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Genomic analyses with emphasis on single-step 
 
 

Condensed notes for short-course taught in 2015 in Poznan, Poland 
Ignacy Misztal et al., 11/20/14 - 5/9/16 
 
Introduction 
In the last couple of years, the animal breeding research focused on genomic selection. Early 
studies focused on the design of SNP chips for many species and developed basic 
methodologies based either on SNP estimation or GBLUP. Successive studies looked at the 
number of genotyped animals and size of SNP chip for a reasonable accuracy, optimal SNP 
selection, and SNP weighting. Later studies pondered imputation with low density chips and 
gains with high density chips, best choice of animals for genotyping, validation methods, etc. 
Now the most trending topic is the use of sequence data. 
 
The animal-breeding group at the University of Georgia (UGA) has long been active in tools for 
commercial genetic evaluation across species. When genomic selection appeared, the group 
focused on development of technology that would be suitable for a commercial application. 
The method was single-step GBLUP, a BLUP with a different relationship matrix. While the basic 
theory for ssGBLUP is simple, there are many details. In particular, details that seem to be 
unimportant for one species become paramount in another species.  
 
The last major steps in the development of ssGBLUP were algorithms for inversion of genomic 
relationship matrix and the pedigree relationship matrix for a subset of genotyped animals. 
These developments removed limits to the number of genotyped animals. The success of the 
first algorithm raises doubts about meaningful accuracy gains with high-density chips 
(dimensionality of genomic information less than 15,000) and paves the way for genomic 
selection becoming a routine procedure like BLUP.   
 
Single-step GBLUP has been applied by some of the largest companies/institutions in the US. As 
a result, UGA has access to perhaps the most comprehensive data sets anywhere. With access 
to data sets and practical problems, the group solved many puzzles, developed many tools, and 
discovered many solutions.  
 
The purpose of this material is to present an outline of developments in the genomic selection 
from a practical point of view, for use in a new short course taught by Misztal, Aguilar and 
Lourenco in 2015 in Poznan, Poland. Due to scarcity of time, nearly all references in this draft 
are to papers associated with UGA and collaborators. See those papers for references and 
names of the “UGA team.” For more additional information please see 2016 course notes as 
well as BLUPF90 manual available at nce.ads.uga.edu. 
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Models, Methods, and Programs 
Good genomic predictions require a few components: 

1. Appropriate models for traits of study 
2. Appropriate methods for parameter estimation 
3. Appropriate methods for genetic evaluation  
4. Software that can implement mixed models for both parameter estimation and genetic 

prediction 
 
Here we assume that all models are analyzed by mixed model methodology. 
 
Good models are a prerequisite for any genetic evaluation including genomic. Bad models = bad 
GEBVs. All models are approximations. Many effects influence the traits of interest. Giving large 
data sets, any effect is likely to be statistically significant although many may be unimportant in 
practice. We can define practically equivalent models as such where correlations of (G)EBV for 
selection candidates are at least 0.98. Then, our desired model is as simple as possible 
(parsimonious) that gives essentially same predictions as more complicated models. Please 
note that very complex models may give bad predictions due to traits not following model 
assumptions or due to computing instability.  Also, commonly used statistical criteria for model 
selection such as BIC often lead to complex models and not best predictions as determined by 
cross-validation.  
 
Comments on Models 
 
Single-trait (repeatability with repeated records) animal model. 
Basic model when other traits are not available or are weakly correlated 
 
Multiple trait model 
A model that accounts for correlations among traits (genetic and environmental). Important 
when some traits are missing, when the recording is sequential and when genetic correlations 
are not close to 0. Inclusion of traits under selection in the model helps remove biases form 
analyses of all traits.  
 
Random regression model (RRM) 
Useful for analyses of traits that are continuous with time (e.g., milk or weight) or other 
variables (e.g., temperature-humidity index or herd-level). The key part of RRM is the use of 
several parameters to describe variability of continuous traits. Functions that use such 
parameters may be regular polynomials (simple but poor numerical stability), Legendre 
orthogonal polynomials (better numerical properties), or splines (less variability at extremes). 
Type and order of functions determine shape of covariance trajectories. In particular, too high 
polynomial order in RRM shows modeling artifacts where (co)variance curves have large 
fluctuations and are not supported by biological or management reasons.  One-way of 
simplifying RRM is the use of linear splines as they are equivalent to multiple-trait models with 
traits corresponding to points at knots (Misztal, 2006) and cross-validation properties are good 
(Bohmanova et al., 2008).  
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Unknown parent groups (UPG) 
If the base population is heterogeneous, under selection the merit of missing parents may be 
uneven. Then, pedigrees can be augmented by “phantom parents” via unknown parent groups.   
Groups can model the merit of unknown parents by year of birth, sex, path of selection, genetic 
origin or breed.  
Use of UPG is dangerous due to possibility of confounding or large SE (UPG are fixed effects). 
Therefore, when UPG are used, the solutions of UPG should be examined for excessive 
fluctuations, trends, or just common sense. One way of reducing the confounding/fluctuations 
is treating UPG as random. In the simplest case, this is by treating UPG as animals 
(var(UPG)=additive variance). 
 
UPG and historical data 
In many analyses, the use of more than 2-3 historical generations does not influence GEBV of 
the youngest generation or may even improve it (Lourenco et al., 2014). This is due to a number 
of reasons including 1) decays of genomic predictions, 2) changes in traits over time, 3) 
imperfect modeling of fixed effects over time. So one of the simplest ways to limit 
computations is by truncating phenotypes and pedigrees. Truncating data also limits or even 
eliminates the need for UPG.  
 
Common features of software 
Software for mixed models should generally support: 
- missing traits 
- different models per trait 
- heterogeneous residual variance 
 
Approaches for variance component estimation (VCE) 
 
VCE is usually accomplished by REML or by Bayesian analyses via Gibbs sampling. For general 
properties, see paper “Reliable computing in estimation of variance components.” Below are 
some of the more popular features of common algorithms.  
 
General REML programs rely on sparse matrix software. They have approximately a quadratic 
cost with the number of animals and the cubic cost with the number of traits. They are likely to 
fail when the number of traits is too high or resulting covariance matrices are close to 
singularity.  
 
AI-REML is fast with simpler models but often crashes with models close to the parameter 
space.  
 
EM-REML is more stable but very slow and there are no good estimates of SE. EM-REML is 
faster with less “missing information.” EM_REML gets “stuck” with RRM if the starting 
parameters are low.  
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Special version of REML (canonical transformation) can be very stable and inexpensive with a 
large number of traits but add model limitations.  See Karin Meyer’s page for many options in 
REML for complicated models.  
 
Bayesian methods via Gibbs sampling (BAGS) may be slow or fast depending on optimizations. 
Usually the number of required samples is higher with model complexity and with the number 
of parameters. For instance, a reduced animal model may require 10 times fewer samples than 
a regular animal model. Analyzing the output of BAGS is a necessity.  
 
An optimized BAGS (e.g., gibbs1f90 and later versions) is resistant to non-positive definite 
matrices and can be very fast with large number of traits if models per trait are not too 
different. Complex models (e.g., threshold) are much easier to implement via BAGS than via 
REML.  
 
Approaches for national genetic evaluation 
 
For national evaluations, the number of effects in the model can be so large that the mixed 
model equations would not fit in memory even for the largest computer. Subsequently 
solutions are computed by “matrix free” or “iteration on data “ approaches, where the data is 
read every round of iteration and coefficients of mixed model equations are recreated. Instead 
of being stored, these coefficients are used immediately to create quantities used by iteration 
methods. A particularly efficient yet simple to implement iteration method is preconditioned 
conjugate gradient (Tsuruta et al., 2001). This method can use coefficients of mixed model 
equations in any order.  
 
Why single step? 
 
Current methods require de-regressions and creation of an index combining different sources 
of information (e.g., parent average, direct genomic value, pedigree prediction). As both rely on 
accuracies, when accuracies are approximated both the deregressions and the index are 
approximate. Additionally, deregression on a mix of high and low accuracy animals can create 
double-counting (Legarra et al., 2014; Lourenco et al., 2015).   
 
Derivation of H 
The derivations follow Legarra et al. (2014) and Aguilar et al. (2010). Let A be a numerator 
relationship matrix and let the genetic variance be set to 1.0. Let indices 1 refer to ungenotyped 
and 2 to genotyped animals.  
 
𝑣𝑎𝑟(𝑢) = 𝐴𝜎𝑢

2   
 

    𝐴 = [
𝐴11 𝐴12

𝐴21 𝐴22
] 

 
Based on conditional distributions:  
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𝑢1|𝑢2~𝑁(𝐴12𝐴22

−1𝑢2, 𝐴11 − 𝐴12𝐴22
−1𝐴21) 

𝑢2~𝑁(0, 𝐺)  
𝑢1 = 𝐸(𝑢1|𝑢2) + 𝜀 
= 𝐴12𝐴22

−1𝑢2 + 𝜀  
 
Calculate variances and covariances: 
𝑣𝑎𝑟(𝑢1) = 𝑣𝑎𝑟(𝐴12𝐴22

−1𝑢2 + 𝜀)  
= 𝑣𝑎𝑟(𝐴12𝐴22

−1𝑢2) + 𝑣𝑎𝑟(𝜀)  
= 𝐴12𝐴22

−1𝐺𝐴22
−1𝐴21 + 𝐴11 − 𝐴12𝐴22

−1𝐴21  
= 𝐴12𝐴22

−1(𝐺 − 𝐴22)𝐴22
−1𝐴21 + 𝐴11   

 
𝑐𝑜𝑣(𝑢1, 𝑢2) = 𝑐𝑜𝑣(𝐴12𝐴22

−1𝑢2, 𝑢2) = 𝐴12𝐴22
−1𝑣𝑎𝑟(𝑢2) = 𝐴12𝐴22

−1𝐺      
𝑣𝑎𝑟(𝑢2) = 𝐺 
 
Finally: 

𝐻 = (
𝑣𝑎𝑟(𝑢1) 𝑐𝑜𝑣(𝑢1, 𝑢2)

𝑐𝑜𝑣(𝑢2, 𝑢1) 𝑣𝑎𝑟(𝑢2)
) 

= (
𝐴12𝐴22

−1𝐺𝐴22
−1𝐴21 + 𝐴11 − 𝐴12𝐴22

−1𝐴21  𝐴12𝐴22
−1𝐺

𝐺𝐴22
−1𝐴21 𝐺

) 

=𝐴 + [
𝐴12𝐴22

−1(𝐺 − 𝐴22)𝐴22
−1𝐴21  𝐴12𝐴22

−1(𝐺 − 𝐴22)

(𝐺 − 𝐴22)𝐴22
−1𝐴21 𝐺 − 𝐴22

] 

 
The inverse can be derived from distributions knowing that: 

𝑢1|𝑢2~𝑁(𝐴12𝐴22
−1𝑢2, 𝐴11 − 𝐴12𝐴22

−1𝐴21) = 𝑁(𝐴12𝐴22
−1𝑢2, (𝐴11)−1) 
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Types of genomic relationship matrix 
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The most popular matrix was defined by VanRaden (2008). It is based on a SNP model: 

𝑦𝑖 = 𝜇 + 𝑍𝑎 + 𝑒,   𝑣𝑎𝑟(𝑎) = 𝐼𝜎𝑎
2,   𝑣𝑎𝑟(𝑒) = 𝐼𝜎𝑒

2 

where Z is a matrix of gene content adjusted for allele frequencies and 𝑎 is a vector SNP effects. 
When u is a vector of breeding values: 

𝑢 = 𝑍𝑎, 𝑣𝑎𝑟(𝑢) = 𝐺𝜎𝑢
2, 𝐺 = 𝑍𝑍′ ∗ 𝜎𝑎

2/𝜎𝑢
2 

Alternately, 

𝐺 =
𝑍𝑍′

∑ 𝑝𝑖(1 − 𝑝𝑖)
 

 
Many other G have been proposed but none seems to provide more accurate solutions. 
Please note that Z adjusted for allele frequencies is  

𝑍 = 𝑀 − 2𝑃  

where elements of M are 0, 1 or 2 and P is a matrix of allele frequencies. The SNP model and 
GBLUP have same solutions regardless of gene frequencies (Stranden and Christensen, 2011) 
but ssGBLUP is affected by P. 
 
The properties of G depend on gene frequencies. With current allele frequencies, the mean of 
the diagonal elements of G is 1.0 and that of off-diagonals is 0. With equal allele frequencies 
(0.5), the means of diagonal and off-diagonal elements can be as high as 1.0 and 1.5.   
 
Decomposition of GEBV 
By analyzing one line of MME we can find the decomposition of GEBV:  

𝑢𝑖 = 𝑤1𝑃𝐴 + 𝑤2𝑌𝐷 + 𝑤3𝑃𝐶 + 𝑤4𝐷𝐺𝑉 + 𝑤5𝑃𝑃, ∑ 𝑤𝑖 = 1  

where PA is Parent Average, YD is Yield Deviation (phenotypes adjusted for model effects other 
than additive genetic and error), PC is Progeny Contribution, DGV is the genomic prediction 
(coming from G-1 or indirectly from SNP effects), PP is the pedigree prediction based on the 

subset of genotyped animals from A (coming from A22
-1

).  When both parents are known and 

each progeny has a known mate, the weights are: 

𝑤1 =  
2

𝑑𝑒𝑛
 ; 𝑤2 =  

𝑛𝑟 𝛼⁄

𝑑𝑒𝑛
 ; 𝑤3 =  

𝑛𝑝 2⁄

𝑑𝑒𝑛
 

𝑤4 =  
𝑔𝑖𝑖

𝑑𝑒𝑛
 ; 𝑤5 =  

−𝑎𝑖𝑖
22

𝑑𝑒𝑛
  

 

𝑑𝑒𝑛 = 2 + 𝑛𝑟/𝛼 + 𝑛𝑝/2 + 𝑔𝑖𝑖 − 𝑎22
𝑖𝑖  

with values for DGV and PP:  
ij j

j, j i

ii

g u

DGV ,
g




  

ij j
22

j, j i

ii
22

a u

PP ,
a




  

The decomposition for young animals (w2=w3=0) is the same as in VanRaden et al. (2009b) 
except that the effects are estimated jointly. PP accounts for part of PA explained by DGV. In 
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particular, when A=A22, PA and PP cancel out. When one or two parents are genotyped, PP will 
include a fraction of PA. When a genotyped animal is unrelated to a genotyped population, 
PP=0. Alternately, DGV and PP can be combined into genomic index (GI) as in VanRaden and 
Wright (2013): 

𝑤4𝐷𝐺𝑉 + 𝑤5𝑃𝑃 = 𝑤6𝐺𝐼  
 

 ij ij j
ii ii22

j, j i 22
6ii ii

22

g a u
g a

GI , w
g a den






 


 

GI excludes effect of PA from DGV. See Lourenco et al. (2015) 
 
Assuming that deviations (GEBVs – EBVs) and EBVs are uncorrelated leads to the following 
approximation [19]: 

𝑔𝑖𝑖 − 𝑎22
𝑖𝑖  ≈ ∑ (𝑔𝑖𝑗 − 𝑎22,𝑖𝑗)2  ≈  (𝑛𝑔 − 1)Δ𝑖

2

𝑗,𝑗≠𝑖

 

where 𝑛𝑔 is the number of genotyped animals and Δ𝑖
2 is the average of the squared difference 

between genomic and pedigree relationships across all individuals with individual i (Misztal et 

al., 2012). In practice, Δ𝑖
2 is about 0.042 (Wang et al., 2014). 

 

 

Quality control for G 
Quality control of G is a critical part of genomic selection as poor relationships could lead to 
many types of biases and losses of accuracy.  
 
Calling rate for SNP and animals 
Raw genotypes include either the correct SNP or an error code stating that an SNP could not be 
reliably read (or typed). Calling rate for SNP removes specific SNP markers from all genotyped 
animals where that SNP could not be reliably typed in a large number of cases. Calling rate for 
animals removes genotypes of such animals where less than a threshold SNPs are correctly 
typed. Usually the threshold is 90-95% correct typing.  
 
Parental exclusions and parent identification 
Parent-progeny genotypes should be compatible. In practice this means that such pairs should 
not have exclusive genotypes (aa in parent and bb in progeny). For unrelated animals, the 
number of SNP with opposite genotypes is up to 12.5% (Tsuruta et al., 2009). For parent-
progeny pairs, the number is usually less than 3% with raw genotypes but can drop below 0.1% 
(a few SNP with 50k chip) after imposing the calling rate edits.  
If there is exclusion for any parent-progeny pair (> 3% exclusions), possibilities include pedigree 
or genotyping error. In case of wrong paternity, one solution is to find a compatible parent.  
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Distributions of diagonals of G 
Under correct scaling and with current allele frequencies, all diagonals of G should have a quasi 
normal distribution with a mean of 1.0 and SD < 0.1.  Too small or too large diagonals (< 0.6 or > 
1.5) indicate either poor genotyping quality or an animal from another line or breed (Simeone 
et al., 2011). 
 
Differences between matched G and A22 
For properly matched G and A22, differences are usually < 0.1. Large differences indicate 
pedigree or genotyping problems, or insufficient pedigree. In populations with missing 
pedigrees, there is an extra variation of the difference due to unequal pedigree length (Wang et 
al., 2014). 
 
Chromosome editing 
SNPs in the sex chromosomes and SNPs not linked to any chromosome (usually called 
chromosome 0) contribute little if any to GEBV and are routinely eliminated.   
 
Heritability of gene content 
With correct genotypes, heritability of each SNP as a dependent variable (y) in an animal model 
is 100% (Forneris et al., 2015). Under special genotyping errors including those from bad 
imputation, the heritability is lower. In practice, less than 0.99 average heritability for all SNP 
indicates problems.  
 
Population stratification using eigenvectors 
Genotypes of a population can be shown graphically as a plot of the two largest eigenvectors. 
While a single population cluster has an oval shape, separate clusters indicate separate lines or 
breeds. 
 
Matching G and A22 
Normal procedure for matching G and A22 include only adjustments to G for same averages of 
diagonal and off-diagonal elements. When the base population is heterogeneous (pedigrees 
missing across generations), adjustments are to average pedigree length, and G is too big for 
animals with short pedigree and too small with long pedigree (Cheng et al., 2011; Vitezica et al., 
2011). This results in poor convergence rate when solving ssGBLUP by iteration and in 
upward/downward biases (Misztal et al., 2012). Several options exist for matching G and A22. 
One option is to modify the H-1 matrix by using a weight for A22-1 (omega) smaller than 1.0.  

H-1=A-1+ [
0 0
0 G-1– 𝛚A22

-1 ] 

 

Another option is to introduce nonzero relationships between unknown parents like in 
VanRaden or via metafounders concept (Legarra et al., 2015). The last choice is to cut 
phenotypes and pedigrees to 2-3 generations. Cutting data to a few generations did not 
decrease accuracy (Lourenco et al., 2014) and reduces the impact of old pedigrees.  
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Correlations between diagonal and off-diagonal elements of G and A22 
In typical analyzes, the correlations between G and A22 is about 0.3±0.1 for diagonals and 
0.6±0.15 for off-diagonals. The correlations depend on a depth of pedigree. The correlations 
between the diagonals are treated as those between pedigree and genomic inbreeding. While 
pedigree-based inbreeding depends on the depth of pedigree, the genomic inbreeding 
indirectly includes all past inbreeding. In general, new inbreeding is more detrimental than old 
inbreeding, where effects of deleterious genes are mostly removed by selection. Recent 
inbreeding with the genomic information can be assessed by runs of homozygosity.  
 
Matching of G and A22 when crossbreeding 
Under crossbreeding, ideally G would be matched to A22 for all breed combinations. In 
particular, blocks of G due to purebred breed combinations would be 0. However, manual 
manipulation of blocks of matrices often makes the matrix non-positive definite. In a terminal 
cross model in pigs, the best approach for G was to use average gene frequencies across all 
animals, without additional steps (Lourenco et al., 2016). In a multibreed evaluation of sheep, 
where phenotypes were available on crossbreds but not on every purebred, G was generated 
using an average allele frequency but modeling included explicit unknown parent groups (UPG).  
 
Importance of matching for different species and genotyping scenarios 
The impact of incorrect matching is large in simulated populations, smaller in pigs and chicken, 
and was almost none in dairy when the reference population included high accuracy bulls only. 
The impact of the genomic information is negligible on high-accuracy animals and some scaling 
cancels out for young animals. Also, the impact of scaling is stronger under strong selection. 
Simulated populations usually include many genotyped generations, each with relatively small 
low-accuracy animals, and with selection on a single trait. Therefore any problems with scaling 
will influence the older generations and subsequently the young generation.  In real 
populations, selection is usually multitrait and not very strong on any single trait.  
 
Validation 
 
Reliability (R2) of GEBV with older data 
In populations with high accuracy males and high number of progeny, validation includes partial 
and complete data comparisons. A partial data set excludes progeny of the youngest males. 
Comparisons are made with GEBV or EBV obtained with partial data and EBV or DYD of a male 
obtained with complete data. When the number of progeny is high, the comparison involves 
PA+DGV-PP and PC. The decomposition of GEBV indicates when such an approach is 
appropriate.  
 
  
Predictability  
When youngest animals have records, the realized accuracies can be computed as  
Corr(gebv,y-Xb)/h, where gebv is prediction for a given animal obtained without its phenotype, 
y-Xb is phenotype of that animal adjusted for fixed effects, and h is a square root of heritability 
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(Legarra, 2008). Predictability seems very objective but is hard to apply for complex models 
(e.g., maternal effects).  
 
Mutiple subsets 
When the number of genotyped animals is small, cross-validation is done by creating multiple 
subsets of genotyped animals, and comparing predictions obtained with all but one subset 
against phenotypes in that subset. E.g., see papers by Saatchi et al. (2011) or Kachman et al. 
(2013) The cross-validation can generate very high correlations due to strong relationships 
across samples. The correlations are a more realistic estimate of accuracy when subsets are 
chosen to be less related, e.g., by K-means clustering.  
 
SNP weighting and GWAS in single-step. 
 
The G matrix used in single-step can be weighted, with weights obtained elsewhere, e.g., by 
Bayesian or Lasso models. Weights and subsequently Manhattan plots can be obtained from 
single-step directly by DGV to SNP conversion (Wang et al., 2012; Wang et al., 2014). Assuming 
that D is a diagonal matrix with weights for SNP, the iterative process is: 

1. Set the weight matrix D=I 
2. G=ZDZ’/q (q scaling factor; details omitted) 
3. Run single-step 
4. From GEBV, obtain DGV 
5. Convert DGV to SNP effects a= DZ’ inv(ZDZ’) DGV 
6. Calculate SNP variance and use as weight  di = 2pi qi ai

2 
7. Normalize D for same sum(D) 
8. Go to 2 

 
Usually best weights are obtained after 1-2 rounds.  
 
Step 3 can be done once (if DGV change little across rounds) or every round. Formula in 6 can 
be different. SNP variances can be plotted as Manhattan plots.  
 
In tests using simulated data sets the estimate of SNP effects were similar to those by BayesB. 
However, the best estimates were not for SNP effect of QTL but for a cluster of nearby SNPs. 
This illustrates limited resolution of GWAS in populations with small effective population size. 
 
GWAS by single-step allows for analysis in models where obtaining deregressed proofs is 
difficult (e.g., maternal, random regression or reaction norm). There are no known methods at 
this time to assess SNP significance under single-step.  
 
Weighting seems to improve the accuracy for data sets with small number of genotyped 
animals but little with many (> 10k).  
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Indirect prediction in single-step via SNP effects 
When many young animals are genotyped and fast prediction is essential, their prediction can 
be obtained indirectly: 

1. Run single-step using only animals with information 
2. Predict SNP effects from DGV as above 
3. Use SNP effects for predictions, possible adding parent average. 

When the number of genotyped animals in the reference population is high, parent average 
adds very little to predictions and can be omitted (Lourenco et al., 2015).  
 
Approximations of accuracies 
Accuracies in genomic models can be approximated by calculating the amount of information 
due to genomics (Misztal et al., 2013). In general the information di for animal i is composed of 
information due to phenotypes, pedigrees, and genomic information 

𝑑𝑖 = 𝑑𝑖
𝑝ℎ + 𝑑𝑖

𝑝𝑒𝑑 + 𝑑𝑖
𝑔𝑒𝑛

 

With reliabilities calculated as  

𝑟𝑒𝑙𝑖 =
𝑑𝑖

𝛼 + 𝑑𝑖

 

where alpha is variance ratio for the animal model if the information is in terms of effective 
number of records, or for the sire model if the information is in terms of effective daughters.  
 
Approximately, the genomic accuracy is: 

𝑑𝑖
𝑔𝑒𝑛

~ ∑ (𝑔𝑖𝑗 − 𝑎22,𝑖𝑗)
2

𝑗,𝑗≠𝑖

𝑎𝑐𝑐𝑗
2 

where accj is “independent” accuracy of animal j. Independent means not shared with other 
animals.  
One proposed way of obtaining accuracy is by approximated a left hand side of MME by the 
following and subsequent inversion: 

𝐿𝐻𝑆𝑔𝑒𝑛 = 𝐷𝑝ℎ + 𝐷𝑝𝑒𝑑 + 𝐼 + 𝐺−1 − 𝐴22
−1     

Linear adjustments to D’s may improve the approximation.  
 
Computing single-step with a large number of genotyped animals 
 
REML and YAMS 
Efficiency with REML computations in animal models is based on MME being sparse and 
subsequent use of sparse matrix software. With genomics, MME contained large dense blocks 
due to G, and sparse matrix computations are less efficient with dense matrices than dense 
matrix techniques. Dense blocks also occur with large multiple-trait and random-regression 
models. One solution is the use of a computational package that treats dense-blocks in 
otherwise sparse matrix as dense and applies efficient computations including parallel 
processing. A package that implements this technique is called YAMS and was developed by 
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Yutaka Masuda. When applied to (AI)REMLF90 for complex models, the programs run up to 20 
times faster with individual computations and up to 100 times faster with sparse inversion. 
With efficient matrix factorization and inversion, other operations become bottlenecks. There is 
little improvement for very simple single-trait models with no dense blocks.  
 
Structure of genotyped populations 
Initial genotyping focuses on high accuracy animals. When all high accuracy animals are 
genotyped, genotyping moves to lower-accuracy animals that provide much less information. 
With regard to young animals, many are genotyped but few are selected. For instance, over 1 
million Holsteins have been genotyped by 2015, but only 25k are high accuracy bulls, < 50k are 
cows with phenotype eligible for a national evaluation, and the rest are animals unimportant 
for genomic selection except for possible reduction in bias due to pre-selection.  Subsequently 
computing choices may either use all genotypes in analyses or select only the important ones 
for the main analysis and indirect predictions for the rest.   
 
Efficient inversion of G by APY algorithm 
The rank of G for large populations as shown by the proportion of eigenvalues explaining 99% 
of variation is limited due to small effective population size (Pocrnic et al., 2016).  Such a rank 
was found to be around 10k in Holstein and Angus, 6k in pigs, and 4k in broiler chicken. This is 
due to a limited number of independent chromosome segments (ICS), or limited number of 
independent SNP cluster. Such a fact can be used to derive an inverse of G efficiently (Misztal et 
al., 2014; Fragomeni et al., 2015; Misztal et al., 2015; Misztal 2016; Masuda et al., 2016). Let a 
be a vector of effects of ICS (or uncorrelated SNP segments). Divide individuals into core 

individuals denoted as c and other (non-core) individuals denoted as n. Then  c c cu Z a ʀ and 

 n n nu Z a ʀ. When the number of core animals is the same as the number of ICS: â »Z
c
-1u

c

and  n n nu Pu ʀ, where P is a matrix that relates BVs of non-core  to core  individuals. 

Denote: 

2var b bb bc
u

c cb cc


   

    
   

u G G
G

u G G
, 

Using the recursion equations,  

 
  

   
        
   

1 1
1 1 1 .cc cc cn

nc cc

G 0 G G
G M G G I

0 0 I
 

The above inverse has cubic computations for core animals and linear cost for noncore animals. 
This inverse is also sparse. In tests, APY inversion of a 570k x 570k matrix for Holsteins took < 2 
h of computing time and used less than 100 Gbytes of memory (Masuda et al., 2015). The APY 
inverse is the real inverse, and simulations showed slightly higher accuracy of GEBV compared 
to using the regular inversion of G (with blending).  
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