

UNIVERSITY OF GEORGIA

College of Agricultural & Environmental Sciences

Animal Breeding and Genetics Group

SNP effects from ssGBLUP using BLUPF90 (postGSf90)

Daniela LourencoBLUPF90 TEAM – 02/2023

Armidale Animal Breeding
Summer Course 2023

Daniela Lourenco Mehdi Sargolzaei

Equivalence between GBLUP and SNP-BLUP

GBLUP

$$\begin{bmatrix} X'X & X'W \\ W'X & W'W+G^{-1}\lambda_1 \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\boldsymbol{u}} \end{bmatrix} = \begin{bmatrix} X'y \\ W'y \end{bmatrix}$$
 GEBV

$$Var(\mathbf{u}) = ?$$

$$Var(\mathbf{u}) = \mathbf{G}\sigma_u^2$$

SNP-BLUP (Ridge Regression)

$$\begin{bmatrix} X'X & X'Z \\ Z'X & Z'Z+I\lambda_2 \end{bmatrix} \begin{bmatrix} \widehat{\beta} \\ \widehat{a} \end{bmatrix} = \begin{bmatrix} X'y \\ Z'y \end{bmatrix}$$

$$\downarrow$$
SNP effects

$$\mathbf{u} = \mathbf{Z}\mathbf{a}$$

$$Var(\mathbf{u}) = \mathbf{G}\sigma_u^2$$

Are GBLUP and SNP-BLUP equivalent?

- Assumption of GBLUP: $Var(\mathbf{u}) = \mathbf{G}\sigma_u^2$
- In SNP-BLUP: $\mathbf{u} = \mathbf{Z}\mathbf{a}$

$$u = Za$$

$$Var(\mathbf{u}) = Var(\mathbf{Z}\mathbf{a})$$

$$Var(\mathbf{u}) = \mathbf{Z} Var(\mathbf{a}) \mathbf{Z}'$$

$$Var(\mathbf{u}) = \mathbf{Z}\mathbf{Z}'\sigma_a^2$$

$$\sigma_a^2 = \frac{\sigma_u^2}{2\sum_{i=1}^{SNP} p_i (1-p_i)}$$

$$Var(\mathbf{u}) = \mathbf{ZZ}' \frac{\sigma_u^2}{2\sum_{i=1}^{SNP} p_i (1 - p_i)}$$

$$Var(\mathbf{u}) = \frac{\mathbf{ZZ'}}{2\sum_{i=1}^{SNP} p_i (1 - p_i)} \sigma_u^2$$

Genomic relationship matrix VanRaden (2008)

$$\mathbf{G} = \frac{\mathbf{ZZ'}}{2\sum_{i=1}^{SNP} p_i (1-p_i)}$$

$$Var(\mathbf{u}) = \mathbf{G}\sigma_u^2$$

GBLUP assumption!!!

GBLUP and SNP-BLUP are equivalent!

If we can get \mathbf{u} ($\mathbf{u} = \mathbf{Z}\mathbf{a}$) from SNP-BLUP, we can get \mathbf{a} from GBLUP!

Review

Single-Step Genomic Evaluations from Theory to Practice: Using SNP Chips and Sequence Data in BLUPF90

Daniela Lourenco ^{1,*}, Andres Legarra ², Shogo Tsuruta ¹, Yutaka Masuda ¹, Ignacio Aguilar ³ and Ignacy Misztal ¹

https://www.mdpi.com/2073-4425/11/7/790

ssGBLUP and ssSNP-BLUP are also equivalent!

$$\begin{bmatrix} \mathbf{X'X} & \mathbf{X'W} \\ \mathbf{W'X} & \mathbf{W'W+H^{-1}} \frac{\sigma_e^2}{\sigma_u^2} \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{W'y} \end{bmatrix}$$

ssGBLUP

Misztal et al. (2009) Legarra et al. (2009)

Aguilar et al. (2010)

Christensen & Lund (2010)

$$\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{Z}\mathbf{M} & \mathbf{X}'_{n}\mathbf{Z}_{n} \\ \mathbf{M}'\mathbf{Z}'\mathbf{X} & \mathbf{M}'\mathbf{Z}'\mathbf{Z}\mathbf{M} + \mathbf{I}\frac{\sigma_{\mathbf{e}}^{2}}{\sigma_{\alpha}^{2}} & \mathbf{M}'_{n}\mathbf{Z}'_{n}\mathbf{Z}_{n} \\ \mathbf{Z}'_{n}\mathbf{X}_{n} & \mathbf{Z}'_{n}\mathbf{Z}_{n}\mathbf{M}_{n} & \mathbf{Z}'_{n}\mathbf{Z}_{n} + \mathbf{A}^{nn}\frac{\sigma_{\mathbf{e}}^{2}}{\sigma_{g}^{2}} \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\boldsymbol{\alpha}} \\ \hat{\boldsymbol{\epsilon}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{M}'\mathbf{Z}'\mathbf{y} \\ \mathbf{Z}'_{n}\mathbf{y}_{n} \end{bmatrix}$$

ssSNPBLUP or ssBR

Fernando et al. (2014) Liu et al. (2014) Mantysaari & Stranden (2016)

© 2018, The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association[®].

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Short communication: Genomic prediction using different single-step methods in the Finnish red dairy cattle population

H. Gao, *† M. Koivula, ‡ J. Jensen, * I. Strandén, ‡ P. Madsen, * T. Pítkänen, ‡ G. P. Aamand, † and F. A. Mäntysaari †

Donmark

We confirmed that regular ssGBLUP and ssBR with an extra polygenic effect led to the same predictions.

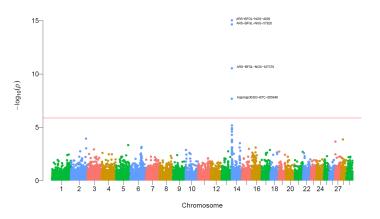
SNP effects in ssGBLUP

$$\begin{bmatrix} X'X & X'W \\ W'X & W'W+H^{-1}\lambda_1 \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\boldsymbol{u}} \end{bmatrix} = \begin{bmatrix} X'y \\ W'y \end{bmatrix}$$

$$\hat{\mathbf{a}} = \alpha b \frac{1}{2 \sum p_i (1 - p_i)} \mathbf{Z}' \mathbf{G}^{-1} \hat{\mathbf{u}}$$
Genomic relationship matrix

$$\alpha$$
 = blending parameter for **G**

$$\lambda = \frac{1}{n^2} \left(\sum_{i} \sum_{j} \mathbf{A}_{22ij} - \sum_{i} \sum_{j} \mathbf{G}_{ij} \right) \qquad b = 1 - \frac{\lambda}{2}$$


What can we do with SNP effects?

1) Predictions for animals not included in the evaluation

Indirect Predictions

Indirect Genomic Predictions

2) Genome-Wide Association Studies (GWAS)

- Interim evaluations
 - Between official runs

- Not all genotyped animals are in the evaluations
 - Animals with incomplete pedigree increase bias and lower R²

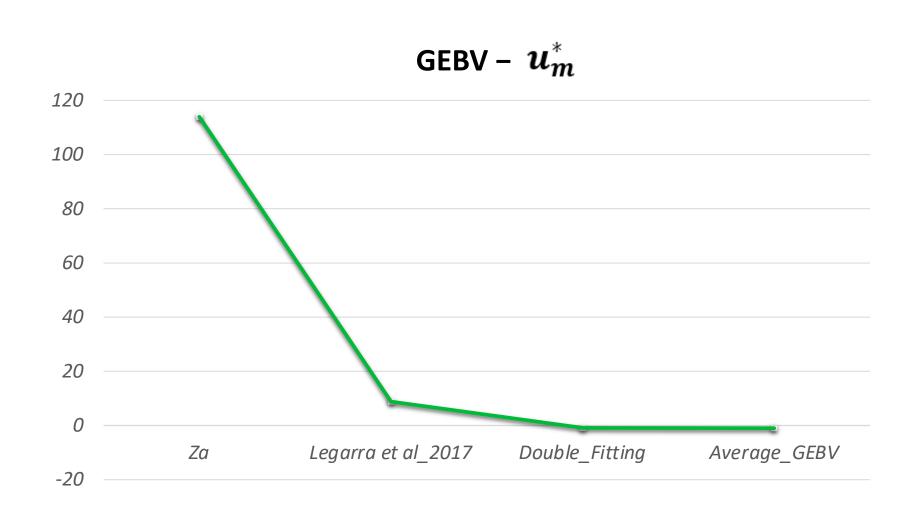
- Commercial products
 - e.g., GeneMax -> genomic testing for non-registered animals

$$\begin{bmatrix} \mathbf{X'X} & \mathbf{X'W} \\ \mathbf{W'X} & \mathbf{W'W+H^{-1}\lambda_1} \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{W'y} \end{bmatrix} \qquad \qquad \qquad \qquad \qquad \widehat{\mathbf{a}} = \alpha b \frac{1}{2\sum p_i (1-p_i)} \mathbf{Z'G^{-1}} \widehat{\mathbf{u}}$$

Indirect Prediction:
$$\mathbf{IP} = u_m^* = \mathbf{Z}\hat{\mathbf{a}}$$

Indirect Prediction:
$$u_m^* = \mathbf{Z}\hat{\mathbf{a}}$$

Fine if comparing among animals with IP


- Not fine if comparing IP with GEBV from the main evaluation
 - Need to put IP in the pedigree scale

$$\mathbf{u}_{m} = \widehat{\boldsymbol{\mu}} + \mathbf{u}_{m}^{*}$$

$$\widehat{\boldsymbol{\mu}} = \alpha \lambda \mathbf{1}' \mathbf{G}^{-1} \widehat{\mathbf{u}}$$

 α = blending parameter for **G**

$$\lambda = \frac{1}{n^2} \left(\sum_{i} \sum_{j} \mathbf{A}_{22_{ij}} - \sum_{i} \sum_{j} \mathbf{G}_{ij} \right)$$

How to compute Indirect predictions

- 1) Pedigree + phenotypes + genotypes
- 2) renumf90
- 3) preGSf90 to save clean files
- 4) blupf90+ (save the clean files)
 - Good practice to save time: OPTION saveGInverse + OPTION saveA22Inverse
- 5) postGSf90 (with clean files)
 - BLUPF90 family software to compute SNP effects (+more)
 - Same parameter file as blupf90+
 - Good practice to save time: OPTION readGInverse + OPTION readA22Inverse

snp_sol

http://nce.ads.uga.edu/wiki/doku.php?id=readme.pregsf90

contains solutions of SNP and weights

- 1: trait
- 2: effect
- 3: SNP
- 4: Chromosome
- 5: Position
- 6: SNP solution
- 7: weight

snp_pred

- 1st line: model, tuning, blending information
- 2nd line: Trait/effect info
- AF in 10 columns
- mu_hat, var_mu_hat
- SNP effects

How to compute Indirect Predictions

6) predf90

- Have to provide a SNP file for the new genotyped animals to receive IP
 - same SNP as in the clean file

predf90 --snpfile newgen.txt --use_mu_hat

• The last statement adds the base, so that we have: $u_m = \widehat{\mu} + u_m^*$

Output from predf90

SNP_predictions

Animal ID	SNP call rate	Indirect Predictions

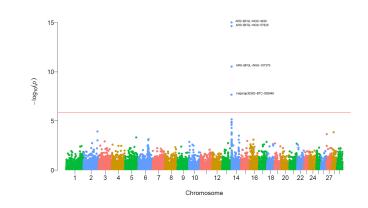
UGA50014	1.00	0.17414457
UGA50016	1.00	0.72332874E-01
UGA50042	1.00	1.0016705
UGA50058	1.00	0.17190497
UGA50060	1.00	0.98674759E-01
UGA50065	1.00	-0.60623702E-01
UGA50073	1.00	-0.17860851
UGA50077	1.00	-0.21597147
UGA50079	1.00	-0.69586390
UGA50084	1.00	1.0600574
UGA50085	1.00	-0.28602412
UGA50088	1.00	-0.12758011

predf90 can also compute accuracy of indirect predictions

```
OPTION snp_p_value #in blupf90+
OPTION snp_var #in postGSf90
--acc #in predf90
```

Garcia et al. Genetics Selection Evolution (202 https://doi.org/10.1186/s12711-022-00752-4

RESEARCH ARTICLE

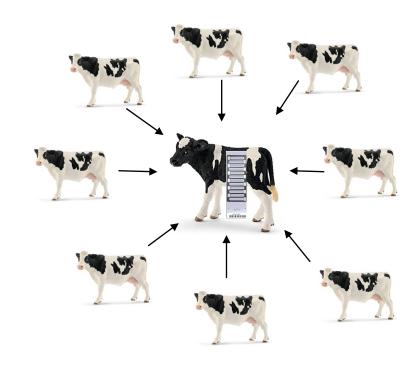

Open Access

Theoretical accuracy for indirect predictions based on SNP effects from single-step GBLUP

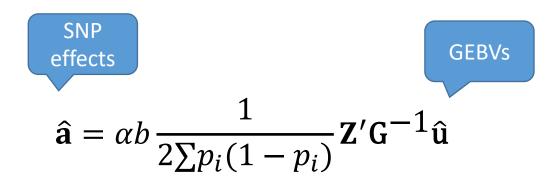
2) Genome-wide Association Studies

Current standard for GWAS

- Single marker regression with G to compensate for relationships
 - $\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{z}_i\mathbf{a}_i + \mathbf{u} + \mathbf{e}$
 - **z**: gene content {0,1,2}
 - a: SNP effect
- Estimate SNP effects
- Get p-values as $pval_i = 2\left(1 \Phi\left(\left|\frac{\hat{\mathbf{a}}_i}{sd(\hat{\mathbf{a}}_i)}\right|\right)\right)$
- Apply Bonferroni to correct for multiple testing



Assumption: Genotyped individuals have phenotypes


GWAS in livestock populations

- Most animals are non-genotyped
- Animals may not have phenotypes
- Some traits are sex-limited
 - milk, fat, protein
- Single marker regression
 - Only genotyped animals with phenotypes
 - Deregressed EBV

- Need a method that fits the livestock data
 - ssGWAS

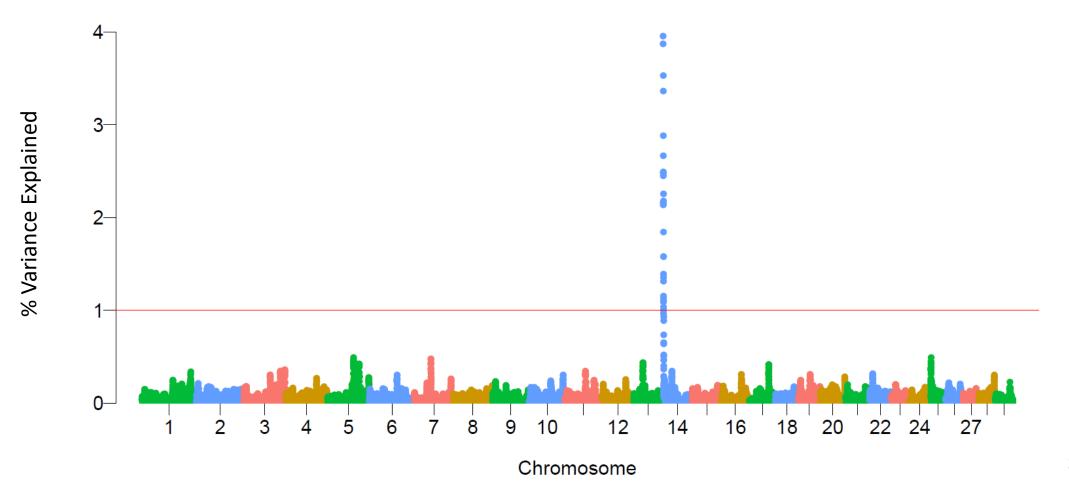
Single-step GWAS (historical)

VanRaden 2008 Stranden and Garrick 2009 Wang et al. 2012

a) Quadratic SNP variance (Falconer & Mackay, 1996)

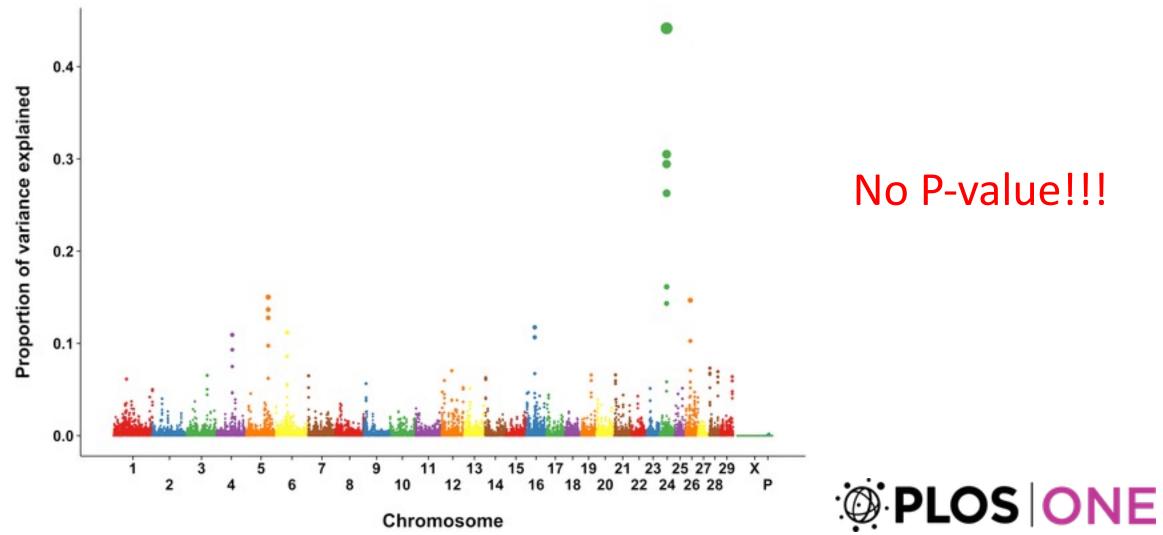
$$d_i = \hat{a}_i^2 2p_i (1 - p_i)$$

b) NonlinearA SNP variance (VanRaden, 2008)


$$d_i = 1.125 \frac{|\hat{a}_i|}{sd(\hat{a})}^{-2}$$

Single-step GWAS

Fat – US Holsteins


No P-value!!!

Manhattan plot of Variances

Single-step GWAS

Figure 2. Proportion of SNP variance explained by 5-SNP moving windows for rectal temperature from a single-step GBLUP analysis

Dikmen S, Cole JB, Null DJ, Hansen PJ (2013) Genome-Wide Association Mapping for Identification of Quantitative Trait Loci for Rectal Temperature during Heat Stress in Holstein Cattle. PLOS ONE 8(7): e69202. https://doi.org/10.1371/journal.pone.0069202 https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069202

Can we have p-values in ssGWAS?

Gualdrón Duarte et al. BMC Bioinformatics 2014, 15:246 http://www.biomedcentral.com/1471-2105/15/246

METHODOLOGY ARTICLE

Open Access

Rapid screening for phenotype-genotype associations by linear transformations of genomic evaluations

Jose L Gualdrón Duarte¹, Rodolfo JC Cantet¹, Ronald O Bates², Catherine W Ernst², Nancy E Raney² and Juan P Steibel^{2,3*}

Genome-Wide Association Analyses Based on Broadly Different Specifications for Prior Distributions, Genomic Windows, and Estimation Methods

Chunyu Chen,¹ Juan P. Steibel, and Robert J. Tempelman
Department of Animal Science, Michigan State University, East Lansing, Michigan 48824

ORCID ID: 0000-0002-7833-6730 (R.J.T.)

Aguilar et al. Genet Sel Evol (2019) 51:28 https://doi.org/10.1186/s12711-019-0469-3

doi: 10.1111/age.12378

Meta-analysis of genome-wide association from genomic prediction models

Y. L. Bernal Rubio*[†], J. L. Gualdrón Duarte*, R. O. Bates*, C. W. Ernst*, D. Nonneman[‡], G. A. Rohrer[‡], A. King[‡], S. D. Shackelford[‡], T. L. Wheeler[‡], R. J. C. Cantet^{†§} and J. P. Steibel*[¶]

Genome-wide association analyses based on a multiple-trait approach for modeling feed efficiency

Y. Lu,* M. J. Vandehaar,* D. M. Spurlock,† K. A. Weigel,‡ L. E. Armentano,‡ E. E. Connor,§ M. Coffey,# R. F. Veerkamp,|| Y. de Haas,|| C. R. Staples,¶ Z. Wang,** M. D. Hanigan,†† and R. J. Tempelman*1

SHORT COMMUNICATION

Open Access

Frequentist p-values for large-scale-single step genome-wide association, with an application to birth weight in American Angus cattle

P-values in ssGWAS

- Factorize and Invert LHS of ssGBLUP with YAMS (Masuda et al., 2014)
- 3) Extract coefficients for genotyped animals ($C^{u_2u_2}$) from LHS⁻¹
- 4) Obtain individual prediction error variance of SNP effects:

$$Var(\hat{a}_i) = \alpha b \frac{1}{2\sum p_i(1-p_i)} \mathbf{z}_i' \mathbf{G}^{-1} (\mathbf{G} \sigma_{\mathbf{u}}^2 - \mathbf{C}^{u_2 u_2}) \mathbf{G}^{-1} \mathbf{z}_i \frac{1}{2\sum p_i(1-p_i)} \alpha b$$

(Gualdron-Duarte et al., 2014)

5) Backsolve GEBV to SNP effects (\hat{a}): $\hat{a} = \alpha b \frac{1}{2 \sum n_i a_i} \mathbf{Z}' \mathbf{G}^{-1} \hat{u}$

6) p-value_i =
$$2\left(1 - \Phi\left(\left|\frac{\hat{a}_i}{sd(\hat{a}_i)}\right|\right)\right)$$

blupf90+

postGSf90

Ignacio Aguilar

Andres Legarra

Yutaka Masuda

How to run ssGWAS with p-values in BLUPF90

- After renumf90 and preGSf90 to save clean files:
 - blupf90+ to estimate GEBV
 - OPTION SNP file snp.dat clean
 - OPTION map_file mrkmap.txt_clean
 - OPTION saveGInverse
 - OPTION saveA22Inverse
 - OPTION snp p value
 - postGSf90 to backsolve GEBV to SNP effect
 - OPTION SNP file snp.dat clean
 - OPTION map file mrkmap.txt clean
 - OPTION readGInverse
 - OPTION readA22Inverse
 - OPTION snp p value
 - OPTION windows variance X #if need variance explained by X SNP

chrsnp_pval

contains data to create plot by GNUPLOT

- 1: trait
- 2: effect
- 3: -log10(p-value)
- 4: SNP
- 5: Chromosome
- 6: Position in bp

Pft1e2.gnuplot

Pft1e2.R

chrsnp

contains data to create plot by GNUPLOT

- 1: trait
- 2: effect
- 3: values of SNP effects to use in Manhattan plots → [abs(SNP_i)/var(SNP)]
- 4: SNP
- 5: Chromosome
- 6: Position

Sft1e2.gnuplot

Sft1e2.R

chrsnpvar

contains data to create plot by GNUPLOT

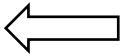
- 1: trait
- 2: effect
- 3: variance explained by n adjacents SNP
- 4: SNP
- 5: Chromosome
- 6: Position

Vft1e2.gnuplot

Vft1e2.R

snp_sol

contains solutions of SNP and weights

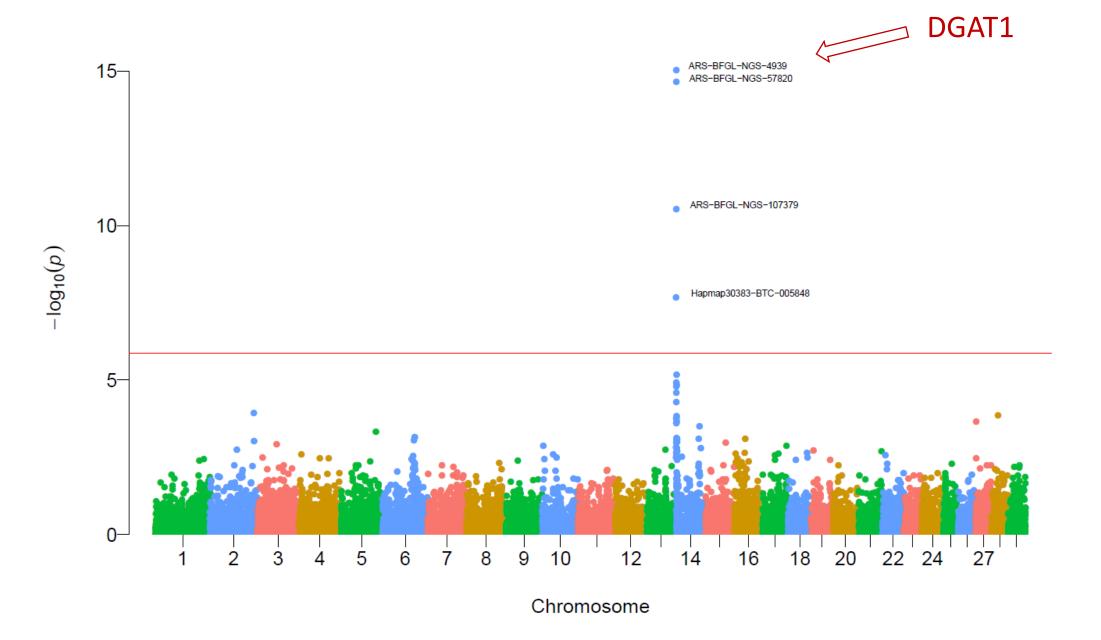

- 1: trait
- 2: effect
- 3: SNP
- 4: Chromosome
- 5: Position
- 6: SNP solution
- 7: weight

if OPTION windows_variance is used

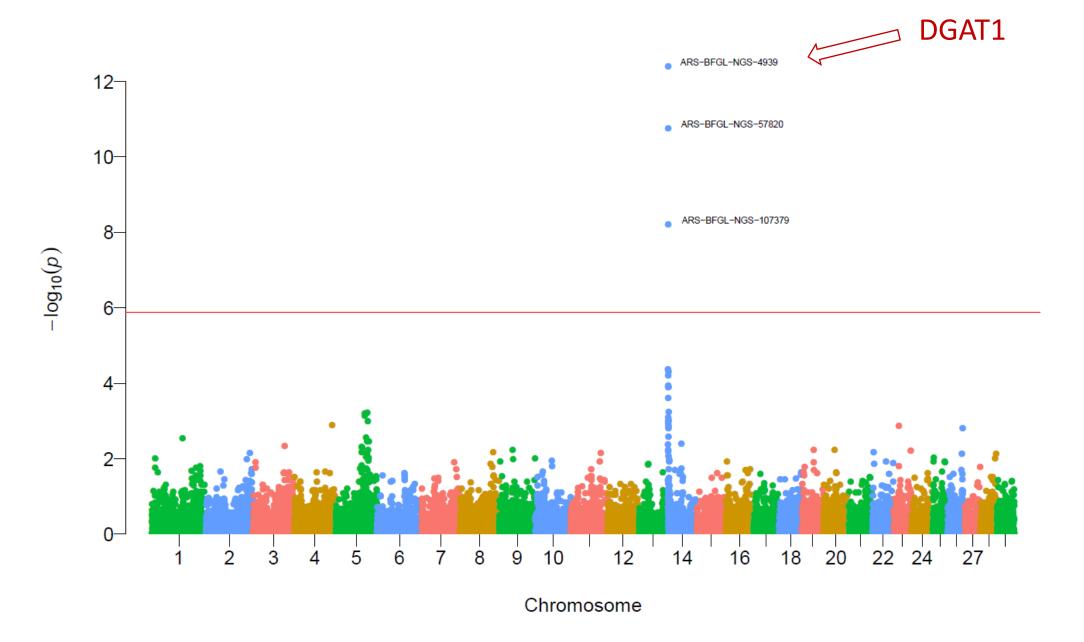
8: variance explained by n adjacents SNP.

if OPTION snp_p_value is used

9: variance of the SNP solution (used to compute the p-value)

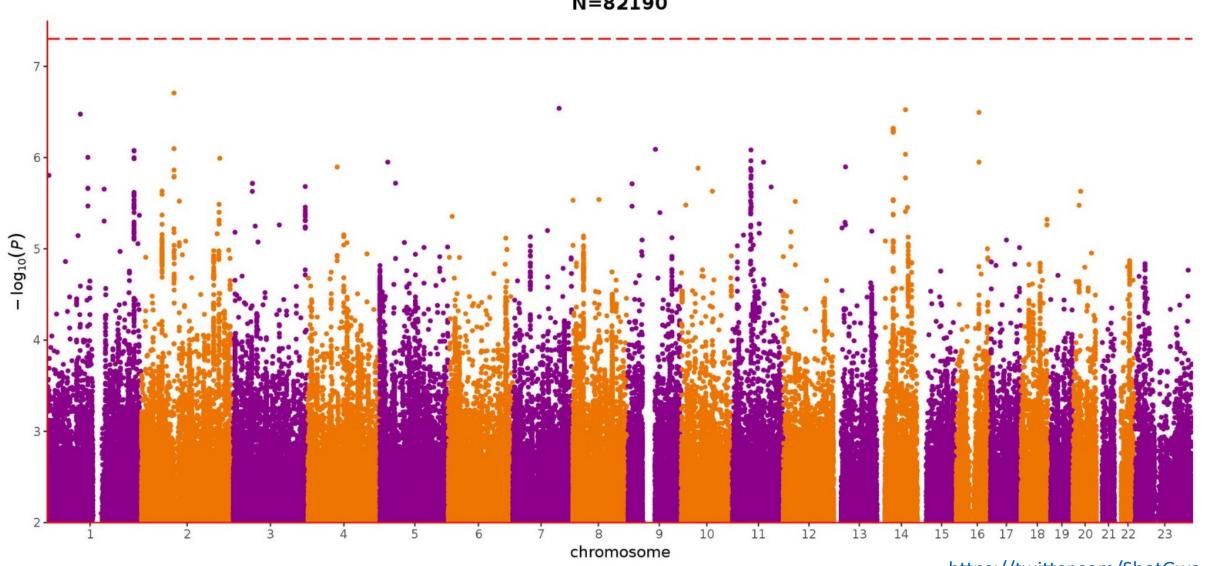


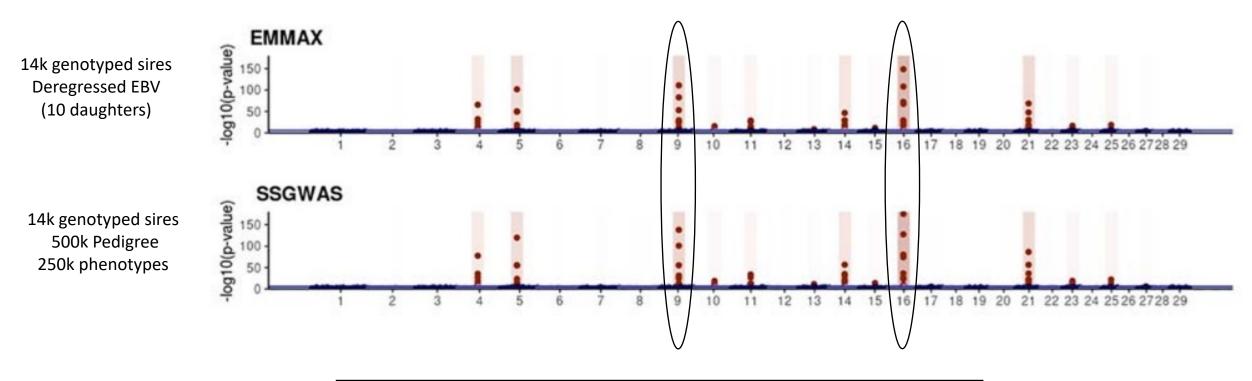
P-values in ssGWAS for US Holsteins


US HOL 2009 data: milk, fat, protein

- Single-trait models
 - 10k genotyped bulls
 - 752k records for 100k daughters
 - 303k animals in ped

P-values in ssGWAS - Milk


P-values in ssGWAS - Fat


Non-significant hits

Work/job satisfaction N=82190

ssGWAS vs. EMMAX

• Simulated population (1 QTN per CHR)

Association	EMMAX (Khang et al., 2010)	ssGWAS (Aguilar et al., 2019)
True Positive	55.2 ^a (3.7)	61.6 ^a (8.7)
False Positive	0.0	0.0

postGSf90 options

http://nce.ads.uga.edu/wiki/doku.php?id=readme.pregsf90

OPTION Manhattan_plot

Uses GNUPLOT to plot the Manhattan plot (SNP effects) for each trait and correlated effect.

OPTION Manhattan_plot_R

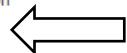
Uses R to plot the Manhattan plot (SNP effects) for each trait and correlated effect. pdf images are created: manplot_St1e2.pdf, but other formats can be specified. Note: t1e2 corresponds to trait 1, effect 2.

OPTION Manhattan_plot_R_format <format>

Control the format type to create images in R format values accepted:

- pdf (default)
- png
- tif

OPTION plotsnp <n>


Control the values of SNP effects to use in Manhattan plots

- 1: plot regular SNP effects: abs(val)
- 2: plot standardized SNP effects: abs(val/sd) (default)

snp_sol

contains solutions of SNP and weights

- 1: trait
- 2: effect
- 3: SNP
- 4: Chromosome
- 5: Position
- 6: SNP solution
- 7: weight

if OPTION windows_variance is used

8: variance explained by n adjacents SNP.

if OPTION snp_p_value is used

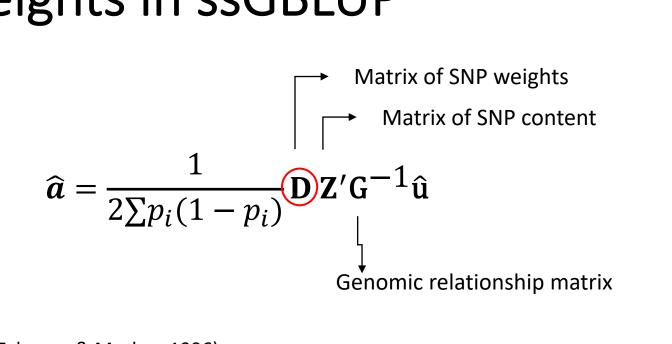
9: variance of the SNP solution (used to compute the p-value)

Weighted single-step GBLUP - WssGBLUP

Weights for SNP in ssGBLUP

- ssGBLUP
 - Same weights for SNP

$$\mathbf{G} = \frac{\mathbf{Z}\mathbf{Z}'}{2\sum p_i(1-p_i)}$$


- WssGBLUP
 - Different weights for SNP

$$\mathbf{G} = \frac{\mathbf{Z}\mathbf{D}\mathbf{Z'}}{2\sum p_i(1-p_i)}$$

- Weights may increase accuracy of GEBV
- If SNPs explain high %variance

SNP effect and weights in ssGBLUP

$$\begin{bmatrix} X'X & X'W \\ W'X & W'W+H^{-1}\lambda \end{bmatrix} \begin{bmatrix} \hat{b} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} X'y \\ Z'y \end{bmatrix}$$

a) Quadratic SNP weights (or variance) (Falconer & Mackay, 1996)

$$d_i = \hat{a}_i^2 2p_i (1 - p_i)$$

Default

b) Nonlinear A SNP weights (or variance) (VanRaden, 2008)

$$d_i = 1.125 \frac{|\hat{a}_i|}{sd(\hat{a})} - 2$$

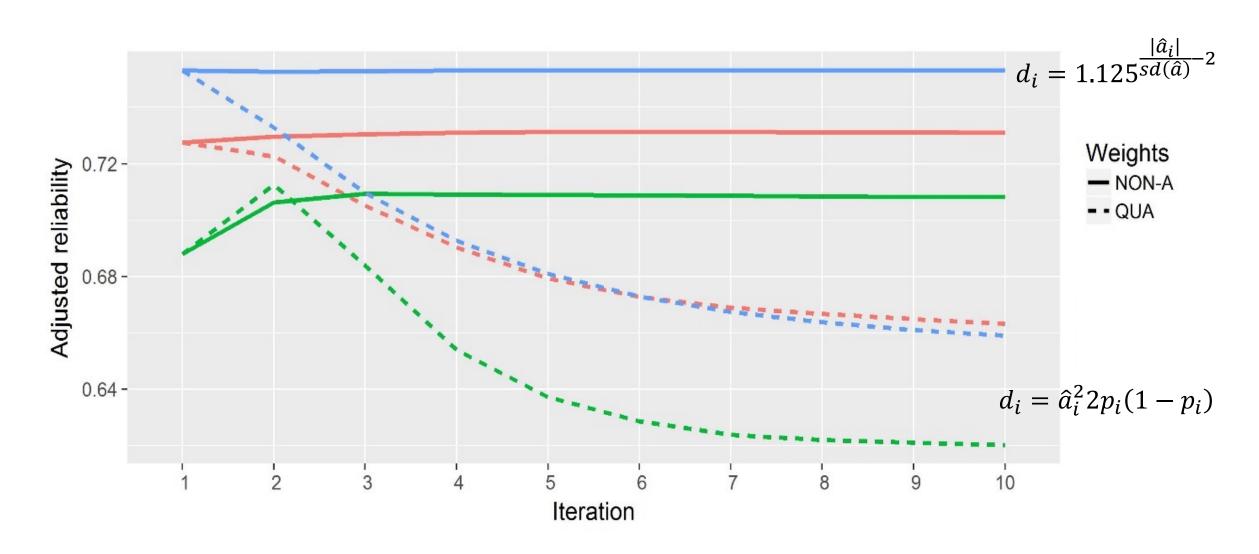
SNP weighting in ssGBLUP: WssGBLUP

• Wang et al. (2012):

1) Set
$$\mathbf{D}_{t} = \mathbf{I}$$
 and $\mathbf{G}_{t} = \frac{\mathbf{Z}\mathbf{D}\mathbf{Z}'}{2\sum p_{i}(1-p_{i})}$

2) Compute GEBV using ssGBLUP approach

"Iterative method needs convergence"


3) Compute SNP effects as
$$\hat{a} = \lambda \hat{\mathbf{D}} \mathbf{Z}' \mathbf{G}^{-1} \widehat{\mathbf{GEBV}}$$

Diagonal matrix of weights

- 4) Calculate SNP weight
- 5) Normalize $\mathbf{D}_{(t+1)}$

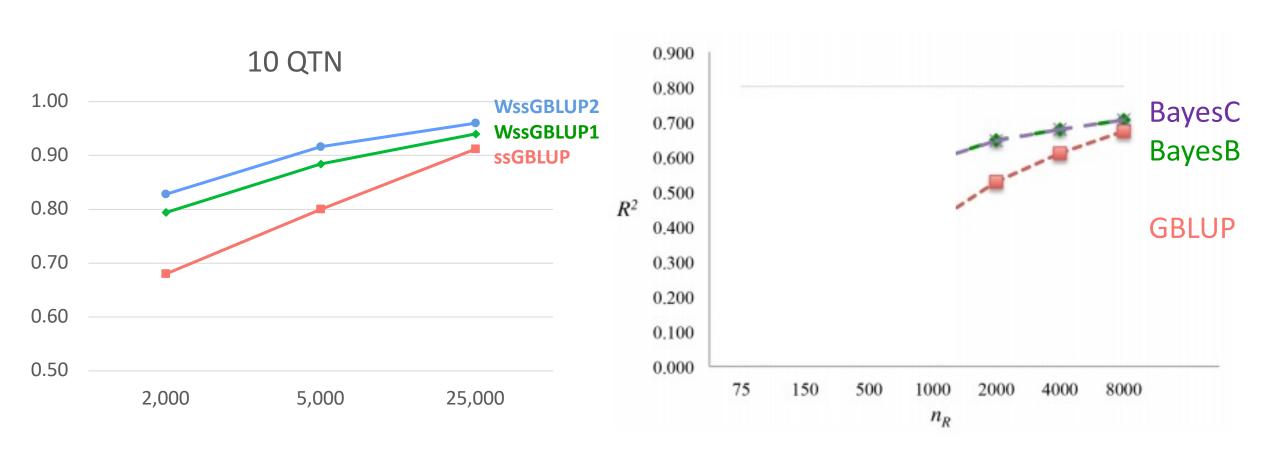
6)
$$G_{(t+1)} = \frac{ZD_{(t+1)}Z'}{2\sum p_i(1-p_i)}$$

Convergence for nonlinear A and quadratic weight

OPTION which_weight nonlinearA

OPTION which_weight nonlinearA

$$d_i = 1.125 \frac{|\hat{a}_i|}{sd(\hat{a})} - 2$$


This option assumes the default constant (CT) is 1.125. To change the constant value to reflect a distribution closer to normal, use a CT value closer to 1:

OPTION which weight nonlinearA 1.05

By default, the maximum change in SNP variance is limited to 5, which is calculated as $CT^{(5-2)}$ and returns a value of 1.4238 with CT=1.125. If this limit is to be changed to 10, the following option can be used, where the value provided (x) is the result of the expression $CT^{(x-2)}$. As an example, if CT is 1.05 and x is 10, the value provided to the option should be 1.4775:

OPTION SNP variance limit 1.4775

WssGBLUP for large populations

Lourenco et al. (2017)

Karaman et al. (2016)

How to run WssGBLUP in BLUPF90

- After renumf90 and preGSf90 to save clean files:
 - blupf90+ to estimate GEBV
 - OPTION SNP file snp.dat clean
 - OPTION map file mrkmap.txt clean
 - OPTION saveGInverse
 - OPTION saveA22Inverse
 - OPTION weightedG w.txt #vector of weights
 - postGSf90 to backsolve GEBV to SNP effect
 - OPTION SNP file snp.dat clean
 - OPTION map file mrkmap.txt clean
 - OPTION readGInverse
 - OPTION readA22Inverse
 - OPTION which weight nonlinearA
 - OPTION weightedG w.txt #vector of weights
 - OPTION windows variance 1

How to run WssGBLUP for 3 iterations in BLUPF90

```
awk 'BEGIN { for (i==1;i<45000;i++) print 1}' > w.txt # number of lines = number of SNP
for j in {1..3}
    do
     echo blup.par | blupf90+ | tee blup.log1 $j
     cp solutions solutions1 $j
     echo post.par | postGSf90 | tee post.log1 $j
     cp snp sol snp sol1 $j
     cp w.txt w.txt $j
     awk '{ if ($1==1) print $7}' snp sol > w.txt
     mkdir plot1 $j
     cp chrsnp plot1 $j/chrsnp
     cp chrsnpvar plot1 $j/chrsnpvar
     rm chrsnp chrsnpvar snp sol solutions
   done
```

rm Gi A22i

How to run WssGBLUP for 3 iterations and multi-trait models in BLUPF90

- Although the model can be multi-trait, there is only one G
 - Only one set of weights can be used
- To estimate correct weights for each trait in a multi-trait model:
 - Add an option in postGSf90

- x1 is the trait you are interested (number of the trait)
- x2 is the effect (number of effect in this case)

• Run once for each trait or effect of interest using weights for the specific trait or effect

nce.ads.uga.edu/wiki

start

BLUPF90 Family of Programs

Now with support for genomic selection

Ignacy Misztal and collaborators, University of Georgia

BLUPF90 family of programs is a collection of software in Fortran 90/95 for mixed model computations in animal breeding. The goal of the software is to be as simple as with a matrix package and as efficient as in a programming language. For general description, see a paper from the CCB'99 workshop or see a paper on BGF90 at 7th WCGALP.

For variance component estimation, the family offers choices for simple and complicated models; see paper a "Reliable computing in estimation of variance components". From 2009 the programs are successively modified for genomic selection using a single-step approach (or ssGBLUP) by Ignacio Aguilar and Shogo Tsuruta.

For support, join blupf90 group at yahoo.com.

Troubleshooting

(1) If the software crashes with segmentation fault, please change settings in your operating system. See FAQ:Segmentation fault for details. Also, The FAQ pages provide useful suggestions and solutions.

Headline

- History
- Modules
- Condition of use
- Distribution / Download
- Documentation / Manual / Tutorial
- Application program details
- Support
- FAQ
- Tricks / Tips
- To Do
- Courses
- Sample data
- Undocumented options