

Creation of genomic relationship matrices with preGSf90

Ignacio Aguilar INIA Uruguay

Daniela Lourenco
UGA USA

Genomic Relationship Matrix - G

• G = ZZ'/k

- -Z = matrix for SNP marker
- Dimension Z= n*p
- n animals,
- p markers

Data file with SNP marker

Genotype Codes

- 0 Homozygous
- 1 Heterozygous
- 2 Homozygous
- 5 No Call (Missing)

HOWTO: Creation of Genomic Matrix

Read SNP marker information =>
$$M$$
 $\begin{bmatrix} 2 & 1 & 2 & .. \\ 0 & 1 & 0 & .. & . \\ .. & .. & .. & .. \end{bmatrix}$

- Get 'means' to center
 - Calculate allele frequency from observed genotypes (p_i)
 - $p_i = sum(SNPcode_i)/2n$
- Centered matrix $\mathbf{Z} = \mathbf{M} 2\mathbf{P}$

•
$$G = \frac{ZZ'}{2 \sum p_i (1-p_i)}$$
 (VanRaden, 2008)

Creation of Genomic matrix

- Issues
 - Large number of genotyped individuals
 - Large number of SNP markers
 - Matrix multiplication ~ cost n^2 * p

 Large amount of data put in (cache) memory to do matrix multiplication for each pair of animals and indirect memory access (center)

PreGSf90

 Interface program to the genomic module to process the genomic information for the BLUPF90 family of programs

- Efficient methods
 - creation of the genomic relationship matrix, relationship based on pedigree
 - Inverse of relationship matrices
- Performs Quality Control of SNP information

Input files

- Same parameter file as for all BLUPf90 programs
 - But with "OPTION SNP file xxxx"
 - Turns on the genomic module
- SNP file (marker information)
- Pedigree file
- Cross Reference file for renumber ID
 - Links genotypes files with codes in pedigree, etc.
- Map file (optional)

OPTIONS – BLUPF90 parameter file

PreGSF90

controled by adding OPTION commands to the parameter file

- OPTION SNP_file marker.geno.clean

– Read 2 files:

- marker.geno.clean
- marker.geno.clean.XrefID

RENUMF90

Add keyword to the "animal effect"

```
SNP_FILE marker.geno
```

- Renumber tool to prepare:
 - data
 - pedigree
 - genotypes
 - parameter files for all other BLUPF90 programs
 - Check wiki:
- http://nce.ads.uga.edu/wiki/doku.php

Parameters file

```
RENUMF90
                                              BLUPF90
                                              renf90.par
renum.par
                                              DATAFILE
DATAFILE
                                                renf90.dat
phenotypes.txt
                                              NUMBER_OF_TRAITS
TRAITS
                                              NUMBER_OF_EFFECTS
FIELDS PASSED TO OUTPUT
                                               OBSERVATION(S)
WEIGHT(S)
                                              WEIGHT(S)
RESIDUAL_VARIANCE
                                               EFFECTS: POSITIONS_IN_DATAFILE NUMBE
0.9038
                                                          1 cross
EFFECT
                                                      15800 cross
1 cross alpha # mu
                                              RANDOM_RESIDUAL VALUES
EFFECT
                                                0.90380
2 cross alpha # animal
                                               RANDOM GROUP
RANDOM
animal
                                               RANDOM_TYPE
                                               add_animal
FILE
                                                FILE
pedigree
                                               renadd02.ped
SNP FILE
                                               (CO)VARIANCES
marker.geno.clean
                                                 0.99510E-01
(CO) VARIANCES
                                              OPTION SNP_file marker.geno.clean
    0.9951E-01
```

Pedigree file from RENUMF90

- 1 animal number
- 2 parent 1 number or UPG
- 3 parent 2 number or UPG
- 4 3 minus number of known parents
- 5 known or estimated year of birth
- 6 number of known parents;

if animal is genotyped 10 + number of known parents

- 7 number of records
- 8 number of progenies as parent 1
- 9 number of progenies as parent 2
- 10 original animal ID

SNP file & Cross Reference Id

SNP File First col: Identification, could be alphanumeric

Second col: SNP markers {codes: 0,1,2 and 5 for missing}

```
80 211010110020120110110101101111
8014 211101015111011202211101115111
516 211001012022520211202101211021
181 211101111122011205502000201010
```

Renumber ID

Cross Reference LD

1732 80 8474 8014 406 516 9441 181

Pedigree File (from RENUMF90)

1732 11010 10584 1 3 12 1 0 0 80 8474 8691 9908 1 3 12 1 0 0 8014 406 8691 9825 1 3 12 1 0 2 516 9441 8691 8829 1 3 12 1 0 0 181

Genomic Matrix default options

•
$$G* = \frac{ZZ'}{2 \sum p_i (1-p_i)}$$
 (VanRaden, 2008)

- With:
 - Z centered using allele frequencies estimated from SNP
- $\mathbf{G} = \mathbf{G}^* 0.95 + \mathbf{A}_{22}^* 0.05$ (to invert)
- Tuning of G (see Vitezica et al., 2011)
 - Adjust ${\bf G}$ to have mean of diagonals and off-diagonals equal to ${\bf A}_{22}$

Genomic Matrix Options

- OPTION whichfreq x
 - 0: read from file freqdata or other specified
 - -1:0.5
 - 2: current calculated from genotypes (default)
- OPTION FreqFile file
 - Reads allele frequencies from a file
- OPTION maxsnp x
 - Set the maximum length of string for reading marker data from file => BovineHD chip

Options for Blending G and A₂₂

- OPTION AlphaBeta alpha beta
 - -G = alpha*G + beta*A
- OPTION tunedG
 - 0: no adjustment
 - 1: mean(diag(G))=1, mean(offdiag(G))=0
 - 2: mean(diag(G))=mean(diag(A)), mean(offdiag(G))=mean(offdiag(A)) (default)
 - 3: mean(G)=mean(A)
 - 4: Use Fst adjustment. Powell et al. (2010) & Vitezica et al. (2011)

$$\rho = \frac{1}{n^2} (\sum_{i} \sum_{j} \mathbf{A}_{22 \, i,j} - \sum_{i} \sum_{j} \mathbf{G}_{i,j}) \qquad \mathbf{G}^* = (1 - \rho / 2) \, \mathbf{G} + \mathbf{11}^* \, \rho$$

Creation of 'raw' genomic matrix 'GBLUP'

- Tricks:
- Use dummy pedigree

```
100
```

•••

- Change blending parameters
 - OPTION AlphaBeta 0.99 0.01
- No adjustment for compatibility with A₂₂
 - OPTION tunedG 0

$$G = 0.99*G + 0.01*I$$

Storing and Reading Matrices

To save our 'raw' genomic matrix:

- OPTION saveG [all]
 - If the optional all is present all intermediate G matrices will be saved!!!

or its inverse

- OPTION saveGInverse
 - Only the final matrix G, after blending, scaling, etc.
 is inverted !!!

Storing with Original IDs

- Some matrices could be stored in text files with the original IDs extracted from renaddxx.ped created by the RENUMF90 program (col #10)
- For example:
 - OPTION saveGOrig
 - OPTION saveDiagGOrig
 - OPTION saveHinvOrig
- Values
 - origID i, origID j, val

Looking stored matrices

- Avoid open with text editors, huge files !!!
- For example:
- 1500 genotyped individuals => 1,125,750 rows
- Inspection could be done by Unix commands:
 - head G => first 10 lines
 - tail G => last 10 lines
 - less G => scroll document by line/page
 - wc -1 G => count number of lines good for checks with the number of genotypes (n) = (n*(n+1)/2)

head G

```
1 1 .999382118619
1 2 .355052761478
2 2 1.014521277458
1 3 -.048184197960
2 3 -.057513012886
3 3 .976558921904
1 4 -.101734083083
2 4 -.007644724611
3 4 .196757165096
4 4 1.018165021903
```

PreGSf90 inside BLUPF90 ??

- Almost all programs from BLUPF90 support creation of genomic relationship matrices
- OPTION SNP_file xxxx

- Why preGSF90?
 - Same genomic relationship matrix for several models, traits, etc. Just do it once and store

Use in application programs

 Use renumf90 for renumbering and creation of XrefID and files SNP_FILE marker.geno

- Run preGSf90 with quality control, saving clean files
 - Option 1:
 run preGSf90 with clean files saving G
 run blupf90 with option to read G from the file
 - Option 2: run blupf90 with clean files saving G