BLUPf90 & PreGS and Quality Control

PreGSf90

- Interface program to the genomic module to process the genomic information for the BLUPF90 family of programs
- Efficient methods
 - creation of the genomic relationship matrix, relationship based on pedigree
 - Inverse of relationship matrices
- Performs Quality Control of SNP information

BLUPF90 programs using Genomic

- Genomic programs
 - controled by adding OPTIONS commands to the parameter file
 - OPTION SNP_file marker.geno.clean
 - Read 2 files:
 - marker.geno.clean
 - marker.geno.clean_XrefID

Output Files

- GimA22i
 - Store the content of the inv(G) inv(A22)
 - Only if preGSf90 for runs, not in applications programs
- freqdata.count
 - Contains the estimated allele frequency before QC
- freqdata.count.after.clean
 - Contains allele frequencies as used in calculations, remove code
 - For removed SNP these will be zero
- Gen_call_rate
 - List of animals removed by low call rate
- Gen_conflicts
 - Report of animals with Mendelian conflicts

Quality control By default exclude

• MAF

- SNP with MAF < 0.05

- Call rate
 - SNP with call rate < 0.90</p>
 - Individuals with call rate < 0.90
- Monomorphic
 - Exclude monomorphic SNP. ONLY when MAF <> 0

Quality control By default exclude (cont)

- Parent-progeny conflicts (SNP & Individuals)
 - Exclusion -> opposite homozygous
 - For SNP: >10 % of parent-progeny exclusion from the total of pairs evaluated
 - For Individuals: > 1% of parent-progeny from total number of SNP

Control default values

• For MAF

– OPTION minfreq x

- Call rate
 - OPTION callrate x
 - OPTION callrateAnim x
- Mendelian conflicts
 - OPTION exclusion_threshold x
 - OPTION exclusion_threshold_snp x

Parent-progeny conflicts

- Presence of these conflicts results in a negative H matrix !!!
- Problems in estimation of variance component by REML, programs do not converge, etc.
- Solution:
 - Report all conflicts, with counts for each individual as parent or progeny to trace the conflicts
 - Remove progeny genotype
 - maybe not the best option
 - But results in a positive-definite H matrix !!!

Parent-progeny conflicts

- OPTION verify_parentage x
 - 0: no action
 - 1: only detect
 - 2: detect and search for an alternate parent; no change to any file. Not implemented
 - implemented in seekparentf90 program
 - 3: detect and eliminate progenies with conflicts (default)

Other Options

- Exclusion of selected chromosomes:
 OPTION excludeCHR n1 n2 n3 ...
- Inclusion of selected chromosomes:
 OPTION includeCHR n1 n2 n3 ...
- Exclude samples from analyses
 OPTION excludeSample n1 n2 n3
- Inform which are sex chromosomes:
 - OPTION sex_chr n
 - Chromosome # > n will be excluded only for HWE and parent-progeny checks, but not in calculations

SNP map file

- OPTION chrinfo <*file>*
- For some genomic analyses (GWAS) or QC
- Format:
 - SNP number
 - Index number of SNP in the sorted map by chromosome and position
 - chromosome number
 - Position
 - SNP name (Optional)
- First column corresponds to first row SNP in genotype file !!!

1 1 135098 Hapmap43437-BTA-101873
2 1 267940 ARS-BFGL-NGS-16466
3 1 393248 Hapmap34944-BES1_Contig627_
4 1 471078 ARS-BFGL-NGS-98142
5 1 516404 Hapmap53946-rs29015852
6 1 571340 ARS-BFGL-NGS-66449
7 1 845494 ARS-BFGL-NGS-66449
7 1 845494 ARS-BFGL-NGS-65067
9 1 950841 ARS-BFGL-NGS-65067
9 1 950841 ARS-BFGL-NGS-3964
11 1 1009504 ARS-BFGL-NGS-3964
11 1 1009504 ARS-BFGL-NGS-98203
12 1 1189382 ARS-BFGL-BAC-31722
13 1 1234172 ARS-BFGL-BAC-6557
14 1 1264369 ARS-BFGL-BAC-7196
15 1 1350051 Hapmap53766-cc46526150

Saving 'clean' files

- SNP excluded from QC are set as missing (i.e. Code=5)
- Excluded Individuals are treated as unrealated in G and A22
 - For individual i
 - G[i,:] = 0; G[:,i]=0; G[i,i]=1; Same for A22
 - so G-A22 will cancel out
- OPTION saveCleanSNPs
- Save clean genotype data with excluded SNP and individuals
 - For example for a SNP_file gt
 - Clean fles will be:
 - gt_clean
 - *gt_*clean_XrefID
 - Removed will be output in files:
 - *gt_*SNPs_removed
 - *gt_*Animals_removed

Potential duplicate samples

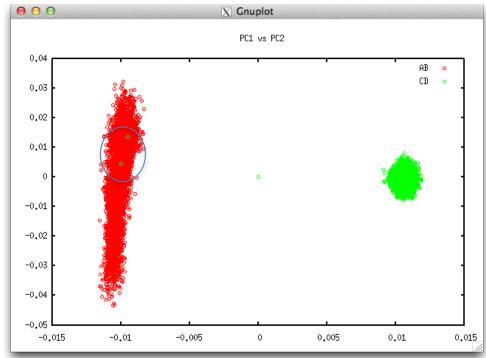
- All samples are checked with each other using values from genomic relationship matrix
 - x = G(i,j)/sqrt(G(i,i),G(j,j))
 - Values of x > 0.90 are printed in the output

```
Possible genotype samples duplicates *
      **********
** i-j sample #, i-j Id, G coeff
                                 174
                                                           0.9719
                                         167
                                                 82
                                                       860
                                                                  0.9728
                                                                         0.9723
                                                                                 0.9993
  i-j sample #, i-j Id, G coeff
                                 317
                                         249
                                                203
                                                      1144
                                                           1.0866
                                                                  1.0883
                                                                          1.0875
                                                                                 0.9988
  i-j sample #, i-j Id, G coeff
                                 646
                                         532
                                                535
                                                      1398
                                                           0.9483
                                                                  0.9494
                                                                         0.9496
                                                                                 0.9987
** i-j sample #, i-j Id, G coeff
                                               1652
                                 1400
                                        1362
                                                      1310
                                                           1.0108
                                                                  1.0151
                                                                         1.0154
                                                                                0.9957
```

- Threshold to identify potential duplicates
 - OPTION threshold_duplicate_samples x
- Exclude specific samples
 - OPTION excludeSample n1 n2....

Correlation off-diagonal G vs A

- Compute correlation for all elements of A > 0.02
- Potential problems with matching genotype and pedigree files
- For low values (<0.5) => print a warning !!!!
- For low values (<0.3) => program stop !!!
- If still you want to go ...
 - OPTION thrStopCorAG -1


Looking for stratification in populations

- OPTION plotpca
 - (only preGSf90 not in application programs)
 - Plot the first 2 PC
- OPTION extra_info_pca *filename col*
 - File with variables (alphanumeric) to plot PC with different colors for different classes
 - Same order as genotype file

```
Calculating PCA
```

Eigenvalue Decomposition DSYEV LAPACK Sum Eigenvalues 9672.00 First 6 PC

	Eigenvalue		% Explained
	LIG	envalue	~ Explained
PC:	1	2227.	23.02
PC:	2	71.32	0.7374
PC:	3	57.34	0.5929
PC:	4	48.34	0.4998
PC:	5	46.11	0.4768
PC:	6	44.93	0.4646

LD calculation and options

OPTION calculate_LD

Calculate LD as Rsq

OPTION LD_by_chr

Calculate LD within chromosome

OPTION LD_by_pos [x]

Calculate LD within chromosome and windows of SNP based on position optional parameter x define with windows size in Bp, default value 200000

```
OPTION filter_by_LD [x]
```

Filter SNP with Rsq > threshold. Optional parameter x define the threshold. default value 0.8

```
OPTION thr_output_LD [x]
```

Threshold to print out Rsq between pair of SNP Optional parameter x define the threshold. default value 0.1

preGSf90 -Only Quality control

Shortcut...

OPTION SNP file snp.dat **OPTION** chrinfo angus map OPTION excludeCHR 30 31 32 **OPTION** saveCleanSNPs **OPTION** createG 0 **OPTION** createGInverse 0 **OPTION** createA22 0 **OPTION createA22Inverse 0** OPTION createGimA22i 0

No Quality control

- ONLY use:
 - If QC was performed in a previous run
 - and "clean" genotype file is used

OPTION no_quality_control

Memory requirement

- Slow operations for quality control in PREGSF90
 - All data stored in memory as double precision
 - Designed for the computation of G-matrix
 - Required memory for 60k SNPs and
 - 500k genotyped animals = 224GB

Comparison preGSf90 and QCF90

- Holstein genotypes
 - Number of genotypes: 569,404
 - Number of SNP markers: 60,671
 - Number of Pedigree animals: 10,710,380
- Programs
 - QCF90: with pre-renumbered files
 - PREGSF90: with post-renumbered files

Masuda, 2017

QCF90: benchmark results

Step	QCF90 (sec.)	PREGSF90 (sec.)
Reading a SNP file	420	1407
MAF and call rate	150	245
HWE test	84	24
Call rate for animals	3	307
Mendelian tests for SNP	62	316
Mendelian tests for animals	62	248
Recalculation of MAF	136	161
Total	917	2708
Memory usage	9 GB	257 GB

Masuda, 2017