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Program outline

Structure of multivariate observations

✓Elements of matrix algebra

✓Structure of (co)variance and correlation matrices

✓Eigenvectors and eigenvalues

✓Examples with R

Principal Component Analysis (PCA)

✓ Theory

✓Use of PCA to reduce the dimensionality of 

complex multivariate systems: practical examples

✓Examples and practice with R



Program outline

Factor Analysis (FA) for studying covariance 

in multivariate complex systems

✓ Theory

✓ Practical examples

✓Comparison between FA and PCA.

✓Examples and practice with R

Canonical discriminant analysis (CDA)

✓ Theory

✓Use of CDA to highlight differences among 

groups

✓Examples and practice with R



Program outline

Cluster analysys (CA)

✓ Unsupervised learning

✓ Use of CA for clustering objects together

✓ Examples and practice with R



Recalls of matrix algebra









=

















+ −
yZ

yX

u

β

AZZXZ

ZXXX
1 '

'

ˆ

ˆ

''

''





Matrix = set of numbers organized 

in i rows and j columns
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The dimensions of a matrix are 

defined by the number of rows and 

number of columns
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Key elements of a matrix

Rows

Columns

Dimension

Rank

Determinant

Inverse



Kind of matrices

Rectangular

✓ ex. data matrix

✓ rows=experimental units

✓ columns=variables

Squared

✓ ex. Covariance matrix

✓ Correlation matrix

✓ rows==columns

✓ Experimental units

✓ variables
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Kind of matrices

Row                    Column

vector                                                  vector
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Matrix: set of row and column vectors



Particular kind of matrices

Diagonal matrices
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Simmetrical matrices
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Matrix operations

Transposition
A =  A′ or (AT)

Exchange columns/rows

A_transpose=t(A)

1 2 3
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Matrix operations

Sum

11 12 11 12

21 22 21 22

31 32 31 32

        

a a b b

a a b b

a a b b

   
   

= =
   
      

A B         

32323131

22222121

12121111

















++

++

++

=+=

baba

baba

baba

BAC

















=

















=

3231

2221

1211

3231

2221

1211

 

kaka

kaka

kaka

aa

aa

aa

kkA

For matrices of equal dimensions

Multiplication of a scalar for a matrix

















 −

=

















++

++

−+−+

=







•















 −

21137

1218

3829

)15*13()2*8()1*13()3*8(

)15*0()2*6()1*0()3*6(

)15*4()2*11()1*4()3*11(

151

23

138

06

411

(3 x 2)  x   (2 x 2)                                                         (3 x 2)

“Along the row, down by the column………”

Matrix operations: multiplication

Column of the first  matrix = rows of the second

result = nrows of the first, 

ncolumns of the second



Vector multiplications
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The determinant of a 

squared matrix
✓ The determinant of a squared matrix is a number that 

characterizes the matrix

✓ The determinant is important for obtaining the inverse of a 

squared matrix

✓ The determinant of a squared matrix A is indicated as |A|

✓ Not all squared matrix can be inverted

✓ Only squared matrix that have the determinant different 

from zero can be inverted



Determinant of a squared matrix

Determinant of a squared matrix A

✓ Number associated to the matrix. Named as |A| or 

det(A).

✓ Important for obtaining the inverse of a matrix
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Rank of a squared matrix

Third column is the difference between the first and 

the second columns. 

If |A|=0 there is not a unique A inverse

|A|=0 when one or more rows (or columns) of A are a 

linear combination of other rows (or columns)



Rank of a squared matrix

✓ The rank of a squared matrix n x n is the number of rows (or 

columns) linearly independent

✓ If the rank is equal to the number of rows (or columns) the matrix is 

said to be full rank

✓ If the rank is smaller than the number of rows (or columns) the 

matrix is said to be not full rank

✓ A full rank matrix has the determinant different from zero and has an 

inverse

✓ A not full rank matrix has the determinant equal to zero (singular) 

and cannot be inverted



Vectors and space



Vectors and space
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Vector inner products



Vector inner products



Vector inner product
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Vector normalisation

A normalised vector is divided by its length

Normalised vector

1 =n n



Vector normalisation
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Orthogonal vectors and matrices
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Orthogonal vectors and matrices

A squared matrix is said to be orthogonal if P’P=P-1P=I, 

i.e. if its columns are normal and orthogonal vectors
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