Creation of genomic relationship matrices with preGSf90 and Forming Single-step mixed model equation

Genomic Relationship Matrix - G

- G = ZZ'/k
 - Z = matrix for SNP marker
 - Dimension Z= n*p
 - n animals,

– p markers Data file with SNP marker

Genotype Codes

- 0 Homozygous
- 1 Heterozygous
- 2 Homozygous
- 5 No Call (Missing)

80 21101011002012011011010110111111211111210100 8014 21110101511101120221110111511112101112210100 516 21100101202252021120210121102111202212111101 181 211101111220112055020002010102221221111100

HOWTO: Creation of Genomic Matrix

- Get 'means' to center
 - Calculate allele frequency from observed genotypes (p_i)
 - $-p_i = sum(SNPcode_i)/2n$
- Matrix for center W(3,p) $0 \begin{bmatrix} 0-2p_1 & 0-2p_2 & .. \end{bmatrix}$

• Center matrix Z = W(M)

Creation of Genomic

- Issues
 - Large number of genotyped individuals
 - Large number of SNP markers
 - Matrix multiplication ~ cost n^2 * p
- Large amount of data put in (cache) memory for doing 'matmul' for each pair of animals and indirect memory access (center)
 - □ Memory hierarchy

Matrix multiplication

- Matrix multiplication
 - Several methods
 - Intrisic matmul (good for small examples !!!)
 - "do-loops"
 - Packages (BLAS, LAPACK)
 - Non-optimzed
 - Optimized (ATLAS, MKL, etc.)
 - Several Compilers
 - Perform automatic optimization
 - Vectorize loops
 - Detect permuted loops
 - Can use OpenMP directives for parallelization

PreGSf90

- Interface program to the genomic module to process the genomic information for the BLUPF90 family of programs
- Efficient methods
 - creation of the genomic relationship matrix, relationship based on pedigree
 - Inverse of relationship matrices
- Performs Quality Control of SNP information

Input files

- Same parameter file as for all BLUPf90 programs
 - But with "OPTION SNP_file xxxx"
 - indicate to run genomic subroutines
- Pedigree file
- Marker information (SNP file)
- Cross Reference file for renumber ID

 Links genotypes files with codes in pedigree, etc.

SNP map file (optional)

- For some genomic analyses or checks
- Format:
 - snp number
 - Index number of SNP in the sorted map
 - chromosome number
 - position
- First row corresponds to first column SNP in genotype file !!!

OPTIONS – BLUPF90 parameter file

- PreGSF90
 - controled by adding OPTIONS commands to the parameter file
 - OPTION SNP_file marker.geno.clean
 - Read 2 files:
 - marker.geno.clean
 - marker.geno.clean.XrefID

RENUMF90

- Add keyword to the "animal effect" SNP_FILE marker_geno_clean
- Renumber tool to prepares:
 - data
 - pedigree
 - genotypes
 - parameter files for BLUPF90 programs including PREGSF90
- Check wiki:
- http://nce.ads.uga.edu/wiki/doku.php

Parameters file

Pedigree file from RENUMF90

• 1 - animal number

- 2 parent 1 number or UPG
- 3 parent 2 number or UPG
- 4 3 minus number of known parents
- 5 known or estimated year of birth
- **6** number of known parents;

if animal is genotyped 10 + number of known parents

- 7 number of records
- 8 number of progenies as parent 1
- 9 number of progenies as parent 2
- 10 original animal ID

SNP file & Cross Reference Id

Genomic Matrix default options

- G* = ZZ'/k as in VanRaden, 2008
- With:
 - Z center using allele frequencies estimated from the genotyped individuals
 - k = 2 sum (p * (1-p))
- G = G*0.95 + A*0.05 (to invert)
- Tunning of G (see Z. Vitezica work)
 - Adjust G to have mean of diagonals and off-diagonals equal to A

Genomic Matrix Options

- OPTION which freq x
 - 0: read from file *freqdata* or other specified
 - 1:0.5
 - 2: current calculated from genotypes (default)
- OPTION FreqFile *file*
 - Reads allele frequencies from a file
- OPTION maxsnps x
 - Set the maximum length of string for reading marker data from file => BovineHD chip

Options for Blending G and A

- OPTION AlphaBeta alpha beta
 - $G = alpha^*G^r + beta^*A$
- OPTION tunedG
 - 0: no adjustment
 - 1: mean(diag(G))=1, mean(offdiag(G))=0
 - 2: mean(diag(G))=mean(diag(A)), mean(offdiag(G))=mean(offdiag(A)) (default)
 - 3: mean(G)=mean(A)
 - 4: Use Fst adjustment. Powell et al. (2010) & Vitezica et al. (2011)

Creation of 'raw' genomic matrix 'GBLUP'

- Tricks:
- Use dummy pedigree
 - 100 200
 - •••
- Change blending parameters
 - OPTION AlphaBeta 0.99 0.01
- No adjustment for compatibility with A – OPTION tunedG 0

$$G = 0.99 * G + 0.01 * I$$

Storing and Reading Matrices

- PreGSF90:
 - Facilitate the implementation of single-step

- Matrix A is replaced by H with:

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$$

- Default output is the matrix GimA22i, to be included in application programs (BLUPF90, REMLF90..)
- BUT: intermediate matrices could be stored for examination, use in application programs, etc.

Storing and Reading Matrices

- Matrices that can be stored:
 - A22, inv(A22), G, inv(G), GmA22, inv(GmA22), inv(H)
- All matrices are stored in same format:
 - upper triangle
 - By default in binary format
 - But to store in text (Ascii) format:
 - Use: OPTION saveAscii
- Values
 - i j val
 - i & j refers to the row number in the genotype file !!!!!
 - Renumber ID could be obtained from the XrefID file

Storing and Reading Matrices

To save our 'raw' genomic matrix:

- OPTION saveG [all]
 - If the optional *all* is present all intermediate G matrices will be saved!!!

or it inverse

- OPTION saveGInverse
 - Only the final matrix G, after blending, scaling, etc. is inverted !!!
- Look in wiki for keywords for other matrices

Storing with Original IDs

- Some matrices could be stored in text files with the original IDs extracted from *renaddxx.ped* created by the RENUMF90 program (col #10)
- For example:
 - OPTION saveGOrig
 - OPTION saveDiagGOrig
 - OPTION saveHinvOrig
- Values

– origID_i, origID_j, val

OUTPUT

- Only GimA22i, other requested matrices files, and some reports are stored.
- Main log is printout to the screen !!!
- Use redirection '>'
- or better the command tee to save in a log file.
- This will allows to save and see the messages from the program
- echo renf90.par | preGSf90 | tee pregs.log

Printout

Looking stored matrices

- Avoid open with text editors, huge files !!!
- For example:
- 1500 genotyped individuals => 1,125,750 rows
- Inspection could be done by Unix commands:
 - head G => first 10 lines
 - tail G => last 10 lines
 - -less G => scroll document by line/page
 - wc -l G => count number of lines good for checks with the number of genotypes (n) = (n*(n+1)/2)

head G

- 1 1 .999382118619 1 2 .355052761478
- 2 2 1.014521277458
- 1 3 -.048184197960
- 2 3 -.057513012886
- 3 3 .976558921904
- 1 4 -.101734083083
- 2 4 -.007644724611
- 3 4 .196757165096
- 4 4 1.018165021903

PreGSf90 inside BLUPF90 ??

- Almost all programs from package support creation of genomic relationship matrices, Hinv, etc.
- OPTION SNP_file xxxx
- Why preGSF90 ?
 - Same genomic relationship matrix for several models, traits, etc. Just do it once and store.
 - Uses of optimized subroutines for efficient matrix multiplications, inversion and with support for parallel processing

Efficent methods to construct genomic relationship matrices

Elapsed time for different number of individuals BLADE INIALB 24 cpu

Number of genotypes	Genomic Relationship Matrix		
	Creation	Invertion	
10k	0.6 m	0.1 m	
30k	5.4 m	3 m	
50k	15 m	14 m	
70k	30 m	36.4 m	
100k	60 m	106 m	

Creation a subset of relationship matrix (A22)

- Create a relationship matrix for only genotyped animals (~ thousands)
- Full pedigree (~millions)
- Trace only ancestors of genotyped (reduce but still large number for A matrix)

Relationship Matrix of Genotyped Animals

- Colleau's algorithm to creates A₂₂
- No need to have explicit A matrix
- Method uses "matrix-vector" multiplication with a decomposition of A matrix

$$\mathbf{v} = \mathbf{A}\mathbf{r} = (\mathbf{I} - \mathbf{P})^{-1}\mathbf{D}(\mathbf{I} - \mathbf{P})^{-1}\mathbf{r}$$

Example A times a vector

Pedigree	Matrix P	Matrix (I-P) ⁻¹	
[,1] [,2] [,3] [1,] 1 0 0 [2,] 2 0 0 [3,] 3 1 2	[,1] [,2] [,3] [1,] 0.0 0.0 0.0 [2,] 0.0 0.0 0.0 [3,] 0.5 0.5 0.0	[,1] [,2] [,3] [1,] 1.0 [2,] 0.0 1.0 [3,] 0.5 0.5 1.0	
$\mathbf{v} =$	$\mathbf{Ar} = (\mathbf{I} - \mathbf{I})$	$\mathbf{P}^{-1}\mathbf{D}(\mathbf{I} - \mathbf{P})$	-1'r
Matrix (I-P) ⁻¹ [,1] [,2] [,3] [1,] 1.0 [2,] 0.0 1.0 [3,] 0.5 0.5 1	Matrix D [,1] [,2] [,3] [1,] 1 [2,] 1 [3,] 0.5	Vector qMatrix $(I-P)^{-1'}$ [,1][,1][,2][,3][1,]25[1,][2,]35 = [3,][2,]10.530[3,]	Vector r ₂ [,1] [1,] 10 [2,] 20 [3,] 30
Do i=1,n vi = qi*d End do	i + (qsi + qdi)/2	Do $i=n, l$ $q_i = q_i + r_{2i}$ $q_{si} = q_{si} + q_i/2$ $q_{di} = q_{di} + q_i/2$ End do	

Relationship Matrix of Genotyped Animals

For each genotyped animal in A₂₂

$$\mathbf{v} = \mathbf{A}\mathbf{r}_2 = (\mathbf{I} - \mathbf{P})^{-1}\mathbf{D}(\mathbf{I} - \mathbf{P})^{-1}\mathbf{r}_2$$

Tabular method vs. Colleau algorithm

Testing

□ 6,500 genotyped Holsteins

□ 57,000 pedigrees

	Tabular*	Colleau method
CPU Time	311 s	45 s
Memory	12.1GB	322MB

* Gmatrix.f90 (VanRaden, 2009)

Single-Step to genomic evaluation

Traditional genetic evaluation

$$\begin{bmatrix} X'X & X'Z \\ Z'X & Z'Z + \alpha A^{-1} \end{bmatrix} \begin{bmatrix} \hat{b} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} X'y \\ Z'y \end{bmatrix}$$

• Single-step genomic evaluation $\begin{bmatrix} X'X & X'Z \\ Z'X & Z'Z + \alpha H^{-1} \end{bmatrix} \begin{bmatrix} \hat{b} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} X'y \\ Z'y \end{bmatrix}$

Genetic Evaluation

Single-Step Genetic Evaluation

Single step genomic evaluation

$$\begin{bmatrix} X'X & X'Z \\ Z'X & Z'Z + H^{-1}\alpha \end{bmatrix} \begin{bmatrix} \hat{b} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} X'y \\ Z'y \end{bmatrix}$$

- Inverses $\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$ Aguilar et al., 2010 Christensen & Lund, 2010

- Numerator relationship matrix
- Pedigree relationships between genotyped animals
- Genomic relationships

Solving Ax=b by Preconditioned Conjugate Gradient

do while (r'r "not sufficiently small") $z=M^{-1}r$ $\tau_{\rm L} = z'r$ if (k=1) then $\beta=0; p=z$ else $\beta = \tau_{k-1}/\tau_{k-2}$; p=z+ β p endif w=Ap $\alpha = \overline{\tau_{k-1}}/(\mathbf{p'w})$ $x=x+\alpha p$ if (mod(k, 100) = 0) then $r=r-\alpha w$ else r=b-Axendif k=k+1enddo

System solved:

 $\mathbf{M}^{-1}\mathbf{A}\mathbf{x} = \mathbf{M}^{-1}\mathbf{b}$

M – preconditioner

usually M=diag(A)

Berger et al (1988?)

Extra matrices required for single-step

• Inverses

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & \mathbf{G}^{-1} - \mathbf{A}^{-1}_{22} \end{bmatrix}$$
PREGSF90

- Pedigree relationships between genotyped animals
- Genomic relationships

