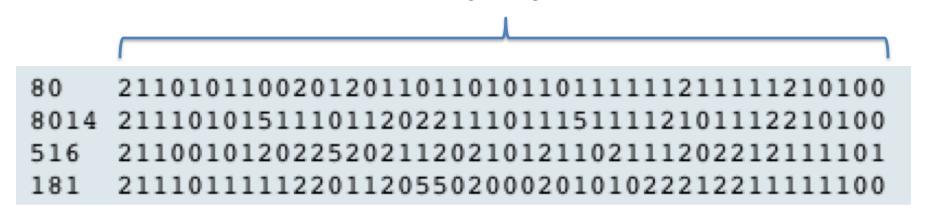


Creation of genomic relationship matrices with preGSf90

Ignacio Aguilar INIA Uruguay Daniela Lourenco UGA USA

UGA TEAM, 08/2019

Genomic Relationship Matrix - G



(VanRaden, 2008)

- Z = matrix for SNP marker
- Dimension of Z= n*p
- n animals

p markers

- **Genotype Codes**
- 0 Homozygous
- 1 Heterozygous
- 2 Homozygous
- 5 No Call (Missing)

SNP file

HOW TO: Creation of Genomic Matrix

- Read SNP marker information => M212..010..

- Get 'means' to center
 - Calculate allele frequency from observed genotypes (p_i)
 - $p_i = sum(SNPcode_i)/2n$
- Centered matrix $\mathbf{Z} = \mathbf{M} 2\mathbf{P}$
- $\mathbf{G} = \frac{\mathbf{Z}\mathbf{Z}'}{2\sum p_i(1-p_i)}$

(VanRaden, 2008)

Creation of Genomic matrix

- Issues
 - Large number of genotyped individuals
 - Large number of SNP markers
 - Matrix multiplication ~ cost n^2 * p
- Large amount of data put in (cache) memory to do matrix multiplication for each pair of animals and indirect memory access (center)

PreGSf90

- Interface program to the genomic module to process the genomic information for the BLUPF90 family of programs
- Besides Quality Control of SNP information:
- Efficient methods
 - creation of the genomic relationship matrix, relationship based on pedigree
 - Inverse of relationship matrices

PreGSf90

• Created to construct the matrices using in ssGBLUP

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$$
$$\mathbf{G} \qquad \mathbf{G}^{-1}$$
$$\mathbf{A}_{22} \qquad \mathbf{A}_{22}^{-1}$$
$$\mathbf{G}^{-1} - \mathbf{A}_{22}^{-1}$$

PreGSf90

- Compute statistics for the matrices
 - Means, Var, Min, Max
 - Correlations between diagonals
 - Correlations for off-diagonals
 - Correlations for the full matrices
 - Regression coefficients

Input files

- Same parameter file as for all BLUPf90 programs
 - But with "OPTION SNP_file xxxx"
 - Turns on the genomic module
- SNP file (marker information)
- Cross Reference file for renumber ID

 Links genotypes files with codes in pedigree, etc.
- Pedigree file
- Map file (optional)

OPTIONS – preGS90 parameter file

• PreGSF90

 – controled by adding OPTION commands to the parameter file

- OPTION SNP_file marker.geno.clean
- Read 2 files:
 - marker.geno.clean
 - marker.geno.clean.XrefID (created by renumf90)

Genomic Matrix default options

• $\mathbf{G} * = \frac{\mathbf{Z}\mathbf{Z}'}{2\sum p_i(1-p_i)}$ (Var

(VanRaden, 2008)

• With:

Z centered using allele frequencies estimated from SNP

- $\mathbf{G} = \mathbf{G}^* 0.95 + \mathbf{A}_{22}^* 0.05$ (to invert)
- Tuning of **G** (see Vitezica et al., 2011)
 - Adjust **G** to have mean of diagonals and off-diagonals equal to \mathbf{A}_{22}

Genomic Matrix Options

- OPTION which freq x
 - 0: read from file *freqdata* or other specified
 - 1:0.5
 - 2: current calculated from genotypes (default)
- OPTION FreqFile file
 - Reads allele frequencies from a file
- OPTION maxsnp x
 - Set the maximum length of string for reading marker data from file => BovineHD chip

Options for Blending G and A₂₂

- OPTION AlphaBeta *alpha beta* G = alpha*G + beta*A
- OPTION tunedG x
 - 0: no adjustment
 - 1: mean(diag(G))=1, mean(offdiag(G))=0
 - 2: mean(diag(G))=mean(diag(A)), mean(offdiag(G))=mean(offdiag(A)) (default)
 - 3: mean(G)=mean(A)
 - 4: Use Fst adjustment. Powell et al. (2010) & Vitezica et al. (2011)

$$\rho = \frac{1}{n^2} \left(\sum_i \sum_j A_{22\,i,j} - \sum_i \sum_j G_{i,j} \right) \qquad G^* = (1 - \rho/2) G + 11' \rho$$

Storing and Reading Matrices

To save our 'raw' genomic matrix:

- OPTION saveG [all]
 - If the optional *all* is present all intermediate G matrices will be saved!!!

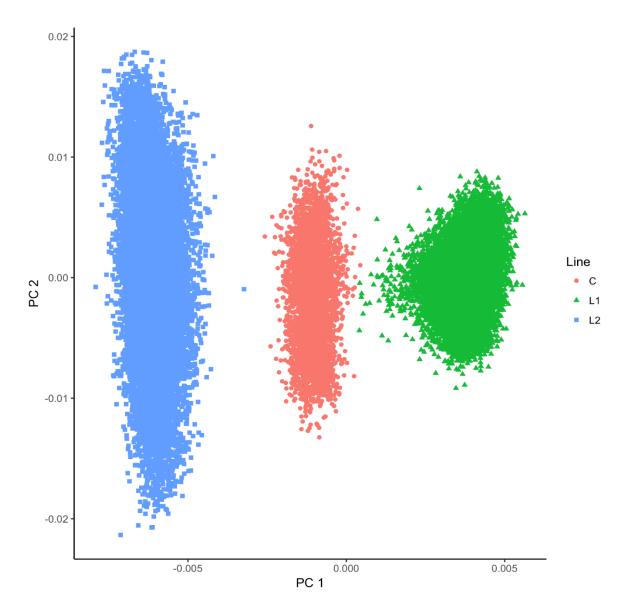
or its inverse

- OPTION saveGInverse
 - Only the final matrix G, after blending, scaling, etc.
 is inverted !!!

Storing with Original IDs

- Some matrices could be stored in text files with the original IDs extracted from *renaddxx.ped* created by the RENUMF90 program (col #10)
- For example:
 - OPTION saveGOrig
 - OPTION saveDiagGOrig
 - OPTION saveHinvOrig
- Values
 - origID_i, origID_j, val

Genomic Matrix - Population structure


OPTION plotpca

Plot first two principal components to look for stratification in the population.

OPTION extra_info_pca file col

Reads from file the column col to plot with different colors for different classes.

Genomic Matrix - Population structure

Creation of 'raw' genomic matrix 'GBLUP'

- Tricks:
- Use dummy pedigree
 - 100 200
- Change blending parameters
 OPTION AlphaBeta 0.99 0.01
- No adjustment for compatibility with A₂₂
 OPTION tunedG 0

G = 0.99*G + 0.01*I

PreGSf90 inside BLUPF90 ??

- Almost all programs from BLUPF90 support creation of genomic relationship matrices
- OPTION SNP_file xxxx

- Why preGSF90 ?
 - Same genomic relationship matrix for several models, traits, etc. Just do it once and store GimA22i

Use in application programs

- Use renumf90 for renumbering and creation of XrefID and files SNP_FILE marker.geno
- Run preGSf90 with quality control, saving clean files
 - Option 1:

run preGSf90 with clean files (program saves **GimA22i**) run blupf90 with option to read **GimA22i** from the file

– Option 2:

run blupf90 with clean files