
SNP effects and weights from ssGBLUP using BLUPF90 family (postGSf90)

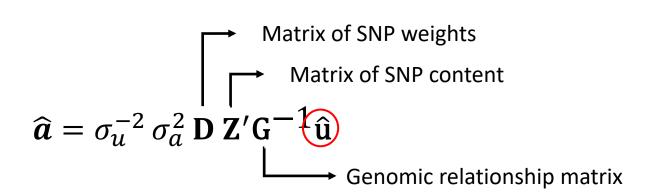
Daniela Lourenco

UGA Team - 08/2019

SNP effect and weights in ssGBLUP

$$\begin{bmatrix} X'X & X'W \\ W'X & W'W+H^{-1}\lambda \end{bmatrix} \begin{bmatrix} \hat{b} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} X'y \\ Z'y \end{bmatrix}$$

a) Quadratic SNP weights (or variance) (Falconer & Mackay, 1996)


$$d_i = \hat{a}_i^2 2p_i (1 - p_i)$$
 Default

b) Nonlinear A SNP weights (or variance) (VanRaden, 2008)

$$d_i = 1.125 \frac{|\hat{a}_i|}{sd(\hat{a})} - 2$$

SNP effect in ssGBLUP

$$\begin{bmatrix} X'X & X'W \\ W'X & W'W+H^{-1}\lambda \end{bmatrix} \begin{bmatrix} \hat{b} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} X'y \\ Z'y \end{bmatrix}$$

- What else to do with SNP effects?
 - 1) Indirect predictions for animals not included in the evaluation

$$DGV = Z\hat{a}$$

Weights or variances for SNP in ssGBLUP

What to do with weights or variance for SNP?

1) Single-step Genome-Wide Association Studies - ssGWAS proportion of σ_u^2 explained by SNP

2) Weighted single-step GBLUP - WssGBLUP σ_a^2 for each SNP when constructing **G**

Weighted single-step GBLUP - WssGBLUP

Weights for SNP in ssGBLUP

- ssGBLUP
 - Same weights for SNP

$$\mathbf{G} = \frac{\mathbf{Z}\mathbf{Z}'}{2\sum p_i(1-p_i)}$$

- WssGBLUP
 - Different weights for SNP

$$\mathbf{G} = \frac{\mathbf{Z}\mathbf{D}\mathbf{Z'}}{2\sum p_i(1-p_i)}$$

- Weights may increase accuracy of GEBV
- If SNPs explain high %variance

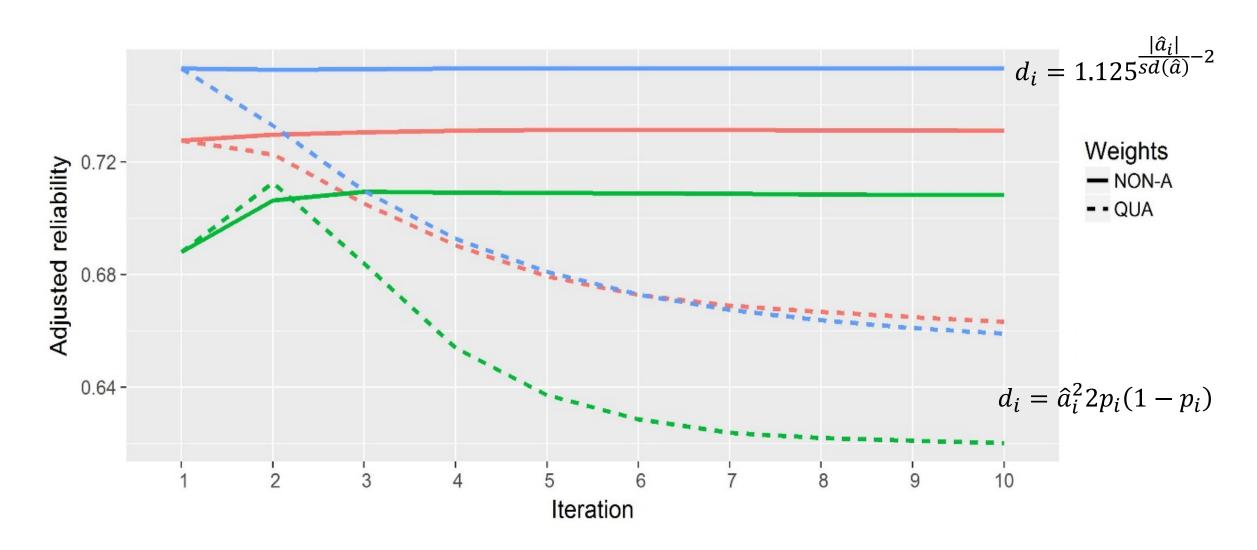
SNP weighting in ssGBLUP: WssGBLUP

• Wang et al. (2012):

1) Set
$$\mathbf{D}_{t} = \mathbf{I}$$
 and $\mathbf{G}_{t} = \frac{\mathbf{Z}\mathbf{D}\mathbf{Z}'}{2\sum p_{i}(1-p_{i})}$

2) Compute GEBV using ssGBLUP approach

"Iterative method needs convergence" 3) Compute SNP effects as $\hat{a} = \lambda D Z'G^{-1}\widehat{GEBV}$


Diagonal matrix of weights

4) Calculate SNP weight

5) Normalize $\mathbf{D}_{(t+1)}$

6)
$$G_{(t+1)} = \frac{ZD_{(t+1)}Z'}{2\sum p_i(1-p_i)}$$

Convergence for nonlinear A and quadratic weight

How to compute SNP effect and weight in BLUP90?

- After renumf90 and preGSf90 to save clean files:
 - blupf90 to estimate GEBV
 - OPTION SNP file snp.dat clean
 - OPTION map info mrkmap.txt clean
 - OPTION saveGInverse
 - OPTION saveA22Inverse
 - postGSf90 to backsolve GEBV to SNP effect
 - OPTION SNP file snp.dat clean
 - OPTION map_info mrkmap.txt_clean
 - OPTION readGInverse
 - OPTION readA22Inverse
 - OPTION which weight nonlinearA

OPTION which_weight nonlinearA

OPTION which_weight nonlinearA

$$d_i = 1.125 \frac{|\hat{a}_i|}{sd(\hat{a})} - 2$$

This option assumes the default constant (CT) is 1.125. To change the constant value to reflect a distribution closer to normal, use a CT value closer to 1:

OPTION which weight nonlinearA 1.05

By default, the maximum change in SNP variance is limited to 5, which is calculated as $CT^{(5-2)}$ and returns a value of 1.4238 with CT=1.125. If this limit is to be changed to 10, the following option can be used, where the value provided (x) is the result of the expression $CT^{(x-2)}$. As an example, if CT is 1.05 and x is 10, the value provided to the option should be 1.4775:

OPTION SNP variance limit 1.4775

How to run WssGBLUP in BLUPF90

- After renumf90 and preGSf90 to save clean files:
 - Blupf90 to estimate GEBV
 - OPTION SNP file snp.dat clean
 - OPTION map file mrkmap.txt clean
 - OPTION saveGInverse
 - OPTION saveA22Inverse
 - OPTION weightedG w.txt #vector of weights
 - postGSf90 to backsolve GEBV to SNP effect
 - OPTION SNP file snp.dat clean
 - OPTION map file mrkmap.txt clean
 - OPTION readGInverse
 - OPTION readA22Inverse
 - OPTION which weight nonlinearA
 - OPTION weightedG w.txt #vector of weights
 - OPTION windows variance 1

How to run WssGBLUP for 3 iterations in BLUPF90

```
awk 'BEGIN { for (i==1;i<45000;i++) print 1}' > w.txt # number of lines = number of SNP
for j in {1..3}
    do
     echo blup.par | blupf90 | tee blup.log1 $j
     cp solutions solutions1 $j
     echo post.par | postGSf90 | tee post.log1 $j
     cp snp sol snp sol1 $j
     cp w.txt w.txt $j
     awk '{ if ($1==1) print $7}' snp sol > w.txt
     mkdir plot1 $j
     cp chrsnp plot1 $j/chrsnp
     cp chrsnpvar plot1 $j/chrsnpvar
     rm chrsnp chrsnpvar snp sol solutions
   done
```

rm Gi A22i

How to run WssGBLUP for 3 iterations and multi-trait models in BLUPF90

- Although the model can be multi-trait, there is only one **G**
 - Only one set of weights can be used
- To estimate correct weights for each trait in a multi-trait model:
 - Add an option in postGSf90

- x1 is the trait you are interested (number of the trait)
- x2 is the effect (number of effect in this case)

• Run once for each trait or effect of interest using weights for the specific trait or effect

Output from postGSf90

snp_sol

http://nce.ads.uga.edu/wiki/doku.php?id=readme.pregsf90

contains solutions of SNP and weights

- 1: trait
- 2: effect
- 3: SNP
- 4: Chromosome
- 5: Position
- 6: SNP solution
- 7: weight

if OPTION windows_variance is used

8: variance explained by n adjacents SNP.

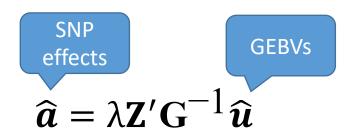
Single-step GWAS

Genome-Wide Association Studies

Current standard for GWAS

- Run single marker regression with **G** to compensate for relationships
 - y = Xb + za + u + e
 - **z**: gene content {0,1,2}
 - a: marker effect
- Get p-values from $pval_i = 2\left(1 \Phi\left(\left|\frac{\hat{a}_i}{sd(\hat{a}_i)}\right|\right)\right)$
- Apply Bonferroni to correct for multiple testing

Bonferroni correction =
$$\frac{0.05}{Number\ of\ SNP}$$


Assumption: Genotyped individuals have phenotypes

GWAS in livestock populations

- Most animals are non-genotyped
- Animals may not have phenotypes
- Some traits are sex-limited
 - milk, fat, protein
- Single marker regression
 - Only genotyped animals with phenotypes
 - Deregressed EBV

Need a method that fits the livestock data

Single-step GWAS

VanRaden 2008 Stranden and Garrick 2009 Wang et al. 2012

a) Quadratic SNP weights (Falconer & Mackay, 1996)

$$d_i = \hat{a}_i^2 2p_i (1 - p_i)$$

b) Nonlinear A SNP weights (VanRaden, 2008)

$$d_i = 1.125 \frac{|\hat{a}_i|}{sd(\hat{a})} - 2$$

How to run ssGWAS in BLUPF90

- After renumf90 and preGSf90 to save clean files:
 - Blupf90 to estimate GEBV
 - OPTION SNP file snp.dat clean
 - OPTION map info mrkmap.txt clean
 - OPTION saveGInverse
 - OPTION saveA22Inverse
 - OPTION weightedG w.txt #vector of weights
 - postGSf90 to backsolve GEBV to SNP effect
 - OPTION SNP file snp.dat clean
 - OPTION map info mrkmap.txt clean
 - OPTION readGInverse
 - OPTION readA22Inverse
 - OPTION which weight nonlinearA
 - OPTION weightedG w.txt #vector of weights
 - OPTION windows variance 1

postGSf90 options

OPTION SNP_moving_average n

Solutions for SNP effects will be by moving average of n adjacents SNPs.

OPTION windows_variance n

Calculates the variance explained by *n* adjacents SNPs.

When this option is used, the sum of variance explained by *n* adjacent SNPs (column 8 of snp_sol or column 3 of chrsnpvar) is not 100%. This is because moving variance is used. If windows size is 20, the proportion of variance assigned to SNP 1 is calculated from SNP 1 to 20, for SNP 2 it goes from 2 to 21, for SNP 3 it goes from 3 to 22, and so forth.

A file called windows_variance has variance that sums to 100% in column 9.

OPTION windows variance mbp n

Calculates the variance explained by n Mb window of adjacents SNPs.

OPTION which_weight x

Generates a weight variable w to be used in the creation of a weighted genomic relationship matrix G=ZDZ'

- $= 1: w = y^2 * (2(p(1-p)))$
- 2: w = y^2
- 3: experimental with the degree of brief
- 4: w = C**(abs(y)/sqrt(var(y's))-2) from VanRaden et al. (2009)
- nonlinearA: same as 4

postGSf90 options

OPTION Manhattan_plot

Plot using GNUPLOT the Manhattan plot (SNP effects) for each trait and correlated effect.

OPTION Manhattan_plot_R

Plot using R the Manhattan plot (SNP effects) for each trait and correlated effect. pdf images are created: manplot_St1e2.pdf, but other formats can be specified. Note: t1e2 corresponds to trait 1, effect 2.

OPTION Manhattan_plot_R_format <format>

Control the format type to create images in R format values accepted:

- pdf (default)
- png
- tif

OPTION plotsnp <n>

Control the values of SNP effects to use in Manhattan plots

- 1: plot regular SNP effects: abs(val)
- 2: plot standardized SNP effects: abs(val/sd) (default)

Output from postGSf90

http://nce.ads.uga.edu/wiki/doku.php?id=readme.pregsf90

chrsnp

contains data to create plot by GNUPLOT

- 1: trait
- 2: effect
- 3: values of SNP effects to use in Manhattan plots
- 4: SNP
- 5: Chromosome
- 6: Position

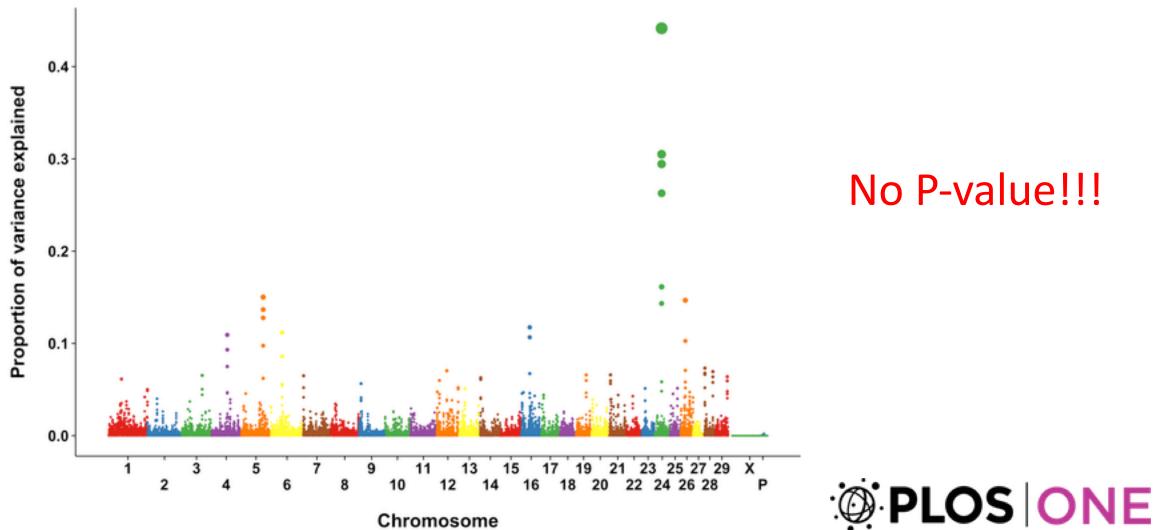
chrsnpvar

contains data to create plot by GNUPLOT

- 1: trait
- 2: effect
- 3: variance explained by n adjacents SNP
- 4: SNP
- 5: Chromosome
- 6: Position

Single-step GWAS

Fat – US Holsteins


No P-value!!!

Manhattan plot of Variances

Single-step GWAS

Figure 2. Proportion of SNP variance explained by 5-SNP moving windows for rectal temperature from a single-step GBLUP analysis

Dikmen S, Cole JB, Null DJ, Hansen PJ (2013) Genome-Wide Association Mapping for Identification of Quantitative Trait Loci for Rectal Temperature during Heat Stress in Holstein Cattle. PLOS ONE 8(7): e69202. https://doi.org/10.1371/journal.pone.0069202 https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069202

Can we have p-values in ssGWAS?

Gualdrón Duarte et al. BMC Bioinformatics 2014, 15:246 http://www.biomedcentral.com/1471-2105/15/246

METHODOLOGY ARTICLE

Open Access

Rapid screening for phenotype-genotype associations by linear transformations of genomic evaluations

Jose L Gualdrón Duarte¹, Rodolfo JC Cantet¹, Ronald O Bates², Catherine W Ernst², Nancy E Raney² and Juan P Steibel^{2,3*}

ANIMAL GENETICS Immunogenetics, Molecular Genetics and Functional Genomics

Meta-analysis of genome-wide association from genomic prediction models

Y. L. Bernal Rubio* , J. L. Gualdrón Duarte*, R. O. Bates*, C. W. Ernst*, D. Nonneman*, G. A. Rohrer, A. King, S. D. Shackelford, T. L. Wheeler, R. J. C. Cantet, and J. P. Steibel

Genome-Wide Association Analyses Based on Broadly Different Specifications for Prior Distributions, **Genomic Windows, and Estimation Methods**

Chunyu Chen,¹ Juan P. Steibel, and Robert J. Tempelman Department of Animal Science, Michigan State University, East Lansing, Michigan 48824 ORCID ID: 0000-0002-7833-6730 (R.J.T.)

Genome-wide association analyses based on a multiple-trait approach for modeling feed efficiency

Y. Lu,* M. J. Vandehaar,* D. M. Spurlock,† K. A. Weigel,‡ L. E. Armentano,‡ E. E. Connor,§ M. Coffey,# R. F. Veerkamp, || Y. de Haas, || C. R. Staples, ¶ Z. Wang, ** M. D. Hanigan, †† and R. J. Tempelman*1

P-values in ssGWAS

- Factorize and Invert LHS of ssGBLUP with YAMS (Masuda et al., 2014)
- 2) Solve the MME for $\begin{bmatrix} \hat{\beta} \\ \hat{\Omega} \end{bmatrix}$ using the sparse Cholesky factor

blupf90

postGSf90

Ignacio

Aguilar

- Yutaka

Masuda

Andres Legarra

- 3) Extract from LHS⁻¹ coefficients for genotyped animals ($\mathbb{C}^{u_2u_2}$)
- 4) Obtain individual prediction error variance of SNP effects:

$$Var(\hat{a}_i) = \frac{1}{2\sum p_i q_i} \mathbf{z}_i' \mathbf{G}^{-1} (\mathbf{G} \sigma_{\mathbf{u}}^2 - \mathbf{C}^{u_2 u_2}) \mathbf{G}^{-1} \mathbf{z}_i \frac{1}{2\sum p_i q_i}$$

(Gualdron-Duarte et al., 2014)

5) Backsolve GEBV to SNP effects (\hat{a}): $\hat{a} = \frac{1}{2 \sum p_i q_i} \mathbf{Z}' \mathbf{G}^{-1} \hat{u}$

6) p-value_i =
$$2\left(1 - \Phi\left(\left|\frac{\hat{a}_i}{sd(\hat{a}_i)}\right|\right)\right)$$

OPTION in blupf90 and postGSf90

Single option for both programs

OPTION snp_p_value

Output

-log10(p-value) CHR POS effect SNP trait 5 0.6467097526 120183 0.3510786763 135098 5 0.3606678137 3 158820 183040 0.2585950992 208728 0.6969161959 1.7646253513 6 267940 5 1.0802326921 278952 5 290690 0.6819748588

10

1.0131137254 0.0038533074 Aguilar et al. Genet Sel Evol (2019) 51:28 https://doi.org/10.1186/s12711-019-0469-3

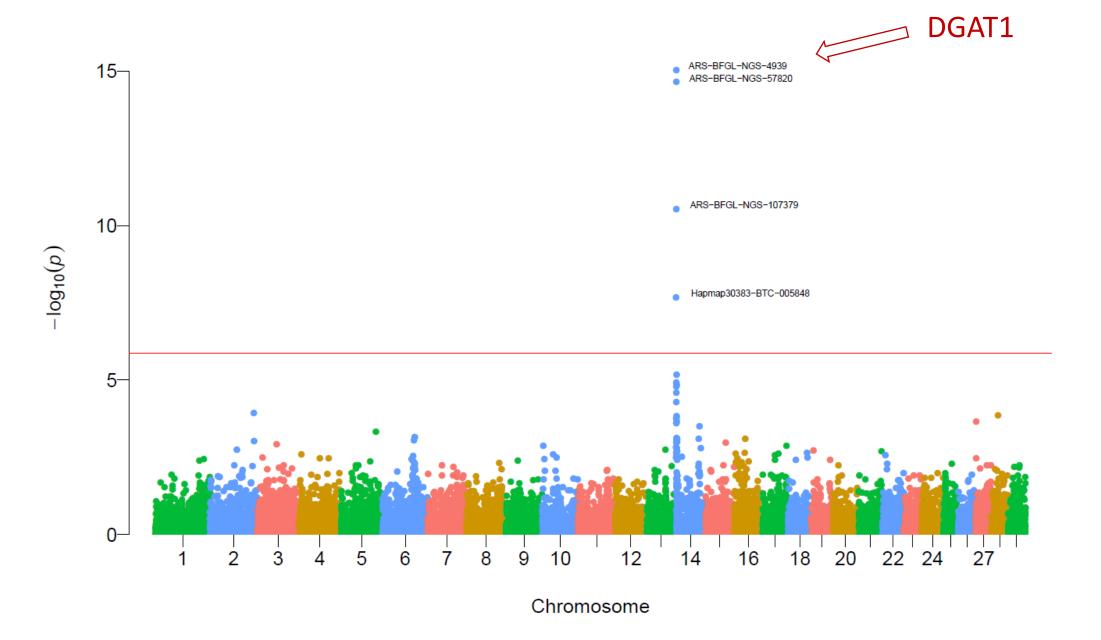
SHORT COMMUNICATION

309487

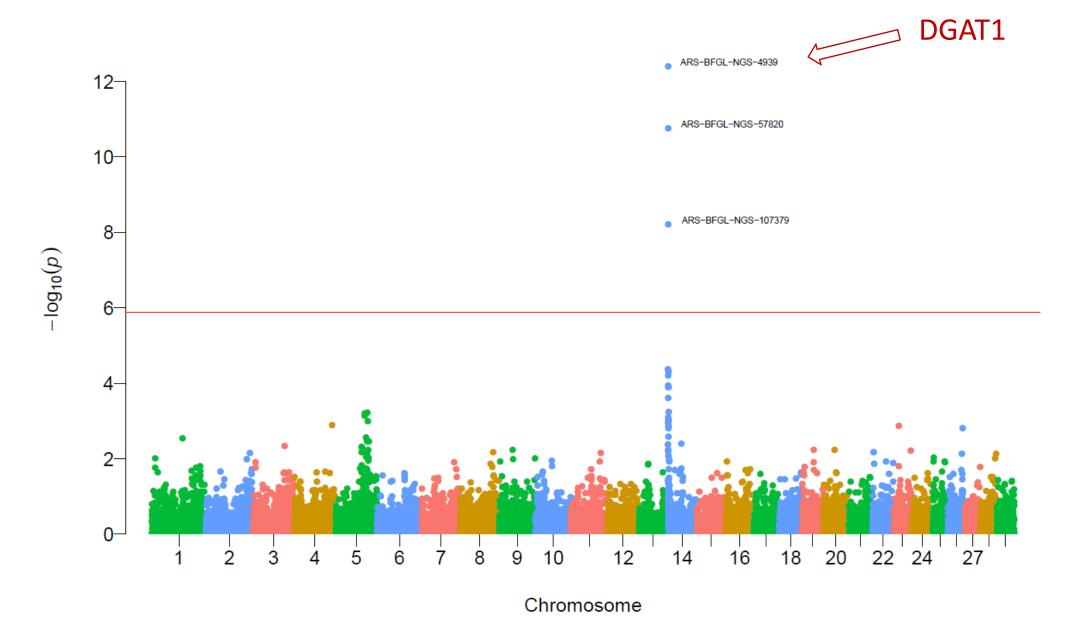
393248

Open Access

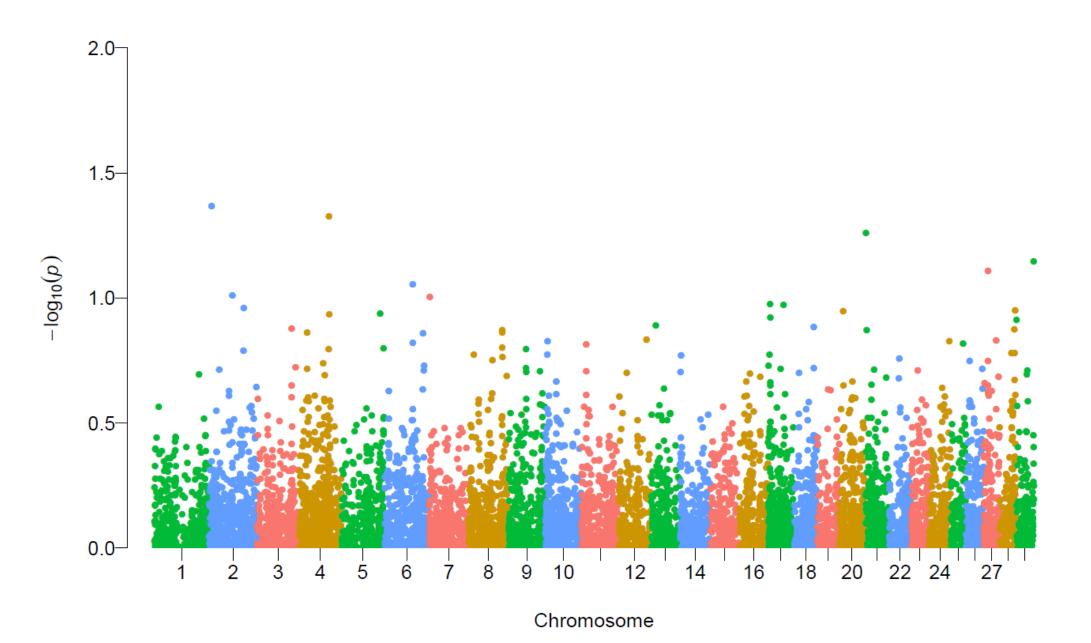
Frequentist p-values for large-scale-single step genome-wide association, with an application to birth weight in American Angus cattle


Ignacio Aguilar¹, Andres Legarra^{2*}, Fernando Cardoso^{3,4}, Yutaka Masuda⁵, Daniela Lourenco⁵ and Ignacy Misztal⁵

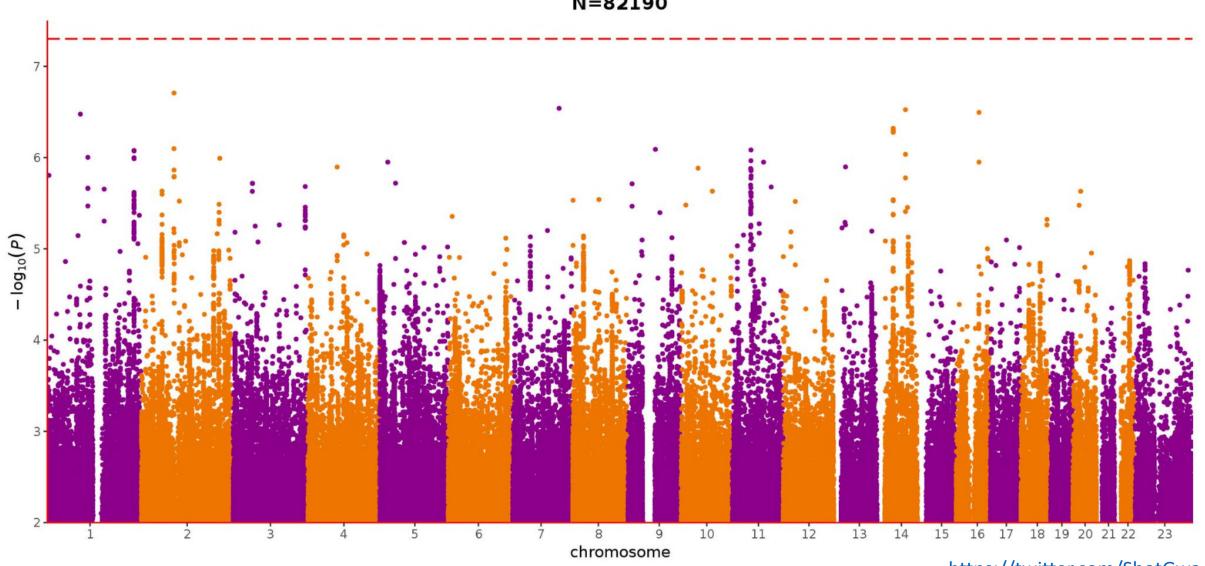
P-values in ssGWAS for US Holsteins


• US HOL 2009 data: milk, fat, protein

- Single-trait models
 - 10k genotyped bulls
 - 752k records for 100k daughters
 - 303k animals in ped


P-values in ssGWAS - Milk

P-values in ssGWAS - Fat


P-values in ssGWAS - Protein

Non-significant hits

Work/job satisfaction N=82190

How to run ssGWAS with p-values in BLUPF90

- Should not use iterations!
- After renumf90 and preGSf90 to save clean files:
 - Blupf90 to estimate GEBV
 - OPTION SNP file snp.dat_clean
 - OPTION map info mrkmap.txt clean
 - OPTION saveGInverse
 - OPTION saveA22Inverse
 - OPTION snp p value
 - postGSf90 to backsolve GEBV to SNP effect
 - OPTION SNP file snp.dat clean
 - OPTION map_info mrkmap.txt_clean
 - OPTION readGInverse
 - OPTION readA22Inverse
 - OPTION which weight nonlinearA
 - OPTION windows variance 1
 - OPTION snp p value

Do not run iterations for p-values!

Output from postGSf90

```
chrsnp_pval
```

contains solutions of SNP and weights

- 1: trait
- 2: effect
- 3: -log10(p-value)
- 4: SNP
- 5: Chromosome
- 6: Position in bp

nce.ads.uga.edu/wiki

start

BLUPF90 Family of Programs

Now with support for genomic selection

Ignacy Misztal and collaborators, University of Georgia

BLUPF90 family of programs is a collection of software in Fortran 90/95 for mixed model computations in animal breeding. The goal of the software is to be as simple as with a matrix package and as efficient as in a programming language. For general description, see a paper from the CCB'99 workshop or see a paper on BGF90 at 7th WCGALP.

For variance component estimation, the family offers choices for simple and complicated models; see paper a "Reliable computing in estimation of variance components". From 2009 the programs are successively modified for genomic selection using a single-step approach (or ssGBLUP) by Ignacio Aguilar and Shogo Tsuruta.

For support, join blupf90 group at yahoo.com.

Troubleshooting

(1) If the software crashes with segmentation fault, please change settings in your operating system. See FAQ:Segmentation fault for details. Also, The FAQ pages provide useful suggestions and solutions.

Headline

- History
- Modules
- Condition of use
- Distribution / Download
- Documentation / Manual / Tutorial
- Application program details
- Application program
- Support
- FAQ
- Tricks / Tips
- To Do
- Courses
- Sample data
- Undocumented options