

PreGSf90 for Quality Control of SNP data

Andres Legarra INRA France Ignacio Aguilar INIA Uruguay Daniela Lourenco UGA USA

UGA TEAM, 08/2019

Call rate

- Is the percentage of observed genotypes:
 - <u>per animal</u> (per row)
 - <u>per marker</u> (per column)
- In other words, the number of "5"s
- If call rate of an animal <95%
 genotype of the animal is rejected (delete line)
- If call rate for a marker <95%
 - marker is deleted

ANIMAL

025			1110111110010001221 1 512 15 1221 25 02 15 11110 15 01220102010210002211210 15 000122010
036			012122222012101222010120222111112021222111112102020101101
050			2021111200021212222100021122122122110000020220000211022122212122020001112020:
054			0121211100121002222110211221102011212221200220021212121111202112022002022100:
066			102122112002200122221110122020211020222202022000122212101120102102
097			0121122111021001111100102211212022111111
101			00112211000111122201001011201121212111212012210021020020
151	11100102	022	12202102010110122202001212211112212211211
172	21101202	021	1112101211021102220101001221212221102220201221020212112010211122022112011010:
224	22000111	022	1012210101021102520201112120222122212220110121011102220050210121022010022125:
277	21010220	012	12212112120210122220020122102121102011210212210022110110
314	12201112	012	222021021001000212100112012020200121002002
419	22111221	012	1120222221022102110201021121211122000000
439	20020210	012	2121210101021012221101112220202022110010111210011201022012220211021010011020;
456	12000102	022	11122001010210022110002022212122222200101102211102120120
501	11100002	122	1121201212121002221101202222101022112222110220011202110020201102022100021020:
571	11000012	020	2200221212022001210200011122110110222221200220020212001010212121022102010110:
579	11210021	021	0010101111022002221200022211112020222222
581	21100202	152	10012212020110022002011251212150225222225022101120112
657	11001112	022	011121110102001222100011222121202121112120022001220222002221221
660	21000212	022	1120221121021012221011012221222121211120201221012201121111211112022000012101;
730	21000202	022	0020222220012002220001220222220021102252200122001202111151001012022001012025
732	21210212	1(5)2	1002201200012101121201215110215122521121150220011102111050202221122011022010
764	11110212	152	0012212211020001220201225222115021522221150220110202120050202022022111112110;
780	12110102	112	2220210101022002221201201121221012111110111221020202001010112212121002021021
800	22100012	022	1222210202021102221101012112022120222222
816			0121220110022011121100011021122121220020112222002222111021111212022011022010;
832			001121111002111222011111212222121020111102022100211222100121211112101211110;
900			012212121102110212101212022121212110111111
901			112121221001000212020111122111212200111111
201	10100100	566	

Allele Frequency

• The allele frequency *p* is simply the frequency of the reference allele

025 036 050 054 066 097 101 151 172 224 277 314 419 439 456 501 571 579 581 657 660 730 732	1.010111151111011110010001221151205 2.101101022012122220121012220101202 1210100211120211120002121222100021 12000120022012121110012100222211021 2.00020202210212211200200122221101 10110212022012112211102100111100102 121002120220012210001111220100101 1.1001020221220210201011012220200121 2.101202011121012110211022001010 2.200011102210122101	 30 animals = 60 alleles 0 = AA 1 = AB 2 = BB How many copies of B: (1+2+1+1+1++1)/60 or Average/2
764 780 800 816 832 900 901	1.1102121520012212211020001220201225 121101021122220210101022002221201201 221000120221222210202021102221101012 1.0001220220121220110022011121100011 121010011120011211110021112220111112 2.0100110220122121210210010002120201111	 Allele frequency of B = 0.7167 Allele frequency of A = 0.2833

Minor allele Frequency

- MAF is the lowest of the two allele frequecies
- p = freq(A)
- q = 1 p = freq(B)
- MAF = min(p,q)
- Why is MAF important?
 - A fixed marker (p = 0 or p = 1) gives no information
 - An almost-fixed marker (p = 0.0001 or p = 0.9999) gives almost no info
 - Common sense: delete markers with MAF<0.01 or <0.05
 - For prediction and GWAS it does not make much difference
 - For sequence analysis with *de novo* variants it makes a difference

Hardy-Weinberg Equilibrium

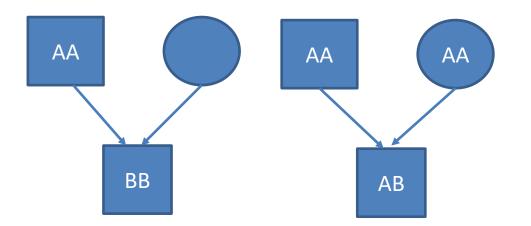
- If animals reproduce at random we expect to find HW proportions of genotypes:
 p², 2pq, q²
- We can use a Chi-square test to test this, but
 - Does HWE equilibrium this hold?
 - Only approximately
 - At each generation p changes a little bit, so it does not hold across all generations
 - Also, animals do not mate at random

Hardy-Weinberg Equilibrium

Rule of thumb used by AIPL (Wiggans 2011):

 Number of heterozygotes should not deviate too much

• Delete marker if
$$\left|\frac{n \text{ of heterozygotes}}{n} - 2pq\right| > 0.15$$


Non-mapped SNP

- SNP markers are in chromosomes
- The position of some SNP is still unknown!
- This is reported as "chromosome 0"
- It is better to remove these markers

```
GGaluGA360484 0 0
GGaluGA360493 0 0
GGaluGA360494 0 0
GGaluGA360497 0 0
GGaluGA360501 0 0
GGaluGA360505 0 0
GGaluGA001820 1 34388
Gga_rs16686671 1 67781
GGaluGA001841 1 80477
Gga_rs15995401 1 111556
```

Mendelian conflicts

 In absence of mutation (which is rare) this kind of inheritance is not possible:

Mendelian conflicts

- If a marker is seen in many Mendelian conflicts,
 - possibly the genotyping of the marker is wrong and the marker is deleted
- If an animal is seen in many Mendelian conflicts,
 - Possibly there is a misidentification in animal or in pedigree
- You may try to find this animals' parent:
 - seekparent.f90

Duplicate genotypes

- Two animals should not have identical SNPs unless they are clones or monozygotic twins
- This is very unusual...
- Duplicated genotypes come from mislabeling: the DNA sample of the same animal has been given two different names

• « Gametic phase disequilibrium »

Statistical association between alleles at two loci in the same chromosome

- Loci : places
- Alleles: alternative forms of a gene (A,B,0)
- Phase: notion of being in the same chromosome (of a pair) or coming from same origin (sire or dam)

- p(A) = 0.6
- p(B)=0.5
- if independent, p(AB) = 0.3, p(ab) = 0.2
- The expected proportions are:
 - A a
 - B 0.3 0.2
 - b 0.3 0.2

- p(A) = 0.6
- p(B) = 0.5
- in reality:
 - A a B 0.4 0.2 b 0.1 0.3

vs. expected

- A a
- B 0.3 0.2
- b 0.3 0.2

More AB & ab than expected !! This is **linkage disequilibrium**

- Is a *statistical* concept
- Describes not-random association of two loci
 - Nothing more, so, why is it useful?
- Two loci in LD *most often* are (very) close
 - This is because LD breaks down with recombination
- Linkage disequilibrium of two loci decays on average with the distance
- Where does it come from?
- Because chromosomes are transmitted together Within known families (« linkage analysis »)
 Within the history of a population (« populational linkage disequilibrium » or « linkage disequilibrium » in short)

preGSf90

 Interface program to the genomic module to process the genomic information for the BLUPF90 family of programs

- Performs Quality Control of SNP information
- Efficient methods
 - Creation of the genomic relationship matrix and relationship based on pedigree
 - Inverse of relationship matrices

BLUPF90 programs using Genomic

- Genomic programs
 - controlled by adding OPTION to the parameter file
 - OPTION SNP_file marker.geno
 - Read 2 files:
 - marker.geno
 - marker.geno_XrefID (created by renumf90)

Output Files

- freqdata.count
 - Contains the estimated allele frequency before QC
- freqdata.count.after.clean
 - Contains allele frequencies as used in calculations, remove code
 - For removed SNP these will be zero
- Gen_call_rate
 - List of animals removed by low call rate
- Gen_conflicts
 - Report of animals with Mendelian conflicts
- GimA22i
 - Store the content of the inv(G) inv(A22)
 - Only if preGSf90 is used, not in applications programs

Quality control default exclusion

- MAF
 - SNP with MAF < 0.05</p>
- Call rate
 - SNP with call rate < 0.90</p>
 - Individuals with call rate < 0.90

- Monomorphic
 - Excludes monomorphic SNP ONLY when MAF <> 0

Quality control default exclusion

- Parent-progeny conflicts (SNP & Individuals)
 - Exclusion -> opposite homozygous
 - For SNP: >10 % of parent-progeny exclusion from the total of pairs evaluated
 - For Individuals: > 1% of parent-progeny from total number of SNP

Control default values

- For MAF
 OPTION minfreq x
- Call rate
 - OPTION callrate x
 - OPTION callrateAnim x
- Mendelian conflicts
 - OPTION exclusion_threshold x
 - OPTION exclusion_threshold_snp x

Parent-progeny conflicts

- Presence of these conflicts results in a negative **H**
- Problems in estimation of variance components by REML, programs does not converge, etc.
- Solution:
 - Report all conflicts, with counts for each individual as parent or progeny to trace the conflicts
 - Remove progeny genotype
 - maybe not the best option
 - But results in a positive-definite **H**

Parent-progeny conflicts

- OPTION verify_parentage x
 - 0: no action
 - 1: only detect
 - 2: detect and search for an alternate parent; no change to any file. Not implemented
 - implemented in seekparentf90 program
 - 3: detect and eliminate progenies with conflicts (default)

Other Options

- Exclusion of selected chromosomes:
 OPTION excludeCHR n1 n2 n3 ...
- Inclusion of selected chromosomes:
 OPTION includeCHR n1 n2 n3 ...
- Exclude samples from analyses
 OPTION excludeSample n1 n2 n3
- Inform which are sex chromosomes:
 - OPTION sex_chr n
 - Chromosome # > n will be excluded only for HWE and parent-progeny checks, but not in calculations

SNP map file

- OPTION chrinfo <*file>*
- For some genomic analyses (GWAS) or QC
- Format:
 - SNP number
 - Index number of SNP in the sorted map by chromosome and position
 - chromosome number
 - Position
 - SNP name (Optional)
- First column corresponds to first row SNP in genotype file !!!

14 7928189 ARS-BFGL-BAC-1020 31819743 ARS-BEGL-BAC-10 6133529 ARS-BEGL-BAC-31679 14 17544926 ARS-BFGL-BAC-10591 34639444 ARS-BFGL-BAC-108 31267746 ARS-BFGL-BAC-109 18882288 ARS-BFGL-BAC 23550 10 20609250 ARS-BFGL-BAC-109 11 10 21225382 ARS-BFGL-BAC-109 23612 10 26527257 ARS-BFGL-BAC-10986 24705 10 78512500 ARS-BFGL-BAC-10993 24712 10 79252023 ARS-BFGL-BAC-11000 15 80410977 ARS-BFGL-BAC-11003 10 80783719 ARS-BFGL-BAC-11007 24827 10 84516867 ARS-BFGL-BAC-11025 25865 11 21276136 ARS-BFGL-BAC-11039 21

SNP map file – new option

- OPTION chrinfo <*file>*
- OPTION map_info <file>
- Format:
 - No defined position if a header is provided
 - Names for SNP, chromosome and physical position are mandatory
 - SNP_ID for SNP
 - CHR for chromosome
 - POS for position

NUM CHR	POS	SNPID	NUM2	
31428 14	7928189	ARS-BFGI	G-BAC-1020	2
32005 14	31819743	ARS-BFG	L-BAC-1024	53
31371 14	6133529	ARS-BFGI	G-BAC-10345	4
31679 14	17544926	ARS-BF0	L-BAC-1059	17
32053 14	34639444	ARS-BF0	L-BAC-1086	78
31993 14	31267746	ARS-BFG	L-BAC-1091	99
23506 10	18882288	ARS-BFG	L-BAC-1095	2 10
23550 10	20609250	ARS-BFG	L-BAC-1096	0 11
23566 10	21225382	ARS-BFG	L-BAC-1097	5 12
23612 10	26527257	ARS-BFG	L-BAC-1098	6 13
24705 10	78512500	ARS-BFG	L-BAC-1099	3 14
24712 10	79252023	ARS-BFG	SL-BAC-1100	0 15
24732 10	80410977	ARS-BFG	SL-BAC-1100	3 16
24741 10	80783719	ARS-BF0	5L-BAC-1100	7 17
24827 10	84516867	ARS-BFG	GL-BAC-1102	5 18
25865 11	. 21276136	ARS-BFG	L-BAC-1103	9 21

Saving 'clean' files

- SNP excluded from QC are set as missing (i.e. Code=5)
- OPTION saveCleanSNPs
- Save clean genotype data with excluded SNP and individuals
 - For example for a SNP_file named gt
 - Clean fles will be:
 - gt_clean
 - *gt_*clean_XrefID
 - Removed SNP/animals will be output in files:
 - *gt_*SNPs_removed
 - *gt_*Animals_removed

LD calculation and options

OPTION calculate_LD

Calculate LD as the squared correlation of allele counts for two SNP

Results are stored in "Id_results", columns: snp_i, chr_i, pos_i, freq_i, snp_j, chr_j, pos_j, freq_j, dist_ij, Rsq_ij

OPTION LD_by_chr

Calculate LD within chromosome

OPTION LD_by_pos x

Calculate LD within chromosome and windows of SNP based on position optional parameter x define with windows size in Bp, default value 200000

OPTION filter_by_LD x

Filter SNP with Rsq > threshold. Optional parameter x define the threshold. default value 0.8

OPTION thr_output_LD x

Threshold to print out Rsq between pair of SNP Optional parameter x define the threshold. default value 0.1

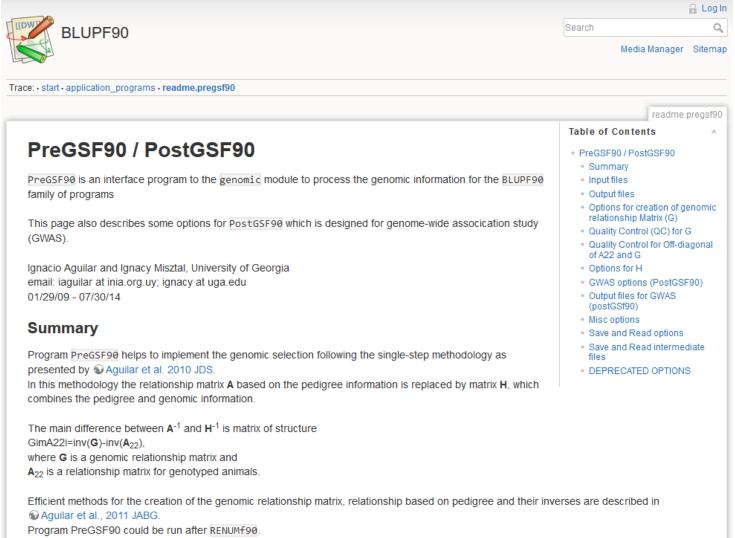
Only QC in preGSf90

- Quality control
- Genomic relationship matrix (tomorrow)
- How to do only QC avoiding extra steps:
 - OPTION SNP_file marker.geno
 - OPTION saveCleanSNPs
 - OPTION createG 0
 - OPTION createGInverse 0
 - OPTION createA22 0
 - OPTION createA22Inverse 0
 - OPTION createGimA22i 0

No Quality control

• ONLY use:

- If QC was performed in a previous run


- and "clean" genotype file is used

- OPTION SNP_file marker.geng_clean
- OPTION no_quality_control

Use in application programs

- Use renumf90 for renumbering and creation of XrefID and files
 - SNP_FILE marker.geno FILE ped3.txt FILE_pos 1 2 3 0 0 SNP_FILE marker.geno PED_DEPTH 0 (CO) VARIANCES 0,30
- Run preGSf90 with quality control, saving clean files
- Run further programs as needed
 - airemlf90, blupf90, ...

PreGSf90 wiki

It is also run automatically by application programs like BLUPF90, REMLF90, GIBBSxF90 or BLUP90IOD when their parameter file contains OPTION SNP file filename.