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• Assumption of GBLUP: Var 𝐮 = 𝐆𝜎+,

• In SNP-BLUP: 𝐮 = 𝐙𝐚
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Genomic 
relationship matrix 
VanRaden (2008)

Var 𝐮 = 𝐆𝜎!" GBLUP assumption!!!

Are GBLUP and SNP-BLUP equivalent?
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GBLUP and SNP-BLUP are equivalent!

If we can get u (𝐮 = 𝐙𝐚) from SNP-BLUP, we can get a from GBLUP!

https://www.mdpi.com/2073-4425/11/7/790

Pages 11-12

https://www.mdpi.com/2073-4425/11/7/790
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ssGBLUP

Misztal et al. (2009)
Legarra et al. (2009)
Aguilar et al. (2010)

Christensen & Lund (2010)

ssSNPBLUP or ssBR

Fernando et al. (2014)
Liu et al. (2014)

Mantysaari & Stranden (2016)
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ssGBLUP and ssSNP-BLUP are also equivalent!
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SNP effects in ssGBLUP
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𝛼 = blending parameter for 𝐆



What can we do with SNP effects?
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1) Predictions for animals not included in the evaluation

Indirect predictions

Indirect Genomic Predictions

2)   Genome-Wide Association Studies (GWAS)



1) Indirect Predictions
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• Interim evaluations
• Between official runs

• Not all genotyped animals are in the evaluations
• Animals with incomplete pedigree increase bias and lower R2

• Commercial products
• e.g. GeneMax for non-registered animals 



1) Indirect Predictions
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Indirect Prediction: 𝐈𝐏 = 𝒖𝒎∗ = 𝐙7a
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1) Indirect Predictions
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Indirect Prediction: 𝒖𝒎∗ = 𝐙7a

Fine if comparing among animals with IP

• Not fine if compare it with GEBV from the main evaluation

• Put it in the pedigree scale 

𝒖𝒎 = 8𝝁 + 𝒖𝒎∗

1𝝁 = 𝛼λ𝟏3G−1%u

𝛼 = blending parameter for 𝐆



1) Indirect Predictions
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How to compute Indirect predictions
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1) Pedigree + phenotypes + genotypes

2)renumf90

3) preGSf90 to save clean files 

4)blupf90+ (save the clean files)

• Good practice to save time:  OPTION saveGInverse +  OPTION saveA22Inverse

5)postGSf90 (with clean files)

• BLUPF90 family software to compute SNP effects (+more)

• Same parameter file as blupf90+

• Good practice to save time: OPTION readGInverse + OPTION readA22Inverse
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Output from postGSf90

http://nce.ads.uga.edu/wiki/doku.php?id=readme.pregsf90

§ 1st line: model, tuning, blending information
§ 2nd line: Trait/effect info
§ AF in 10 columns
§ mu_hat, var_mu_hat
§ SNP effects

http://nce.ads.uga.edu/wiki/doku.php?id=readme.pregsf90


How to compute Indirect Predictions
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6)predf90

• Have to provide a SNP file for the new genotyped animals to receive IP 

• same SNP as in the clean file

predf90 --snpfile newgen.txt --use_mu_hat

• The last statement adds the base, so that we have: 𝒖𝒎 = 8𝝁 + 𝒖𝒎∗

http://nce.ads.uga.edu/wiki/doku.php?id=readme.predf90



Output from predf90

SNP_predictions

Animal ID SNP call rate Indirect Predictions

predf90 can also compute accuracy of indirect predictions

OPTION snp_p_value #in blupf90+
OPTION snp_var #in postGSf90
--acc #in predf90



2) Genome-wide Association Studies
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Current standard for GWAS
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• Single marker regression with G to compensate for relationships 
• 𝐲 = 𝐗𝐛 + 𝐳𝑖𝐚𝑖 + 𝐮 + 𝐞

• 𝐳: gene content {0,1,2}
• 𝐚: SNP effect

• Estimate SNP effects

• Get p-values as 𝑝𝑣𝑎𝑙> = 2 1 − Φ %?!
@A %?!

• Apply Bonferroni to correct for multiple testing

• Assumption: Genotyped individuals have phenotypes



GWAS in livestock populations
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• Most animals are non-genotyped
• Animals may not have phenotypes
• Some traits are sex-limited
• milk, fat, protein

• Single marker regression
• Only genotyped animals with phenotypes
• Deregressed EBV

• Need a method that fits the livestock data
• ssGWAS
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GEBVs
SNP 

effects
VanRaden 2008
Stranden and Garrick 2009
Wang et al. 2012

b) NonlinearA SNP variance (VanRaden, 2008)

𝑑( = 1.125
.%!

/0 .% !&

a) Quadratic SNP variance (Falconer & Mackay, 1996) 

𝑑( = %𝑎(&2𝑝( 1 − 𝑝(

Single-step GWAS (historical)
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No P-value!!!

Single-step GWAS



Single-step GWAS
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Figure 2. Proportion of SNP variance explained by 5-SNP moving windows for rectal temperature from a single-step GBLUP analysis

Dikmen S, Cole JB, Null DJ, Hansen PJ (2013) Genome-Wide Association Mapping for Identification of Quantitative Trait Loci for Rectal 
Temperature during Heat Stress in Holstein Cattle. PLOS ONE 8(7): e69202. https://doi.org/10.1371/journal.pone.0069202
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069202

No P-value!!!

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069202


Can we have p-values in ssGWAS?
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| INVESTIGATION

Genome-Wide Association Analyses Based on Broadly
Different Specifications for Prior Distributions,
Genomic Windows, and Estimation Methods

Chunyu Chen,1 Juan P. Steibel, and Robert J. Tempelman
Department of Animal Science, Michigan State University, East Lansing, Michigan 48824

ORCID ID: 0000-0002-7833-6730 (R.J.T.)

ABSTRACT A currently popular strategy (EMMAX) for genome-wide association (GWA) analysis infers association for the specific
marker of interest by treating its effect as fixed while treating all other marker effects as classical Gaussian random effects. It may be
more statistically coherent to specify all markers as sharing the same prior distribution, whether that distribution is Gaussian, heavy-
tailed (BayesA), or has variable selection specifications based on a mixture of, say, two Gaussian distributions [stochastic search and
variable selection (SSVS)]. Furthermore, all such GWA inference should be formally based on posterior probabilities or test statistics as
we present here, rather than merely being based on point estimates. We compared these three broad categories of priors within a
simulation study to investigate the effects of different degrees of skewness for quantitative trait loci (QTL) effects and numbers of QTL
using 43,266 SNP marker genotypes from 922 Duroc–Pietrain F2-cross pigs. Genomic regions were based either on single SNP
associations, on nonoverlapping windows of various fixed sizes (0.5–3 Mb), or on adaptively determined windows that cluster the
genome into blocks based on linkage disequilibrium. We found that SSVS and BayesA lead to the best receiver operating curve
properties in almost all cases. We also evaluated approximate maximum a posteriori (MAP) approaches to BayesA and SSVS as
potential computationally feasible alternatives; however, MAP inferences were not promising, particularly due to their sensitivity to
starting values. We determined that it is advantageous to use variable selection specifications based on adaptively constructed genomic
window lengths for GWA studies.

KEYWORDS genome-wide association; hierarchical Bayesian; variable selection

RECENT developments in genotyping technology have
made single nucleotide polymorphism (SNP) genotype

marker panels, based on thousands, and now millions, of
markers, available for many livestock species (Wiggans
et al. 2013; Kemper et al. 2015). Genome-wide association
(GWA) analyses have been increasingly used to help pinpoint
regions containing potential causal variants or quantitative
trait loci (QTL) for economically important phenotypes based
on fitting SNP markers as covariates. An increasingly popular
inferential approach for GWA is based on fitting phenotypes
as a joint linear function of all markers using mixed-model
procedures such as those invoked in the popular EMMAX

procedure (Kang et al. 2010) and other similar procedures
(Lippert et al. 2011; Zhou and Stephens 2012). Jointly ac-
counting for all SNP effects when inferring upon a specific
SNP marker of interest generally improves precision and
power, while also accounting for potential population struc-
ture (Kang et al. 2008).

Now GWA inferences in EMMAX and related procedures
arebasedon treating theeffect of theSNPmarkerof interest as
fixed, with all other marker effects as normally distributed
random effects, noting that this process is repeated in turn for
every single marker. These “fixed effects” hypothesis tests are
based on generalized least squares (GLS) inference, with
P-values being subsequently adjusted for the total number
of markers or tests. Goddard et al. (2016) have recently
pointed out the paradox with treating markers as fixed for
inference but then otherwise as random to account for pop-
ulation structure for inference on association with other
markers. Random-effects modeling with all SNP effects
treated as random, including the one of inferential interest, is

Copyright © 2017 by the Genetics Society of America
doi: https://doi.org/10.1534/genetics.117.202259
Manuscript received March 26, 2017; accepted for publication June 19, 2017;
published Early Online June 21, 2017.
Supplemental material is available online at www.genetics.org/lookup/suppl/doi:10.
1534/genetics.117.202259/-/DC1.
1Corresponding author: 1205 Anthony Hall, Michigan State University, East
Lansing, MI 48824. E-mail: chench57@msu.edu

Genetics, Vol. 206, 1791–1806 August 2017 1791



P-values in ssGWAS
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Yutaka 
Masuda

Ignacio 
Aguilar

Andres 
Legarra

blupf90+
1) Factorize and Invert LHS of ssGBLUP with YAMS (Masuda et al., 2014)

2) Solve the MME for 
#𝛃
F𝐮

using the sparse Cholesky factor

3) Extract coefficients for genotyped animals (𝐂'"'") from LHS-1

4) Obtain individual prediction error variance of SNP effects:

𝑉𝑎𝑟 %𝑎( = 𝛼𝑏 "
&∑2!("!2!)

𝐳56𝐆!𝟏 𝐆σ7& − 𝐂'"'" 𝐆!𝟏𝐳5
"

&∑2!("!2!)
𝛼𝑏

(Gualdron-Duarte et al., 2014)

5) Backsolve GEBV to SNP effects ( %𝑎):  %𝑎 = 𝛼𝑏 "
& ∑ 2!8!

𝐙6𝐆!𝟏 %𝑢

6) p-valuei = 2 1 − Φ .%!
/0 .%!

postGSf90

Φ is the cumulative standard normal function
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How to run ssGWAS with p-values in BLUPF90

• After renumf90 and preGSf90 to save clean files:

• blupf90+ to estimate GEBV
• OPTION SNP_file snp.dat_clean
• OPTION map_file mrkmap.txt_clean
• OPTION saveGInverse
• OPTION saveA22Inverse
• OPTION snp_p_value

• postGSf90 to backsolve GEBV to SNP effect
• OPTION SNP_file snp.dat_clean
• OPTION map_file mrkmap.txt_clean
• OPTION readGInverse
• OPTION readA22Inverse
• OPTION snp_p_value
• OPTION windows_variance X #if need variance explained by X SNP
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Output from postGSf90

Pft1e2.gnuplot

Pft1e2.R

Sft1e2.gnuplot

Sft1e2.R
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Output from postGSf90
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P-values in ssGWAS for US Holsteins

• Single-trait models

• 10k genotyped bulls

• 752k records for 100k daughters

• 303k animals in ped

• US HOL 2009 data: milk, fat, protein
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P-values in ssGWAS - Milk
DGAT1
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P-values in ssGWAS - Fat
DGAT1
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Non-significant hits

https://twitter.com/SbotGwa

https://twitter.com/SbotGwa


31Mancin et al. (2021)

• Simulated population (1 QTN per CHR)

14k genotyped sires
500k Pedigree

250k phenotypes

14k genotyped sires
Deregressed EBV

(10 daughters)

Association EMMAX (Khang et al., 2010) ssGWAS (Aguilar et al., 2019)

True Positive 55.2a (3.7) 61.6a (8.7)

False Positive 0.0 0.0

ssGWAS vs. EMMAX



postGSf90 options
http://nce.ads.uga.edu/wiki/doku.php?id=readme.pregsf90
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