

UNIVERSITY OF GEORGIA

College of Agricultural & Environmental Sciences

Animal Breeding and Genetics Group

SNP effects from ssGBLUP using BLUPF90 (postGSf90)

Daniela LourencoBLUPF90 TEAM – 08/2024

INIAV Course 2024

Daniela Lourenco Fernando Bussiman

Equivalence between GBLUP and SNP-BLUP

GBLUP

$$\begin{bmatrix} X'X & X'W \\ W'X & W'W+G^{-1}\lambda_1 \end{bmatrix} \begin{bmatrix} \widehat{\beta} \\ \widehat{u} \end{bmatrix} = \begin{bmatrix} X'y \\ W'y \end{bmatrix}$$
 GEBV

$$Var(\mathbf{u}) = ?$$

$$Var(\mathbf{u}) = \mathbf{G}\sigma_u^2$$

SNP-BLUP (Ridge Regression)

$$\begin{bmatrix} X'X & X'Z \\ Z'X & Z'Z+I\lambda_2 \end{bmatrix} \begin{bmatrix} \widehat{\beta} \\ \widehat{a} \end{bmatrix} = \begin{bmatrix} X'y \\ Z'y \end{bmatrix}$$

$$\downarrow$$
SNP effects

$$\mathbf{u} = \mathbf{Z}\mathbf{a}$$

$$Var(\mathbf{u}) = ?$$

$$Var(\mathbf{u}) = \mathbf{G}\sigma_u^2$$

Are GBLUP and SNP-BLUP equivalent?

- Assumption of GBLUP: $Var(\mathbf{u}) = \mathbf{G}\sigma_u^2$
- In SNP-BLUP: $\mathbf{u} = \mathbf{Z}\mathbf{a}$

$$u = Za$$

$$Var(\mathbf{u}) = Var(\mathbf{Z}\mathbf{a})$$

$$Var(\mathbf{u}) = \mathbf{Z} Var(\mathbf{a}) \mathbf{Z}'$$

$$Var(\mathbf{u}) = \mathbf{Z}\mathbf{Z}'\sigma_a^2$$

$$\sigma_a^2 = \frac{\sigma_u^2}{2\sum_{i=1}^{SNP} p_i (1-p_i)}$$

$$Var(\mathbf{u}) = \mathbf{ZZ}' \frac{\sigma_u^2}{2\sum_{i=1}^{SNP} p_i (1 - p_i)}$$

$$Var(\mathbf{u}) = \frac{\mathbf{ZZ'}}{2\sum_{i=1}^{SNP} p_i (1 - p_i)} \sigma_u^2$$

Genomic relationship matrix VanRaden (2008)

$$\mathbf{G} = \frac{\mathbf{ZZ'}}{2\sum_{i=1}^{SNP} p_i (1-p_i)}$$

$$Var(\mathbf{u}) = \mathbf{G}\sigma_u^2$$

GBLUP assumption!!!

GBLUP and SNP-BLUP are equivalent!

If we can get \mathbf{u} ($\mathbf{u} = \mathbf{Z}\mathbf{a}$) from SNP-BLUP, we can get \mathbf{a} from GBLUP!

Review

Single-Step Genomic Evaluations from Theory to Practice: Using SNP Chips and Sequence Data in BLUPF90

Daniela Lourenco ^{1,*}, Andres Legarra ², Shogo Tsuruta ¹, Yutaka Masuda ¹, Ignacio Aguilar ³ and Ignacy Misztal ¹

https://www.mdpi.com/2073-4425/11/7/790

ssGBLUP and ssSNP-BLUP are also equivalent!

$$\begin{bmatrix} \mathbf{X'X} & \mathbf{X'W} \\ \mathbf{W'X} & \mathbf{W'W+H^{-1}} \frac{\sigma_e^2}{\sigma_u^2} \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{W'y} \end{bmatrix}$$

ssGBLUP

Misztal et al. (2009)

Legarra et al. (2009)

Aguilar et al. (2010)

Christensen & Lund (2010)

$$\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{Z}\mathbf{M} & \mathbf{X}'_{n}\mathbf{Z}_{n} \\ \mathbf{M}'\mathbf{Z}'\mathbf{X} & \mathbf{M}'\mathbf{Z}'\mathbf{Z}\mathbf{M} + \mathbf{I}\frac{\sigma_{\mathbf{e}}^{2}}{\sigma_{\alpha}^{2}} & \mathbf{M}'_{n}\mathbf{Z}'_{n}\mathbf{Z}_{n} \\ \mathbf{Z}'_{n}\mathbf{X}_{n} & \mathbf{Z}'_{n}\mathbf{Z}_{n}\mathbf{M}_{n} & \mathbf{Z}'_{n}\mathbf{Z}_{n} + \mathbf{A}^{nn}\frac{\sigma_{\mathbf{e}}^{2}}{\sigma_{g}^{2}} \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\boldsymbol{\alpha}} \\ \hat{\boldsymbol{\epsilon}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{M}'\mathbf{Z}'\mathbf{y} \\ \mathbf{Z}'_{n}\mathbf{y}_{n} \end{bmatrix}$$

ssSNPBLUP or ssBR

Fernando et al. (2014) Liu et al. (2014) Mantysaari & Stranden (2016)

†Nordic Cattle Genetic Evaluation, DK-8200 Aarhus, Denmark **Datural Resources Institute Finland (Luke), FIN-31600 Jokioinen, Finland

© 2018, The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association⁶ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Short communication: Genomic prediction using different single-step methods in the Finnish red dairy cattle population

H. Gao,*† M. Koivula,‡ J. Jensen,* I. Strandén,‡ P. Madsen,* T. Pitkänen,‡ G. P. Aamand,†

*Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830 Tjele, Denmark

We confirmed that regular ssGBLUP and ssBR with an extra polygenic effect led to the same predictions.

SNP effects in ssGBLUP

$$\begin{bmatrix} X'X & X'W \\ W'X & W'W+H^{-1}\lambda_1 \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\boldsymbol{u}} \end{bmatrix} = \begin{bmatrix} X'y \\ W'y \end{bmatrix}$$

$$\widehat{\mathbf{a}} = \alpha b \frac{1}{2\sum p_i(1-p_i)} \mathbf{Z'G}^{-1} \widehat{\widehat{\mathbf{u}}}$$
Genomic relationship matrix

$$\alpha$$
 = blending parameter for **G**

$$b=1-\frac{\lambda}{2}$$

$$\lambda = \frac{1}{n^2} \left(\sum_{i} \sum_{i} \mathbf{A}_{22_{ij}} - \sum_{i} \sum_{i} \mathbf{G}_{ij} \right)$$

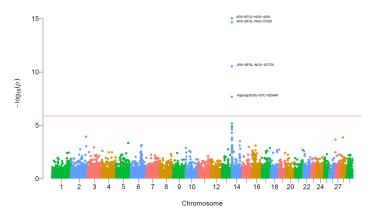
What can we do with SNP effects?

1) Predictions for animals not included in the evaluation

Indirect Predictions

Indirect Genomic Predictions

2) Genome-Wide Association Studies (GWAS)



- Interim evaluations
 - Between official runs

- Not all genotyped animals are in the evaluations
 - Animals with incomplete pedigree increase bias and lower R²

- Commercial products
 - e.g., GeneMax -> genomic testing for non-registered animals

$$\begin{bmatrix} \mathbf{X'X} & \mathbf{X'W} \\ \mathbf{W'X} & \mathbf{W'W+H^{-1}\lambda_1} \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{W'y} \end{bmatrix} \qquad \qquad \widehat{\mathbf{a}} = \alpha b \frac{1}{2\sum p_i (1-p_i)} \mathbf{Z'G^{-1}\widehat{\mathbf{u}}}$$

Indirect Prediction:
$$\mathbf{IP} = u_m^* = \mathbf{Z}\hat{\mathbf{a}}$$

Indirect Prediction:
$$u_m^* = \mathbf{Z}\hat{\mathbf{a}}$$

Fine if comparing among animals with IP

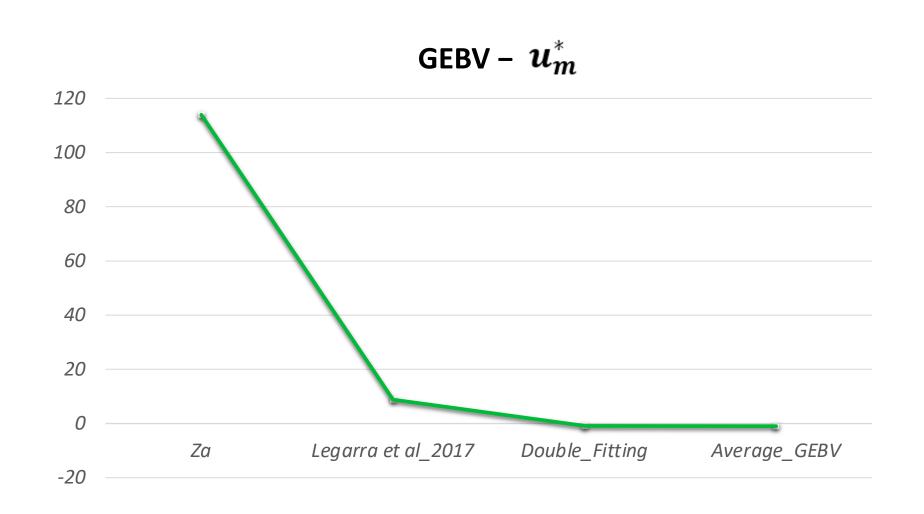
- Not fine if comparing IP with GEBV $(\widehat{\mathbf{u}})$ from the main evaluation
 - Need to put IP in the pedigree scale

$$\mathbf{u}_{m} = \widehat{\boldsymbol{\mu}} + \mathbf{u}_{m}^{*}$$

$$\widehat{\boldsymbol{\mu}} = \alpha \lambda \mathbf{1}' \mathbf{G}^{-1} \widehat{\mathbf{u}}$$

 α = blending parameter for **G**

$$\lambda = \frac{1}{n^2} \left(\sum_{i} \sum_{j} \mathbf{A}_{22_{ij}} - \sum_{i} \sum_{j} \mathbf{G}_{ij} \right)$$



How to compute Indirect predictions

- 1) Pedigree + phenotypes + genotypes
- 2) renumf90
- 3) preGSf90 to save clean files
- 4) blupf90+ (with clean files: OPTION no_quality_control)
 - Good practice to save time: OPTION saveGInverse + OPTION saveA22Inverse
- 5) postGSf90 (with clean files)
 - BLUPF90 family software to compute SNP effects (+more)
 - Same parameter file as blupf90+
 - Good practice to save time: OPTION readGInverse + OPTION readA22Inverse

snp_sol

http://nce.ads.uga.edu/wiki/doku.php?id=readme.pregsf90

contains solutions of SNP and weights

- 1: trait
- 2: effect
- 3: SNP
- 4: Chromosome
- 5: Position
- 6: SNP solution
- 7: weight

snp_pred

- 1st line: model, tuning, blending information
- 2nd line: Trait/effect info
- AF in 10 columns
- mu_hat, var_mu_hat
- SNP effects

How to compute Indirect Predictions

6) predf90

- Reads snp_pred
- Have to provide a SNP file for the new genotyped animals to receive IP
 - same SNP as in the clean file

• The last statement adds the base, so that we have: $u_m = \widehat{\mu} + u_m^*$

Output from predf90

SNP_predictions

Animal ID	SNP call rate	Indirect Predictions

UGA50014	1.00	0.17414457
UGA50016	1.00	0.72332874E-01
UGA50042	1.00	1.0016705
UGA50058	1.00	0.17190497
UGA50060	1.00	0.98674759E-01
UGA50065	1.00	-0.60623702E-01
UGA50073	1.00	-0.17860851
UGA50077	1.00	-0.21597147
UGA50079	1.00	-0.69586390
UGA50084	1.00	1.0600574
UGA50085	1.00	-0.28602412
UGA50088	1.00	-0.12758011

predf90 can also compute accuracy of indirect predictions

```
OPTION snp_p_value
OPTION snp_var
--acc
```

#in blupf90+
#in postGSf90
#in predf90

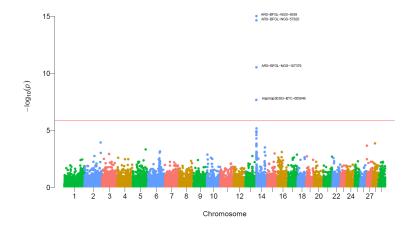
Garcia et al. Genetics Selection Evolution (2022) 54:66 https://doi.org/10.1186/s12711-022-00752-4

RESEARCH ARTICLE

Open Access

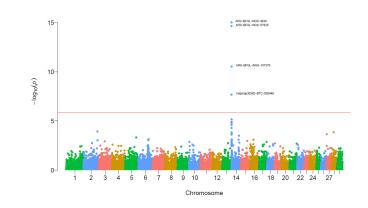
Theoretical accuracy for indirect predictions based on SNP effects from single-step GBLUP

2) Genome-wide Association Studies



Current standard for GWAS

- Single marker regression with G to compensate for relationships
 - $\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{z}_i\mathbf{a}_i + \mathbf{u} + \mathbf{e}$
 - **z**: gene content {0,1,2}
 - a: SNP effect
- Estimate SNP effects
- Get p-values as $pval_i = 2\left(1 \Phi\left(\left|\frac{\hat{\mathbf{a}}_i}{sd(\hat{\mathbf{a}}_i)}\right|\right)\right)$
- Apply Bonferroni to correct for multiple testing

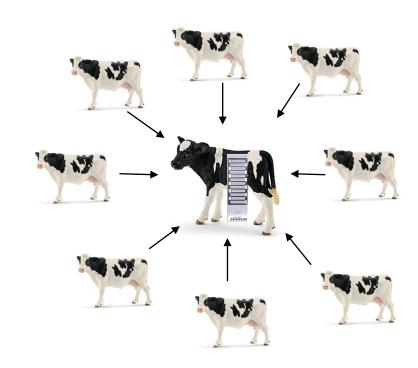


Assumption: Genotyped individuals have phenotypes

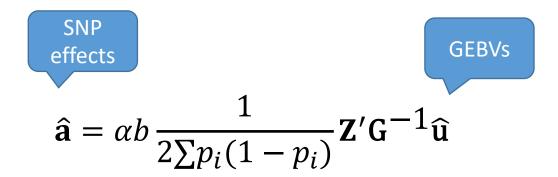
GWAS in livestock populations

- Most animals are non-genotyped
- Animals may not have phenotypes
- Some traits are sex-limited
 - milk, fat, protein
- Single marker regression
 - Only genotyped animals with phenotypes
 - Deregressed EBV

- Need a method that fits the livestock data
 - ssGWAS



Single-step GWAS (historical)



VanRaden 2008 Stranden and Garrick 2009 Wang et al. 2012

a) Quadratic SNP variance (Falconer & Mackay, 1996)

$$d_i = \hat{a}_i^2 2p_i (1 - p_i)$$

b) NonlinearA SNP variance (VanRaden, 2008)

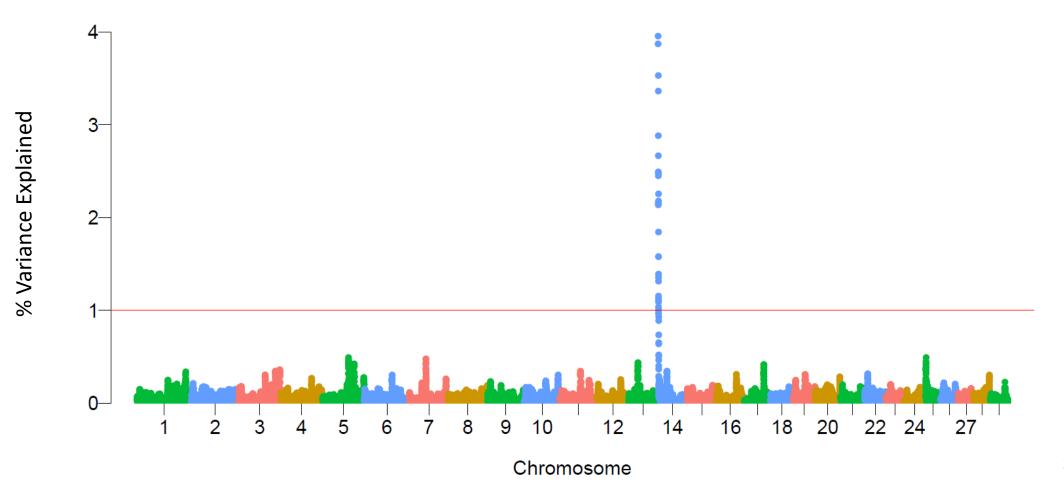
$$d_i = 1.125 \frac{|\hat{a}_i|}{sd(\hat{a})}^{-2}$$

Single-step GWAS

Fat – US Holsteins

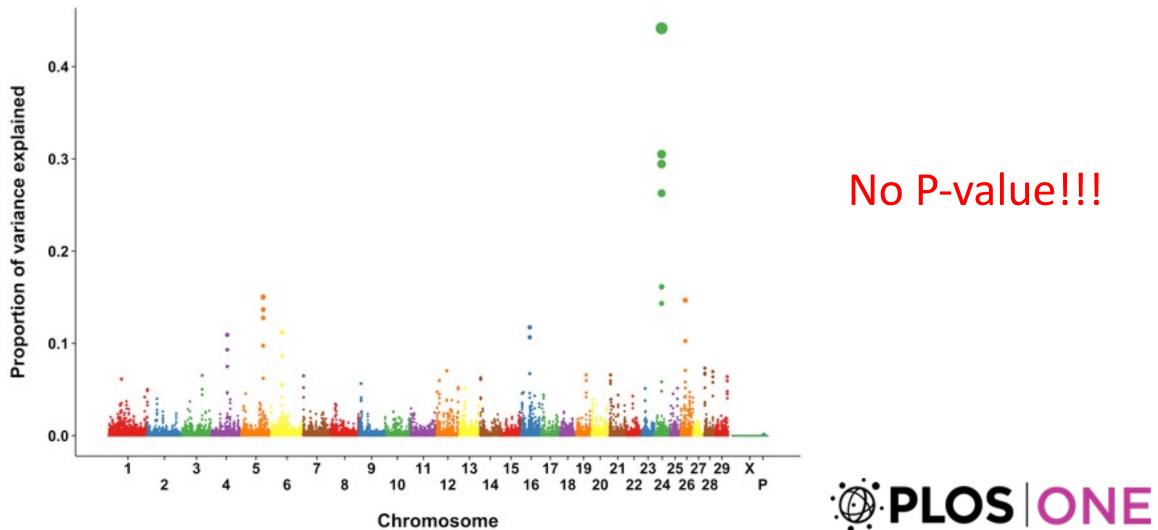
No P-value!!!

Manhattan plot of Variances



Single-step GWAS

Figure 2. Proportion of SNP variance explained by 5-SNP moving windows for rectal temperature from a single-step GBLUP analysis



Dikmen S, Cole JB, Null DJ, Hansen PJ (2013) Genome-Wide Association Mapping for Identification of Quantitative Trait Loci for Rectal Temperature during Heat Stress in Holstein Cattle. PLOS ONE 8(7): e69202. https://doi.org/10.1371/journal.pone.0069202 https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069202

Can we have p-values in ssGWAS?

Gualdrón Duarte et al. BMC Bioinformatics 2014, 15:246 http://www.biomedcentral.com/1471-2105/15/246

METHODOLOGY ARTICLE

Open Access

Rapid screening for phenotype-genotype associations by linear transformations of genomic evaluations

Jose L Gualdrón Duarte¹, Rodolfo JC Cantet¹, Ronald O Bates², Catherine W Ernst², Nancy E Raney² and Juan P Steibel^{2,3*}

Genome-Wide Association Analyses Based on Broadly Different Specifications for Prior Distributions, Genomic Windows, and Estimation Methods

Chunyu Chen,¹ Juan P. Steibel, and Robert J. Tempelman
Department of Animal Science, Michigan State University, East Lansing, Michigan 48824

ORCID ID: 0000-0002-7833-6730 (R.J.T.)

Aguilar et al. Genet Sel Evol (2019) 51:28 https://doi.org/10.1186/s12711-019-0469-3

doi: 10.1111/age.12378

Meta-analysis of genome-wide association from genomic prediction models

Y. L. Bernal Rubio*[†], J. L. Gualdrón Duarte*, R. O. Bates*, C. W. Ernst*, D. Nonneman[‡], G. A. Rohrer[‡], A. King[‡], S. D. Shackelford[‡], T. L. Wheeler[‡], R. J. C. Cantet^{†§} and J. P. Steibel*[¶]

Genome-wide association analyses based on a multiple-trait approach for modeling feed efficiency

Y. Lu,* M. J. Vandehaar,* D. M. Spurlock,† K. A. Weigel,‡ L. E. Armentano,‡ E. E. Connor,§ M. Coffey,# R. F. Veerkamp,|| Y. de Haas,|| C. R. Staples,¶ Z. Wang,** M. D. Hanigan,†† and R. J. Tempelman*¹

SHORT COMMUNICATION

Open Access

Frequentist p-values for large-scale-single step genome-wide association, with an application to birth weight in American Angus cattle

P-values in ssGWAS

- 1) Factorize and Invert LHS of ssGBLUP with YAMS (Masuda et al., 2014)
- 2) Solve the MME for $\begin{bmatrix} \widehat{\beta} \\ \widehat{\mathbf{u}} \end{bmatrix}$ using the sparse Cholesky factor
- 3) Extract coefficients for genotyped animals ($C^{u_2u_2}$) from LHS⁻¹
- 4) Obtain individual prediction error variance of SNP effects:

$$Var(\hat{a}_i) = \alpha b \frac{1}{2\sum p_i(1-p_i)} \mathbf{z}_i' \mathbf{G}^{-1} (\mathbf{G} \sigma_{\mathbf{u}}^2 - \mathbf{C}^{u_2 u_2}) \mathbf{G}^{-1} \mathbf{z}_i \frac{1}{2\sum p_i(1-p_i)} \alpha b$$

(Gualdron-Duarte et al., 2014)

5) Backsolve GEBV to SNP effects (\hat{a}): $\hat{a} = \alpha b \frac{1}{2 \sum p_i q_i} \mathbf{Z}' \mathbf{G}^{-1} \hat{u}$

6) p-value_i =
$$2\left(1 - \Phi\left(\left|\frac{\hat{a}_i}{sd(\hat{a}_i)}\right|\right)\right)$$

blupf90+

postGSf90

Ignacio Aguilar

Andres Legarra

Yutaka Masuda

How to run ssGWAS with p-values in BLUPF90

- After renumf90 and preGSf90 to save clean files:
 - blupf90+ to estimate GEBV
 - OPTION SNP file snp.dat clean
 - OPTION map_file mrkmap.txt_clean
 - OPTION saveGInverse
 - OPTION saveA22Inverse
 - OPTION snp p value
 - OPTION no quality_control
 - postGSf90 to backsolve GEBV to SNP effect
 - OPTION SNP file snp.dat clean
 - OPTION map file mrkmap.txt clean
 - OPTION readGInverse
 - OPTION readA22Inverse
 - OPTION snp p value
 - OPTION windows variance X #if need variance explained by X SNP
 - OPTION no quality control

chrsnp_pval

contains data to create plot by GNUPLOT

- 1: trait
- 2: effect
- 3: -log10(p-value)
- 4: SNP
- 5: Chromosome
- 6: Position in bp

Pft1e2.gnuplot

Pft1e2.R

chrsnp

contains data to create plot by GNUPLOT

- 1: trait
- 2: effect
- 3: values of SNP effects to use in Manhattan plots → [abs(SNP_i)/var(SNP)]
- 4: SNP
- 5: Chromosome
- 6: Position

Sft1e2.gnuplot

Sft1e2.R

chrsnpvar

contains data to create plot by GNUPLOT

- 1: trait
- 2: effect
- 3: variance explained by n adjacents SNP
- 4: SNP
- 5: Chromosome
- 6: Position

Vft1e2.gnuplot

Vft1e2.R

snp_sol

contains solutions of SNP and weights

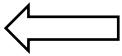
- 1: trait
- 2: effect
- 3: SNP
- 4: Chromosome
- 5: Position
- 6: SNP solution
- 7: weight

if OPTION windows_variance is used

8: variance explained by n adjacents SNP.

if OPTION snp_p_value is used

9: variance of the SNP solution (used to compute the p-value)

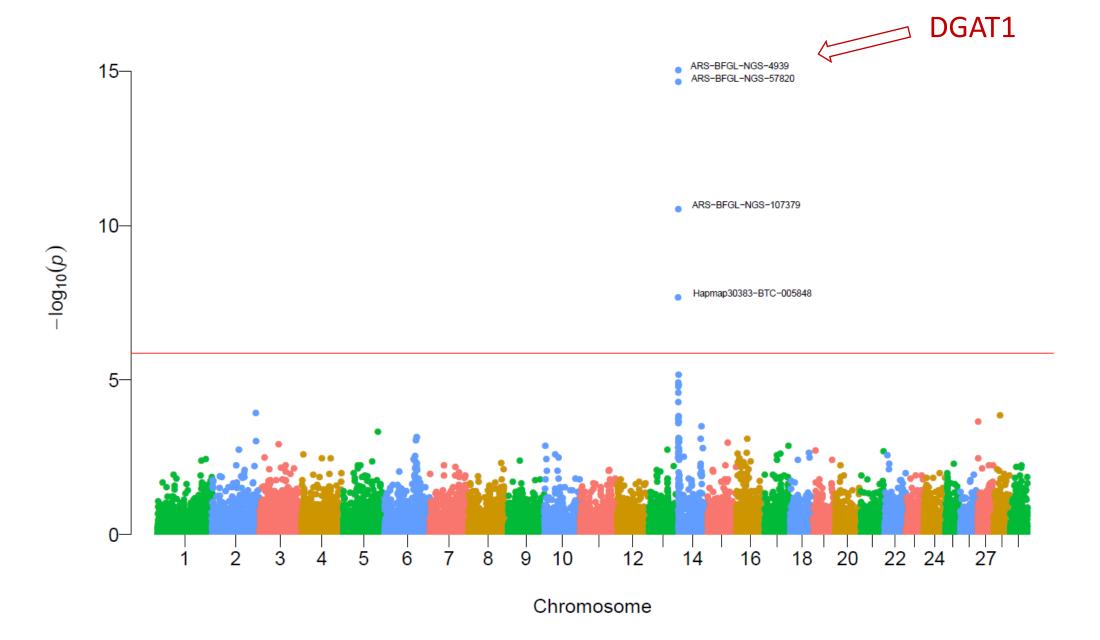


P-values in ssGWAS for US Holsteins

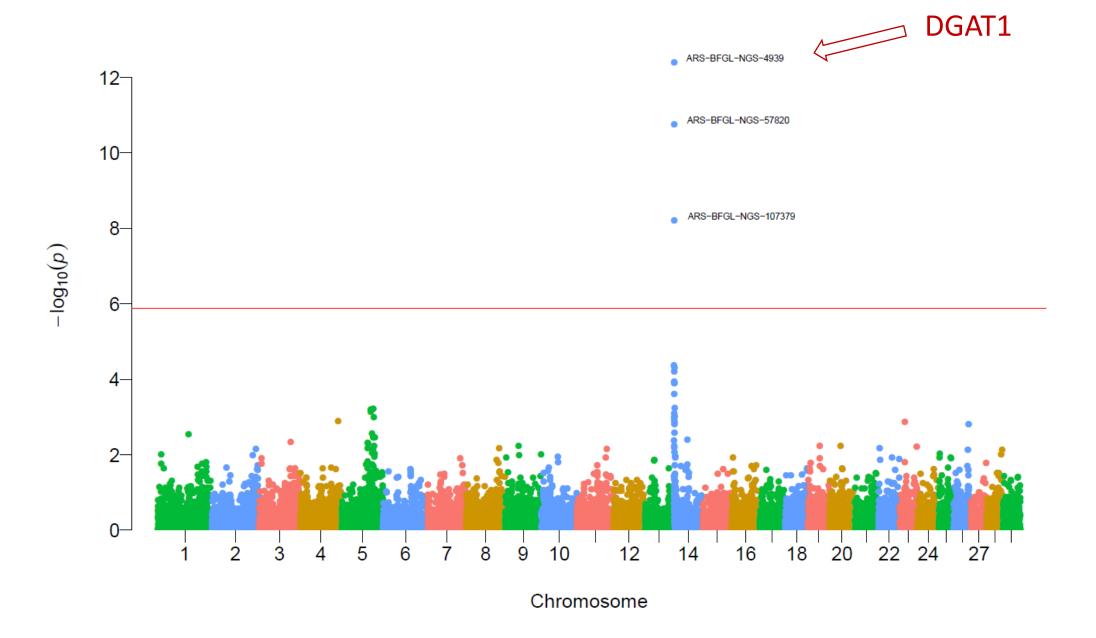
US HOL 2009 data: milk, fat, protein

- Single-trait models
 - 10k genotyped bulls
 - 752k records for 100k daughters
 - 303k animals in ped

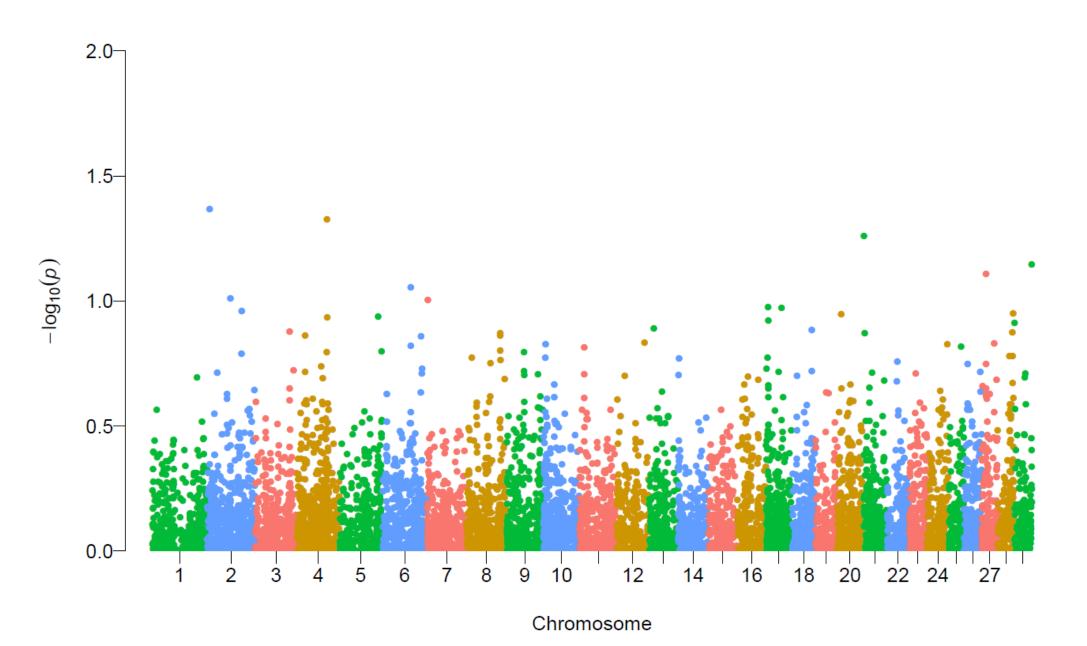
P-values in ssGWAS - Milk



P-values in ssGWAS - Fat

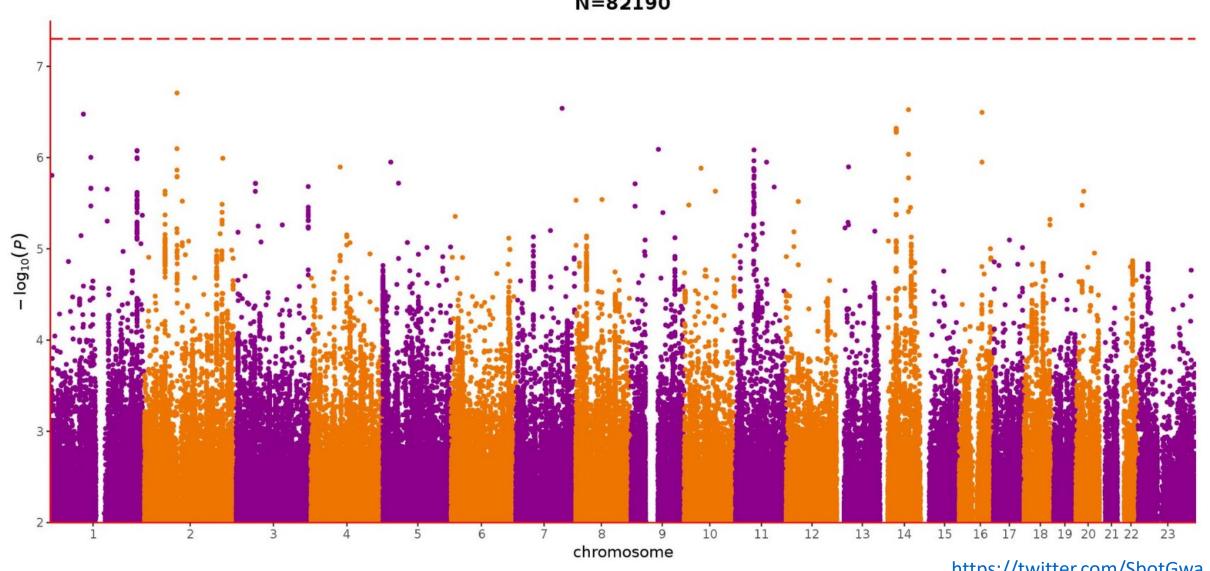


P-values in ssGWAS - Protein



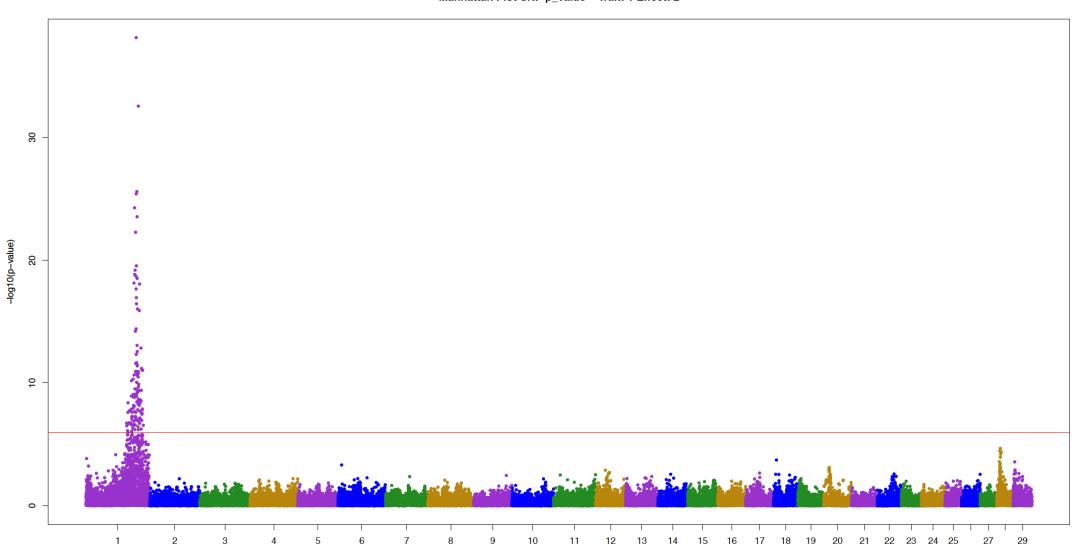
Non-significant hits

Work/job satisfaction N=82190

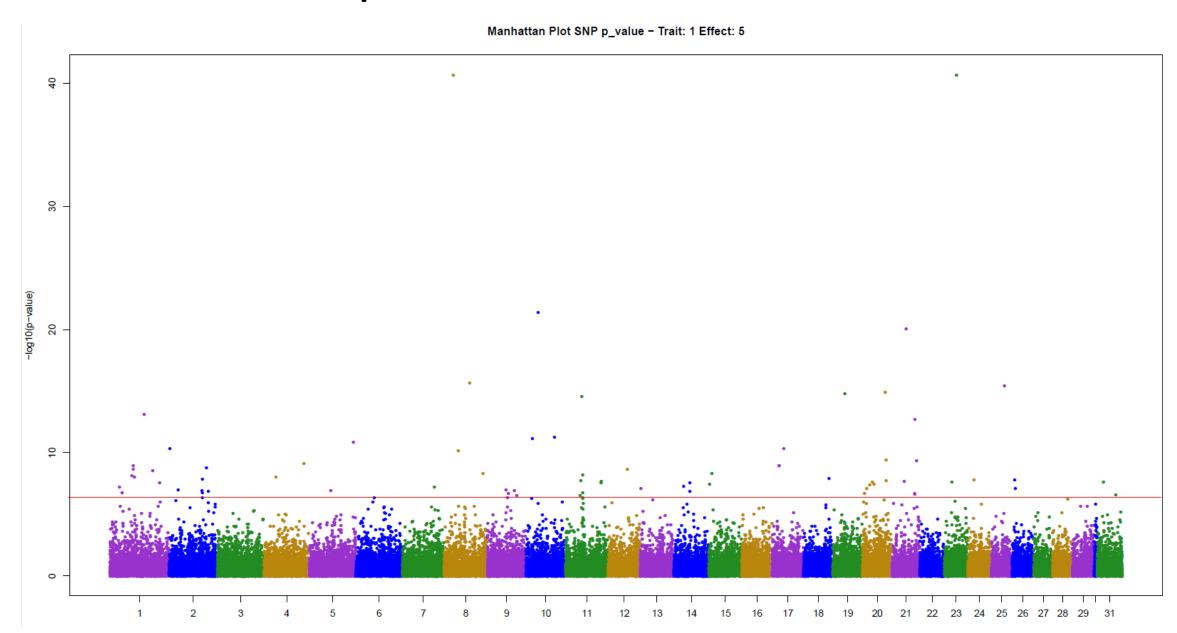


https://twitter.com/SbotGwa

Manhattan plots we want to see

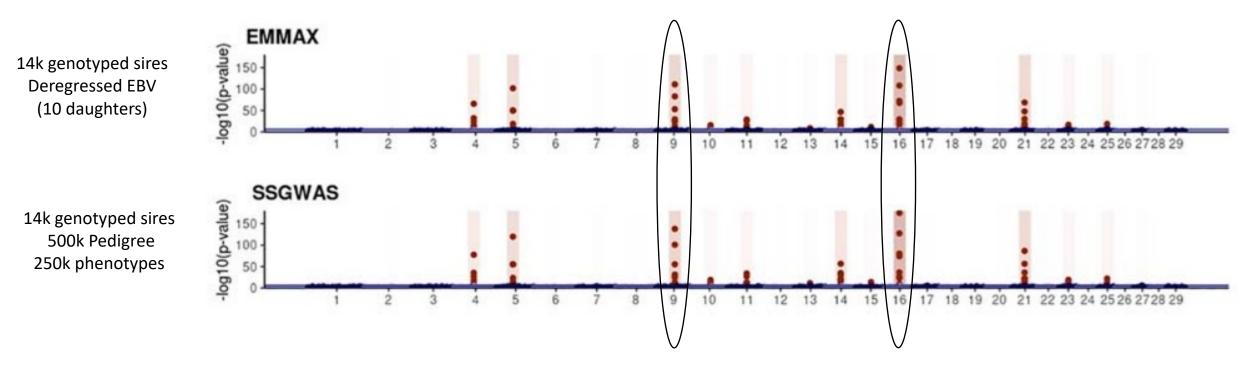


Manhattan plots we do NOT want to see



ssGWAS vs. EMMAX

• Simulated population (1 QTN per CHR)



Association	EMMAX (Khang et al., 2010)	ssGWAS (Aguilar et al., 2019)
True Positive	55.2° (3.7)	61.6 ^a (8.7)
False Positive	0.0	0.0

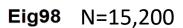
ssGWAS

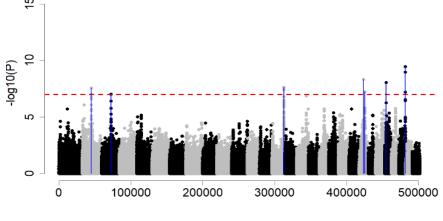
- ssGWAS works!!!
- Heavy computations
- Soft limit is the same as REML
 - 10k genotyped animals
 - 1M animals in pedigree
 - 1M phenotypes
 - Less than 1 day to finish

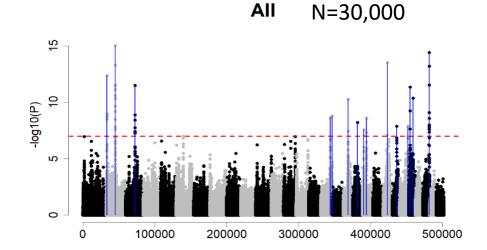
GWAS vs. amount of information

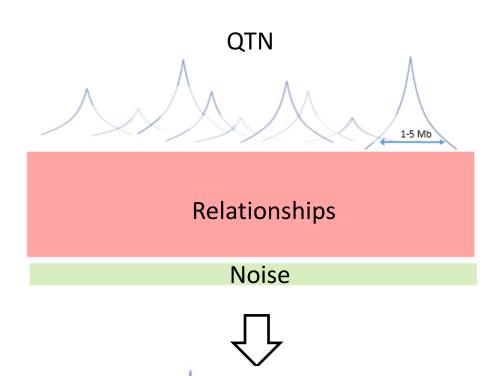
Amount of information to identify causative variants

Ne=200 QTN=2000 ²²]







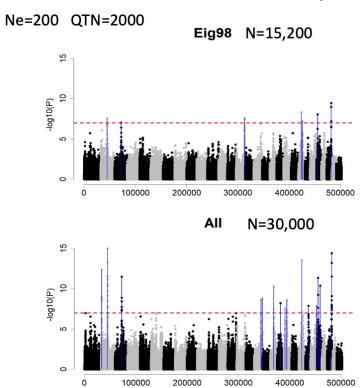


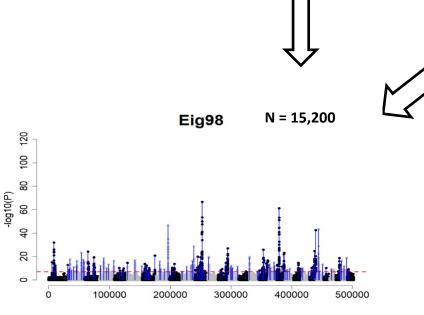
Jang et al. (2023)

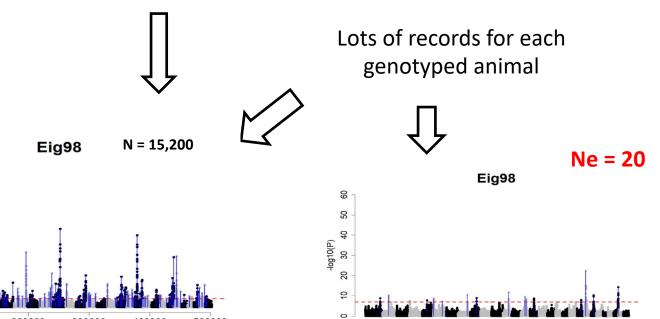
GWAS vs. amount of information

- Amount of information to identify causative variants
 - Animal with lots of information
 - GEBV accuracy ~ 0.99
 - **GEBV** backsolved to SNP effects
 - GWAS resolution with sample size = Me = Eig98 animals with almost perfect accuracy

Jang et al. (2023)







Ne vs. Segments

Theory of junctions Fisher (1949)

 $E(Me) = 4N_eL$

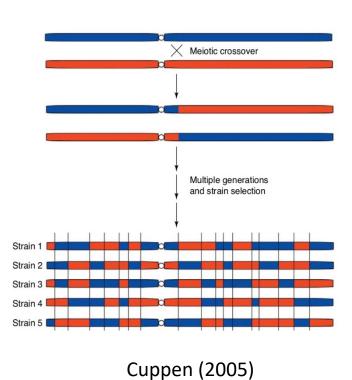
Stam (1980)

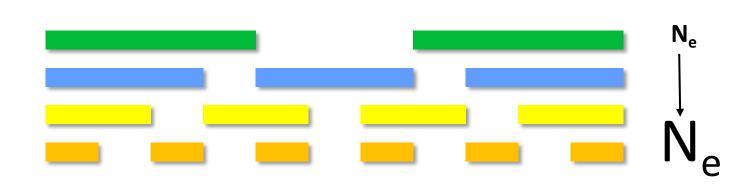
Points where the founder chromosome of origin changes

Me – Independent chromosome segments

N_e – Effective population size

L – Length of genome in Morgans





Limited # segments → limited dimensionality

Selecting causative SNP

Pocrnic et al. (accepted)

