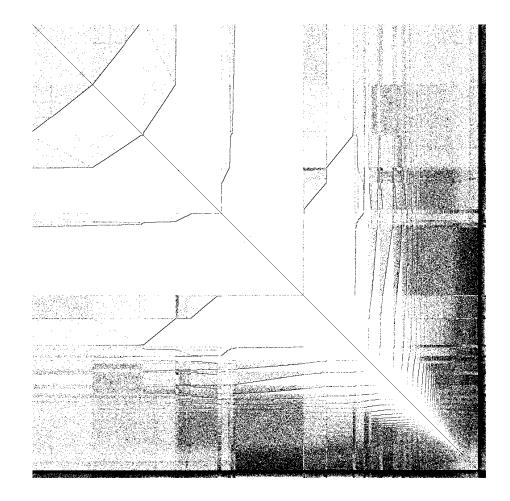
YAMS A sparse matrix package

Yutaka Masuda

University of Georgia

Summer Course May 25, 2018

YAMS


- Yet Another Mixed-model Solver
- Sparse matrix operations
 - For symmetric semi-positive definite matrix (LHS of MME)
 - Mainly Cholesky factorization and sparse inversion
- Faster version of FSPAK
 - Supernodal methods
- OPTION use_yams

Real yams

Chinese-yam, cinnamon vine, nagaimo, igname de Chine, 山药, 山藥, 마, 長芋

Sparse matrix operations

- LHS of mixed model equations with A^{-1} is sparse.
- Iterative methods are perfect just for solving the equations.
- "Direct methods" are still needed for some purposes.
- When to use it? Any special considerations?

Direct sparse methods

- Direct methods = Cholesky factorization & inversion
 - Equations **Cx** = **b**
 - Factorization $\mathbf{C} = \mathbf{L}\mathbf{L}'$
 - Reformulation L(L'x) = b
 - Solution

$$Ly = b$$
$$L'x = y$$

Inversion

$$\mathbf{C}^{-1} = (\mathbf{L}\mathbf{L}')^{-1} = \mathbf{L}^{-T}\mathbf{L}^{-1}$$

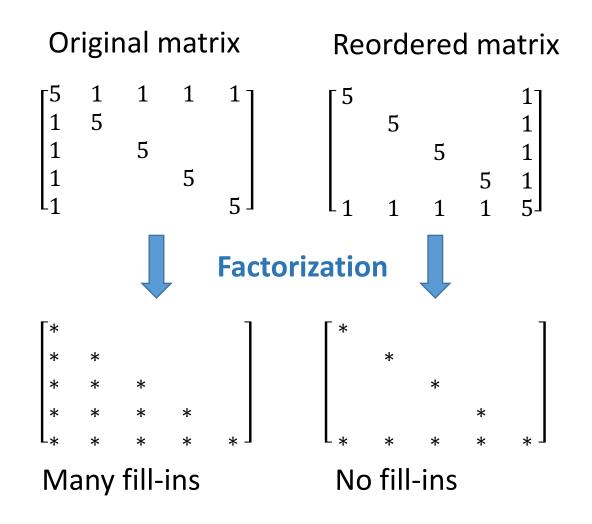
• Costly but easy for triangular L!

- When to use 1: exact solutions
 - REML computations
 - Tests for computations
- When to use 2: inverse of LHS
 - REML computations
 - Accuracy or reliability of EBVs with prediction error variance (PEV)
- When to use 3: ssGBLUP

•
$$A_{22}^{-1} = A^{22} - A^{21} (A^{11})^{-1} A^{12}$$

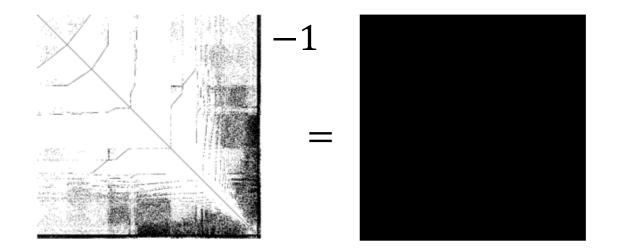
Not so easy...

- Tricky data storage
 - The computations are based on indirect access to the elements.


$$\mathbf{C} = \begin{bmatrix} 5 & 3 & 0 & 2 \\ 3 & 4 & 1 & 0 \\ 0 & 1 & 5 & 0 \\ 2 & 0 & 0 & 4 \end{bmatrix}$$

Sparse IJA format:

$$IA = \begin{bmatrix} 1 & 4 & 6 & 7 & 8 \end{bmatrix}$$
$$JA = \begin{bmatrix} 1 & 2 & 4 & 2 & 3 & 3 & 4 \end{bmatrix}$$
$$A = \begin{bmatrix} 5 & 3 & 2 & 4 & 1 & 5 & 4 \end{bmatrix}$$


Not so easy...

- Tricky data storage
 - The computations are based on indirect access to the elements.
- More non-zero elements in the Cholesky factor (*fill-in*)
 - The density in the factor changes by the ordering of the equations!

Not so easy...

- Tricky data storage
 - The computations are based on indirect access to the elements.
- More non-zero elements in the Cholesky factor
 - The density in the factor changes by the ordering of the equations!
- Dense inverse
 - The inverse of a sparse matrix is usually dense.

Sparse inversion

- A subset of inverse
 - Only the nonzero positions in the original sparse matrix
 - The original matrix updated with the inverse without extra storage
 - Referred as *selected inversion* in computer science
- "Takahashi" algorithm
 - Much less computing cost than the standard inverse

$$\mathbf{C} = \begin{bmatrix} 5 & 3 & 0 & 2 \\ 3 & 4 & 1 & 0 \\ 0 & 1 & 5 & 0 \\ 2 & 0 & 0 & 4 \end{bmatrix}$$

Full $\mathbf{C^{-1}} = \begin{bmatrix} 0.61 & -0.48 & 0.10 & 0.31 \\ -0.48 & 0.65 & -0.13 & 0.24 \\ 0.10 & -0.13 & 0.23 & -0.48 \\ 0.31 & 0.23 & -0.48 & 0.40 \end{bmatrix}$

Sparse inverse $\begin{bmatrix} 0.61 & -0.48 & 0 & 0.31 \\ -0.48 & 0.65 & -0.13 & 0 \\ 0 & -0.13 & 0.23 & 0 \\ 0.31 & 0 & 0 & 0.40 \end{bmatrix}$

Sparse matrix computations

- 1. Build LHS and RHS of MME
- 2. Ordering: Find the ordering to minimize fill-in
- **3. Symbolic factorization**: Determine the positions of non-zero elements in the factor
- 4. Numerical factorization: Compute the Cholesky (or LDL') factor
- 5. Solve the equations
- 6. (Optional) Compute the sparse inverse of LHS

Sparse inversion in animal breeding

The inverse of W can be obtained using the formula of Takahashi et al. (13)

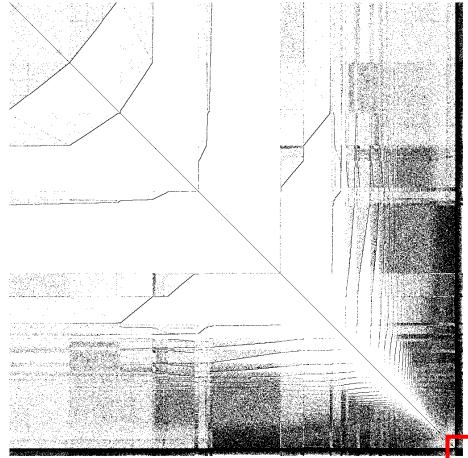
 $W^{-1} = C = D^{-1}U'^{-1} + (I - U)C.$ [2]

Misztal and Perez-Enciso (1993)

bility scenarios. The sub-matrix, C^{uu} , of the inverted coefficient matrix was obtained using subroutines available in the FSPAK library (Perez-Enciso et al. 2004).

Kerr et al. (2015)

FSPAK is a set of subroutines, consisting of at (George and Liu, 1981) to solve a symmetric posi for sparse matrices. In addition, FSPAK incorpora are useful in animal breeding applications. These i inversion using Takahashi et al. (1971) algorithm

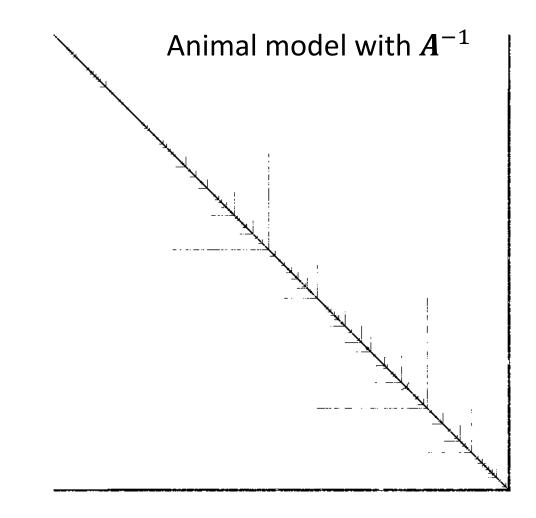

FSPAK by Perez-Enciso et al. (1994)

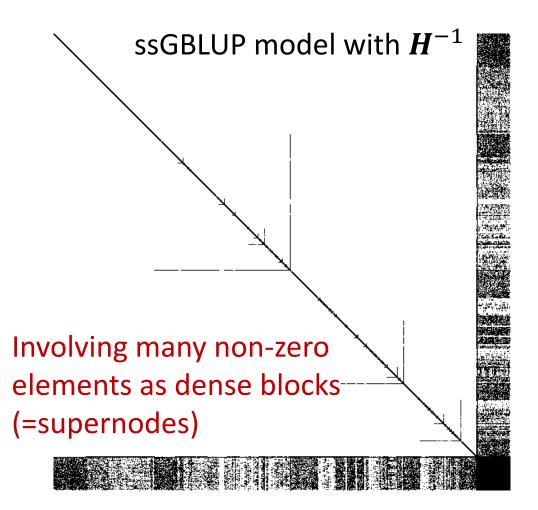
FSPAK [= George & Liu (1981) + Takahashi algorithm (1973)] is still alive!

Why FSPAK is slow in AIREML?

	Time (s)		
Operation	Animal Model	ssGBLUP Model	
Creating MME	1	167	
Ordering	30	159	
Sym. Factorization	0	680	
Num. Factorization	0	717	
Sparse Inversion	1	2,077	
Other	1	51	
Total	<1 m	1 h 4 m	

Non-zero structure of MME


* Ordered by AMD; 3-trait model i.e. *t*=3


- A large, single dense block in reordered LHS
 - Computing cost $\sim t^3$ (traits)
 - With the same rank of LHS, multiple-trait model is always slower than single-trait model.
 - This happens even in non-genomic models!

This is the bottleneck!

Masuda et al. (2014) J. Anim. Breed. Genet.

Single-step GBLUP

Yet Another MME Solver (YAMS)

Journal of Animal Breeding and Genetics

J. Anim. Breed. Genet. ISSN 0931-2668

ORIGINAL ARTICLE

Application of supernodal sparse factorization and inversion to the estimation of (co)variance components by residual maximum likelihood

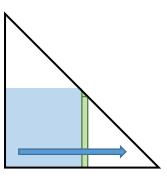
Y. Masuda¹, T. Baba² & M. Suzuki¹

1 Department of Life Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan

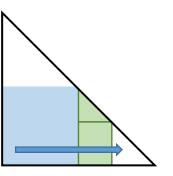
2 The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan

Tests for genomic data

Technical note: Acceleration of sparse operations for average-information REML analyses with supernodal methods and sparse-storage refinements^{1,2}


Y. Masuda,*^{†3} I. Aguilar,[‡] S. Tsuruta,* and I. Misztal*

*Department of Animal and Dairy Science, University of Georgia, Athens 30602; †Department of Life Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 0808555, Japan; and ‡Instituto Nacional de Investigación Agropecuaria, Canelones 90200, Uruguay


ABSTRACT: The objective of this study was to remove bottlenecks generally found in a computer program for average-information REML. The refinements

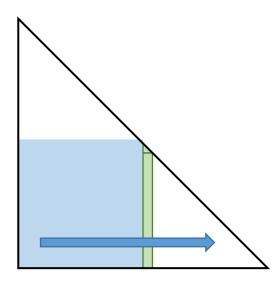
and random regression models with phenotypic data; selected models used genomic information in a singlestep approach. Setting-up mixed model equations was

Supernodal methods

Column-based Factorization (FSPAK)

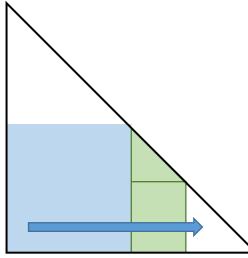
Supernodal Factorization

Basic Idea:


A process of the factorization (or inversion) consists of a set of operations between elements.

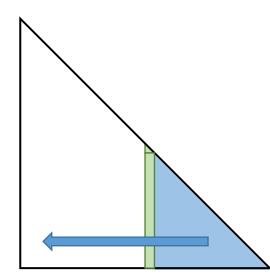
dense blocks (supernodes)

Acceleration

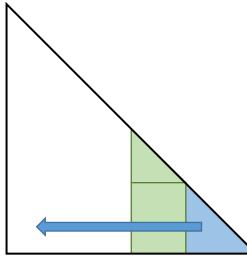

- Use of Parallelized libraries for dense operations
- Simultaneous updates of multiple columns
- More efficient for a sparse matrix involving larger blocks

Supernodal factorization

Left-looking in FSPAK (George & Liu 1981)


- Column by column
- Low memory requirement, but slow if there are many dense blocks

Supernodal Left-looking in YAMS (Ng & Payton 1993)


- block by block (supernode by supernode)
- Fast, but more memory required

Supernodal inversion

Takahashi algorithm in FSPAK (Takahashi et al. 1971)

- Column by column
- Low memory requirement, but slow if there are many dense blocks

Inverse Multifrontal in YAMS (Campbell 1995)

- A supernodal version of the Takahashi algorithm
- Fast, but more memory required

Benchmarks

Breed	Model	Traits	Pedigree Animals	Genotyped Animals
Broiler	Animal	1, 2, 3, 4	213,297	0
	ssGBLUP	1, 2, 3, 4	213,297	15,723
Pig	Maternal	1	109,113	0
	RRM	1	282,695	0
Beef Cattle	Animal	1, 2, 3	322,451	0
Dairy Cattle	RR-TDM	1, 2, 3	55,063	0
	Animal	1, 2, 4, 8	100,775	0
	ssGBLUP	1	100,775	34,506

Animal model (first 5 rounds in AI REML)

			Time		Speed
Breed	Model	Traits	FSPAK	YAMS	Up
Broiler	Animal	1	<1 m	<1 m	0.9
		4	18 m	7 m	2.6
Pig	Maternal	1	<1 m	<1 m	1.1
	RRM	1	4 m	<1 m	4.3
Beef Cattle	Animal	1	47 m	3 m	16.9
		2	24 h 41 m	1 h 10 m	21.3
Dairy Cattle	RR-TDM	1	44 m	3 m	15.5
		3	5 h 57 m	18 m	20.2
	Animal	1	4 m	<1 m	9.5
		2	34 m	2 m	14.4

Single-step GBLUP (first 5 rounds in AI REML)

			Time		Speed
Breed	Model	Traits	FSPAK	YAMS	Up
Broiler	ssGBLUP	1	4h 11 m	20 m	12.7
		2	N/A	58 m	
		3	N/A	2 h 38 m	
		4	N/A	5 h 10 m	
Dairy Cattle	ssGBLUP	1	N/A	2 h 7 m	

N/A: Crashed during the numerical factorization

OPTION use_yams