissen et al., 2001). The 
basic framework of genomic selection involves 2 steps. 
First, effects of chromosomal segments are estimated in 
a set of reference animals with known phenotypes and 
SNP genotypes. Then, estimates are used to predict di-
rect genomic values (DGV) of animals for which only 
marker genotypes are known. The DGV are usually 
blended with other measures of genetic merit such as 
official pedigree index (PI) to obtain the final GEBV 
(Ducrocq and Liu, 2009; VanRaden et al., 2009). Dif-
ferent countries have implemented GS programs to 
evaluate young bulls entering progeny testing, achiev-
ing reliabilities greater than those of PI (Hayes et al., 
2009a; VanRaden et al., 2009). Expected benefits of GS 
are a reduction in generation interval, increase in EBV 
accuracy for females, and a cost reduction for progeny 
testing (Schaeffer, 2006; König et al., 2009). 

  However, several issues still need to be addressed 
in GS. Examples are the assessment of the frequency 
of marker effect re-estimation along generations (Sol-
berg et al., 2009), the impact of population structure 
on estimated effects (Habier et al., 2010), and the 
choice of the most suitable mathematical model and 
dependent variable for the estimation step (Guo et al., 
2010). Apart from situations in which the number of 
genotyped animals is quickly approaching or exceeding 
the number of markers used, as in the North American 
genomic project (VanRaden and Sullivan, 2010), the 
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huge imbalance between predictors and observations 
still represents the main constraint to the implementa-
tion of GS programs, especially for breeds other than 
Holstein.

One way to reduce this data asymmetry could be to 
combine data from different populations of the same 
breed or from different breeds in a common reference 
set, both within and across countries (Boichard et al., 
2010). Reports on simulated and real data show some 
increases in DGV accuracy, but results are strongly 
dependent on the genetic similarity between breeds and 
on the trait analyzed (de Roos et al., 2009; Hayes et 
al., 2009b).

A different strategy is based on the reduction of the 
number of predictors used in the estimation equations. 
A straightforward approach is to perform a preliminary 
selection of markers based on their relationship with 
the phenotype or of their chromosomal location (Hayes 
et al., 2009a; Moser et al., 2010; Vazquez et al., 2010). 
An alternative is represented by the Bayes_B method, 
which retains markers with nonzero effects on pheno-
types directly during the estimation step (Meuwissen et 
al., 2001; VanRaden, 2008). Other approaches of SNP 
selection have been proposed mainly for genome-wide 
association analyses (Gianola et al., 2006; Aulchenko 
et al., 2007; Long et al., 2007; Gianola and van Kaam, 
2008). In the above-mentioned methodologies, selection 
of SNP is based on their relevance to the considered 
phenotype. Thus, specific sets of markers may be re-
quired for different traits.

An alternative to marker selection for reducing pre-
dictor dimensionality is represented by their synthesis 
via multivariate reduction techniques. In particular, 
principal component analysis (PCA) and partial least 
squares regression have been proposed for estimating 
DGV (Solberg et al., 2009). In fact, in the partial least 
squares regression approach, the extraction of latent 
variables from predictors is carried out by maximizing 
their correlation with the dependent variable(s). Thus, 
reduction of the system dimension is still based on the 
magnitude of the predictor effects on the considered 
trait. In contrast, PCA is based entirely on the factor-
ization of the SNP (co)variance (or correlation) ma-
trix. This technique allows for a huge reduction of the 
number of independent variables (>90%) in the esti-
mation of DGV while achieving accuracies comparable 
to those obtained using all SNP genotypes (Solberg et 
al., 2009; Macciotta et al., 2010). A recent compari-
son highlighted the high accuracy of both dimension 
reduction techniques in predicting DGV for milk yield 
in US Holsteins (Long et al., 2011). Compared with 
other approaches of predictor reduction, PCA limits 
the loss of information because each SNP is involved 

in the composition of each principal component (PC). 
Moreover, extracted PC are orthogonal, thus avoiding 
multicollinearity problems. The PCA approach also al-
lows the variance structure of predictors in the BLUP 
normal equations to be modeled by using eigenvalues as 
variance priors (Macciotta et al., 2010). Furthermore, 
PCA has been used in genome-wide association studies 
to reduce the number of dependent variables (Bolormaa 
et al., 2010).

The reduction of predictor dimensionality is a straight-
forward strategy when implementing GS with reference 
populations of limited size. This situation may occur 
in minor cattle breeds or in larger populations in the 
early stages of GS programs. This was the case for the 
SELMOL project recently started in Italy that involves 
different cattle breeds (both dairy and beef). The aim 
of this study was to calculate GEBV for dairy traits in 
populations of limited sizes of Italian Brown and Sim-
mental bulls by using the PCA approach for reducing 
the number of predictors. The PCA-based method was 
compared with other approaches that directly fit all 
SNP genotypes available as predictors.

MATERIALS AND METHODS

Data

A total of 775 Italian Brown and 493 Italian Sim-
mental bulls were genotyped at 54,001 SNP loci with 
the Illumina Bovine SNP50 54K bead chip (Illumina 
Inc., San Diego, CA). Considering the limited size of 
the sample, the priority in the edit was to keep the 
number of bulls as large as possible. A stringent selec-
tion was performed on markers. Edits were based on 
the percentage of missing data (<0.025), Mendelian 
inheritance conflicts, absence of heterozygous loci, 
minor allele frequency (<0.05), and deviance from 
Hardy-Weinberg equilibrium (<0.01; Wiggans et al., 
2009). Edits on animals were based on the number of 
missing genotypes (<1,000) and on inconsistencies in 
the Mendelian inheritance (96 and 70 father-son pairs 
were included in the archives for Italian Brown and 
Simmental, respectively). An overall accuracy >99% 
was obtained by double-genotyping some animals. A 
summary of the initial and final number of bulls and 
SNP, together with the effect of the different elimina-
tion steps, is reported in Table 1. In the final data, 
missing genotypes (in general <0.5%) were replaced by 
the means of the observed genotypes at that specific 
locus.

Phenotypes used were multiple across-country evalu-
ation (MACE) deregressed proofs (DRPF) provided 
by the 2 breed associations. Traits considered were 
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milk, fat, and protein yields (kg), fat and protein per-
centages, and SCS. Average reliabilities of DRPF were 
0.87 (±0.08) and 0.92 (±0.04) for Italian Brown and 
Simmental bulls, respectively.

Animals were sorted by year of birth and the data 
set split into reference (REF) and prediction (PRED) 
subsets, comprising older and younger animals, respec-
tively. Three ratios of REF:PRED animals were con-
sidered (70:30, 80:20, 90:10). The distribution of years 
of birth in the different breeds is depicted in Figure 1.

Statistical Models

Principal component analysis was used to extract la-
tent variables from the SNP data matrix M with m rows 
(m = number of individuals in the entire data set; i.e., 
REF plus PRED) and n columns (n = number of SNP 
retained after edits). Each element (i,j) corresponded to 
the genotype at the jth marker for the ith individual. 
Genotypes were coded as −1 and 1 for the 2 homo-
zygotes, and 0 for the heterozygote, respectively. The 

Table 1. Number of animals and markers discarded in the different edit steps 

Data set/breed Repeated1
Mendelian 
inheritance2 Missing3 MAF4 HW5

Final 
data set

Animals      
 Brown 17 3 6   634
 Simmental 6 2 6   469
SNP markers      
 Brown  23 1,118 15,046 560 37,254
 Simmental  21 999 12,215 587 40,179
1Number of animals genotyped twice to check genotyping quality.
2Animals that showed >2,000 Mendelian conflicts or SNP that showed Mendelian conflicts in >2.5% father-son pairs.
3Animals with >1,000 missing genotypes or SNP with >2.5% missing genotypes.
4SNP with a minor allele frequency (MAF) <0.05.
5SNP that deviate significantly (P < 0.01) from Hardy-Weinberg (HW) equilibrium.

Figure 1. Distribution of number of bulls across year of birth.
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PCA was performed separately for each chromosome. 
On simulated data, whether analyses were carried out 
on the whole genome simultaneously or separately by 
chromosome did not affect DGV accuracy (Macciotta 
et al., 2010). The PCA was carried out on the whole 
data set (REF + PRED) separately for each breed. The 
number of principal components retained (k) was based 
on the sum of their eigenvalues. An empirical threshold 
of 80% of explained variance was fixed according to 
indications of other authors (Bolormaa et al., 2010). 
Scores of the selected components were calculated for 
all individuals.

For each breed, the estimation of predictor effects on 
the REF data set was carried out using the following 
BLUP model (PCA_BLUP):

y = 1μ + Zg + e,

where y is the vector of DRPF, 1 is a vector of ones, μ 
is the general mean, Z is the matrix of PC scores, g is 
the vector of PC regression coefficients treated as ran-
dom, and e is the vector of random residuals. Covari-
ance matrices of random PC effects (G) and residuals 
(R) were modeled as diagonal I σ λaj

2  and I σe
2, respec-

tively. In particular, the contribution of each jth princi-
pal component to the genetic variance was assumed to 
be proportional to its corresponding eigenvalue (λ); 
that is, σ σ λji a j

2 2= ( )×  (Macciotta et al., 2010). Variance 
components were those currently supplied by breed as-
sociations for Interbull evaluations (http://www-inter-
bull.slu.se/national_ges_info2/framesida-ges.htm). 
The BLUP solutions were estimated using Henderson’s 
normal equations (Henderson, 1985) solved by using an 
LU (lower-upper) factorization, where the left-hand-
side part of mixed model equations was decomposed 
into the product of a lower and a upper triangular ma-
trix, respectively (Burden and Faires, 2005).

To evaluate the effect of the PCA reduction of pre-
dictors on DGV accuracy, the estimation step was also 
carried out with 2 methods that fit all available SNP 
genotypes, but with different assumptions on the distri-
bution of their effects.

The first was the BLUP method (SNP_BLUP) 
that assumed an equal contribution of each marker 
locus to the variance of the trait, sampled from the 
same normal distribution (Meuwissen et al., 2001). In 
this case, Z was the matrix of SNP genotypes coded as 
0, 1, and 2. Mixed model equations were solved using a 
Gauss-Seidel iterative algorithm.

The second was the Bayes_A method, which allowed 
variance to differ across chromosome segments on the 
assumption that a large number of SNP have small 

effects and few have a large effect (Meuwissen et al., 
2001). The fitted model (BAYES_A) was

y = 1μ + Zg + Wu + e,

where u is a vector of polygenic breeding values as-
sumed to be normally distributed, with u Ni a∼ 0 2, ,Aσ( )  
where A is the average relationship matrix and σa

2 is the 
additive genetic variance. Prior structure and hyper-
parameters were chosen according to Meuwissen et al. 
(2001). A scaled inverted chi-squared prior distribution 
was assumed for SNP specific variances, under the hy-
pothesis that most of markers have almost zero effects 
(i.e., markers not linked to any QTL) and only a few 
have large effects. In total, 20,000 iterations were per-
formed, discarding the first 10,000 as burn-in and con-
sidering no thinning interval. A residual updating algo-
rithm was implemented to reduce computational time 
(Legarra and Misztal, 2008).

The general mean (μ) and the vector ĝ( ) of the prin-
cipal component or marker effects estimated either 
with BLUP (SNP_BLUP) or Bayes A (BAYES_A) in 
the REF population were used to calculate the DGV 
for the jth animal in the PRED subset for each breed:

 DGVj ij i
i

k
= +

=
∑μ z g' ˆ ,

1

 

where z is the vector of component scores or marker 
genotypes and k is the number of PC or markers used 
in the analysis.

The DGV obtained with PC_BLUP, SNP_BLUP, 
or BAYES_A were blended with PI to obtain GEBV, 
using the equivalent daughter contributions (EDC) as 
weighting factors:

 GEBV DGV edcG PI edci i i i= ⋅ + ⋅ , 

where edcG and edc are the EDC for DGV or PI, 
respectively. Values of edcG were calculated from the 
approximate DGV reliabilities, obtained as RELDGV = 
(r2

DGV,DRPF)/RELDRPF (Hayes et al., 2009b):

edcG = k × RELDGV/(1 − RELDGV),

where k = (4 − h2)/h2. The same approach was used 
to calculate edc for PI. The procedure followed was 
that used to validate the international GEBV of Italian 
Simmental approved in November 2011 (http://www.
interbull.org).
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Finally, to evaluate the efficiency of genomic predic-
tions versus the traditional polygenic evaluations in 
PRED individuals, squared correlations between GEBV 
and EBV (R2

EBV-GEBV) were computed and compared 
with those between PI and EBV (R2

EBV,PI). Bias was 
assessed by evaluating regression coefficients of EBV on 
predicted GEBV.

RESULTS

A common criterion for choosing the number of PC 
to retain is visual inspection of their eigenvalue pat-
tern. As an example, Figure 2 reports the chromosome-
wide variance explained by each successive component 
extracted from SNP located on BTA6 in the Brown 
breed. The eigenvalue was small for the top 2 compo-
nents (about 7 and 5%, respectively), with a smooth 
decrease followed by a plateau reached at about 100 
PC (86% of variance explained) for this chromosome. 
The number of retained PC genome-wide was 3,596 
and 2,257 for the Simmental and Brown breeds, respec-
tively. A similar number of components was retained 
by Long et al. (2011). In any case, a large reduction 
of predictor dimensionality (<10% of the number of 
original variables) was realized.

The extracted PC were able to distinguish Brown 
from Simmental bulls. Individual scores of the first 
PC of BTA6, for example, discriminated the 2 breeds, 

whereas the third PC highlighted a larger heteroge-
neity within the Brown sample (Figure 3). In PCA, 
the meaning of each extracted component is usually 
inferred by looking at eigenvector coefficients; that is, 
the weights of each original variable (in this case, the 
SNP genotype) in the component. However, it would 
be very hard to achieve an interpretation by examining 
thousands of correlations. The meaning of extracted 
variables could be assessed indirectly by looking at 
their relationships with other characteristics of the 
considered individuals. For example, the third PC for 
BTA6 in the Brown breed was negatively correlated 
with the observed average individual heterozygosity 
(−0.43), and its score average showed a progressive 
decrease across year of birth of bulls. Such an ability of 
PCA to cluster individuals based on causes of variation 
of SNP genotype frequency has also been reported for 
simulated data (Macciotta et al., 2010).

Squared correlations between GEBV or PI and EBV 
are reported in Tables 2 and 3 for the 2 breeds. The 
R2

GEBV,EBV values were substantially lower for Brown 
than for Simmental, except for fat and protein per-
centages, which showed the opposite behavior. Squared 
correlations for GEBV were generally higher than those 
for PI in the Brown breed. Similar behavior could also 
be observed for the Simmental, except for fat and pro-
tein percentages. The PC_BLUP and BAYES_A meth-
ods performed better than the SNP_BLUP method in 

Figure 2. Pattern of the proportion of variance (%) accounted for by each successive principal component extracted from the correlation 
matrix of SNP markers for chromosome 6 in the Brown breed.
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Brown bulls. Finally, increasing the ratio REF:PRED 
seemed to increase R2

EBV,GEBV in Brown, whereas no 
such effect was observed in Simmental.

In particular, squared correlations ranged from 0.01 
to 0.39 for Italian Brown (Table 2). The lowest values 

were obtained for yield traits, in particular for milk 
and protein (on average <0.1). The highest R2

EBV,GEBV 
were observed for fat percentage, protein percentage, 
and SCS (on average 0.35, 0.32, and 0.15, respectively). 
Olson et al. (2011) reported the same value of genomic 

Figure 3. Plot of the individual scores of the first 3 principal components (PC1, PC2, and PC3) extracted from chromosome 6 in the 2 breeds 
(circles = Brown; pyramids = Simmental).

Table 2. Squared correlations between genomic breeding values obtained using principal component scores 
(PC_BLUP) as predictors, or SNP genotypes with BLUP (SNP_BLUP) or Bayes A (BAYES_A) methods, or 
pedigree indexes (PI) and polygenic EBV for different scenarios in the Brown breed1 

Scenario/trait

Estimation method

PC_BLUP SNP_BLUP BAYES_A PI

Ref:Pred 70:30
 Milk yield 4.5 1.6 3.6 4.6
 Fat yield 9.3 6.0 9.9 5.7
 Protein yield 2.7 1.1 2.5 3.5
 SCC 13.9 13.2 13.4 12.5
 Fat percentage 35.1 30.4 35.2 25.6
 Protein percentage 38.4 30.5 34.9 29.8
Ref:Pred 80:20
 Milk yield 9.0 4.6 7.8 8.6
 Fat yield 9.7 8.1 10.4 6.3
 Protein yield 2.4 1.0 2.3 2.2
 SCC 11.7 11.2 10.9 9.7
 Fat percentage 38.5 34.4 36.7 26.7
 Protein percentage 34.2 28.8 30.6 24.5
Ref:Pred 90:10
 Milk yield 12.3 7.1 6.6 6.6
 Fat yield 22.9 19.2 18.4 8.3
 Protein yield 12.6 3.5 2.9 0.4
 SCC 21.0 22.0 19.8 20.9
 Fat percentage 36.7 34.1 34.5 28.4
 Protein percentage 37.6 26.3 27.1 20.4
1Ref:Pred scenarios = ratio between number of animals included in the reference and prediction populations, 
respectively.
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prediction accuracy for SCS in a study on 1,188 Brown 
Swiss bulls. These authors observed higher values for 
yield traits. Accuracies for protein percentages reported 
in Table 2 agree with results obtained in Australian 
Holsteins and Jerseys using different approaches and a 
comparable size of reference population (Hayes et al., 
2009b; Moser et al., 2009). The best results in genomic 
predictions for protein percentage were observed in US 
Holsteins (VanRaden et al., 2009).

The R2
EBV,GEBV obtained for the Simmental bulls 

ranged from 0.05 to 0.37 (Table 3). Values for milk 
yield were, on average, about 5 times that of the Brown 
breed (0.35 across all scenarios and methods). Yield 
traits had higher values compared with composition 
traits. For some scenarios, squared correlations for 
protein yield were similar to those recently reported 
for Fleckvieh cattle (Gredler et al., 2010). Intermedi-
ate values were obtained for SCS (0.20 on average). 
The PC_BLUP and BAYES_A methods slightly out-
performed the SNP_BLUP approach. As in the case 
of Italian Brown cattle, PC_BLUP gave slightly larger 
values than BAYES_A for yield traits and smaller for 
composition traits, respectively. Other than values for 
fat and protein percentages, R2

EBV,GEBV were higher 
than R2

EBV,PI for all estimation methods.
Regression coefficients of EBV on GEBV (Table 4) 

showed variability across breeds, methods, and traits. 
Differences between breeds were evident for yield traits, 

with lower values for Brown bulls. For these traits, 
regression slopes were close to unity for all 3 meth-
ods and for all scenarios in the Simmental breed. For 
composition traits and SCS, regression coefficients were 
<1, indicating underprediction of EBV for high values 
and overprediction for low values. The opposite behav-
ior was observed for Brown. The PC_BLUP method 
showed the lowest variability across traits.

DISCUSSION

In this paper, GEBV for some dairy traits were es-
timated by reducing the dimensionality of predictors 
with PCA. Such a reduction aimed at simplifying data 
handling and reducing computational burdens while 
retaining most of the information. The PCA approach 
was compared with two of the most popular methods 
used to predict GEBV—BLUP regression and Bayes 
A—that directly fit all marker genotypes available but 
with different theoretical assumptions on the distribu-
tion of their effects.

The BLUP methodology overcomes the problem of 
degrees of freedom in the estimation step by fitting 
SNP effects as random rather than fixed (Meuwissen 
et al., 2001; Muir, 2007). However, the curse of dimen-
sionality still represents the most important theoreti-
cal constraint for GS implementation. This problem is 
enhanced when a small number of genotyped animals 

Table 3. Squared correlations between genomic breeding values obtained using principal component scores 
(PC_BLUP) as predictors, or SNP genotypes with a BLUP (SNP_BLUP) or Bayes A (BAYES_A) methods, 
or pedigree indexes (PI), and polygenic EBV for different scenarios in the Simmental breed1 

Scenario/trait

Estimation method

PC_BLUP SNP_BLUP BAYES_A PI

Ref:Pred 70:30
 Milk yield 36.6 35.4 35.8 34.5
 Fat yield 34.3 33.8 33.9 33.3
 Protein yield 35.3 34.1 34.4 34.1
 SCC 20.1 20.4 20.3 20.5
 Fat percentage 14.8 15.0 14.7 15.4
 Protein percentage 20.2 19.0 19.4 21.0
Ref:Pred 80:20
 Milk yield 36.7 35.3 35.7 33.1
 Fat yield 31.2 30.0 30.3 28.8
 Protein yield 33.0 30.6 31.0 30.5
 SCC 20.3 20.5 20.6 20.6
 Fat percentage 12.7 14.9 14.1 15.9
 Protein percentage 17.9 16.5 17.4 16.9
Ref:Pred 90:10
 Milk yield 36.6 30.4 31.8 24.8
 Fat yield 29.4 27.3 27.8 23.4
 Protein yield 32.7 24.0 25.1 20.5
 SCC 18.2 18.3 17.8 18.2
 Fat percentage 5.2 6.0 5.5 7.0
 Protein percentage 11.9 15.2 13.3 15.0
1Ref:Pred scenarios = ratio between number of animals included in the reference and prediction populations, 
respectively.
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is available, as in this study. In fact, PCA does not 
completely address such an issue because of the data 
structure. The SNP correlation matrix is singular and 
therefore the number of eigenvalues different from zero 
is equal to the number of animals (i.e., the rows) minus 
1 (Bumb, 1982; Patterson et al., 2006; Dimauro et al., 
2011). In this study, PCA was carried out separately 
for each chromosome. At this level, the gap between 
predictors and observations was reduced and the num-
ber of components retained per chromosome (on aver-
age 75 and 120 in Brown and Simmental, respectively) 
was markedly smaller than the number of markers and 
number of animals.

In agreement with previous findings on both simu-
lated and real data, PCA was able to efficiently de-
scribe the correlation matrix of SNP genotypes (80% of 
explained variance) with fewer than 10% of the original 
variables. Such a reduction had a straightforward effect 
on calculation time. The PC_BLUP approach required 
about 2 min using a personal computer with a 2.33-
GHz quad core processor and 3.25 Gb of RAM. On the 
other hand, 6 to 9 h was needed, on average, for the 
SNP_BLUP and Bayes_A approaches, using a Linux 
server with 4 × 4 quad core processors and 128 Gb of 
RAM. The PCA required approximately 30 min, but it 
had to be done just once at the beginning of the work. 

Although calculation speed is not usually considered a 
technical priority for GS (compared with genotyping 
costs, for example), it is likely to become more relevant 
with the recent development of a larger (800K) SNP 
platform and the upcoming very low cost sequencing 
technologies (Van Raden et al., 2011).

Of great interest is that such a huge reduction of cal-
culation time did not result in a lower value of squared 
correlations between GEBV and polygenic EBV. The 
similarity of results between the PC_BLUP approach 
and the other 2 methods considered in the present pa-
per confirms previous findings obtained with another 
multivariate dimension reduction technique, partial 
least squares regression (Moser et al., 2009, 2010; Long 
et al., 2011). The reduction in predictor dimensionality 
obtained by selecting subsets of SNP based on their 
chromosomal location or on their relevance to the trait 
usually results in a decrease of GEBV accuracy (Van-
Raden et al., 2009; Vazquez et al., 2010). Compared 
with subset SNP selection, the multivariate reduction 
has the advantages of not discarding any marker and of 
using uncorrelated predictors. The latter feature is con-
firmed by the observed lower bias of the PCA method 
compared with the SNP_BLUP method.

The similar results obtained when using methods 
characterized by different theoretical foundations indi-

Table 4. Regression coefficients of polygenic breeding values on genomic breeding values (bEBV,GEBV) or pedigree index (bEBV,PI) for dairy 
traits in Brown and Simmental prediction animals using principal component scores (PC_BLUP), SNP genotypes (SNP_BLUP), or Bayes A 
(BAYES_A) estimation methods for different proportions of reference and prediction population size (70:30, 80:30, or 90:10)1 

Trait Method

Brown Simmental

70:30 80:20 90:10 70:30 80:20 90:10

Milk yield PC_BLUP 0.49 0.66 0.86 1.09 1.00 0.96
 SNP_BLUP 0.26 0.45 0.59 1.12 1.10 1.01
 BAYES_ A 0.47 0.71 0.70 1.12 1.06 1.04
 PI 0.31 0.44 0.41 0.91 0.88 0.73
Fat yield PC_BLUP 0.80 0.83 1.26 1.05 1.06 1.20
 SNP_BLUP 0.56 0.66 1.00 1.09 1.11 1.38
 BAYES_ A 0.93 0.99 1.34 1.09 1.11 1.38
 PI 0.39 0.43 0.48 0.93 0.94 1.05
Protein yield PC_BLUP 0.42 0.41 1.01 1.00 0.99 1.10
 SNP_BLUP 0.22 0.23 0.47 1.02 0.99 1.04
 BAYES_ A 0.43 0.44 0.62 1.04 0.99 1.07
 PI 0.29 0.25 0.13 0.87 0.85 0.79
SCS PC_BLUP 2.27 2.17 2.53 0.73 0.73 0.83
 SNP_BLUP 1.95 1.86 2.28 0.78 0.77 0.88
 BAYES_ A 2.28 2.15 2.57 0.78 0.77 0.87
 PI 0.80 0.73 0.94 0.73 0.72 0.81
Fat percentage PC_BLUP 1.33 1.35 1.48 0.59 0.64 0.47
 SNP_BLUP 1.20 1.31 1.29 0.65 0.65 0.59
 BAYES_ A 1.46 1.54 1.46 0.64 0.64 0.56
 PI 0.78 0.80 0.80 0.53 0.54 0.46
Protein percentage PC_BLUP 1.29 1.18 1.45 0.88 0.93 0.72
 SNP_BLUP 1.13 1.18 1.21 0.96 0.88 0.89
 BAYES_A 1.33 1.32 1.32 0.96 0.91 0.85
 PI 0.81 0.76 0.77 0.83 0.73 0.68
1Regression coefficients of polygenic breeding values and pedigree index (PI) are also reported.
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cates the need for further considerations. The BLUP 
assumption of an equal effect of all markers on the vari-
ance of the trait is commonly considered inadequate to 
fit the assessed distribution of QTL; that is, many loci 
with a small effect and a few with large effects (Hayes 
and Goddard, 2001). On the other hand, the superior-
ity of the Bayesian approach that fits heterogeneous 
variances across chromosome segments is marked in 
simulations but not in real data (Hayes et al., 2009a; 
Moser et al., 2009; VanRaden et al., 2009). Genome-
wide association studies on human height suggest that 
genetic variation is explained by many loci with small 
additive effects (Yang et al., 2010). Moreover, a superior 
predicting ability of GEBV for models that assume a 
heavy-tailed distribution of gene effects compared with 
finite locus models has recently been reported (Cole et 
al., 2009). Thus, BLUP methodology, even though not 
very accurate in terms of description of gene effect dis-
tribution, may offer robust DGV estimates (Goddard, 
2009) with reasonable accuracy.

A possible criticism of the use of PCA is the lack 
of biological meaning in the extracted variables. Such 
a feature is in contrast to the general aims of the 
use of molecular markers in animal breeding; that is, 
overcoming the “black box” approach of traditional 
quantitative genetics. However, even though a clear in-
terpretation based on eigenvectors is not feasible, some 
results obtained in this work are worth mentioning. 
The extracted PC scores were able to cluster animals 
of the 2 breeds, confirming the ability of this technique 
to capture genetic variation across and within popula-
tions, as has been highlighted in human genetic studies 
(Cavalli-Sforza and Feldman, 2003; Price et al., 2006; 
Paschou et al., 2007). Moreover, evidence was found 
of a relationship between one of the extracted PC and 
average individual heterozygosity. It is interesting to 
note that, in the case reported for BTA6, it was not the 
first extracted component that showed a relationship 
with heterozygosity but the third one. This is a dis-
tinguishing feature of PCA: the first extracted compo-
nent seldom contains biologically relevant information, 
whereas it may be retrieved in components associated 
with smaller eigenvalues (Jombart et al., 2009).

In general, R2
EBV,GEBV were rather low, as expected 

because of the reduced size of the sample of bulls 
considered and their distribution across years of birth. 
In the Brown breed, composition traits showed larger 
values of squared correlations compared with yield 
traits. These results, in agreement with previous find-
ings (Hayes et al., 2009a; VanRaden et al., 2009), may 
reflect some variation in the genetic determinism of 
the trait (Cole et al., 2009). In particular, genes with 
large effects for fat and protein percentages have been 

discovered (Grisart et al., 2002; Cohen-Zinder et al., 
2005; Cole et al., 2009). Thus, considering that genomic 
predictions work by tracking the inheritance of causal 
mutations (VanRaden et al., 2009), the method may be 
more efficient for traits in which few loci affect a large 
proportion of the genetic variance.

Observed R2 of genomic predictions were similar to 
or slightly higher than those of traditional pedigree 
indexes, except for fat and protein percentages for Sim-
mental bulls. Even though genomic predictions have 
been reported to be more accurate than PI (VanRaden 
et al., 2009; de los Campos et al., 2010; Olson et al., 
2011), these are expected results considering the lim-
ited size of the populations considered in this study.

Squared correlations were characterized by a relevant 
variation both within and between breeds. In par-
ticular, the Brown breed showed a higher variation in 
R2

EBV,GEBV across traits compared with the Simmental. 
Differences in genomic accuracies between traits have 
been reported in other papers (Hayes et al., 2009a; 
VanRaden et al., 2009; Su et al., 2010), although not of 
this magnitude. Moreover, most of the literature deals 
with Holstein cattle. Apart from the different genetic 
background of the considered traits, the sample size 
and the wide range of birth year of bulls can reasonably 
be considered the main causes of the present results. 
Reasons for the different behavior of the Simmental 
breed (less variation between traits, higher values for 
milk yield) remain unclear. A partial explanation can 
be found in the pattern of birth year of bulls, which was 
narrower for Simmental compared with Brown. More-
over, the lower accuracy for fat percentage compared 
with that in Brown could be ascribed to the known 
fixation of the favorable mutation at the acylCoA-
diacylglycerol-acyltransferase 1 (DGAT1) locus in the 
Italian Simmental.

CONCLUSIONS

Principal component analysis was effective in reduc-
ing the number of predictors needed for calculating 
genomic breeding values for dairy traits in Brown and 
Simmental bulls. Such a reduction did not affect GEBV 
precision and allowed for a relevant decrease in calcu-
lation time. The obtained accuracies of squared cor-
relations, although moderate to low mainly due to the 
number of animals considered, were of the same order 
or slightly higher than those of the traditional pedigree 
index. Moreover, some differences between traits and 
breeds were highlighted. Results of the present work 
suggest the PCA approach as a possible alternative to 
the use of SNP genotypes for predicting GEBV, espe-
cially for populations of limited size.
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