

SNP effects from ssGBLUP using the BLUPF90 family (postGSf90)

Daniela Lourenco BLUPF90 Team – 11/2022

Equivalence between GBLUP and SNP-BLUP

GBLUP

$$\begin{bmatrix} \mathbf{X'X} & \mathbf{X'W} \\ \mathbf{W'X} & \mathbf{W'W} + \mathbf{G}^{-1}\lambda_1 \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\boldsymbol{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{W'y} \end{bmatrix}$$

 $Var(\mathbf{u}) = ?$

 $Var(\mathbf{u}) = \mathbf{G}\sigma_u^2$

SNP-BLUP (Ridge Regression)

$$\begin{bmatrix} X'X & X'Z \\ Z'X & Z'Z+I\lambda_2 \end{bmatrix} \begin{bmatrix} \widehat{\beta} \\ \widehat{a} \end{bmatrix} = \begin{bmatrix} X'y \\ Z'y \end{bmatrix}$$
$$\downarrow$$
SNP effects

 $\mathbf{u} = \mathbf{Z}\mathbf{a}$

Are GBLUP and SNP-BLUP equivalent?

- Assumption of GBLUP: Var(\mathbf{u}) = $\mathbf{G}\sigma_{u}^{2}$
- In SNP-BLUP: $\mathbf{u} = \mathbf{Z}\mathbf{a}$

$$\mathbf{u} = \mathbf{Z}\mathbf{a} \qquad \text{Var}(\mathbf{u}) = \mathbf{Z}\mathbf{Z}' \frac{\sigma_u^2}{2\sum_{i=1}^{SNP} p_i(1-p_i)} \qquad \text{Genomic}$$

$$\text{Var}(\mathbf{u}) = \mathbf{Z} \text{Var}(\mathbf{a}) \mathbf{Z}' \qquad \text{Var}(\mathbf{u}) = \mathbf{Z}\mathbf{Z}'\sigma_a^2 \qquad \text{Var}(\mathbf{u}) = \mathbf{Z}\mathbf{Z}'\sigma_a^2 \qquad \text{Ganomic}$$

$$\text{Var}(\mathbf{u}) = \mathbf{Z}\mathbf{Z}'\sigma_a^2 \qquad \text{Ganomic}$$

$$\mathbf{G} = \frac{\mathbf{Z}\mathbf{Z}'}{2\sum_{i=1}^{SNP} p_i(1-p_i)} \qquad \text{Ganomic}$$

$$\mathbf{G} = \frac{\mathbf{Z}\mathbf{Z}'}{2\sum_{i=1}^{SNP} p_i(1-p_i)} \qquad \text{Ganomic}$$

$$\text{Var}(\mathbf{u}) = \mathbf{G}\sigma_u^2 \qquad \text{GBLUP assumption}!!!$$

Genomic relationship matrix VanRaden (2008)

GBLUP and SNP-BLUP are equivalent!

If we can get \mathbf{u} ($\mathbf{u} = \mathbf{Z}\mathbf{a}$) from SNP-BLUP, we can get \mathbf{a} from GBLUP!

Review

Single-Step Genomic Evaluations from Theory to Practice: Using SNP Chips and Sequence Data in BLUPF90

Daniela Lourenco^{1,*}, Andres Legarra², Shogo Tsuruta¹, Yutaka Masuda¹, Ignacio Aguilar³, and Ignacy Misztal¹

https://www.mdpi.com/2073-4425/11/7/790

Pages 11-12

MDPI

ssGBLUP and ssSNP-BLUP are also equivalent!

$$\begin{bmatrix} \mathbf{X'X} & \mathbf{X'W} \\ \mathbf{W'X} & \mathbf{W'W} + \mathbf{H}^{-1} \frac{\sigma_e^2}{\sigma_u^2} \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{W'y} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{Z}\mathbf{M} & \mathbf{X}'_{n}\mathbf{Z}_{n} \\ \mathbf{M}'\mathbf{Z}'\mathbf{X} & \mathbf{M}'\mathbf{Z}'\mathbf{Z}\mathbf{M} + \mathbf{I}\frac{\sigma_{\mathbf{e}}^{2}}{\sigma_{\alpha}^{2}} & \mathbf{M}'_{n}\mathbf{Z}'_{n}\mathbf{Z}_{n} \\ \mathbf{Z}'_{n}\mathbf{X}_{n} & \mathbf{Z}'_{n}\mathbf{Z}_{n}\mathbf{M}_{n} & \mathbf{Z}'_{n}\mathbf{Z}_{n} + \mathbf{A}^{nn}\frac{\sigma_{e}^{2}}{\sigma_{g}^{2}} \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\boldsymbol{\alpha}} \\ \hat{\boldsymbol{\epsilon}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{M}'\mathbf{Z}'\mathbf{y} \\ \mathbf{Z}'_{n}\mathbf{y}_{n} \end{bmatrix}$$

ssGBLUP

ssSNPBLUP or ssBR

Misztal et al. (2009) Legarra et al. (2009) Aguilar et al. (2010) Christensen & Lund (2010)

Fernando et al. (2014) Liu et al. (2014) Mantysaari & Stranden (2016)

J. Dairy Sci. 101:10082–10088 https://doi.org/10.3168/jds.2018-14913 © 2018, The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association⁴ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Short communication: Genomic prediction using different single-step methods in the Finnish red dairy cattle population

H. Gao, *†¹ M. Koivula, ‡ J. Jensen, * I. Strandén, ‡ P. Madsen, * T. Pitkänen, ‡ G. P. Aamand, † and E. A. Mäntysaari‡ *Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830 Tjele, Denmark *Nordic Cattle Genetic Evaluation, DK-8200 Aarhus, Denmark

‡Natural Resources Institute Finland (Luke), FIN-31600 Jokioinen, Finland

We confirmed that regular ssGBLUP and ssBR with an extra polygenic effect led to the same predictions.

SNP effects in ssGBLUP

 $\begin{bmatrix} \mathbf{X'X} & \mathbf{X'W} \\ \mathbf{W'X} & \mathbf{W'W+H^{-1}\lambda_1} \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{W'y} \end{bmatrix}$

$$\hat{\mathbf{a}} = \alpha b \frac{1}{2\sum p_i(1-p_i)} \mathbf{Z'G}^{-1} \hat{\mathbf{u}}$$

Genomic relationship matrix

 α = blending parameter for **G**

$$\lambda = \frac{1}{n^2} \left(\sum_{i} \sum_{j} \mathbf{A}_{22_{ij}} - \sum_{i} \sum_{j} \mathbf{G}_{ij} \right) \qquad b = 1 - \frac{\lambda}{2}$$

What can we do with SNP effects?

1) Predictions for animals not included in the evaluation

Indirect predictions

Indirect Genomic Predictions

2) Genome-Wide Association Studies (GWAS)

- Interim evaluations
 - Between official runs
- Not all genotyped animals are in the evaluations
 - Animals with incomplete pedigree increase bias and lower R²
- Commercial products
 - e.g. GeneMax for non-registered animals

Indirect Prediction: $IP = u_m^* = Z\hat{a}$

Indirect Prediction: $u_m^* = \mathbf{Z}\hat{a}$

— Fine if comparing among animals with IP

- Not fine if compare it with GEBV from the main evaluation
 - Put it in the pedigree scale

$$\boldsymbol{u_m} = \boldsymbol{\widehat{\mu}} + \boldsymbol{u_m^*}$$
$$\boldsymbol{\bigsqcup} \quad \boldsymbol{\widehat{\mu}} = \alpha \lambda \mathbf{1}^{\prime} \mathbf{G}^{-1} \mathbf{\widehat{u}}$$

 α = blending parameter for **G**

$$\lambda = \frac{1}{n^2} \left(\sum_{i} \sum_{j} \mathbf{A}_{22_{ij}} - \sum_{i} \sum_{j} \mathbf{G}_{ij} \right)$$

How to compute Indirect predictions

1) Pedigree + phenotypes + genotypes

2)renumf90

- 3) preGSf90 to save clean files
- 4) **blupf90+** (save the clean files)
 - Good practice to save time: OPTION saveGInverse + OPTION saveA22Inverse
- 5)postGSf90 (with clean files)
 - BLUPF90 family software to compute SNP effects (+more)
 - Same parameter file as blupf90+
 - Good practice to save time: OPTION readGInverse + OPTION readA22Inverse

Output from postGSf90

snp_sol

http://nce.ads.uga.edu/wiki/doku.php?id=readme.pregsf90

contains solutions of SNP and weights

- 1: trait
- 2: effect
- 3: SNP
- 4: Chromosome
- 5: Position
- 6: SNP solution
- 7: weight

snp_pred

- 1st line: model, tuning, blending information
- 2nd line: Trait/effect info
- AF in 10 columns
- mu_hat, var_mu_hat
- SNP effects

How to compute Indirect Predictions

6)predf90

- Have to provide a SNP file for the new genotyped animals to receive IP
 - same SNP as in the clean file

predf90 --snpfile newgen.txt --use_mu_hat

• The last statement adds the base, so that we have: $u_m = \widehat{\mu} + u_m^*$

Output from predf90

SNP_predictions

Animal ID	SNP call rate	Indirect Predictions
UGA50014	1.00	0.17414457
UGA50016	1.00	0.72332874E-01
UGA50042	1.00	1.0016705
UGA50058	1.00	0.17190497
UGA50060	1.00	0.98674759E-01
UGA50065	1.00	-0.60623702E-01
UGA50073	1.00	-0.17860851
UGA50077	1.00	-0.21597147
UGA50079	1.00	-0.69586390
UGA50084	1.00	1.0600574
UGA50085	1.00	-0.28602412
UGA50088	1.00	-0.12758011

predf90 can also compute accuracy of indirect predictions

OPTION snp_p_value#in blupf90+OPTION snp_var#in postGSf90--acc#in predf90

RESEARCH ARTICLE

Theoretical accuracy for indirect predictions based on SNP effects from single-step GBLUP

Andre Garcia^{1*}, Ignacio Aguilar², Andres Legarra³, Shogo Tsuruta¹, Ignacy Misztal¹ and Daniela Lourenco¹

2) Genome-wide Association Studies

Current standard for GWAS

- Single marker regression with **G** to compensate for relationships
 - $\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{z}_i\mathbf{a}_i + \mathbf{u} + \mathbf{e}$
 - **z:** gene content {0,1,2}
 - a: SNP effect
- Estimate SNP effects
- Get p-values as $pval_i = 2\left(1 \Phi\left(\left|\frac{\hat{a}_i}{sd(\hat{a}_i)}\right|\right)\right)$
- Apply Bonferroni to correct for multiple testing

Assumption: Genotyped individuals have phenotypes

GWAS in livestock populations

- Most animals are non-genotyped
- Animals may not have phenotypes
- Some traits are sex-limited
 - milk, fat, protein
- Single marker regression
 - Only genotyped animals with phenotypes
 - Deregressed EBV
- Need a method that fits the livestock data
 - ssGWAS

Single-step GWAS (historical)

VanRaden 2008 Stranden and Garrick 2009 Wang et al. 2012

- a) Quadratic SNP variance (Falconer & Mackay, 1996)
 - $d_i = \hat{a}_i^2 2p_i(1 p_i)$

b) NonlinearA SNP variance (VanRaden, 2008)

$$d_i = 1.125^{\frac{|\hat{a}_i|}{sd(\hat{a})}-2}$$

Single-step GWAS

Fat – US Holsteins

No P-value!!!

Manhattan plot of Variances

Chromosome

Single-step GWAS

Can we have p-values in ssGWAS?

Gualdrón Duarte et al. BMC Bioinformatics 2014, 15:246 http://www.biomedcentral.com/1471-2105/15/246

Open Access

METHODOLOGY ARTICLE

Rapid screening for phenotype-genotype associations by linear transformations of genomic evaluations

Jose L Gualdrón Duarte¹, Rodolfo JC Cantet¹, Ronald O Bates², Catherine W Ernst², Nancy E Raney² and Juan P Steibel^{2,3*}

Genome-Wide Association Analyses Based on Broadly Different Specifications for Prior Distributions, Genomic Windows, and Estimation Methods

Chunyu Chen,¹ Juan P. Steibel, and Robert J. Tempelman Department of Animal Science, Michigan State University, East Lansing, Michigan 48824 ORCID ID: 0000-0002-7833-6730 (R.J.T.)

> Aguilar et al. Genet Sel Evol (2019) 51:28 https://doi.org/10.1186/s12711-019-0469-3

SHORT COMMUNICATION

Frequentist p-values for large-scale-single

step genome-wide association, with an application to birth weight in American Angus cattle

Ignacio Aguilar¹, Andres Legarra^{2*}, Fernando Cardoso^{3,4}, Yutaka Masuda⁵, Daniela Lourenco⁵ and Ignacy Misztal⁵

ANIMAL GENETICS Immunogenetics, Molecular Genetics and Functional Genomics

doi: 10.1111/age.12378

Meta-analysis of genome-wide association from genomic prediction models

Y. L. Bernal Rubio^{+†}, J. L. Gualdrón Duarte⁺, R. O. Bates⁺, C. W. Ernst⁺, D. Nonneman[‡], G. A. Rohrer[‡], A. King[‡], S. D. Shackelford[‡], T. L. Wheeler[‡], R. J. C. Cantet^{†§} and J. P. Steibel^{*¶}

J. Dairy Sci. 101:3140–3154 https://doi.org/10.3168/jds.2017-13364 @ American Dairy Science Association[®], 2018.

Genome-wide association analyses based on a multiple-trait approach for modeling feed efficiency

Y. Lu,* M. J. Vandehaar,* D. M. Spurlock,† K. A. Weigel,‡ L. E. Armentano,‡ E. E. Connor,§ M. Coffey,# R. F. Veerkamp,II Y. de Haas,II C. R. Staples,¶ Z. Wang,** M. D. Hanigan,†† and R. J. Tempelman*¹

P-values in ssGWAS

1) Factorize and Invert LHS of ssGBLUP with YAMS (Masuda et al., 2014)

2) Solve the MME for $\begin{bmatrix} \widehat{\beta} \\ \widehat{u} \end{bmatrix}$ using the sparse Cholesky factor

3) Extract coefficients for genotyped animals ($\mathbf{C}^{u_2u_2}$) from LHS⁻¹ 4) Obtain individual prediction error variance of SNP effects:

$$Var(\hat{a}_i) = \alpha b \frac{1}{2\sum p_i(1-p_i)} \mathbf{z}'_i \mathbf{G}^{-1} (\mathbf{G}\sigma_u^2 - \mathbf{C}^{u_2 u_2}) \mathbf{G}^{-1} \mathbf{z}_i \frac{1}{2\sum p_i(1-p_i)} \alpha b$$

(Gualdron-Duarte et al., 2014)

5) Backsolve GEBV to SNP effects (
$$\hat{a}$$
): $\hat{a} = \alpha b \frac{1}{2 \sum p_i q_i} \mathbf{Z}' \mathbf{G}^{-1} \hat{u}$

6) p-value_i =
$$2\left(1 - \Phi\left(\left|\frac{\hat{a}_i}{sd(\hat{a}_i)}\right|\right)\right)$$

Ignacio Aguilar

postGSf90

blupf90+

Andres Legarra

Yutaka Masuda

 $[\]Phi$ is the cumulative standard normal function

How to run ssGWAS with p-values in BLUPF90

- After renumf90 and preGSf90 to save clean files:
 - blupf90+ to estimate GEBV
 - OPTION SNP_file snp.dat_clean
 - OPTION map_file mrkmap.txt_clean
 - OPTION saveGInverse
 - OPTION saveA22Inverse
 - OPTION snp_p_value
 - postGSf90 to backsolve GEBV to SNP effect
 - OPTION SNP_file snp.dat_clean
 - OPTION map_file mrkmap.txt_clean
 - OPTION readGInverse
 - OPTION readA22Inverse
 - OPTION snp_p_value
 - OPTION windows_variance X #if need variance explained by X SNP

Output from postGSf90

chrsnp_pval	chrsnp
contains data to create plot by GNUPLOT	contains data to create plot by GNUPLOT
 1: trait 2: effect 3: -log10(p-value) 4: SNP 5: Chromosome 6: Position in bp 	 1: trait 2: effect 3: values of SNP effects to use in Manhattan plots → [abs(SNP_i)/var(SNP)] 4: SNP 5: Chromosome 6: Position

Pft1e2.gnuplot

Pft1e2.R

Sft1e2.gnuplot

Sft1e2.R

Output from postGSf90

snp_sol

contains solutions of SNP and weights

- 1: trait
- 2: effect
- 3: SNP
- 4: Chromosome
- 5: Position
- 6: SNP solution
- 7: weight

if OPTION windows_variance is used

8: variance explained by n adjacents SNP.

if OPTION snp_p_value is used

9: variance of the SNP solution (used to compute the p-value)

P-values in ssGWAS for US Holsteins

• US HOL 2009 data: milk, fat, protein

- Single-trait models
 - 10k genotyped bulls
 - 752k records for 100k daughters
 - 303k animals in ped

P-values in ssGWAS - Milk

P-values in ssGWAS - Fat

Non-significant hits

Work/job satisfaction N=82190

https://twitter.com/SbotGwa

ssGWAS vs. EMMAX

• Simulated population (1 QTN per CHR)

postGSf90 options

http://nce.ads.uga.edu/wiki/doku.php?id=readme.pregsf90

OPTION Manhattan_plot

Uses GNUPLOT to plot the Manhattan plot (SNP effects) for each trait and correlated effect.

OPTION Manhattan_plot_R

Uses R to plot the Manhattan plot (SNP effects) for each trait and correlated effect. pdf images are created: *manplot_St1e2.pdf*, but other formats can be specified. Note: *t1e2* corresponds to trait 1, effect 2.

OPTION Manhattan_plot_R_format <format>

Control the format type to create images in R format values accepted:

- pdf (default)
- png
- = tif

OPTION plotsnp <n>

Control the values of SNP effects to use in Manhattan plots

- 1: plot regular SNP effects: abs(val)
- 2: plot standardized SNP effects: abs(val/sd) (default)

nce.ads.uga.edu/wiki

BLUPF90 Family of Programs

Now with support for genomic selection

Ignacy Misztal and collaborators, University of Georgia

BLUPF90 family of programs is a collection of software in Fortran 90/95 for mixed model computations in animal breeding. The goal of the software is to be as simple as with a matrix package and as efficient as in a programming language. For general description, see a paper from the CCB'99 workshop or see a paper on BGF90 at 7th WCGALP.

For variance component estimation, the family offers choices for simple and complicated models; see paper a "Reliable computing in estimation of variance components". From 2009 the programs are successively modified for genomic selection using a single-step approach (or ssGBLUP) by Ignacio Aguilar and Shogo Tsuruta.

For support, join W blupf90 group at yahoo.com.

Troubleshooting

() If the software crashes with segmentation fault, please change settings in your operating system. See FAQ:Segmentation fault for details. Also, The FAQ pages provide useful suggestions and solutions.

Headline

- History
- Modules
- Condition of use
- Distribution / Download
- Documentation / Manual / Tutorial
- Application program details
- Support
- FAQ
- Tricks / Tips
- To Do
- Courses
- Sample data
- Undocumented options

start