

Implementation of Genomic Selection in Commercial Pig Breeding

Selma Forni June 1st, 2012

Genomic Selection in the beginning

- Bayesian Regressions to identify markers associated with specific traits too expensive HD genotyping all selection candidates.
- Estimate marker effects for each trait in each line.
- Estimate BV combining marker and pedigree information of selection candidates.
- Update marker effects when new genotypes/phenotypes are available.

		Accuracy		
Line	Trait	Pre-Genomics	Post-Genomics	% Increase
Sire Line	Scrotal Hernia	0.239	0.332	38.9%
Sire Line	Mortality	0.215	0.340	58.1%
Dam Line (LR)	Total Born	0.560	0.787	40.5%

But we want to implement Genomic Selection for all traits in all lines ...

- Bayesian Regressions to identify markers associated with specific traits too expensive HD genotyping all selection candidates.
- Estimate marker effects for each trait in each line.

Training" requires a large number of individuals with genotypes, and phenotypes or progeny recorded. This is problematic in swine populations that are usually much smaller than other species such as dairy cattle.

• Estimate BV combining marker and pedigree information of selection candidates.

every day – automated system and accessed in 36 countries

Update marker effects when new genotypes/phenotypes are available.

```
every week : ~60 traits ~8 lines
```

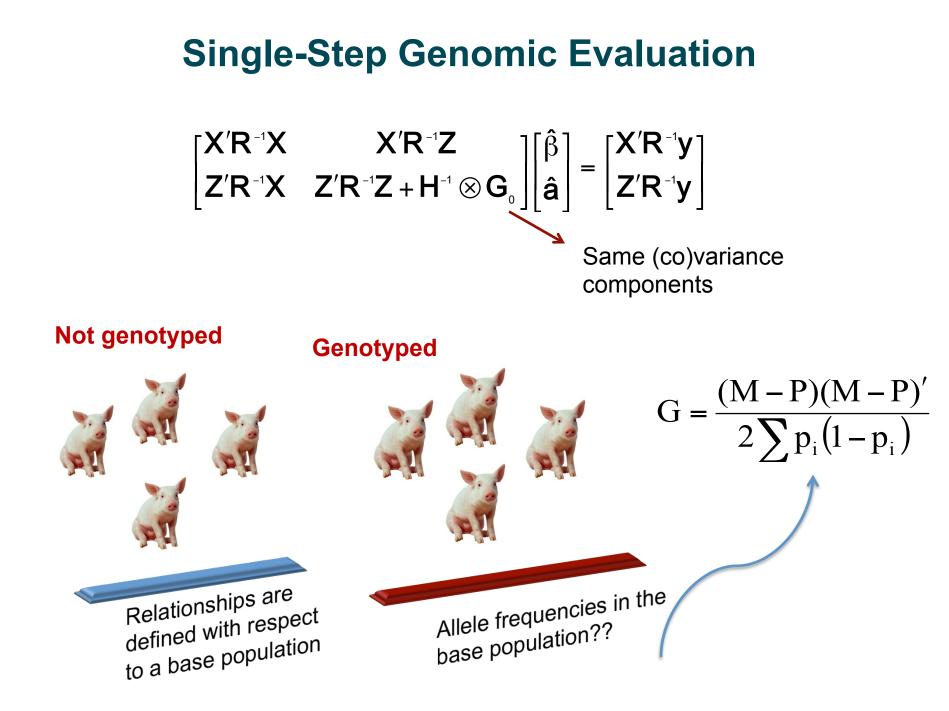
Much simpler if we use Single-Step Genomic Evaluation

✓ Easily integrated into systems for routine BLUP that we have been using for years.

✓ Estimate BV for genotyped and non-genotyped all at once.

✓ Automatically links newest phenotypes and genotypes with pedigree information.

 \checkmark It can be implemented in any model (multiple traits, maternal effects).


 \checkmark The number of parameters do not increase with the number of markers.

Necessary change:

A priori distribution for marker effects: Normal Very small impact for most traits Tue class

We can revisit that in the future

	Average	Average off-	Additive variance	Accuracy GEBV
	diagonal	diagonal	(se)	(PEV)
А	1.000	0.032	2.27 (±0.52)	0.22
G05	1.253	0.595	3.43 (±0.56)	0.37
GMF	1.697	1.022	3.43 (±0.56)	0.49
GOF	0.936	0.000	2.41 (±0.39)	0.30
GOF*	0.505	0.000	4.46 (±0.73)	0.43
GN	1.002	0.000	2.25 (±0.36)	0.28

- A = Pedigree-based Relationship
- G05 = Genomic Relationship with allele frequency equal to 0.5
- **GMF** = Genomic Relationship with allele frequency equal to average MAF
- **GOF** = Genomic Relationship with observed allele frequency
- **GOF*** = Genomic Relationship with allele frequency following a Beta distribution
- **GN** = Normalized Relationship Matrix

$$GN = \frac{(M-P)(M-P)^{'}}{\left\{ trace \left[(M-P)(M-P)^{'} \right] \right\}_{n}}$$

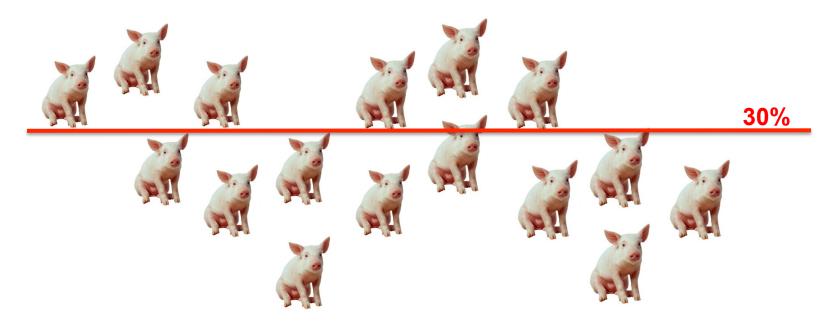
Forni et al. (2011)

The algorithm evolved!!

Thur class

Vitezica et al. (2011)

$$\mathbf{G}^* = \left(1 - \frac{1}{2}\alpha\right)\mathbf{G} + \mathbf{11'}\alpha$$


Christensen et al. (2012)

 $G_a = \beta G + \alpha$,

where β and α solved the system of equations

Avg(diag(G)) $\beta + \alpha = Avg(diag(A_{11})),$ Avg(G) $\beta + \alpha = Avg(A_{11}).$

Does all that really matter ... \$\$\$?

GN is the "best job" that we can do: 597 animals selected / year

How many animals would not had been selected?				
А	G05	GMF	GOF*	GOF
141	30	29	43	10

What we have learned

• Pedigree and genomic relationships need to be calculated with respect to the same base population.

• To achieve that one needs to use the best guess of allele frequencies in the base population and adjust G (tunning).

• Otherwise:

- Bias in GEBV
- Underestimation of PEV
- Bias in variance components
- Less than optimal selection decisions

ACC improvement even for sires and dams that already have progeny data

TRAIT	# Daughters	ACC EBV	ACC GEBV	increase
Total Number born	high	0.57	0.66	16%
Stillborn	high	0.57	0.66	16%
Litter weaning weight	high	0.45	0.52	15%
Interval weaning - mate	high	0.45	0.53	18%
Survival birth - weaning	high	0.33	0.36	9%
Survival birth - weaning	high	0.33	0.36	9%

• 4,200 animals genotyped 60k

• Greater ACC improvement for young sires and dams

TRAIT	# Daughters	ACC EBV	ACC GEBV	increase
Total Number born	low or zero	0.44	0.56	27%
Stillborn	low or zero	0.44	0.56	27%
Litter weaning weight	low or zero	0.38	0.46	21%
Interval weaning - mate	low or zero	0.31	0.42	35%
Survival birth - weaning	low or zero	0.26	0.30	15%

• 1,000 animals genotyped 60k

ACC improvement for progeny of genotyped sires and dams – these animals were not genotyped

TRAIT	Progeny of all sires and dams genotyped		Progeny of <mark>young</mark> sires and dams genotyped			
	ACC EBV	ACC GEBV	increase	ACC EBV	ACC GEBV	increase
Total Number born	0.39	0.42	7%	0.36	0.41	14%
Stillborn	0.39	0.41	5%	0.36	0.40	11%
Litter weaning weight	0.41	0.43	5%	0.31	0.34	10%
Interval weaning - mate	0.37	0.39	5%	0.25	0.29	16%
Survival birth - weaning	0.29	0.30	3%	0.41	0.43	5%

But we still have the same BV for full siblings

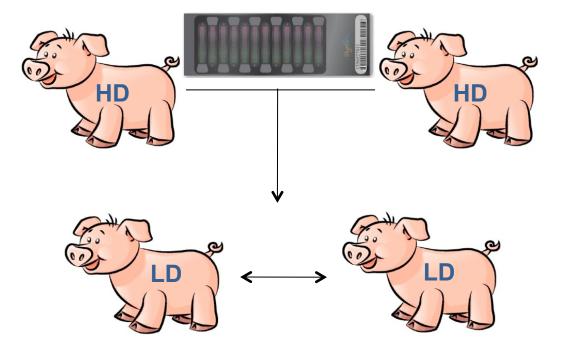
ACC improvement for the entire population

Table 2 Daily gain

	All		Genotyp		Non-genotyped		
	Cor (GBV, y _c)	Reg	Cor (GBV, y _c)	Reg	Cor(GBV, y _c)	Reg	
Univariate							
Ped	0.193 ^a	0.91	0.179 ^a	0.72	0.193 ^a	0.90	
1-step	0.226 ^b	0.92	0.345 ^b	0.94	0.217 ^b	0.90	
1-step-a	0.229 ^c	0.93	0.353°	0.97	0.219 ^c	0.91	
GBLUP			0.351 ^{b,c}	0.80			
Bivariate							
Ped	0.193 ^a	0.90	0.177ª	0.72	0.193 ^a	0.90	
1-step	0.225 ^d	0.92	0.344 ^b	0.94	0.216 ^d	0.90	
1-step-a	0.228 ^e	0.93	0.352°	0.97	0.218 ^e	0.91	
GBLUP			0.352 ^{b,c}	0.806			

Christensen et al. (2012)

Imputation


Imputation*: using well-spaced LD genotypes on selection candidates to 'fill-in' missing HD genotypes

GN parents, grandparents, ...

All HD genotyped

GN progeny

HD genotype imputed from LD panel and pedigree HD

Alphalmpute Results

Imputation accuracy for two lowdensity panels

	384	3k
Both Parents	0.96	0.99
Sire and MGS	0.89	0.98
Dam and PGS	0.94	0.99
Sire	0.87	0.98
Dam	0.87	0.97
Other	0.81	0.95

Accuracy will be improved by imputing 60k genotypes on selection candidates

TRAIT	Have their own record	ACC EBV	ACC GEBV	Increase
Total Number born	NO	0.36	0.62	71%
Total Number born xbred	NO	0.22	0.39	75%

Phenotype measured in commercial farms
Expensive to measure
How we can generate \$\$ for our costumers
Genetic improvement depends on multitrait analysis

Pedigree is not always "fair"

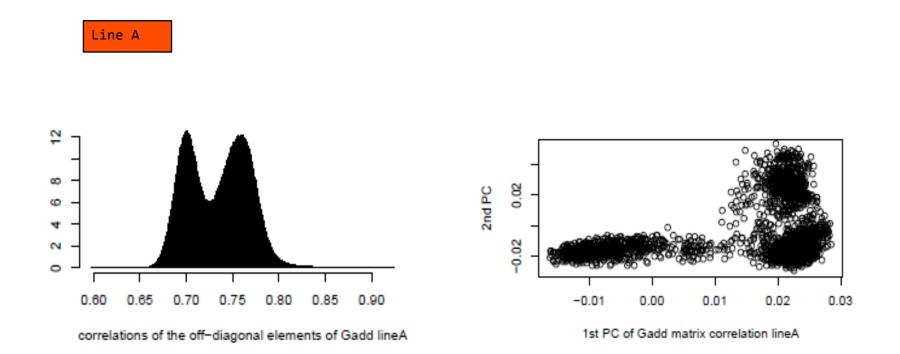
Thur class

	Animals in the	Parents without	Animals	Time to
	pedigree	records or	related to	converge
		genotypes	genotyped	
PED_full	605,046	154,075	6,987	38h 56min
PED_18	473,825	22,854	6,987	30h 20min
PED_10	473,789	22,818	6,951	33h 20min
PED_3	471,234	20,236	5,366	4h 20min
PED_2	468,057	17,086	5,058	2h 40min
PED_1	463,609	12,638	4,691	2h 20min

Pedigree is not always "fair"

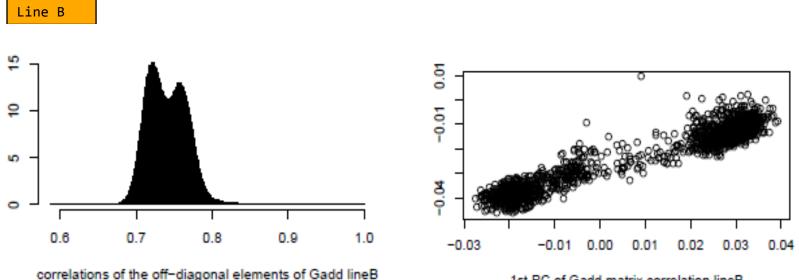
Thur class

	Diagonals	Off-diagonals	All
PED_full	0.31	0.72	0.78
PED_18	0.31	0.72	0.78
PED_10	0.31	0.72	0.78
PED_3	0.37	0.70	0.74
PED_2	0.39	0.72	0.70
PED_1	0.39	0.75	0.69


Large fluctuations in GEBV when young genotyped animals were added

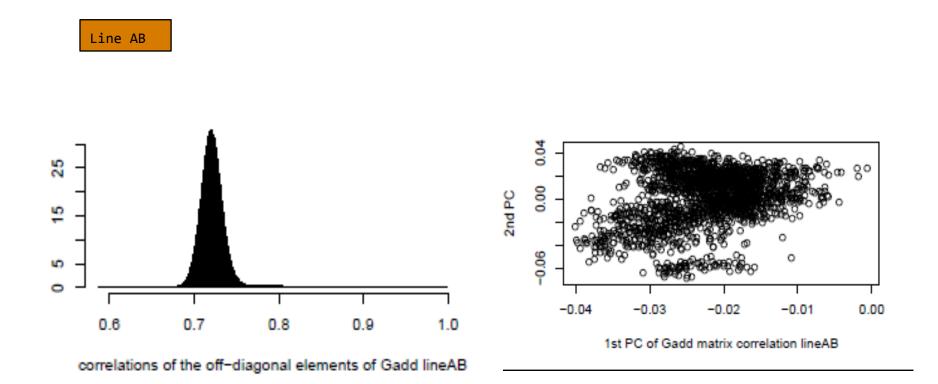
Correlations between GEBVs from consecutive months

TRAIT	G_MATRIX_DEC	G_MATRIX_JAN
TOTAL BORN	0.99	0.95
STILLBORN**	0.99	0.08
TOTAL BORN XBRED	0.98	0.98
STILLBORN XBRED**	0.35	0.06
SURVIVAL**	0.93	0.75
LITTER WEANING WEIGHT	0.99	0.99
DAYS FROM FARROWING TO NEXT MATING	0.99	0.99


** Traits with low h² (< 0.10) and recorded in few herds

Principal Components of G: population stratification

Groups of animals more related between themselves than to the rest of the population.


Principal Components of G: population stratification

1st PC of Gadd matrix correlation lineB

Groups of animals more related between themselves than to the rest of the population.

Principal Components of G: population stratification

Questions?

THANK YOU