

Creating genomic relationship matrices with preGSf90

preGSf90

Performs Quality Control of SNP information

- Creates the genomic relationship matrix (G)
 - and relationships based on pedigree (A_{22})
 - Inverse of relationship matrices

BLUP-based models

$$\begin{bmatrix} \mathbf{X'X} & \mathbf{X'W} \\ \mathbf{W'X} & \mathbf{W'W+A^{-1}} \frac{\sigma_e^2}{\sigma_a^2} \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{W'y} \end{bmatrix}$$

BLUP

Henderson, 1963

$$\begin{bmatrix} \mathbf{X'X} & \mathbf{X'W} \\ \mathbf{W'X} & \mathbf{W'W+G^{-1}} \frac{\sigma_e^2}{\sigma_a^2} \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{W'y} \end{bmatrix}$$

GBLUP

Nejati-Javaremi et al., 1997 Fernando, 1998 VanRaden, 2008

$$\begin{bmatrix} \mathbf{X'X} & \mathbf{X'W} \\ \mathbf{W'X} & \mathbf{W'W+H^{-1}} \frac{\sigma_e^2}{\sigma_a^2} \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{W'y} \end{bmatrix}$$

ssGBLUP

Misztal et al. (2009) Legarra et al. (2009) Aguilar et al. (2010) Christensen & Lund (2010)

$$\mathbf{H}^{-1} = \begin{bmatrix} \mathbf{A}^{11} & \mathbf{A}^{12} \\ \mathbf{A}^{21} & \mathbf{A}^{22} \end{bmatrix} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix} \qquad \mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$$

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$$

PreGSf90

 $G^{-1} - A_{22}^{-1}$

Created to construct the matrices used in ssGBLUP

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$$

$$\mathbf{G} \qquad \mathbf{G}^{-1}$$

$$\mathbf{A}_{22} \qquad \mathbf{A}_{22}^{-1}$$

Genomic Relationship Matrix - G

•
$$G = \frac{ZZ'}{2 \sum p_i (1-p_i)}$$
 (VanRaden, 2008)

- -Z = matrix for SNP marker
- Dimension of $\mathbf{Z} = n^*i$
- n animals
- i markers

Genotype Codes

- 0 Homozygous
- 1 Heterozygous
- 2 Homozygous
- 5 No Call (Missing)

SNP file

HOW TO: Create **G**

Read SNP marker information => **M**2 1 2 ...
0 1 0 ...

- Get 'means' to center
 - Calculate allele frequency from observed genotypes (p_i)
 - $p_i = sum(SNPcode_i)/2n$
- Centered matrix $\mathbf{Z} = \mathbf{M} 2\mathbf{P}$

•
$$G = \frac{ZZ'}{2 \sum p_i (1-p_i)}$$
 (VanRaden, 2008)

Why to center **G**?

11.3 Relationships across individuals for a single QTL

Assume that you are studying one species with a single biallelic quantitative gene. You genotype the individuals and you are asked, what is the covariance between individuals i and j, for which the genotype is known? Let express the breeding values as functions of the genetic value (za) deviated from the population mean, $\mu = 2pa$:

$$u_i = z_i a - 2pa = (z_i - 2p) a$$

$$u_j = z_j a - 2pa = (z_j - 2p) a$$

where z_i is expressed as $\{0, 1, 2\}$ copies of the allele of reference of the QTL having the effect a_i (let's say allele A). If the effect of the QTL has some prior distribution with variance $Var(a) = \sigma_a^2$, and the genetic variance in Hardy-Weinberg equilibrium is $2pq\sigma_a^2$. It follows from regular rules of variances and covariances that

$$Cov(u_i, u_j) = (z_i - 2p)(z_j - 2p) \sigma_a^2$$

If we define $z_i^* = z_i - 2p$, in other words, we use the "centered" coding instead of "012", then the covariance between two individuals is equal to $z_i^* z_j^* \sigma_a^2$.

Why to scale **G**?

$$G = \frac{ZZ'}{2\sum p_i(1-p_i)}$$

Creating **G**

- Issues
 - Large number of genotyped individuals
 - Large number of SNP markers
 - Matrix multiplication \sim cost $n^2 * i$

 Large amounts of data put in (cache) memory to do matrix multiplication for each pair of animals and indirect memory access (center)

PreGSf90

- Efficient methods
 - create the genomic relationship matrix and the relationship matrix based on pedigree
 - Invert the relationship matrices
- Computes statistics for the matrices
 - Means, Var, Min, Max
 - Correlations between diagonals
 - Correlations for off-diagonals
 - Correlations for the full matrices
 - Regression coefficients

OPTIONS – preGS90 parameter file

PreGSF90

controled by adding OPTION commands to the parameter file

```
OPTION SNP_file marker.geno.clean
```

– Reads:

- marker.geno.clean
- marker.geno.clean_XrefID (created by renumf90)
- Pedigree file
- Map file (optional)

Genomic Matrix default options

•
$$\mathbf{G}_0 = \frac{\mathbf{ZZ'}}{2 \sum p_i (1 - p_i)}$$
 (VanRaden, 2008)

- With:
 - Z centered and scaled using current allele frequencies
 - Current genotyped animals

Genomic Matrix Options

• OPTION whichG x

— 1: G=ZZ'/k; as in VanRaden, 2008 (default)

2: G=ZDZ'/n; where D=1/2p(1-p) as in Amin et al.,
 2007; Leuttenger et al., 2003

- 3: As 2 with modification UAR from Yang et al 2010
 - Diagonal of G is independent of AF

Genomic Matrix Options

- OPTION whichfreq x
 - 0: read from file freqdata or other specified name (needs OPTION FreqFile)
 - -1:0.5
 - 2: current calculated from genotypes (default)

- OPTION FreqFile file
 - Reads allele frequencies from a file

Genomic Matrix Options

- OPTION whichfreqScale x
 - 0: read from file freqdata or other specified name (needs OPTION FreqFile)
 - -1:0.5
 - 2: current calculated from genotypes (default)

- OPTION FreqFile file
 - Reads allele frequencies from a file

Adjusting G to A₂₂

Tuning

- Adjust $\bf G$ to have same mean diagonal and off-diagonal as $\bf A_{22}$

- Base of GBLUP is genotyped animals
- Base of pedigree is founders of the pedigree
- For SSGBLUP modelled as a mean for genotyped animals
 - $-p(\mathbf{u}_2) = N(\mathbf{1}\mu, \mathbf{G})$
 - Integrate $\mu : \mathbf{G}^* = 11'\lambda + (1 \frac{\lambda}{2})\mathbf{G}$
 - $-\mu$ = (Genomic base) (Pedigree base)
 - Vitezica et al. 2011

Genomic Matrix default options

- OPTION tunedG 2 #(default)
- suggested by Chen et al. (2011)

Effect of different genomic relationship matrices on accuracy and scale C. Y. Chen, I. Misztal, I. Aguilar, A. Legarra and W. M. Muir

J ANIM SCI 2011, 89:2673-2679. doi: 10.2527/jas.2010-3555 originally published online March 31, 2011

"This suggests that the optimal $\bf G$ should have AvgD and AvgOff close to that of $\bf A_{22}$. Although similar AvgD – AvgOff in $\bf G$ and $\bf A_{22}$ ensured unbiased estimates of the additive variances, identical AvgOff seemed to remove biases for the EBV of genotyped birds"

Options for matching G to A₂₂

- OPTION tunedG x
 - 0: no adjustment
 - 1: mean(diag(G))=1, mean(offdiag(G))=0
 - 2: mean(diag(\mathbf{G}))=mean(diag(\mathbf{A}_{22})), mean(offdiag(\mathbf{G}))=mean(offdiag(\mathbf{A}_{22})) (default)
 - -3: mean(G)=mean(A₂₂)
 - 4: use Fst adjustment Powell et al. (2010) & Vitezica et al. (2011)

$$\lambda = \frac{1}{n^2} \left(\sum_{i} \sum_{j} \mathbf{A}_{22_{ij}} - \sum_{i} \sum_{j} \mathbf{G}_{ij} \right)$$
 $\mathbf{G}^* = 11'\lambda + (1 - \frac{\lambda}{2})\mathbf{G}$

9: arbitrary parameters: specify two additional numbers a and b in a+bG
 OPTION tunedG 9 a b

Genomic Matrix default options

Blending - to avoid singularity problems

$$\mathbf{G} = \alpha \mathbf{G}_0 + \beta \mathbf{A}_{22}$$

- OPTION AlphaBeta 0.95 0.05 #(default)

Beta may vary from 0.2 to 0.01

Genomic Matrix options

• OPTION GammaDelta x1 x2

$$\mathbf{G} = \alpha \mathbf{G}_0 + \beta \mathbf{A}_{22} + \gamma \mathbf{I} + \delta$$

Objective: blend 95% of G with 5% identity instead of A₂₂

$$G = 0.95G_0 + 0.0A_{22} + 0.05I + 0.0$$

- OPTION AlphaBeta 0.95 0.0 #default = 0.95 0.05
- OPTION GammaDelta 0.05 0.0 #default = 0.00.0

Order of procedures

Tuning

Blending

Quality control for off-diag of **G** to **A**₂₂

Quality Control for Off-diagonal of A22 and G

OPTION thrWarnCorAG x

Set the threshold to issue a warning if cor(A22,G) < x default value = 0.5

OPTION thrStopCorAG x

Set the threshold to Stop the analysis if cor(A22,G) < x default value = 0.3

OPTION thrCorAG x

Set the threshold to calculate corr(A22,G) for only A22 >= x default value = 0.02

Storing and Reading Matrices

• preGSf90 saves $G^{-1} - A_{22}^{-1}$ by default (file: GimA22i)

To save 'raw' genomic matrix:

- OPTION saveG [all]
 - If all is present all intermediate G matrices will be saved!!!

To save G⁻¹

- OPTION saveGInverse
 - Only the final G, after blending, scaling, etc. is inverted !!!

To save A_{22} and inverse

OPTION saveA22 and OPTION saveA22Inverse

Storing and Reading Matrices

- OPTION saveG [all], OPTION saveGInverse, ...
 - Saves in binary format
 - "Dumped" format to save space and time
 - To save as row, column, value:
 - OPTION no_full_binary
 - Still binary, but can be easily read and converted to text

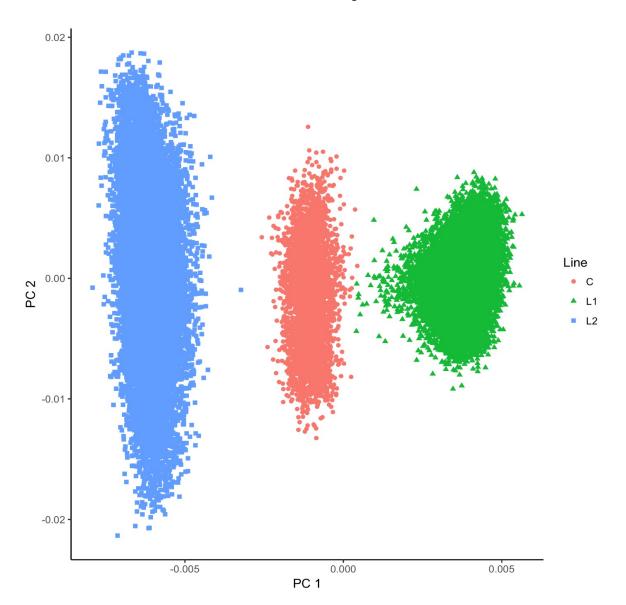
Storing with Original IDs

 Some matrices can be stored in text files with the original IDs extracted from renaddxx.ped created by the RENUMF90 program (col #10)

For example:

- OPTION saveGOrig
- OPTION saveDiagGOrig
- OPTION saveHinvOrig
- Values
 - origID_i, origID_j, val
- http://nce.ads.uga.edu/wiki/doku.php?id=readme.pregsf90

Genomic Matrix - Population structure


OPTION plotpca

Plot first two principal components to look for stratification in the population.

OPTION extra_info_pca file col

Reads from file the column col to plot with different colors for different classes.

Genomic Matrix - Population structure

PreGSf90 inside BLUPF90 ??

- Almost all programs from BLUPF90 support creating the genomic relationship matrices
- OPTION SNP_file xxxx

- Why preGSF90?
 - Same G for several models, traits, etc.
 - Just do it once and store GimA22i or Gi and A22i

Use in application programs

 Use renumf90 for renumbering and creating XrefID and other files SNP_FILE marker.geno

Option 1:

run preGSf90 with quality control, saving clean files run blupf90+ with clean files

Option 2:

run blupf90+

Option 3:

run preGSf90 (program saves **GimA22i**) run blupf90+ with option to read **GimA22i**

Tricks to setup **G** for GBLUP

preGSf90 is set up for ssGBLUP

```
1) Use a dummy pedigree
100
200
```

2) Use PED_DEPTH 1 in renumf90

3) Change blending parameters

```
- OPTION AlphaBeta 1.00 0.00 \rightarrow G = 1.00*G + 0.00*I

- OPTION AlphaBeta 0.99 0.00

- OPTION GammaDelta 0.01 0.00 \rightarrow G = 0.99*G + 0.01*I
```

- 4) No adjustment for compatibility with A_{22}
 - OPTION tunedG 0

Tricks to setup **G** for GBLUP

- Yet another ways to run GBLUP in BLUPF90
- Replace steps 1 and 2 by:

A) In renum.par, remove any information about the pedigree file

```
FILE
pedigree.txt
FILE_POS
1 2 3 0 0
PED_DEPTH
3
```

OR

B) Add this option to the parameter file:

```
- OPTION omit ainv
```

preGSf90 is highly parallelized!

OPTION num_threads_pregs n

Specify number of threads to be used with MKL-OpenMP for creation and inversion of matrices

Be careful: It has advantages and disadvantages!