Creation of genomic relationship matrices with preGSf90 and Forming Single-step mixed model equation

BLUP vs. ssGBLUP

multistep vs. ssGBLUP

Extra matrices required for single-step

• Inverses

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & \mathbf{G}^{-1} - \mathbf{A}^{-1}_{22} \end{bmatrix}$$
PREGSF90

- Pedigree relationships between genotyped animals
- Genomic relationships

Parameters file

RENUMF90		BLUPF90	
renum.par		renf90.par	
DATAFILE phenotypes.tx TRAITS 3 FIELDS_PASSED WEIGHT(S)	TO OUTPUT	DATAFILE renf90.dat NUMBER_OF_TRAT 1 NUMBER_OF_EFF 2 OBSERVATION(S 1 WEIGHT(S)	ITS ECTS)
RESIDUAL_VARIA 0.9038 EFFECT 1 cross alpha EFFECT 2 cross alpha RANDOM animal FILE pedigree SNP_FILE marker.geno.co (CO)VARIANCES 0.9951E-00	ANCE # mu # animal lean 1	WEIGHT(S) EFFECTS: POSI 2 1 3 15800 RANDOM_RESIDU 0.90380 RANDOM_GROUP 2 RANDOM_TYPE add_animal FILE renadd02.ped (C0)VARIANCES 0.99510E-01 OPTION SNP_fi	TIONS_IN_DATAFILE NUMBE cross cross AL VALUES

BLUPF90 programs using Genomics

- Genomic programs
 - controled by adding OPTIONS commands to the parameter file
 - OPTION SNP_file marker.geno.clean
 - Read 2 files:
 - marker.geno.clean
 - marker.geno.clean_XrefID

SNP file & Cross Reference Id

SNP File First col: Identification, could be alphanumeric Second col: SNP markers {codes: 0,1,2 and 5 for missing}

Genomic Relationship Matrix - G

• G = ZZ'/k

- Z = centered matrix for SNP marker
- Dimension Z= n*p
- n animals,
- p markers Data file with SNP marker

Genotype Codes

- 0 Homozygous
- 1 Heterozygous
- 2 Homozygous
- 5 No Call (Missing)

 80
 21101011002012011011010110111111211111210100
 8014

 8014
 21110101511101120221110111511112101112210100

 516
 21100101202252021120210121102111202212111101

 181
 2111011111220112055020002010102221221111100

HOWTO: Creating Genomic Matrix

- Read SNP marker information => M

- Get 'means' to center
 - Calculate allele frequency from observed genotypes (p_i)
 - $-p_i = sum(SNPcode_i)/2n$
- Centered matrix Z = M-2P

Genomic Matrix default options

- G* = ZZ'/k as in VanRaden, 2008
- With:
 - Z center using current allele frequencies
 - k = 2 sum (p * (1-p))
- $G = G^* 0.95 + A_{22}^* 0.05$ (to invert)
- Tunning of G (see Vitezica et al., 2011)
 - Adjust G to have mean of diagonals and off-diagonals equal to ${\rm A_{22}}$

Genomic Matrix Options

- OPTION which freq x
 - 0: read from file *freqdata* or other specified
 - 1:0.5
 - 2: current calculated from genotypes (default)
- OPTION FreqFile file
 - Reads allele frequencies from a file
- OPTION maxsnps x
 - Set the maximum length of string for reading marker data from file => BovineHD chip

Options for Blending G and A

- OPTION AlphaBeta alpha beta
 G = alpha*G^r + beta*A₂₂
- OPTION tunedG
 - 0: no adjustment
 - 1: mean(diag(G))=1, mean(offdiag(G))=0
 - 2: mean(diag(G))=mean(diag(A)), mean(offdiag(G))=mean(offdiag(A)) (default)
 - 3: mean(G)=mean(A)
 - 4: Use Fst adjustment P owell et al. (2010) & Vitezica et al. (2011)

Creating a 'raw' genomic matrix 'GBLUP'

- Tricks:
- Use dummy pedigree
 - 100 200
- Change blending parameters
 - OPTION AlphaBeta 0.99 0.00
 - OPTION GamaDelta 0.01 0.00
- No adjustment for compatibility with A
 - OPTION tunedG 0

G = 0.99 * G + 0.01 * I

Creating a 'raw' genomic matrix 'GBLUP'

- Change blending parameters
 - OPTION AlphaBeta 0.99 0.00
 - OPTION GamaDelta 0.01 0.00

 $G = Alpha G^{r} + Beta A22 + Gamma I + Delta$

Storing and Reading Matrices

- Matrices that can be stored:
 A22, inv(A22), G, inv(G), GmA22, inv(GmA22), inv(H)
- All matrices are stored in same format:
 - upper triangular
 - By default in binary format
 - But to store in text (Ascii) format:
 - Use: OPTION saveAscii
- Values
 - i j val
 - i & j refers to the row number in the genotype file !!!!!
 - Renumber ID could be obtained from the XrefID file

Storing and Reading Matrices

To save our 'raw' genomic matrix:

- OPTION saveG [all]
 - If the optional *all* is present all intermediate G matrices will be saved!!!

or it inverse

- OPTION saveGInverse
 - Only the final matrix G, after blending, scaling, etc. is inverted !!!
- Look in wiki for keywords for other matrices

Storing with Original IDs

- Some matrices could be stored in text files with the original IDs extracted from *renaddxx.ped* created by the RENUMF90 program (col #10)
- For example:
 - OPTION saveGOrig
 - OPTION saveDiagGOrig
 - OPTION saveHinvOrig
- Values
 - origID_i, origID_j, val

OUTPUT

- Only GimA22i , other requested matrices, and some reports are stored
- Main log is printout to the screen!!!
- Use the command tee to save in a log file
- This will allow to save and see the messages from the program
- echo renf90.par | preGSf90 | tee pregs.log

Printout: Same heading as other programs

Printout

Looking at stored matrices

- Avoid open with text editors, huge files!!!
- For example:
- 1500 genotyped individuals => 1,125,750 rows
- Inspection could be done by Unix commands:
 - head G => first 10 lines
 - tail G => last 10 lines
 - -less G => scroll document by line/page
 - wc -l G => count number of lines good for checks with the number of genotypes (n) = (n*(n+1)/2)

head G

PreGSf90 inside BLUPF90?

- Almost all programs from package support creation of genomic relationship matrices, Hinv, etc.
- OPTION SNP_file xxxx
- Why preGSF90 ?
 - Same genomic relationship matrix for several models, traits, etc. Just do it once and store.
 - Uses optimized subroutines for efficient matrix multiplications, inversion and with support for parallel processing

Creating a subset of relationship matrix (A₂₂)

- Create a relationship matrix for only genotyped animals (~ thousands)
- Full pedigree (~millions)
- Trace only ancestors of genotyped
- Colleau's algorithm to create A₂₂

Tabular method vs. Colleau algorithm

Testing

- 6,500 genotyped Holsteins
- 57,000 pedigrees

	Tabular*	Colleau method
CPU Time	311 s	45 s
Memory	12.1GB	322MB

* Gmatrix.f90 (VanRaden, 2009)