

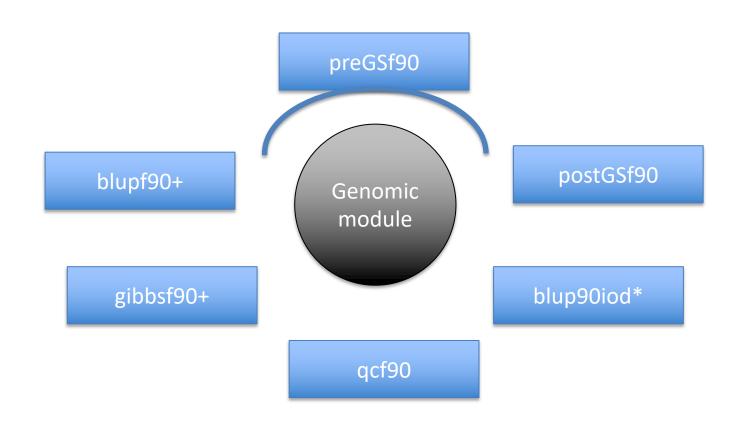
UNIVERSITY OF GEORGIA

College of Agricultural & Environmental Sciences

Animal Breeding and Genetics Group

Quality control of SNP data with preGSf90 or qcf90

Daniela Lourenco
Ignacio Aguilar
BLUPF90 TEAM – 05/2024



Quality control

- Call rate
 - Animals
 - SNP
- Minor Allele Frequency (MAF)
- Hardy-Weinberg Equilibrium (HWE)
- Non-mapped SNP
- Mendelian Conflicts
- Duplicate genotypes
- Linkage disequilibrium (LD)

Which software in the BLUPF90 family?

• Interface program to the genomic module to process the genomic information in the BLUPF90 family of programs

Performs Quality Control of SNP information

- Creates the genomic relationship matrix
 - and relationships based on pedigree
 - Inverse of relationship matrices

- Same parameter file as for all BLUPF90 programs
- Needs an extra OPTION in renf90.par
 - OPTION SNP_file marker.geno

- Reads 2 extra files (besides data and pedigree):
 - marker.geno
 - marker.geno XrefID (created by renumf90)

Run renumf90 before preGSf90

Use renumf90 for renumbering data and creating XrefID and files

```
EFFECT
1 cross alpha
RANDOM
animal
FILE
ped3.txt
FILE POS
1 2 3 0 0
SNP FILE
marker.geno
PED DEPTH
(CO) VARIANCES
0.30
```

Parameter files

```
BLUPF90
RENUMF90
                                             renf90.par
renum.par
                                              DATAFILE
DATAFILE
                                               renf90.dat
phenotypes.txt
                                              NUMBER_OF_TRAITS
TRAITS
                                              NUMBER_OF_EFFECTS
FIELDS PASSED TO OUTPUT
                                              OBSERVATION(S)
WEIGHT(S)
                                              WEIGHT(S)
RESIDUAL_VARIANCE
                                              EFFECTS: POSITIONS_IN_DATAFILE NUMBE
0.9038
                                                         1 cross
EFFECT
                                                     15800 cross
1 cross alpha # mu
                                              RANDOM_RESIDUAL VALUES
EFFECT
                                                0.90380
2 cross alpha # animal
                                               RANDOM_GROUP
RANDOM
animal
                                               RANDOM_TYPE
                                               add_animal
FILE
                                               FILE
pedigree
                                              renadd02.ped
SNP FILE
                                              (CO) VARIANCES
marker.geno
                                                0.99510E-01
(CO) VARIANCES
                                              OPTION SNP_file marker.geno
    0.9951E-01
```

renaddXX.ped from RENUMF90

- 1 renumbered animal ID
- 2 parent 1 number or UPG
- 3 parent 2 number or UPG
- 4 3 minus number of known parents
- 5 known or estimated year of birth
- 6 number of known parents

if animal is genotyped 10 + number of known parents

- 7 number of records
- 8 number of progenies as parent 1
- 9 number of progenies as parent 2
- 10 original animal ID

SNP file, XrefID, and ped after running renumf90

SNP File First col: original ID

Second col: SNP genotypes {codes: 0,1,2, and 5 (missing)}

All SNP should start in the same column!!!

```
80 211010110020120110110101101111
8014 211101015111011202211101115111
516 211001012022520211202101211021
181 211101111122011205502000201010
```

No changes!!!

Renumbered ID

Cross Reference in (_XrefID)

```
1732 80
8474 8014
406 516
9441 181
```

Pedigree File (renaddXX.ped)

```
1732 11010 10584 1 3 12 1 0 0 80
8474 8691 9908 1 3 12 1 0 0 8014
406 8691 9825 1 3 12 1 0 2 516
9441 8691 8829 1 3 12 1 0 0 181
```

- Same parameter file as for all BLUPF90 programs
- Needs an extra OPTION in renf90.par
 - OPTION SNP_file marker.geno

- Reads 2 extra files (besides data and pedigree):
 - marker.geno
 - marker.geno XrefID (created by renumf90)

Output Files from preGSf90

- freqdata.count
 - Contains the calculated allele frequency before QC
- freqdata.count.after.clean
 - Contains allele frequencies as used in calculations, removal code
 - AF will be zero for removed SNP
- Gen_call_rate
 - List of animals removed by low call rate
- Gen_conflicts
 - Report of animals with Mendelian conflicts
- GimA22i
 - Stores the content of $G^{-1} A_{22}^{-1}$
 - Only if preGSf90 is used, not in the other programs

Quality control default exclusion

- MAF
 - SNP with MAF < 0.05

- Monomorphic
 - Excludes monomorphic SNP

- Call rate
 - SNP with call rate < 0.90</p>
 - Individuals with call rate < 0.90

SNP data

SNP

ANIMAL

025			11101111100100012211512051221250225111102501220102010
036			012122222012101222010120222111112021222111112102020101101
050			2021111200021212222100021122122122110000020220000211022122212122020001112020:
054			0121211100121002222110211221102011212221200220021212121111202112022002022100:
066	20000202	022	102122112002200122221110122020211020222202022000122212101120102102
097	10110212	022	0121122111021001111100102211212022111111
101	12100212	022	00112211000111122201001011201121212111212012210021020020
151	11100102	022	12202102010110122202001212211112212211211
172	21101202	021	1112101211021102220101001221212221102220201221020212112010211122022112011010:
224	22000111	022	1012210101021102520201112120222122212220110121011102220050210121022010022125
277	21010220	012	12212112120210122220020122102121102011210212210022110110
314	12201112	012	222021021001000212100112012020200121002002
419	22111221	012	1120222221022102110201021121211122000000
439	20020210	012	2121210101021012221101112220202022110010111210011201022012220211021010011020:
456	12000102	022	11122001010210022110002022212122222200101102211102120120
501	11100002	122	1121201212121002221101202222101022112222110220011202110020201102022100021020:
571	11000012	020	2200221212022001210200011122110110222221200220020212001010212121022102010110:
579	11210021	021	00101011111022002221200022211112020222222
581	21100202	(5)2	10012212020110022002011251212150225222225022101120112
657	11001112	022	011121110102001222100011222121202121112120022001220222002221221
660	21000212	022	1120221121021012221011012221222121211120201221012201121111211112022000012101:
730	21000202	022	0020222220012002220001220222220021102252200122001202111151001012022001012025
732	21210212	1(5)2	1002201200012101121201215110215122521121150220011102111050202221122011022010:
764	11110212	(5)2	0012212211020001220201225222115021522221150220110202120050202022022111112110:
780	12110102	112	2220210101022002221201201121221012111110111221020202001010112212121002021021
800	22100012	022	1222210202021102221101012112022120222222
816	11000122	022	0121220110022011121100011021122121220020112222002222111021111212022011022010:
832	12101001	112	0011211110021112220111112122221210201111020221002112221001212111121012111110:
900	21010011	022	012212121102110212101212022121212110111111
901	12100102	022	112121221001000212020111122111212200111111

Parent-progeny conflicts

- OPTION verify parentage x
 - 0: no action
 - 1: only detect
 - 2: detect and search for an alternate parent. Not implemented!!!
 - implemented in seekparentf90 program
 - 3: detect and eliminate progeny with conflicts (default)

Control default values

For MAF

- OPTION minfreq x

Call rate

- -OPTION callrate x
- OPTION callrateAnim x

Mendelian conflicts

```
- OPTION exclusion_threshold_snp x (10%)
- OPTION exclusion threshold x (1%)
```

Control default values

OPTION exclusion_threshold x

Number of parent-progeny exclusions as percentage all SNP to determine the wrong relationship. default value 1

OPTION exclusion threshold snp x

Number of parent-progeny exclusions for each locus as a percentage, of pair of genotyped animals evaluated, to exclude an SNP from the analysis default value 10

OPTION number_parent_progeny_evaluations x

Set the number of minimum pair of parent-progeny evaluations to exclude SNPs due to parent-progeny exclusions default value 100

Other Options

Departure of heterozygous from Hardy-Weinberg Equilibrium

```
OPTION hwe x
```

Exclusion of selected chromosomes:

```
OPTION excludeCHR n1 n2 n3...
```

Inclusion of selected chromosomes:

```
OPTION includeCHR n1 n2 n3...
```

Exclude samples from analyses

```
OPTION excludeSample i1 i2 i3...
```

Inform which are the sex chromosomes:

```
OPTION sex_chr n
```

— Chromosome $\geq n$ will be excluded for HWE and parent-progeny checks, not for calculations

Heritability of gene content

OPTION h2_gene_content

It checks that the heritability of gene content is equal or close to 1 as described in Forneris et al. Genetics 199.3 (2015): 675-681. Markers with estimated h2<0.98 **and** significant p-values of the LRT (p<0.01) are discarded. In addition, heritability and status of each marker are written in file h2_gc_test.

The test is useful for homogenous populations (breeds) but theory does not hold for crossbred animals. This test uses explicitly inv(A22) so it is not suitable for very large populations.

LD calculation and options

OPTION calculate_LD

Calculate LD as the squared correlation of allele counts for two SNP

Results are stored in "Id_results", columns: snp_i, chr_i, pos_i, freq_i, snp_j, chr_j, pos_j,freq_j, dist_ij, Rsq_ij

OPTION LD_by_chr

Calculate LD within chromosome

OPTION LD by pos x

Calculate LD within chromosome and windows of SNP based on position optional parameter x define with windows size in Bp, default value 200000

OPTION filter_by_LD x

Filter SNP with Rsq > threshold. Optional parameter x define the threshold. default value 0.8

OPTION thr_output_LD x

Threshold to print out Rsq between pair of SNP Optional parameter x define the threshold, default value 0.1

SNP map file – new default

- OPTION chrinfo <file>
- OPTION map_file <file>
 - For QC and GWAS
- Format:
 - A header must be provided
 - Names for SNP, chromosome, and physical position are mandatory
 - SNPID for SNP
 - CHR for chromosome
 - POS for position

```
SNPID
                           NUM2
31428 14 7928189 ARS-BFGL-BAC-1020 2
32005 14 31819743 ARS-BFGL-BAC-10245 3
     14 6133529 ARS-BFGL-BAC-10345
     14 17544926 ARS-BFGL-BAC-10591
        34639444 ARS-BFGL-BAC-108
     14 31267746 ARS-BFGL-BAC-1093
         18882288 ARS-BFGL-BAC-10
     10 20609250 ARS-BFGL-BAC-10960 11
        21225382 ARS-BFGL-BAC-10
23612 10 26527257 ARS-BFGL-BAC-10986 13
     10 78512500 ARS-BFGL-BAC-10
     10 79252023 ARS-BFGL-BAC-11
24741 10 80783719 ARS-BFGL-BAC-11
     10 84516867 ARS-BFGL-BAC-11
25865 11 21276136 ARS-BFGL-BAC-11039 21
```

Saving 'clean' files

- SNP excluded from QC are set to missing (i.e., Code=5)
 - 5 is replaced by 0 in calculations
- OPTION saveCleanSNPs
- Save clean genotype data without excluded SNP and individuals
 - For example, for a SNP_file named marker.geno
 - Clean fles will be:
 - marker.geno_clean
 - marker.geno_clean_XrefID
 - Removed SNP/animals will be output in files:
 - marker.geno_SNPs_removed
 - marker.geno_Animals_removed

Only QC in preGSf90

- Quality control
- Genomic relationship matrices and inverses
 - Inverse is costly
- How to do only QC avoiding the inverses:
 - OPTION SNP file marker.geno
 - OPTION saveCleanSNPs
 - OPTION createGInverse 0
 - OPTION createA22Inverse 0
 - OPTION createGimA22i 0

No QC in the application programs

- ONLY use:
 - If QC was performed in a previous run
 - and "clean" genotype file is used

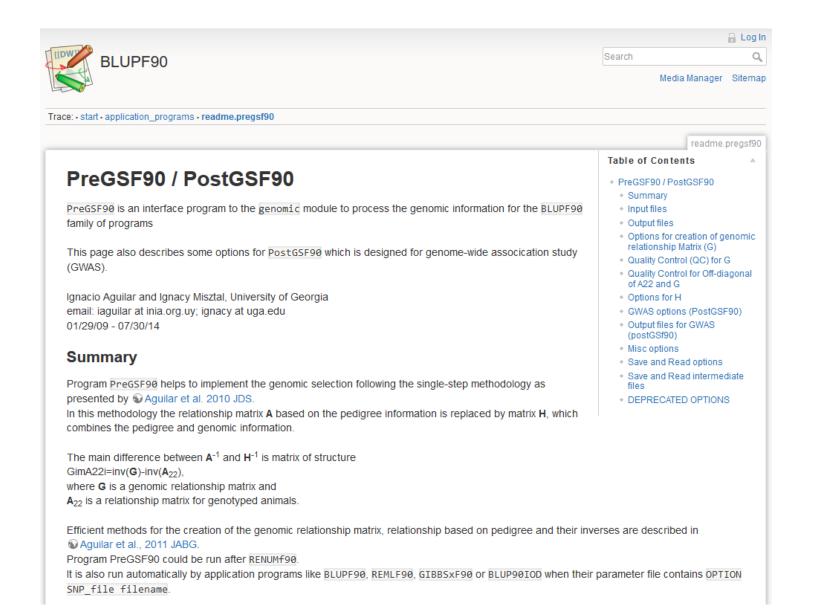
- OPTION SNP_file marker.geno_clean
- OPTION no_quality_control

Use in the application programs

(CO) VARIANCES

0.30

• Use renumf 90 for renumbering and creating XrefID and files


```
SNP_FILE

marker.geno

EFFECT
1 cross alpha
RANDOM
animal
FILE
ped3.txt
FILE_POS
1 2 3 0 0
SNP_FILE
marker.geno
PED_DEPTH
```

- Run preGSf90 with quality control, saving clean files
- Run further programs with clean files as needed
 - blupf90+, gibbs2f90+, ...

PreGSf90 wiki

Yutaka Masuda

- Quality control tool for large genomic data
 - What is an efficient way to detect genomically identical animals?
 - It implies we should compare all pairs of genotyped animals
- Huge data and slow operations
 - More than 5 million genotyped Holsteins!
 - 80K SNPs x [5M x 5M] / $2 \sim 1 \times 10^{18}$ comparisons needed
- The other checks are also needed...
 - Call rate, low MAF, Mendelian conflicts, etc.

Four states for a biallelic SNP

bit _	——byte——							
*	0	1	1	0	1	1	0	0

Genotype	Character	ASCII (8bits)	Re-coded (2bits)
Homozygote (AA)	"0"	00110000	01
Heterozygote (Aa)	"1"	00110001	11
Another Homozygote (aa)	"2"	00110010	10
Missing	"5"	00110101	00

• Task: read and keep 5M genotypes in memory

• Regular format: 3 TB RAM

• Efficient format (packed): 93 GB RAM

- Logical manipulation of bit pattern
 - Fortran has functions for bitwise operations
 - Logical manipulation on bit pattern
 - Typical operations:

```
1100 1100 1100

AND 1010 OR 1010 XOR 1010 NOT 1010
---- 1000 1110 0110 0110
```

Population count: the number of 1's

```
popcnt(0000) is 0
popcnt(0010) is 1
popcnt(1010) is 2
```

- qcf90 supports raw files
 - No need to run renumf90 before
- qcf90 was designed for QC
 - preGSf90 was designed for QC and constructing G and A₂₂
- qcf90 --snpfile snpdata.txt --pedfile pedigree.txt
 - No parameter file but same output as preGSf90

- qcf90 --help or qcf90 --long-help
 - For all the options

Yutaka Masuda

• Benchmark test:

• Holstein genotypes: 569,404

• Number of SNP: 60,671

• Number of animals in pedigree: 10,710,380

3x faster
28x less memory

Step	QCF90 (sec.)	PREGSF90 (sec.)
Reading a SNP file	420	1407
MAF and call rate	150	245
HWE test	84	24
Call rate for animals	3	307
Mendelian tests for SNP	62	316
Mendelian tests for animals	62	248
Recalculation of MAF	136	161
Total	917	2708
Memory usage	9 GB	257 GB

Pipeline with qcf90

qcf90

• Use statement to save clean files: --save-clean

renumf90

Use clean SNP and map (if present) files

blupf90+ or other application program

- Use clean SNP and map (if present) files
- Use renumbered files from renumf90

Pipeline with preGSf90

renumf90

Use SNP and map (if present) files

preGSf90

• Use option to save clean files: OPTION saveCleanSNPs

blupf90+ or other application program

- Use clean SNP and map (if present) files
- Use renumbered files from renumf90