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  ABSTRACT 

  Genome-wide selection aims to predict genetic merit 
of individuals by estimating the effect of chromosome 
segments on phenotypes using dense single nucleotide 
polymorphism (SNP) marker maps. In the present pa-
per, principal component analysis was used to reduce 
the number of predictors in the estimation of genomic 
breeding values for a simulated population. Principal 
component extraction was carried out either using all 
markers available or separately for each chromosome. 
Priors of predictor variance were based on their con-
tribution to the total SNP correlation structure. The 
principal component approach yielded the same ac-
curacy of predicted genomic breeding values obtained 
with the regression using SNP genotypes directly, with 
a reduction in the number of predictors of about 96% 
and computation time of 99%. Although these accu-
racies are lower than those currently achieved with 
Bayesian methods, at least for simulated data, the im-
proved calculation speed together with the possibility of 
extracting principal components directly on individual 
chromosomes may represent an interesting option for 
predicting genomic breeding values in real data with a 
large number of SNP. The use of phenotypes as depen-
dent variable instead of conventional breeding values 
resulted in more reliable estimates, thus supporting 
the current strategies adopted in research programs of 
genomic selection in livestock. 
  Key words:    single nucleotide polymorphism ,  genomic 
selection ,  principal component analysis ,  eigenvalue 

  INTRODUCTION 

  Marker assisted selection programs had limited com-
mercial applications until the early 2000s because of the 
fact that most of reported marker-QTL associations had 
been found within families but were in linkage equilib-

rium across the population (Hayes and Goddard, 2001; 
Dekkers, 2004; Khatkar et al., 2004). The availability 
of genome-wide dense marker maps for several animal 
species has recently allowed the prediction of genomic 
breeding values (GEBV) by estimating marker hap-
lotype effects on phenotypes (Meuwissen et al., 2001; 
Goddard and Hayes, 2007). Genome-wide selection 
relies on highly dense markers whose effects on pheno-
types are estimated on a training population and then 
used to calculate GEBV for both training individuals 
and animals with only marker genotypes available (for 
example, young animals without phenotypes or EBV). 
A reduction in generation interval, an increase of ac-
curacy in the cow side of the pedigree, and a decrease 
of selection costs are the expected advantages of an ef-
ficient genome-wide selection over traditional selection 
(Schaeffer, 2006; König et al., 2009). 

  High density SNP maps fulfill the basic requirement 
of genome-wide selection (i.e., the analysis of genome 
bits having large and persisting population-wide linkage 
disequilibrium; Muir, 2007). However, the use of dense 
marker platforms results in a large number of effects to 
be estimated (many thousands) in comparison with the 
relatively small number of phenotypes available (often 
just a few thousand). Such data asymmetry raises sev-
eral statistical issues, such as collinearity among pre-
dictors and multiple testing (Gianola and van Kaam, 
2008). To cope with such a problem, several methods of 
reduction of the number of predictors without a large 
decrease in accuracy have been proposed. 

  Selection of relevant SNP by single marker regression 
on phenotypes may improve results in genome-wide as-
sociation studies (Aulchenko et al., 2007; Long et al., 
2007), but it leads to a decrease of GEBV accuracy 
(Meuwissen et al., 2001). Bayesian methods that select 
SNP by evaluating their individual contribution to the 
variance of the trait, such Bayes B method (Meuwissen 
et al., 2001; Fernando et al., 2007; VanRaden, 2008), 
usually give best GEBV accuracies when simulated 
data with few QTL are modeled. However, results on 
actual data indicate that BLUP estimation, which as-
sumes an equal contribution of all marker intervals to 
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the genetic variance, performs only slightly worse than 
Bayesian methods in GEBV prediction (Hayes et al., 
2009; VanRaden et al., 2009). Moreover in all the above-
mentioned techniques, markers are selected according 
to their relevance on the variability of the phenotype 
analyzed. Consequently, specific sets of markers may be 
required for different traits (Habier et al., 2009).

Multivariate dimension reduction techniques may of-
fer an alternative approach based on the evaluation of 
the contribution of each marker locus to the total SNP 
(co)variance structure. Principal component analysis 
(PCA) has been used for analyzing complex genetic 
patterns in human genetics (Cavalli Sforza and Feldman, 
2003; Paschou et al., 2007) and for selecting markers in 
genome-wide association studies. Solberg et al. (2009) 
used PCA and partial least squares regression to reduce 
the dimensionality of predictors in genomic selection. 
Both PCA and partial least squares regression showed 
comparable accuracies with Bayes B when lower marker 
densities were fitted, whereas the gap between methods 
increased with the number of markers used. Solberg et 
al. (2009) concluded that reduction in computational 
complexity provided by multivariate methods did not 
counterbalance their lower accuracy compared with 
Bayes B. Such considerations are justified by the low 
cost of calculation time and by the computational speed 
that can be provided by optimized techniques such as 
parallel computing. On the other hand, it is reasonable 
to expect that denser SNP platforms will be available 
very soon for livestock species and dimensionality will 
again represent a relevant problem.

In their proposal, Solberg et al. (2009) regressed phe-
notypes on principal component (PC) scores extracted 
from the SNP matrix using the single value decomposi-
tion approach with an assumption of equal variance of 
each PC score. The choice of priors of marker effects 
represents a crucial point for genomic models (de los 
Campos et al., 2009). On the other hand, the ordinary 
method for calculating PC relies on the eigenvalues of 
the correlation matrix of starting variables that mea-
sure the contribution of each PC to the original vari-
ance of predictors. Thus, eigenvalues can be used as 
priors of predictor effect for the calculation of GEBV. 
It is worth remembering that eigenvalues have already 
been incorporated in mixed model algorithms to op-
timize calculations for variance component estimation 
(Dempster et al., 1984; Taylor et al., 1985).

In the present paper, PCA is used to perform a BLUP 
prediction of GEBV in a simulated data set to test the 
ability of this technique to reduce the number of predic-
tors without decreasing GEBV accuracy. Moreover, the 
feasibility of extracting PC from dense, commercially 
available SNP platforms is tested.

MATERIALS AND METHODS

Data

The data set was generated for the XII QTLs–MAS 
workshop (http://www.computationalgenetics.se/QTL-
MAS08/QTLMAS/DATA.html). The base population 
consisted of 100 individuals (50 males, 50 females). The 
genome had 6 chromosomes (total length 6 M), with 
6,000 biallelic SNP, equally spaced at a distance of 0.1 
cM. A total of 48 biallelic QTL were generated, with 
positions sampled from the genetic map of the mouse 
genome. Quantitative trait loci effects were sampled 
from a gamma distribution with parameters estimated 
by Hayes and Goddard (2001). Initial allelic frequencies 
of both SNP and QTL were set to 0.5. Then 50 gen-
erations of random mating followed. Generations 51 to 
57 were used to create the experimental population of 
5,865 individuals. Generations 51 to 54 (4,665 individu-
als; TRAIN data set) had pedigree, phenotype, and 
marker information available. The last 3 generations 
(1,200 individuals; PRED data set) had only pedigree 
and marker information available. True breeding values 
(TBV) were considered as the sum of all QTL effects 
across the entire genome. Phenotypes were generated 
by adding environmental noise to the TBV. Further 
details on the simulation can be found in Lund et al. 
(2009).

Polygenic breeding values, being among the most fre-
quently used dependent variable in GEBV prediction 
with real data, were also predicted. Polygenic breed-
ing values and additive genetic (σ2

a) and residual (σ2
e) 

variance components were estimated with a single trait 
animal model that included the fixed effects of sex and 
generation and the random additive genetic effect of 
the animal. The pedigree relationship matrix included 
5,939 animals.

PCA Analysis

Principal component analysis aims to synthesize in-
formation contained in a set of n observed variables 
(M1,…,Mn) by seeking a new set of k (k < n) or-
thogonal variables (PC1,…,PCk) named PC, which are 
calculated from the eigen decomposition of the covari-
ance (or correlation) matrix M. The jth PC is a linear 
combination of the observed variables

PCj = α1jM1 +…+ αnjMn,

where coefficients αij are the elements of the eigenvec-
tor corresponding to jth eigenvalue. Principal compo-
nents are usually extracted in a descending order of 
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the corresponding eigenvalue that measures the quota 
of variance of original variables explained by each PC 
(Morrison, 1976; Krzanowsky, 2003).

An SNP data matrix M with m rows (m = 5,865, 
the number of individuals in the entire data set) and n 
columns (n = 5,925, the number of SNP markers that 
were found to be polymorphic) was created. Each ele-
ment (i,j) corresponded to the genotype at the the jth 
marker for the ith individual. Genotypes were coded as 
−1, 0, or 1 according to the notation used by Solberg 
et al. (2009).

Data editing is usually recommended when handling 
dense marker maps (Wiggans et al., 2009), either to 
correct for data quality (i.e., genotyping not success-
fully performed) or to avoid possible estimation biases 
because of a severe imbalance of genotypes. However, 
considering that in the present simulated data only 288 
markers had minor allele frequency <0.05, whereas 47 
deviated significantly (P < 0.01) from the Hardy-Wein-
berg equilibrium, this deviation may be attributable 
to drift; only the 75 monomorphic SNP were discarded 
from the analysis. Such a choice is at least partially 
supported by results of Chan et al. (2009), who pointed 
out that SNP attributes commonly considered in SNP 
data editing, such as minor allele frequency or deviation 
from Hardy-Weinberg equilibrium, have actually a very 
small effect on overall false positive rate in genome-
wide association studies.

Principal component analysis was carried out on M, 
and the number of PC (k) retained for further analysis 
was based on both the sum of their eigenvalues and the 
obtained GEBV accuracy. Principal component extrac-
tion was performed either on all SNP simultaneously 
(PC_SNP_ALL) or separately for each chromosome 
(PC_SNP_CHROM). Scores of the k selected PC 
were calculated for all individuals. Marker haplotypes 
may be more efficient than genotypes in capturing 
marker-QTL association, especially in outbred popula-
tions where it may differ between families (Calus et al., 
2008). Thus, PCA was performed also on haplotypes 
constructed from pairs of adjacent marker loci, using ei-
ther all loci together (PC_HAP_ALL) or separately 
per chromosome (PC_HAP_CHROM).

Predictor Effect Estimation and GEBV Calculations

Dependent variables used in the analysis were either 
phenotypes or polygenic breeding values. For the esti-
mation of the effects of predictors, records of the 4,665 
individuals of the TRAIN data set were analyzed with 
the following mixed linear model:

y = Xb + Zg + e,

where y is the vector of either phenotypes or polygenic 
breeding values, X is the design matrix of fixed effects 
(mean, sex = 1, 2, generation = 1, 2, 3, 4 for pheno-
types; only mean for polygenic breeding values); b is 
the vector of solutions for fixed effects; Z is the (m × 
k) design matrix of random effects, where each element 
corresponds to the score of the kth component for the 
mth animal of the training generations; g is the vector of 
solution for random regression coefficients of PC scores; 
and e is the random residual. Covariance matrices of 
random PC effects (G) and residuals (R) were modeled 
as diagonal I(σ2

ai) and I(σ2
e), respectively. The BLUP 

methods used for estimating SNP effects usually assume 
an equal contribution of each SNP locus to the variance 
of the trait, sampled from the same normal distribution 
(i.e., σ2

aj = σ2
a/n; Meuwissen et al., 2001; VanRaden et 

al., 2009). In the present work, 2 different options were 
compared. The first is the above-mentioned equality 
of variances. The second starts from the consideration 
that PC scores were used as predictor variables and 
their contribution to the original SNP covariance struc-
ture is quantified by the corresponding eigenvalue (λ). 
Thus, variances of PC effects were calculated as σ2

aj = 
(σ2

a/k) × λj.
The G matrix diagonality, commonly implemented 

in BLUP methodologies for estimating SNP marker ef-
fects (Meuwissen et al., 2001; VanRaden, 2008), relies 
on the assumption that marker effects in a large popu-
lation are uncorrelated (VanRaden et al., 2009). With 
the use of PC scores, such an assumption is consistent 
with the orthogonality between PC (Morrison, 1976). 
The BLUP solutions were estimated using Henderson’s 
normal equations (Henderson, 1985).

To have a comparison with the most straightforward 
estimation method, SNP effects were estimated directly 
by using the same mixed linear model but with Z indi-
cating the design matrix of the 5,925 polymorphic SNP 
genotypes [coded as 0, 1, and 2 (i.e., on the basis of the 
number of alleles)]. Covariance matrix G was assumed 
to be diagonal as I(σ2

a/n). A Cholesky decomposition 
was used to solve mixed model equations (Harville, 
1997).

Overall mean and effects of PC scores or SNP geno-
types (ĝ) estimated on the TRAIN data set were then 
used to predict GEBV both in TRAIN and PRED 
individuals as

GEBV = μ + Zĝ,
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where GEBV is the vector of predicted GEBV and Z 
is the matrix of the PC scores or SNP genotypes of all 
individuals.

Accuracies of prediction were evaluated by calculating 
Pearson correlations between GEBV and TBV for the 
PRED generations. Bias of prediction was assessed by 
examining the regression coefficient of TBV on GEBV 
(Meuwissen et al., 2001). Goodness of prediction was 
evaluated also by the mean squared error of prediction 
(MSEP), calculated as

 MSEP
TBV GEBV

n
i i

i

n

=
−⎡

⎣⎢
⎤
⎦⎥

=
∑

2

1

, 

where n is the number of individuals in the PRED 
generations and by its partition in different sources of 
variation related to systematic and random errors of 
prediction (Tedeschi, 2006).

RESULTS

The pattern of eigenvalues of the correlation matrix 
of SNP genotypes obtained with PCA of all markers 
simultaneously is reported in Figure 1 (only the first 
1,000 eigenvalues are plotted for brevity). A smooth 
decrease in the amount of variance explained by each 
successive PC can be observed, with a plateau between 
250 and 300 PC (about 84% of variance explained). 
Thus, between 200 and 300 PC could be considered 
adequate for describing the original variance of the 
system.

The GEBV accuracies for different numbers of re-
tained PC (50–600) using all SNP simultaneously and 
eigenvalues as variance priors are reported in Figure 
2. Accuracy for both training and prediction genera-
tions increases until a plateau, reached at about 250 

to 300 PC. Further increasing the number of retained 
PC does not result in an increase of accuracy, probably 
because of the small amount of variance explained by 
each additional variable. Similar results were obtained 
by Solberg et al. (2009), who report best accuracies 
when 350 PC were extracted from 8,080 biallelic mark-
ers distributed on 10 chromosomes. However, Solberg 
et al. (2009) found a rather decreasing trend of the cor-
relation between GEBV and TBV for larger numbers 
of PC. Based on the accuracy of GEBV prediction, 279 
PC (83% of the original variance) were retained in the 
present work for PC_SNP_ALL and PC_HAP_ALL 
approaches. In the analysis carried out on individual 
chromosomes, to keep the same number of predictors of 
the previous approach, 46 and 47 PC for chromosomes 
1 to 3 and 4 to 6, respectively, were retained.

Average GEBV accuracies obtained using phenotypes 
are, for the 3 prediction generations, around 0.70 (Table 
1) when an equal contribution of PC score on the vari-
ance of the trait is assumed, similar to those reported by 
Solberg et al. (2009). Accuracies increase by about 10% 
(to an average of 0.75) when eigenvalues are used in the 
diagonal of the G−1 matrix of mixed model equations. 
In general, results are of the same order as in previous 
literature reports for BLUP estimation on simulated 
(Meuwissen et al., 2001, 2009; Fernando et al., 2007) 
and real (Hayes et al., 2009; VanRaden et al., 2009) 
data. Correlations obtained when all SNP were used 
as predictors are equal to those obtained with PC with 
eigenvalues as priors. On the other hand, a remarkable 
difference in calculation speed between the 2 methods 
has been observed: about 6 h for the SNP_ALL ap-
proach and 3 min for the PC, using a computer with a 
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Figure 1. Pattern of the eigenvalues of the correlation matrix of 
SNP markers.

Figure 2. Pattern of correlations between genomic breeding values 
(GEBV) and true breeding values (TBV) when principal components 
(PC) are extracted from all SNP genotypes simultaneously and eigen-
values are used as priors, for different numbers of retained PC (white 
bars = training individuals, black bars = prediction individuals). The 
continuous line represents the amount of variance explained by the 
corresponding number of PC.



dual core processor (2.33 GHz and 3.26 MB of random 
access memory). Slight differences can be observed be-
tween estimates of PC carried on all chromosomes or 
separately for each of them. Moreover, the same results 
have been basically obtained when genotypes at single 

markers or haplotypes were used, in agreement with 
previous reports for high density markers (Hayes et al., 
2007; Calus et al., 2008).

The GEBV accuracies are larger when phenotypes 
instead of polygenic breeding values are used as depen-
dent variables (Table 1). This is particularly evident 
when all SNP are used as predictors (on average 0.73 
vs. 0.55 for phenotypes and polygenic breeding values, 
respectively). Also, the decrease in accuracy between 
TRAINING and PRED generations is more evident for 
polygenic breeding value-based predictions (Figures 3 
and 4). These findings are confirmed by values of regres-
sion coefficients of TBV on GEBV (Table 2). Moreover, 
b-values for methods based on PC are similar to those 
reported by Solberg et al. (2009) when equal variances 
were assumed, whereas they are closer to 1 (about 0.85) 
when eigenvalues are used as variance priors.

The decomposition of the MSEP for some of the 
considered scenarios is reported in Table 3. The MSEP 
is always smaller (about half) when GEBV are calcu-
lated using phenotypes. Its partition highlights a great 
relevance of components related to the bias of predic-
tion (i.e., mean bias, inequality of variances) in the ap-
proach that directly fits SNP genotypes (about 79%). 
Methods based on PC extraction are characterized by 
a prevalence (about 80%) of random terms, measured 
by the random error and by the incomplete covariation. 
The use of eigenvalues as variance priors results in the 
lowest MSEP and, compared with the other PC-based 
method, in a reduction of the slope bias and the highest 
relevance of random variation. These differences can 
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Table 1. Pearson correlations between predicted genomic breeding 
values and true breeding values for different estimation methods using 
either phenotypes or polygenic breeding values for the prediction 
generations and assuming either equal variance contribution for each 
principal component or eigenvalues as variance priors 

Method1 Phenotype Polygenic breeding value

SNP_ALL 0.76 0.41
Equal variance  
 PC_SNP_ALL 0.69 0.53
 PC_SNP_CHROM 0.70 0.55
 PC_HAP_ALL 0.68 0.54
 PC_HAP_CHROM 0.71 0.56
Eigenvalues  
 PC_SNP_ALL 0.76 0.57
 PC_SNP_CHROM 0.73 0.56
 PC_HAP_ALL 0.75 0.56
 PC_HAP_CHROM 0.73 0.55

1SNP_ALL = all 5,925 SNP; PC_SNP_ALL = principal components 
extracted from all SNP genotypes simultaneously; PC_SNP_CHROM 
= principal components extracted from SNP genotypes separately for 
each chromosome; PC_HAP_ALL = principal components extracted 
from all SNP haplotypes simultaneously; PC_HAP_CHROM = prin-
cipal components extracted from haplotypes separately for each chro-
mosome.

Figure 3. Correlations between genomic breeding values (GEBV) 
and true breeding values (TBV) in the different approaches when 
phenotypes were used as dependent variables (SNP_ALL = all 5,925 
SNP; PC_SNP_ALL = principal components extracted from all SNP 
genotypes simultaneously; PC_SNP_CHROM = principal compo-
nents extracted from SNP genotypes separately for each chromosome; 
PC_HAP_ALL = principal components extracted from all SNP hap-
lotypes simultaneously; PC_HAP_CHROM = principal components 
extracted from haplotypes separately for each chromosome).

Figure 4. Correlations between genomic breeding values (GEBV) 
and true breeding values (TBV) in the different approaches when poly-
genic breeding values were used as dependent variables (SNP_ALL = 
all 5,925 SNP; PC_SNP_ALL = principal components extracted from 
all SNP genotypes simultaneously; PC_SNP_CHROM = principal 
components extracted from SNP genotypes separately for each chro-
mosome; PC_HAP_ALL = principal components extracted from all 
SNP haplotypes simultaneously; PC_HAP_CHROM = principal com-
ponents extracted from haplotypes separately for each chromosome).



be clearly seen from the plots of TBV versus GEBV 
for the PC_SNP_ALL approach using equal (Figure 
5a) or eigenvalue-based (Figure 5b) variance. The lat-
ter shows a regression slope closer to the equivalence 
line (y = x) and a smaller value for the intercept that 
indicates a smaller systematic underestimation of TBV. 
The composition of MSEP becomes very similar across 
the different methods when polygenic breeding values 
are used as dependent variables, with a reduced inci-
dence of random components and a larger relevance of 
unequal variances compared with the phenotype-based 
estimates (Table 3). Actually, the comparison of plots of 

TBV versus GEBV estimated with the PC_SNP_ALL 
approach using phenotypes (Figure 5a) or polygenic 
breeding values (Figure 5c) clearly shows a reduced 
range of variability and a higher underestimation (as 
evidenced by the larger value of the regression inter-
cept) for polygenic breeding value-based GEBV.

An interesting feature of PCA is the possible tech-
nical interpretation of extracted variables. Figure 6 
reports score averages for the first 2 PC that together 
explain about 5% of the original variance of the system, 
calculated for each generation. Averages of the second 
PC ranged gradually from negative values for the first 
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Table 2. Regression coefficients (bTBV,GEBV) of true breeding value (TBV) on predicted genomic breeding 
value (GEBV) for the different estimation methods using either phenotypes or polygenic breeding values for 
the prediction generations and assuming either equal variance contribution for each principal component or 
eigenvalues as variance priors 

Method1

Phenotype Polygenic breeding value

bTBV,GEBV SE bTBV,GEBV SE

SNP_ALL 1.08 0.027 1.15 0.073
Equal variance    
 PC_SNP_ALL 0.63 0.019 1.08 0.049
 PC_SNP_CHROM 0.67 0.019 1.13 0.048
 PC_HAP_ALL 0.61 0.019 1.08 0.049
 PC_HAP_CHROM 0.65 0.018 1.11 0.047
Eigenvalues    
 PC_SNP_ALL 0.88 0.021 1.33 0.055
 PC_SNP_CHROM 0.84 0.022 1.28 0.055
 PC_HAP_ALL 0.88 0.022 1.32 0.056
 PC_HAP_CHROM 0.83 0.023 1.26 0.056

1SNP_ALL = all 5,925 SNP; PC_SNP_ALL = principal components extracted from all SNP genotypes si-
multaneously; PC_SNP_CHROM = principal components extracted from SNP genotypes separately for each 
chromosome; PC_HAP_ALL = principal components extracted from all SNP haplotypes simultaneously; 
PC_HAP_CHROM = principal components extracted from haplotypes separately for each chromosome.

Table 3. Mean squared error of prediction (MSEP) decomposition (%) and coefficient of determination (r2) for 
the prediction generations in some scenarios using either phenotypes or polygenic breeding values1,2  

Item SNP_ALL PC_SNP_ALL 1 PC_SNP_ALL 2

Phenotype
 MSEP 1.55 1.48 1.02
 Mean bias (UM) 72.2 53.5 56.9
 Unequal variances (US) 6.9 0.6 1.9
 Incomplete covariation (UC) 21.9 45.9 41.2
 Slope bias (UR) 0.22 11.1 1.1
 Random errors (UD) 27.6 35.4 42.0
 r2 0.57 0.48 0.57
Polygenic breeding values   
 MSEP 2.96 2.88 2.72
 Mean bias (UM) 72.0 75.1 74.6
 Unequal variances (US) 13.9 8.9 11.9
 Incomplete covariation (UC) 14.1 16.0 13.5
 Slope bias (UR) 0.01 0.00 0.7
 Random errors (UD) 27.9 24.9 24.7
 r2 0.17 0.28 0.33

1SNP_ALL = all 5,925 SNP; PC_SNP_ALL 1 = principal components extracted from all SNP genotypes 
simultaneously and equal contribution of each SNP to the variance of the trait; PC_SNP_ALL 2 = principal 
components extracted from all SNP genotypes simultaneously and contribution of each SNP to the variance of 
the trait proportional to the eigenvalue.
2UM + US + UC = UM + UR + UD = 100%.



3 generations to positive for the last 3 generations. A 
possible explanation of the ability of the second PC 
to distinguish individuals of different generations can 
be found in its negative correlation with the average 
observed heterozygosity per animal (−0.26) that tends 
to decrease from older to younger generations (Figure 
7).

DISCUSSION

The main objectives of this work were to assess the 
effect of reducing predictor dimensionality in GEBV es-
timation using PCA and to test the effect of structuring 
the variance contribution of PC with their eigenvalues

Principal component analysis allows an efficient de-
scription of the correlation matrix of biallelic SNP with 
a markedly smaller number of new variables (4.7%) 
compared with the original dimension of the system. 
Such a huge decrease has a straightforward effect on 
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Figure 5. a) Plot of true breeding values versus genomic breeding 
values predicted using phenotypes when principal components (PC) 
are extracted from all SNP genotypes simultaneously and variance 
contribution of the PC scores in the estimation step is assumed equal. 
b) Plot of true breeding values versus genomic breeding values pre-
dicted using phenotypes when PC are extracted from all SNP geno-
types simultaneously and variance contribution of the PC scores in the 
estimation step is based on their eigenvalues. c) Plot of true breeding 
values versus genomic breeding values predicted using genomic breed-
ing values when PC are extracted from all SNP genotypes simultane-
ously and variance contribution of the PC scores in the estimation step 
is based on their eigenvalues. (Continuous line = regression line of true 
breeding values on genomic breeding values; dotted line = equivalence 
line, y = x.)

Figure 6. Plot of the average scores of the first 2 principal compo-
nents (Prin) for 7 generations.

Figure 7. Pattern of the average observed heterozygosity in differ-
ent generations.



the calculation speed of GEBV, with a reduction of 
more than 99% of computing time achieving the same 
accuracy of predicted GEBV using all SNP. Compared 
with other methods of reduction of predictors where 
SNP are selected based on their position along the 
chromosome (VanRaden et al., 2009) or their relevance 
with the trait considered (Hayes et al., 2009), the mul-
tivariate reduction approach limits the loss of informa-
tion because each SNP is involved in the composition 
of each PC.

The GEBV accuracies obtained in the present work 
agree with a previous report on the use of PCA to 
estimate GEBV (Solberg et al., 2009) when an equal 
contribution of each PC to the variance of pheno-
types is assumed. This approach follows the common 
BLUP assumption of equality of variance of predictors, 
usually criticized for its inadequacy to fit the widely 
assessed distribution of QTL (i.e., many loci with a 
small effect and very few with large effect; Hayes and 
Goddard, 2001). However, when eigenvalues are used 
as prior of PC variance, accuracies increase by about 
10%. These figures highlight the importance of an ac-
curate modeling of the variance structure of random ef-
fects in GEBV estimation. Bayesian methods estimate 
variances of different chromosome segments combining 
information from prior distribution and data (Meuwis-
sen et al., 2001). These methods usually give the best 
performance (accuracies >80%) when simulated data 
are fitted, whereas results obtained on real data seem 
to indicate a substantial equivalence with the BLUP 
approach (Hayes et al., 2009; VanRaden et al., 2009). A 
common explanation is that, in Bayes method, assump-
tions on prior distributions of parameters are more dif-
ficult to infer when real data are handled. The use of 
eigenvalues as variance priors relies only on data (i.e., 
the SNP correlation structure) and does not require 
assumptions on prior distribution.

A potential drawback in the calculation of GEBV 
using PCA is represented by PC extraction. In the 
present work, about 40 min were needed to process an 
SNP data matrix of 5,865 rows and 5,925 columns. The 
commercially available SNP panel for cattle has 54,000 
marker loci, although about 40,000 are retained on av-
erage after editing (Hayes et al., 2009). Such a marked 
increase of columns, usually not accompanied by a 
comparable increase of rows (i.e., phenotypic records), 
may lead to statistical and computational problems 
if PC are extracted treating all SNP simultaneously. 
However, results of the present study indicate that PC 
may be calculated separately for each chromosome, 
keeping the same GEBV accuracy. It should be remem-
bered that the number of SNP per chromosome is not 
far from current dairy data (on average 1,200–1,300; 
Hayes et al., 2009; VanRaden et al., 2009; Wiggans et 

al., 2009). Thus, PCA carried out on individual chro-
mosomes may be of great interest for real data, also 
considering the substantial biological orthogonality 
among chromosomes. The availability of denser marker 
maps (i.e., 500,000 SNP) will represent a challenge for 
the method, although the number of PC to be retained 
does not seem to increase linearly with the number 
of original variables. Missing genotypes is a potential 
problem for computation of PCA, which requires data 
in each cell. Although edits that are normally carried 
out on SNP data leave only a few missing cells per 
animal, they are spread across different markers and 
this may lead to a severe reduction in the number of 
records. Missing data can be reconstructed using ap-
propriate algorithms as those described by Gengler et 
al. (2007) or others implemented in software of common 
use such as fastPHASE (Scheet and Stephens, 2006) or 
PLINK (Purcell et al., 2006).

Of particular interest is the difference in GEBV ac-
curacy obtained when using phenotypes versus poly-
genic breeding values as dependent variable. Polygenic 
breeding values are phenotypes corrected for additive 
relationships among animals based on pedigree infor-
mation. On the other hand, in GEBV predictions the 
genetic similarity between animals is accounted for 
by the specific combination of marker genotypes pos-
sessed by each individual. Therefore, the use of poly-
genic breeding values as dependent variable in GEBV 
prediction may be regarded as redundant in terms of 
exploitation of genetic relationships. This behavior is 
particularly evident for the regression using all SNP 
markers. In this form, the calculation of GEBV is 
equivalent to the use of an animal model with the ad-
ditive genetic effect structured by the genomic relation-
ship matrix (Goddard, 2009). Such a double counting 
of genetic relationship resulted in an evident reduction 
of the variability of GEBV compared with TBV. From 
a statistical standpoint, polygenic breeding values 
are model-predicted values and may not be suitable 
as a dependent variable in further analyses (Tedeschi, 
2006). Results of the present study, although obtained 
on simulated data, may more accurately reflect the 
reality of genomic selection programs in cattle. In pre-
vious studies, polygenic breeding values were generally 
the dependent variable. This is because TBV are not 
available on real data and polygenic breeding values 
estimated with a high accuracy (>0.90) may represent 
a sort of golden standard for cross validations. How-
ever, the tendency now seems to move toward the use 
of partially corrected phenotypes such as deregressed 
proofs or daughter yield deviations (Hayes et al., 2009; 
VanRaden et al., 2009).

Finally, an interesting side product of PCA used to 
reduce the dimensionality of predictors in genome-wide 
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selection is represented by the extraction of synthetic 
variables that can have a technical meaning. Studies in 
human and animal genetics have highlighted the role 
of PC as indicators of population genetic structure. 
For example, the top eigenvectors of the covariance 
matrix often show a geographic interpretation (Price 
et al., 2006; Chessa et al., 2009). Usually, the mean-
ing of the ith PC in terms of relationship with the 
original variables is inferred from the structure of its 
eigenvector. In the present study, such an evaluation 
was not feasible, probably because of both the rela-
tively small amount of variance explained by each PC 
and the large number of original variables considered 
(i.e., the 5,925 SNP). However, one of the top PC was 
able to reflect the genetic variation among generations, 
although the discrimination between individuals of dif-
ferent generations was rather fuzzy, as expected, given 
the small amount of variance explained. However, this 
last point deserves some additional consideration. An 
assessed criterion in choosing which PC to retain is to 
look at their eigenvalues. However, sometimes the PC 
associated with the largest eigenvalue does not have a 
defined meaning, whereas successive PC characterized 
by smaller eigenvalues may contain more relevant or 
biological information (Jombart et al., 2009). In the 
case of the present work, a meaning of the second PC 
as indicator of genetic drift, which should be the only 
reason of variation of genotypic frequencies in the 
simulated generations (Lund et al., 2009), could be 
hypothesized.
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