

# Quality Control of SNP data + Using PreGSf90

Daniela Lourenco UGA USA Andres Legarra INRA France Ignacio Aguilar INIA Uruguay

BLUPF90 TEAM, 02/2022

### SNP data

1200012002201212111001210022221102112211020112122212002200212121212111202112022002022100;200202100122121210101021012221101112220202022110010111210011201022012220211021010011020; 111000021221121201212121002221101202222101022112222110220011202110020201102022100021020; 212102121521002201200012101121201215110215122521121150220011102111050202221122011022010: 111102121520012212211020001220201225222115021522221150220110202120050202022022111112110; 110001220220121220110022011121100011021122121220020112222002222111021111212022011022010;12101001112001121111002111222011111212222121020111102022100211222100121211112101211110;

# Call rate

- Is the percentage of observed genotypes (non-missing):
  - <u>per animal</u> (per row)
  - per SNP marker (per column)
- In other words, proportion of SNP  $\neq$  5
- If call rate of an animal <90%</li>
   genotype of the animal is rejected (delete line)
- If call rate for a marker <90%
  - marker is deleted (delete column)



#### ANIMAL

| 025 | 11010111 | <b>1</b> (5)1 | 11101111100100012211512051221250225111102501220102010                         |
|-----|----------|---------------|-------------------------------------------------------------------------------|
| 036 |          |               | 012122222012101222010120222111112021222111112102020101101                     |
| 050 |          |               | 2021111200021212222100021122122122110000020220000211022122212122020001112020: |
| 054 | 12000120 | 022           | 0121211100121002222110211221102011212221200220021212121111202112022002022100: |
| 066 | 20000202 | 022           | 102122112002200122221110122020211020222202022000122212101120102102            |
| 097 | 10110212 | 022           | 0121122111021001111100102211212022111111                                      |
| 101 | 12100212 | 022           | 00112211000111122201001011201121212111212012210021020020                      |
| 151 | 11100102 | 022           | 12202102010110122202001212211112212211211                                     |
| 172 |          |               | 1112101211021102220101001221212221102220201221020212112010211122022112011010: |
| 224 | 22000111 | 022           | 1012210101021102520201112120222122212220110121011102220050210121022010022125: |
| 277 |          |               | 12212112120210122220020122102121102011210212210022110110                      |
| 314 | 12201112 | 012           | 222021021001000212100112012020200121002002                                    |
| 419 | 22111221 | 012           | 1120222221022102110201021121211122000000                                      |
| 439 | 20020210 | 012           | 2121210101021012221101112220202022110010111210011201022012220211021010011020: |
| 456 | 12000102 | 022           | 11122001010210022110002022212122222200101102211102120120                      |
| 501 | 11100002 | 122           | 1121201212121002221101202222101022112222110220011202110020201102022100021020: |
| 571 | 11000012 | 020           | 2200221212022001210200011122110110222221200220020212001010212121022102010110: |
| 579 |          |               | 0010101111022002221200022211112020222222                                      |
| 581 | 21100202 | <b>(</b> 5)2  | 10012212020110022002011251212150225222225022101120112                         |
| 657 | 11001112 | 022           | 011121110102001222100011222121202121112120022001220222002221221               |
| 660 | 21000212 | 022           | 1120221121021012221011012221222121211120201221012201121111211112022000012101: |
| 730 |          |               | 0020222220012002220001220222220021102252200122001202111151001012022001012025  |
| 732 | 21210212 | 152           | 1002201200012101121201215110215122521121150220011102111050202221122011022010  |
| 764 | 11110212 | 152           | 0012212211020001220201225222115021522221150220110202120050202022022111112110: |
| 780 | 12110102 | 112           | 2220210101022002221201201121221012111110111221020202001010112212121002021021  |
| 800 | 22100012 | 022           | 1222210202021102221101012112022120222222                                      |
| 816 | 11000122 | 022           | 0121220110022011121100011021122121220020112222002222111021111212022011022010: |
| 832 | 12101001 | 112           | 0011211110021112220111112122221210201111020221002112221001212111121012111110; |
| 900 |          |               | 012212121102110212101212022121212110111111                                    |
| 901 | 12100102 | 022           | 112121221001000212020111122111212200111111                                    |
|     |          |               |                                                                               |

# Allele Frequency

• The allele frequency *p* is simply the frequency of the reference allele

1 0101111511110111110010001221151205 30 animals = 60 alleles2 1011010220121222220121012220101202 • 0 = AA.002120220011221100011112220100101 • 1 = AB 1 1001020221220210201011012220200121 2 1012020211112101211021102220101 • 2 = BB 2 0102200121221211212021012222002012 How many copies of B: (1+2+1+1+1+...+1)/60 1 0000120202200221212022001210200011 or 1 0011120220111211101020012221000112 Average/2 2 0002120221120221121021012221011 Allele frequency of B = 0.71671 0001220220121220110022011121100011 Allele frequency of A = 0.28332 0100110220122121211021102121012120 

# Minor allele Frequency

- MAF is the lowest of the two allele frequecies
- q = freq(B)
- p = 1 q = freq(A)
- MAF = min(p,q)
- Why is MAF important?
  - A fixed marker (p = 0 or p = 1) gives no information
  - An almost-fixed marker (p = 0.0001 or p = 0.9999) gives almost no info
  - Common sense: delete markers with MAF<0.01 or <0.05
  - For prediction and GWAS it does not make much difference
  - For sequence analysis with *de novo* variants it makes a difference

# Hardy-Weinberg Equilibrium

• If animals reproduce at random, we expect to find HW proportions of genotypes:

$$f(AA) = p^2$$
$$f(AB) = 2pq$$
$$f(BB) = q^2$$

- We can use a Chi-square test to test this, but
  - Does HWE equilibrium hold? Only approximately
  - At each generation, p changes a little bit, so it does not hold across all generations
  - Also, animals do not mate at random
    - many SNP removed

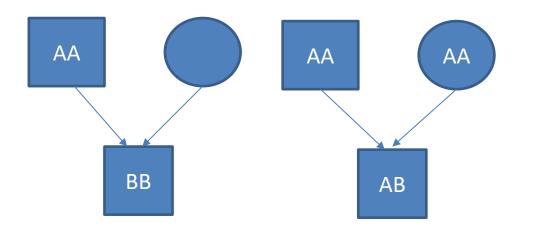
# Hardy-Weinberg Equilibrium

Rule of thumb used by AIPL (Wiggans 2011):

frequency of heterozygotes should not deviate too much

• Delete marker if 
$$\left|\frac{n \text{ of heterozygotes}}{n} - 2pq\right| > 0.15$$

• Tricky in crossbred populations


# Non-mapped SNP

- SNP markers are in chromosomes
- The position of some SNP is still unknown!
- This is reported as "chromosome 0"
- It is better to remove these markers

```
GGaluGA360484 0 0
GGaluGA360493 0 0
GGaluGA360494 0 0
GGaluGA360497 0 0
GGaluGA360501 0 0
GGaluGA360505 0 0
GGaluGA001820 1 34388
Gga_rs16686671 1 67781
GGaluGA001841 1 80477
Gga_rs15995401 1 111556
```

### Mendelian conflicts

 In absence of mutation (which is rare) this kind of inheritance is not possible:



# Mendelian conflicts

- If a marker is seen in many Mendelian conflicts
   the genotyping is wrong and the marker is deleted
- If an animal is seen in many Mendelian conflicts

   there is a misidentification for animal or pedigree
- try to find the possible parents based on SNP – seekparentf90

# Duplicate genotypes

• Two animals should not have identical SNPs unless they are clones or monozygotic twins

 Duplicated genotypes come from mislabeling: the DNA sample of the same animal has been given two different IDs

# Linkage disequilibrium

• « Gametic phase disequilibrium »

Statistical association between alleles at two loci in the same chromosome

- Loci : places
- Alleles: alternative forms of a gene (A,B)
- Phase: notion of being in the same chromosome (of a pair) or coming from same origin (sire or dam)

#### Linkage disequilibrium

f(A) = 0.6; f(a) = 0.4
f(B) = 0.5; f(b) = 0.5

**if independent,** p (AB) = 0.3, p (ab) = 0.2

The expected proportions are:

## Linkage disequilibrium

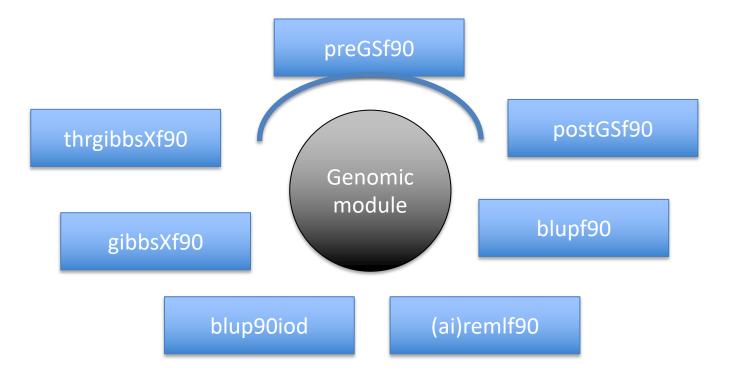
f(A) = 0.6; f(a) = 0.4
f(B) = 0.5; f(b) = 0.5

#### in reality:

A a B 0.4 0.2 b 0.1 0.3

#### expected:

A a B 0.3 0.2 b 0.3 0.2


More AB & ab than expected !! This is linkage disequilibrium (statistical concept)

# Quality control

- Call rate
  - Animals
  - SNP
- Minor Allele Frequency (MAF)
- Hardy-Weinberg Equilibrium (HWE)
- Non-mapped SNP
- Mendelian Conflicts
- Duplicate genotypes
- Linkage disequilibrium (LD)

# preGSf90

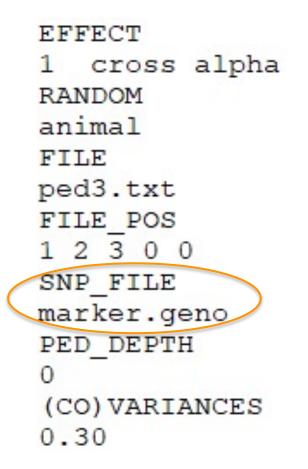
 Interface program to the genomic module to process the genomic information in the BLUPF90 family of programs



### preGSf90

• Performs Quality Control of SNP information

- Creates the genomic relationship matrix
  - and relationships based on pedigree
  - Inverse of relationship matrices


### preGSf90

- Same parameter file as for all BLUPF90 programs
- Needs an extra OPTION
  - OPTION SNP file marker.geno
- Reads 2 extra files (besides data and pedigree):
  - marker.geno
  - marker.geno\_XrefID(created by renumf90)

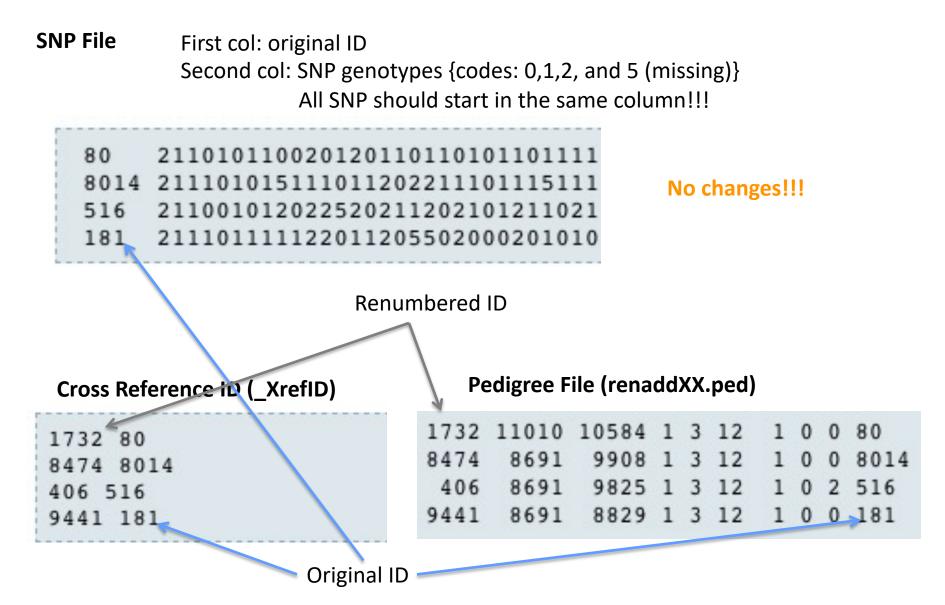
XrefID has 2 columns: Renumbered ID Original ID

# Run renumf90 before preGSf90

• Use renumf90 for renumbering and creation of XrefID and files



#### Parameter files


| RENUMF90                | BLUPF90                              |
|-------------------------|--------------------------------------|
| renum.par               | renf90.par                           |
| DATAFILE                | DATAFILE                             |
| phenotypes.txt          | renf90.dat                           |
| TRAITS                  | NUMBER_OF_TRAITS                     |
| 3                       | NUMBER_OF_EFFECTS                    |
| FIELDS_PASSED TO OUTPUT | 2                                    |
|                         | OBSERVATION(S)                       |
| WEIGHT(S)               | 1                                    |
|                         | WEIGHT(S)                            |
| RESIDUAL_VARIANCE       | EFFECTS: POSITIONS_IN_DATAFILE NUMBE |
| 0.9038                  | 2 1 cross                            |
| EFFECT                  | 3 15800 cross                        |
| 1 cross alpha # mu      | RANDOM_RESIDUAL VALUES               |
| EFFECT                  | 0.90380                              |
| 2 cross alpha # animal  | RANDOM_GROUP                         |
| RANDOM                  | 2                                    |
| animal                  | RANDOM_TYPE                          |
| FILE                    | add_animal                           |
| pedigree                | FILE                                 |
| SNP_FILE                | renadd02.ped                         |
| marker.geno             | (CO)VARIANCES<br>0.99510E-01         |
| (CO)VARIANCES           | → OPTION SNP_file marker.geno        |
| 0.9951E-01              | of first stright and the fight       |
|                         |                                      |

# New pedigree file from RENUMF90

#### • 1 – renumbered animal ID

- 2 parent 1 number or UPG
- 3 parent 2 number or UPG
- 4 3 minus number of known parents
- 5 known or estimated year of birth
- 6 number of known parents
   if animal is genotyped 10 + number of known parents
- 7 number of records
- 8 number of progenies as parent 1
- 9 number of progenies as parent 2
- 10 original animal ID

#### SNP file, XrefID, and ped from renumf90



# Output Files from preGSf90

- freqdata.count
  - Contains the calculated allele frequency before QC
- freqdata.count.after.clean
  - Contains allele frequencies as used in calculations, removal code
  - AF will be zero for removed SNP
- Gen\_call\_rate
  - List of animals removed by low call rate
- Gen\_conflicts
  - Report of animals with Mendelian conflicts
- GimA22i
  - Stores the content of the  $G^{-1} A_{22}^{-1}$
  - Only if preGSf90 is used, not in other programs

# Quality control default exclusion

- MAF
  - SNP with MAF < 0.05</p>

- Call rate
  - SNP with call rate < 0.90</p>
  - Individuals with call rate < 0.90</li>

- Monomorphic
  - Excludes monomorphic SNP

# Quality control default exclusion

- Parent-progeny conflicts (SNP & Individuals)
  - Exclusion -> opposite homozygous
  - For SNP: Number of parent-progeny exclusion from the total of pairs evaluated (>10 %)
  - For Individuals: Number of parent-progeny exclusions as percentage of all SNP (> 1%)

# Parent-progeny conflicts

- Presence of these conflicts results in a negative **H**
- Problems in estimation of variance components by REML, programs may not converge, etc.
- Solution:
  - Report all conflicts, with counts for each individual as parent or progeny to trace the conflicts
  - Remove progeny genotype
    - maybe not the best option (problem may be in the pedigree)
    - But results in a positive-definite **H**

# Parent-progeny conflicts

- OPTION verify\_parentage x
  - 0: no action
  - 1: only detect
  - 2: detect and search for an alternate parent; no change to any file. Not implemented
    - implemented in seekparentf90 program
  - 3: detect and eliminate progenies with conflicts (default)

# Control default values

- For MAF
  - OPTION minfreq x
- Call rate
  - OPTION callrate x
  - OPTION callrateAnim x
- Mendelian conflicts
  - OPTION exclusion\_threshold\_snp x
  - OPTION exclusion\_threshold x

# **Other Options**

- Exclusion of selected chromosomes:
   OPTION excludeCHR *n1 n2 n3 …*
- Inclusion of selected chromosomes:
   OPTION includeCHR *n1 n2 n3 ...*
- Exclude samples from analyses – OPTION excludeSample *n1 n2 n3 ...*
- Inform which are sex chromosomes:
  - OPTION sex\_chr n
  - Chromosome >= n will be excluded only for HWE and parent-progeny checks, but not in calculations

## LD calculation and options

#### OPTION calculate\_LD

Calculate LD as the squared correlation of allele counts for two SNP

Results are stored in "Id\_results", columns: snp\_i, chr\_i, pos\_i, freq\_i, snp\_j, chr\_j, pos\_j, freq\_j, dist\_ij, Rsq\_ij

OPTION LD\_by\_chr

Calculate LD within chromosome

OPTION LD\_by\_pos x

Calculate LD within chromosome and windows of SNP based on position optional parameter x define with windows size in Bp, default value 200000

OPTION filter\_by\_LD x

Filter SNP with Rsq > threshold. Optional parameter x define the threshold. default value 0.8

OPTION thr\_output\_LD x

Threshold to print out Rsq between pair of SNP Optional parameter x define the threshold. default value 0.1

# SNP map file – new default

- OPTION chrinfo <*file>*
- OPTION map\_info <file>

– For GWAS and QC

- Format:
  - No defined position if a header is provided
    - Names for SNP, chromosome, and physical position are mandatory
       NUM CHR POS SNPID NUM2 31428 14 7928189 ARS-BFGL-BAC-1020 2
  - SNPID for SNP
  - CHR for chromosome
  - POS for position

| NUM CHR  | POS      | SNPID    | NUM2         |      |
|----------|----------|----------|--------------|------|
| 31428 14 | 7928189  | ARS-BFGI | L-BAC-1020 2 | 2    |
| 32005 14 | 31819743 | ARS-BF   | GL-BAC-10245 | 3    |
| 31371 14 | 6133529  | ARS-BFGI | L-BAC-10345  | 4    |
| 31679 14 | 17544926 | ARS-BF   | GL-BAC-10591 | . 7  |
| 32053 14 | 34639444 | ARS-BF   | GL-BAC-10867 | 8    |
| 31993 14 | 31267746 | ARS-BF   | GL-BAC-10919 | 9    |
| 23506 10 | 18882288 | ARS-BF   | GL-BAC-10952 | 10   |
| 23550 10 | 20609250 | ARS-BF   | GL-BAC-10960 | ) 11 |
| 23566 10 | 21225382 | ARS-BF   | GL-BAC-10975 | 12   |
| 23612 10 | 26527257 | ARS-BF   | GL-BAC-10986 | 5 13 |
| 24705 10 | 78512500 | ARS-BF   | GL-BAC-10993 | 14   |
| 24712 10 | 79252023 | ARS-BF   | GL-BAC-11000 | 15   |
| 24732 10 | 80410977 | ARS-BF   | GL-BAC-11003 | 16   |
| 24741 10 | 80783719 | ARS-BF   | GL-BAC-11007 | 17   |
| 24827 10 | 84516867 | ARS-BF   | GL-BAC-11025 | 18   |
| 25865 11 | 21276136 | ARS-BF   | GL-BAC-11039 | 21   |

#### Saving 'clean' files

- SNP excluded from QC are set as missing (i.e. Code=5)
  - 5 is replaced by 0 in calculations
- OPTION saveCleanSNPs
- Save clean genotype data without excluded SNP and individuals
  - For example for a SNP\_file named gt.snp
  - Clean fles will be:
    - gt.snp\_clean
    - *gt.snp\_clean\_*XrefID
  - Removed SNP/animals will be output in files:
    - *gt.snp*\_SNPs\_removed
    - *gt.snp*\_Animals\_removed

# Only QC in preGSf90

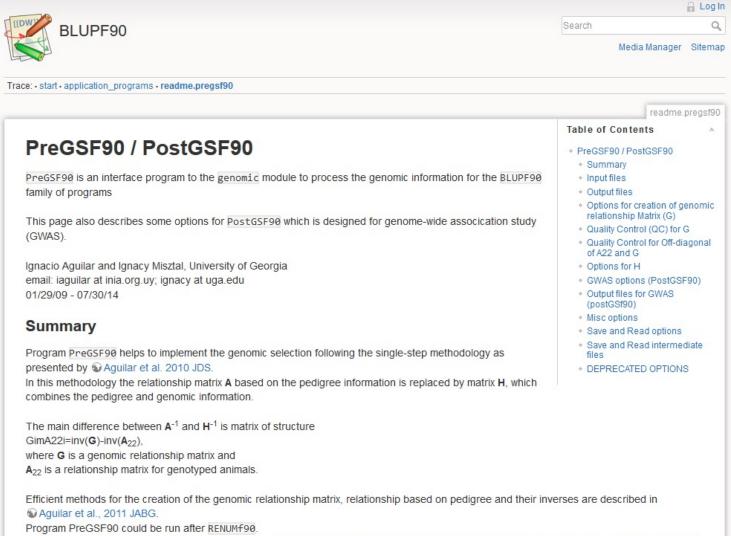
- Quality control
- Genomic relationship matrices and inverses

   Inverse is costly
- How to do only QC avoiding the inverses:
  - OPTION SNP\_file marker.geno
  - OPTION saveCleanSNPs
  - OPTION createGInverse 0
  - OPTION createA22Inverse 0
  - OPTION createGimA22i 0

# No Quality control

• ONLY use:

If QC was performed in a previous run


- and "clean" genotype file is used

- OPTION SNP file marker.geno clean
- OPTION no\_quality\_control

# Use in application programs

- Use renumf90 for renumbering and creation of XrefID and files
  - SNP\_FILE marker.geno SNP\_FILE ped3.txt FILE\_pos 1 2 3 0 0 SNP\_FILE marker.geno PED\_DEPTH 0 (CO) VARIANCES 0.30
- Run preGSf90 with quality control, saving clean files
- Run further programs with clean files as needed
  - blupf90, airemlf90, gibbs2f90, ...

#### PreGSf90 wiki



It is also run automatically by application programs like BLUPF90, REMLF90, GIBBSxF90 or BLUP90IOD when their parameter file contains OPTION SNP file filename.