

UNIVERSITY OF GEORGIA

College of Agricultural & Environmental Sciences

Animal Breeding and Genetics Group

Creating genomic relationship matrices with preGSf90

BLUPF90 TEAM - 05/2024

preGSf90

Performs Quality Control of SNP information

- Creates the genomic relationship matrix (G)
 - and relationships based on pedigree (A₂₂)
 - Inverse of relationship matrices

BLUP-based models

$$\begin{bmatrix} \mathbf{X'X} & \mathbf{X'W} \\ \mathbf{W'X} & \mathbf{W'W+A^{-1}} \frac{\sigma_e^2}{\sigma_a^2} \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{W'y} \end{bmatrix}$$

BLUP

Henderson, 1963

$$\begin{bmatrix} \mathbf{X'X} & \mathbf{X'W} \\ \mathbf{W'X} & \mathbf{W'W+G^{-1}} \frac{\sigma_e^2}{\sigma_a^2} \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{W'y} \end{bmatrix}$$

GBLUP

Nejati-Javaremi et al., 1997 Fernando, 1998 VanRaden, 2008

$$\begin{bmatrix} \mathbf{X'X} & \mathbf{X'W} \\ \mathbf{W'X} & \mathbf{W'W+H^{-1}} \frac{\sigma_e^2}{\sigma_a^2} \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{W'y} \end{bmatrix}$$

ssGBLUP

Misztal et al. (2009) Legarra et al. (2009) Aguilar et al. (2010) Christensen & Lund (2010)

$$\mathbf{H}^{-1} = \begin{bmatrix} \mathbf{A}^{11} & \mathbf{A}^{12} \\ \mathbf{A}^{21} & \mathbf{A}^{22} \end{bmatrix} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix} \qquad \qquad \mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$$

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$$

Realized relationship matrix (H)

Animal	Sire	Dam
1	0	0
2	0	0
3	1	2
4	1	2

$$\mathbf{H} = \begin{pmatrix} var(u_1) & cov(u_1, u_2) \\ cov(u_2, u_1) & var(u_2) \end{pmatrix} = \begin{pmatrix} \mathbf{A}_{11} + \mathbf{A}_{12}\mathbf{A}_{22}^{-1}(\mathbf{G} - \mathbf{A}_{22})\mathbf{A}_{22}^{-1}\mathbf{A}_{21} & \mathbf{A}_{12}\mathbf{A}_{22}^{-1}\mathbf{G} \\ \mathbf{G}\mathbf{A}_{22}^{-1}\mathbf{A}_{21} & \mathbf{G} \end{pmatrix}$$

Pedigree Relationship Matrix (**A**) Genomic
Relationship
Matrix (**G**)
for animals 3 and 4

Realized Relationship Matrix (**H**)

$$\begin{bmatrix} 1.0 & 0.0 & 0.5 & 0.5 \\ . & 1.0 & 0.5 & 0.5 \\ . & . & 1.0 & 0.5 \\ . & . & . & 1.0 \end{bmatrix}$$

$$\begin{bmatrix} 1.0 & 0.52 \\ 1.0 \end{bmatrix}$$

$$\begin{bmatrix} 1.004 & 0.0 & 0.507 & 0.507 \\ . & 1.004 & 0.507 & 0.507 \\ . & . & 1.0 & 0.52 \\ . & . & 1.0 \end{bmatrix}$$

PreGSf90

Created to construct the matrices used in ssGBLUP

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$$

 G^{-1}

$$\mathbf{A}_{22}$$

$$A_{22}^{-1}$$

$$G^{-1} - A_{22}^{-1}$$

OPTION required to run preGS90

• PreGSF90

controled by adding OPTION to the parameter file

```
OPTION SNP file marker.geno.clean
```

• Reads:

- marker.geno.clean
- marker.geno.clean.XrefID (created by renumf90)
- Pedigree file
- Map file (optional)

PreGSf90

• Efficient methods

G

 G^{-1}

 \mathbf{A}_{22}

 A_{22}^{-1}

- Computes statistics for the matrices
 - Means, Var, Min, Max
 - Correlations between diagonals
 - Correlations for off-diagonals
 - Correlations for the full matrices
 - Regression coefficients

•
$$G = \frac{ZZ'}{2 \sum p_i (1-p_i)}$$
 (VanRaden, 2008)

- With:
 - **Z** centered using current allele frequencies
 - Current genotyped animals

Genomic Matrix Options

• OPTION whichG x

- 1: **G=ZZ**'/k; as in VanRaden, 2008 (default)
- 2: **G=ZDZ**'/n; where D=1/2p(1-p) as in Amin et al. (2007); Leuttenger et al. (2003)
- 3: As 2 with modification from Yang et al. (2010)
 - Diagonal of **G** is independent of AF

Genomic Matrix Options

- OPTION whichfreq x
 - 0: read from file *freqdata* or other specified name (needs OPTION FreqFile)
 - 1: 0.5
 - 2: current calculated from genotypes (default)
- OPTION FreqFile file
 - Reads allele frequencies from a file if OPTION whichfreq 0

Genomic Matrix Options

- OPTION whichfreqScale x
 - 0: read from file freqdata or other specified name (needs OPTION FreqFile)
 - 1: 0.5
 - 2: current calculated from genotypes (default)
- OPTION FreqFile file
 - Reads allele frequencies from a file if OPTION whichfreqScale 0

Tuning

• Adjust ${\bf G}$ to have mean of diagonals and off-diagonals equal to ${\bf A}_{22}$

- Base of GBLUP is genotyped animals
- Base of pedigree is founders of the pedigree
- For SSGBLUP modelled as a mean for genotyped animals
 - $-p(\boldsymbol{u}_2)=N(\boldsymbol{1}\mu,\boldsymbol{G})$
 - Integrate $\mu : \mathbf{G}^* = 11'\lambda + (1 \frac{\lambda}{2})\mathbf{G}$
 - $-\mu$ = (Genomic base) (Pedigree base)
 - Vitezica et al. 2011

- OPTION tunedG x
 - 0: no adjustment
 - 1: mean(diag(G))=1, mean(offdiag(G))=0
 - 2: mean(diag(G))=mean(diag(A₂₂)), mean(offdiag(G))=mean(offdiag(A₂₂)) (default)
 - 3: mean(G)=mean(A₂₂)
 - 4: Use Fst adjustment. Powell et al. (2010) & Vitezica et al. (2011)

$$\lambda = \frac{1}{n^2} \left(\sum_{i} \sum_{j} \mathbf{A}_{22_{ij}} - \sum_{i} \sum_{j} \mathbf{G}_{ij} \right)$$
 $\mathbf{G}^* = 11'\lambda + (1 - \frac{\lambda}{2})\mathbf{G}$

9: arbitrary parameters: specify two additional numbers a and b in a+bG

OPTION tunedG 9 a b

Default: OPTION tunedG 2

Effect of different genomic relationship matrices on accuracy and scale C. Y. Chen, I. Misztal, I. Aguilar, A. Legarra and W. M. Muir

J ANIM SCI 2011, 89:2673-2679. doi: 10.2527/jas.2010-3555 originally published online March 31, 2011

"This suggests that the optimal G should have AvgD and AvgOff close to that of A_{22} .

Although similar AvgD – AvgOff in G and A_{22} ensured unbiased estimates of the additive variances, identical AvgOff seemed to remove biases for the EBV of genotyped birds"

Chen et al. (2011) Christensen et al. (2012)

Single-step methods for genomic evaluation in pigs

O.F. Christensen 1 M, P. Madsen 1, B. Nielsen 2, T. Ostersen 2, G. Su 1

Forni et al. (2011) suggested that G should be scaled such that the average of diagonal elements equal the average of diagonal elements of A_{11} , whereas Chen et al. (2011) and Vitezica et al. (2011) suggested that a small number should be added to all elements of G such that the average of all elements equal the average of elements of A_{11} . Here, we combined these two ideas and adjusted G to

$$G_{a} = \beta G + \alpha, \tag{4}$$

where β and α solved the system of equations

$$Avg(diag(G))\beta + \alpha = Avg(diag(A_{11})),$$

 $Avg(G)\beta + \alpha = Avg(A_{11}).$

Blending - to avoid singularity problems

$$\mathbf{G} = 0.95 * \mathbf{G}_0 + 0.05 * \mathbf{A}_{22}$$

- OPTION AlphaBeta 0.95 0.05 #(default)
- Beta may vary from 0.01 to 0.3
 - Some places may use 0.5

Genomic Matrix options

• OPTION GammaDelta x1 x2

$$\mathbf{G} = \alpha \mathbf{G}_0 + \beta \mathbf{A}_{22} + \gamma \mathbf{I} + \delta$$

Objective: blend 95% of G with 5% identity instead of A₂₂

$$G = 0.95G_0 + 0.0A_{22} + 0.05I + 0.0$$

- OPTION AlphaBeta 0.95 0.0 #default = 0.95 0.05
- OPTION GammaDelta 0.05 0.0 #default = 0.00.0

Order of procedures

Tuning

Blending

Storing and Reading Matrices

• preGSf90 saves $G^{-1} - A_{22}^{-1}$ by default (file: GimA22i)

To save the 'raw' genomic matrix:

- OPTION saveG [all]
 - If the optional all is present all intermediate **G** matrices will be saved!!!

To save **G**⁻¹

- OPTION saveGInverse
 - Only the final **G**, after blending, scaling, etc. is inverted!!!

To save A_{22} and A_{22}^{-1}

• OPTION saveA22 and OPTION saveA22Inverse

Storing and Reading Matrices

• OPTION saveG [all] , OPTION saveGInverse, ...

- Saves in binary format
- "Dumped" format to save space and time
- To save as row, column, value:
 - OPTION no full binary
 - Still binary, but can be easily read and converted to text

Storing with Original IDs

- Some matrices could be stored in text files with the original IDs extracted from renaddxx.ped created by the RENUMF90 program (col #10)
- For example:
 - OPTION saveGOrig
 - OPTION saveDiagGOrig
 - OPTION saveHinvOrig

- Values
 - origID_i, origID_j, val

Genomic Matrix - Population structure

OPTION plotpca

Plot first two principal components to look for stratification in the population.

OPTION extra_info_pca file col

Reads from file the column col to plot with different colors for different classes.

Genomic Matrix - Population structure

Tricks to setup **G** for GBLUP #1

Tricks are needed because preGSf90 is set up for ssGBLUP

1) Use a dummy pedigree

1 0 0 2 0 0

•••

- 2) Use PED_DEPTH 1 in renumf90
- 3) Change blending parameters
 - OPTION AlphaBeta 1.00 0.00 \rightarrow G = 1.00*G + 0.00*I
 - OPTION AlphaBeta 0.95 0.05 \rightarrow G = 0.95*G + 0.05*I

- 4) No adjustment for compatibility with A_{22}
 - OPTION tunedG 0

Tricks to setup **G** for GBLUP #2

- Yet another ways to run GBLUP in BLUPF90
- Replace steps 1 and 2 by:

A) In renum.par, remove any information about the pedigree file

```
FILE pedigree.txt FILE_POS 1 2 3 0 0 PED_DEPTH 3
```

OR

B) Add this option to the renf90.par parameter file:

```
OPTION omit ainv
```

PreGSf90 inside BLUPF90 ??

- Almost all programs from BLUPF90 support creating genomic relationship matrices
 - OPTION SNP file xxxx

- When to use preGSF90?
 - Same genomic relationship matrix for several models, traits, etc.
 - Just do it once and store GimA22i or Gi and A22i separate

Use in application programs

Use renumf90 for renumbering and creating XrefID and other files

```
SNP_FILE marker.geno
```

Option 1:

run blupf90+

Option 2:

run preGSf90 with quality control, saving clean files run blupf90+ with clean files

• Option 3:

run preGSf90 (program saves **GimA22i**) run blupf90+ with option to read **GimA22i**

preGSf90 is highly parallelized!

OPTION num_threads_pregs n

Specify number of threads to be used with MKL-OpenMP for creation and inversion of matrices

Be careful: It has advantages and disadvantages!