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Recall

« We want to estimate SNP effects a by a
model

-y=Xb+Za+e
« Z contains (somehow) genotypes

Allele coding

» we fit a regression of genetic value on gene content (as
in Falconer)

a; is the effect of the SNP
We code explanatory variables in Z (y=Xb+Za+e) as:

—«11»=|0 -8 (-2p)a;

— «12»= a 0 (1-2p)ai

— «22»=| 28 a 2-2p)ai

Strandén & ChristenSen e seoumogconeniannis refer to these as

« 012 », « 101 » and « centered »
So we have different Z's depending on how we code...




Allele coding

Quoting Strandén & Christensen i muw asciounal owconenvasiizzs -

The good news

« parameter estimates [h?] and estimated marker effects [and EBV’s] in marker-
based models are the same irrespective of the allele coding, provided that the
model has a fixed general mean [or any « fixed » effect] »

[n.b., EBV’s are shifted by a constant depending on the allele coding]

« allele coding affects the mixing of Markov chain Monte Carlo algorithms [and
iterative solvers], with the centered coding being the best »

The bad news

« Reliabilities of estimated genomic breeding values calculated using elements of
the inverse of the coefficient matrix depend on the allele coding because
different allele coding methods imply different models »

Example of centered coding

e 2 SNP, 4 individuals
1112 [-0.75 0.75]
2211 1.25 -0.25
12 11 Z =

0.25 -0.25

1111
ep, =3/8,1/8 | —0.75 -0.25

the sum of each
columnofZisO
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» Let’s go back to (prior) distributions for
SNP effects
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A priori Distributions for marker
effects

» Several distributions for SNP effects have
been proposed

— Normal (Meuwissen et al., Genetics 2001; Van Raden JDS
2008) -> BLUP_SNP or GBLUP or RR-BLUP

— BayesA, BayesB, (Meuwissen et al. 2001; Habier et al.,
2011)

— Mixture of normal , BayesC(Pi) (van Raden JDS
2008, Habier et al., 2011)

- (BayeS|an) LaSSO (Usai et al., 2009; De los Campos, et al., 2009)
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A common misconception

« BLUP_SNP assumes the same variance for all
loci, whereas BayesA does not »

— This is basically a semantic issue, it's hard to agree or
not
— The part of genetic variance explained by locus i is
* 2pga? (Falconer) where « a; » is the true effect
— we have estimates of « a; »

« after fitting the data with BLUP_SNP (or whatever) the
genetic variance explained by each locus will be different
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A common misconception

— we have estimates of « a; »

« after fitting the data, the genetic variance explained by each
locus will be different, with BLUP_SNP or BayesA or
whatever

— something different is the a priori distribution of the
SNP effects

« Different variances by locus are a shortcut to model (= a way

to write) complex distributions

* e.g. the Bayesian Lasso or BayesA can be understood as
inferring a variance for each SNP effects after fitting the data
— but what is really different is the assumed shape of SNP effects

« This estimate is very bad (Gianola et al., 2009) because we
have very little data for each locus
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Normal distribution
a ~N(0,02)

Few « big » effects \i
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Normal equations for genomic
selection (BLUP_SNP)

 If we assume normality there are closed
expressions for a
e This is called « BLUP », and also « genomic
BLUP » , BLUP_SNP, or GBLUP, but also
« ridge regression » or Random Regression-
BLUP
— 1 will keep GBLUP for the use of the genomic
relationship matrix
— and BLUP_SNP for the direct estimation of SNP
effects
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Mixed model equations for
BLUP_SNP

 Henderson’s MME
e Z'Z is not diagonal

* Var(a)=D is diagonal if we assume
uncorrelated SNP effects

XR™X XR%Z b|_[XR
ZR™X ZRZ+D7'||a| |ZR Y

1 000
D= 0100 o2 =10?
Could (Wl_II) be - 00 1 o2 —1Ua
something
different !! 0 001
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GS with Residual Update

* How to estimate SNP effects efficiently

A. Legarra and |. Misztal J. Dairy Sci. 2008. 91:360-366.

(but we were not the only ones: R Fernando, G De los Campos, P
vanRaden, developed the same trick )
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GS with Residual Update

Let assume a random SNP model (“BLUP_SNP")

Mixed model equations can be solved by direct inversion (1
iteration) or Gauss-Seidel, PCG or Jacobi (iterative methods, useful
for large matrices).

MCMC (BayesB, etc) can be done starting from Gauss-Seidel

The number of effects (SNP) n is much larger than the number of
records m, and the matrix Z'Z is dense. A typical example (2000
records, 20000 SNP):
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The size of the MME
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40,000,000
elements

Much bigger!
Is this memory
efficient?

400,000,000 elements
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Reordering Gauss Seidel

» Gauss Seidel uses the conditional mean for the
i-th effect, corrected by the other effects:

* (z'z;+ N &t =z; 7:4,)

* Note that we
put it back

e correcting for &;, so we

22

Reordering Gauss Seidel

» Gauss Seidel uses the conditional mean for the
i-th effect, corrected by the other effects:

* (z'z;+ Nt =z; 7:4,)

» Correcting for Za takes 20000 op.

e This is the residual &, isn't it?
e Use alternative formula
(z/z;+ N) & = z/é+z/zaM"*
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Reordering the error term

« Still we need to compute € at each iteration
 Actually only & changed
* It can be shown that é can be « updated »

gl =@l — z(3*1 - &)

— Hence « GSRU » Gauss Seidel with Residual
Updating

— Some machine learning literature calls this
« backfitting »
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GSRU in Figure

L1 1
4 t
22 e || =Y
/EE\‘: T |
(z'z;+ N &t = z/é¢  + z'z&4)

1- Gauss-Seidel

25
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GSRU in Figure
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1- Residual Updating
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R pseudocode

#get diagonal of X’'X
for (iin 1:neq) {
xpx[i]=crossprod(X[,i],X[,i])
}
for (iter in 1:1000) {
#Gauss Seidel
for (i in 1:neq){
Ihs=xpx[i]+lambda
rhs=crossprod(X[,i],e) + xpx[i]*ahat[i]
val=rhs/lhs
e =e- X|,i]*(val - ahat][i])
ahat[i]=val

27
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Fortran pseudocode

Double precision:: xpx(neq),y(ndata),e(ndata),X(nda ta,neq), &
sol(neq),lambda,lhs,rhs,val
do i=1,neq
xpx(i)=dot_product(X(:,i),X(:,i)) form diagonal of XX
enddo
e=y
do until convergence
do i=1,neq
Iform |hs X'R-1X + G-1
lhs=xpx(i)/vare+1/vara
I form rhs with y corrected by other effects (formula 1) IX'R-1y
rhs=dot_product(X(:,i),e)/vare +xpx(i) *sol(i)/vare
! do Gauss Seidel
val=rhs/lhs
I MCMC sample solution from its conditional (commented o ut here)
! val=normal(rhs/lhs,1d0/lhs)
! update e with current estimate (formula 2)
e=e - X(:i)*(val-sol(i))
lupdate sol
sol(i)=val
enddo
enddo
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Good performance

3nm operations (GSRU) vs n2 (GS) or n3
(Cholesky)

In our example, 60000 vs 400000000
100-fold faster
Fastest than any other Gauss Seidel method

GS with recreation of equations awful (97 hvs 1

min)

30
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Preconditioned Conjugate
Gradients

e The other method of choice to solve large
systems of equations (e.g. Strandén and Lidauer,
1998, Tsuruta et a.l, 2001) do until “convergence”

n=n+1; w,=Ap,
XRIX XR'Z b| [XR~- ,
L ~ ) 13 = _ﬂ’/ = AX = (WW + E‘l)x =t = eny/(Po1'Wn)
ZR7X ZR™Z+D al |ZRy o= %01+ OuPas
if mod(n, 50) = 0 then

r,=b- Ax,

« Based on repeated computations of Ax above
e Can easily be done for genomic models as
W’'(Wx) + >Ix at a cost of 3nm operations endiif

* PCG is much faster (but less general)

Bn = enfen 1
Pn= Wy + GnPny

end do

Preconditioned Conjugate
Gradients for BLUP_SNP
log10(Convergence) with real data (Holstein)
¥ PCG is much faster

GSRU convergence
slow for large data sets
(or you really need to

GSRU wait)

Conv

Still, EBV’s seem

2 PCG identical, possibly
because errors in SNP
estimates cancel out
= when summing.

0 2000 4000 6000 8000 10000

round

33
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BLUP_SNP parameters

+ Still, we need 02, and 02, in

ol - A -
[XR X XRZ }H_[XR &/}R:FUEZ;D:@

ZRX zZRZ+Da| [ZRY

* Both can be deduced from previous pedigree-based estimates, 0%,
(024 in some other slides)

— Using a formula proposed by several authors (e.g. Gianola et al., 2009)
* How do we get the variance of SNP effects, 02,, from a genetic
variance 0?; ?
e The formula comes from the sampling variance of covariates in Z
affecting SNP effects to data

— i.e., we try to explain all genetic variance as if « caused » by SNP

effects, and these SNP effects have a variance of 62, 0_2

* Assumes Hardy-Weinberg and Linkage equilibrium 0': = 9

2 Z P (1_ pi)
all SNPs
34

BLUP_SNP parameters

* Note that the idea can be reversed

+ How does the genetic variance 02, relate to the SNP
effect variance, 02, ?

— i.e., we try to explain all genetic variance as if « caused » by
SNP effects, and these effects have a variance of 62,

o:=0%2 ). p(1-p)=sum2pa?

all SNPs
Some programs provide

You can estimate genetic variance in
wild populations, for instance

estimates of these (e.g.
GS3, BIGS)

35
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BLUP_SNP parameters

The other option is to estimate 02, and 02,
They are usually similar but not always :-/

o,=0.2 ), p(1-p)=sum2pa;

all SNPs

36

Estimating variances = BayesC

It simply consists in a BLUP_SNP where we estimate (and
simultaneously « integrate out ») a2, and 62,

— i.e., aregular Gibbs sampler applied to SNPs instead of EBV'’s (G-
Gibss??)

— Legarra et al., 2008 (we didn't call it BayesC), Habier et al., 2011
y =Xb +Za +e,

alo? ~MVN(0,102) ;0% ~ S,x;?
e|o? ~MWN(010%):07 ~ S.x;?

Pretty straightforward from GSRU

You can as well estimate 02, and 02, using « BayesC » and take
them as known in BLUP_SNP (e.g. as in REML+BLUP analysis)

37
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Fortran pseudocode for BayesC

do j=1,niter
do i=1,neq
Iform |hs
lhs=xpx(i)+1/vara
I form rhs with y corrected by other effects (formula 1)
rhs=dot_product(X(:,i),e)/vare +xpx(i) *sol(i)/vare
I MCMC sample solution from its conditional
val=normal(rhs/lhs,1d0/lhs )
' update e with current estimate (formula 2)
e=e - X(:,i)*(val-sol(i))
lupdate sol
sol(i)=val
enddo
I draw variance components
ss=sun( sol **2) +nua* Sa
var a=ss/ chi (nua+nsnp)
ss=sum( e**2) +nue* Se
var a=ss/ chi (nue+ndat a)
enddo
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Legarra et al.2008, Mice data

TABLE 1

Variance components estimates for different models of

There is no full agreement genomic selection

for estimates of genetic

. Model a? o3 o’ ol
variance (0?,) across
. Weight
models (pedigree vs. . 519 it
genomic) 2 3.34 1.94
. N 3 2.15 0.19
This is because definition
. . Growth slope
of base population is 1 8.37F-04 9.79£04 8.29F04
different, and data used 2 1.04E-07 =»3.93E-04  10.30E04  10.79E04
3 LOOEOT  2.36E04 9.65 04 95704
too.
Body length
1 0.040 0.048 0.146
dairv th . 2 9.09F-06 =$0.034 0.051 0.150
In dairy the agreement is 3 8.58E06  0.010 0.048 0.144
gOOd but not CompIEte Body mass index
2 49F-04 3.91E04  18.72E04
2 0.80E-07 =» 3.02E-04  3.94E04  18.46E04
3 0.77E07  0.67E04 3.75E04  18.08E04

Estimated variance components are shown for markerlocus
effects a, random cage effects ¢, polygenic additive genetic
effects u, and residual e.

SE]
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BayesA

We « estimate » a different o2, for each SNP
— this estimate is horribly bad
— but SNP solutions correspond to a model with « t » distributions

y =Xb +Za +e, representation
elo? ~MWN(0I0?) 02~ S,x;°
a ~t(0,v,a§) a ~t(0,v,aj)
3 ~N(0.0% )ioZ - s.x° a~N(0.0% ) 50

Pretty straightforward from GSRU

Meuwissen et al.
representation

40

Fortran pseudocode for BayesA

do j=1,niter

do i=1,neq
Iform |hs
lhs=xpx(i)+1/vara(i)
I form rhs with y corrected by other effects (formula 1)
rhs=dot_product(X(:,i),e)/vare +xpx(i) *sol(i)/vare
I MCMC sample solution from its conditional (commented o ut here)
val=normal(rhs/lhs,1d0/lhs)
' update e with current estimate (formula 2)
e=e - X(:,i)*(val-sol(i))
lupdate sol
sol(i)=val
I draw variance components
ss=sol (i) **2+nua* Sa
vara(i)=ss/chi (nua+l)

enddo

I draw variance components

ss=sum(e**2)+nue*Se

vare=ss/chi(nue+ndata)

enddo

41
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BayesCPi

e.g. Habier et al., 2011 (see also Rohan Fernando course notes)
* What if some SNP had no effect?

— This is the original idea of BayesB

— needs the probability that a given SNP is at the model or not
— can be computed by MCMC

y=Xb +Za+e,

als.o 43" N(0,02)if 5 =1
: a=0if3=0

a;~Sx°

5 Owith probability 77
' |1 with probabilityl- 77

e|o® ~MVWN(010?) 02~ S.x;2

43

BayesCPi

Algorithm consists in a BLUP_SNP by GSRU where we
estimate (and simultaneously « integrate out ») g2, and 02,
— for each SNP we compute the probability of it being « in » the
model (indicator variable 0)
« This was a nightmare in original BayesB

* R Fernando found out a simple way of computing it (course notes:

http://www.ans.iastate.edu/stud/courses/short/2010short.html ) that is
« like » GSRU

— we can equally compute the proportions Tt or fix them previously

44
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Fortran pseudocode for BayesCPi

do j=1,niter
doi=1,neq

! compute loglikelihood for state 1 (i -> in model) a nd 0 (not in model)
! Notes by RLF (2010, Bayesian Methods in Genonme Association Studies, p 47/67
v1=xpx(i)*vare+(xpx(i)**2)*vara
vO=xpx(i)*vare
rj=rhs*vare !because rhs=X'R-1(y corrected)
! prob state delta=0
|'i ke2=density_normal ((/rj/),v0) !rj = N(O,vO
! prob state delta=1
l'i kel=density_normal ((/rj/),v1l) !rj = N(O,v1l
! add prior for delta
|i ke2=l i ke2+pi; Iikel=likel+(1-pi)
! standar di ze
l'ike2=like2/ (like2+likel); likel=likel/ (like2+likel)
del ta(i)=sanpl e(states=(/0,1/), prob=(/Iike2,1ikel/
if(delta(i)==1) then
val=normal(rhs/lhs,1d0/lhs)
else
val =0
endif

enddo
! here go the updates for vara and pi
enddo
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Lasso

Hierarchical representation of Lasso

e y : data
* a: SNP effects ]

y =Xb +Za +e,

alA,o? ~|_‘|%exp(—/l|a,.|)

elo? ~ MVN(O,IO':) Distribution of
SNP effects

46
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Bayesian Lasso

In regular Lasso, A is tipically computed by cross-validation

— which depends strongly on the constitution of the training & validation
data sets

— and is tricky to compute

the Bayesian Lasso (Park & Casella 2008) uses an equivalent
hierarchical model

2

y = Xb + Za +e; p(alt) ~ N(0,Da?); diag(D) =72 --- 12;
1

z? —A%r2/2 AT 2
p(T\/\):H7L’ /2 ple) ~ N(0,102) (1)

This Bayesian Lasso is being used for genomic selection (De los
Campos et al., 2009)

The following is largely from Legarra et al. (Genetical Res., 2011)

a7

Bayesian Lasso

y=Xb +Za+e
20 0 0
2
p(alr,aj): N(O,Daj);D: r 00
0 0 0 77

These are the 02
in BayesA,
BayesB

48
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Bayes! Ry

Regulat Scaled variances
(different for each SNP

y=Xb +Za+e
Take-home message:
(Bayesian) Lasso isajust alinear
p(al‘r,Uez) =N (0 2 mixed model with an exponential prior

"~ 4% distribution for variances of SNP effects
| |

Park and Casella say “to

5 achieve unimodal
p(rz M) - |—| ?e p(—}l ’r? posteriors” (?)

—
. Exponential prior
2\ — 2
p(elo?)=N(01%) ﬁ Residual for the variances
variance

49

Park & Casella BL (BL1Var)

SNP effects are modelled on the residual variance

y =Xb+ Za+e; p(alT) ~ _-’\"(0.: diag(D) =72 T;‘:'Z
A2 A2:2/9 i
p(rA) =[5 ple) ~ N( (n

Hence: Bayesian Lasso with 1 Variance (BL1Var)
Does it make much sense to model SNP effects on residual effects?

Original lasso « augmented » with different variances, 2, for each
SNP effect; these variances follow an exponential law controlled by
A

this allows to compute individual t? variances -with 1 level per
random effect!- because they share a common structure

— this estimate will be terribly bad

50
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Tibshirani’'s BL (BL2Var)

+ Assume SNP effects have a different « variance »

y = Xb+ Za+e; p(ajT) ~ N(0 - diag(D) =72+ 72;

A2 2.0 .
p(rN) = [[ 577 ple) NA\(

This is more similar to BLUP_SNP, BayesA, BayesC,
etc etc.

In fact 62, is confounded with 1/A and can be setto 1
— equivalent to the Tibshirani’s original Lasso

51

HetVar GBLUP

» Suppose that we know the true, different variances of
SNP effects

e Then we could use BLUP_SNP (HetVar-GBLUP)
y =Xb +Za +e,

alo? ~MVN(0,Do?)

BL can be used to compute « a posteriori » estimates
of variances of SNP effects: t2 and then

53
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Fortran pseudocode for BL

do j=1,niter

do i=1,neq
Iform |hs
lhs=xpx(i)+1/vara(i)
Iform rhs with y corrected by other effects (formula 1)
rhs=dot_product(X(:,i),e)/vare +xpx(i) *sol(i)/vare
I MCMC sample solution from its conditional (commented o ut here)
val=normal(rhs/lhs,1d0/lhs)
' update e with current estimate (formula 2)
e=e - X(:,i)*(val-sol(i))
lupdate sol
sol(i)=val
I draw variance components
ss=sol (i)**2
vara(i)=1d0/ ri nvGauss(| anbda2/ ss, | anbda2)

enddo

I draw variance components

ss=sum(e**2)+nue*Se

vare=ss/chi(nue+ndata)

| updat e | anbda

enddo

54

Genetic variation

We can estimate genetic variation in the
population (02 )using SNP data
— Conceptual population in H-W, LE (Gianola et al.,

2009) Genetic variation is
For BL2Var: =25 (1-n)var(a)= zzp(l—nﬁ%"’p"”"’”a' —

/12

_ _ 20° Residual variance enters in
For BL1Var: <% _ZZ P (1-p) PE % genetic variation

For BLUP_SNP: 0'5:229(1—p.)0’§
For BayesA: % =2.R(t7p)%

For BayesCPi: & ~"M2r(-pk:

62
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Legarra et al., 2011

TABLE 2. Estimates of population genetic variance o’ (% standard errors) in Holstein

Trait BL1Var BL2Var BayesC Pedigree  Current values”
REML

MY® 1260 50 448 27 451 £26 570 635

FY 1876 +84 710 44 710 £39 893 973

PY 1127 £50 429 +24 428 £20 473 520

FP 27.6 +1.09 9.32+0.54 11.60 +0.60 14.90 8.80

PP 5.51+0.03 1.66 +0.10 1.60 £0.12 2.56 2.19

« All methods give reasonable (but not the same) estimates
except BL1Var

63

Non-MCMC methods

» So far we have seen mostly Gibbs

— Lasso (and its cousin the Elastic Net) have an algorithm similar
to the GSRU (BLUP_SNP)

— VanRaden’s (2008) nonlinearA has a GSRU with computations
of likelihoods (much like in Bayes CPi), mixed with an EM
algorithm for mixtures

— There is also FastBayesB

* In theory these algorithms might give modes instead of
« conditional expectations » but this does not seem to be
a problem

64
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» Elastic Net : Combine LASSO and BLUP_SNP
with weight a compris entre O et 1

A and a are chosen to give best results in a cross-validation
system

65

Some results

66
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Cross-validation analysis

Reference population Target population

Phenotypes

Genotypes Genotypes

pedigree pedigree Ignored, as if they

‘ were candidates to
selection

Estimate SNP effect

Typically DYD

(daughter yield
deviation)

’ Calculate GEBVs ‘

l

Compare with phenotypeg
to check accuracy
(predictive ability)

67

What priors?

* The advantage of assuming a normal distribution is that
estimators are linear (BLUP_SNP) and easy to compute
and extend (e.g., to SingleStep)

e The rest can be computed by MCMC (BayesX) and
sometimes other algorithms
— VanRaden’s nonlinear, Lasso, EN, etc

* Why bother about non-normal distributions?

— Simulations show higher accuracies using non-normal
distributions

— This is rarely the case in practice: some examples

69
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20 VANRADEN ETAL. 2009 JDS (USA)

Table 2. Coefficients of determination (R* x 100) for 2008 danghter deviations with 2003 predictions Fat and
Genomic prediction ) prOtem
Traditional
Trait parent average Linear Nonlinear Diff contents
Net merit 11 28 28 0
Milk yield 28 47 49 2
Fat vield 15 42 14 2
Protein yield 27 : 0
Fat percentage 25 8
Protein percentage 28 7
Produetive life 7 1
scs 23 1
Daughter pregnancy rate 20 -1
Sire calving ease 17 1
Daughter calving ease 14 0
Final score 23 1
Stature 27 1
Strength 16 1
Body depth 17 1
Dairy form a -1
Foot angle 13 -2
Rear legs (side view) 10 0
Rear legs (rear view) 11 -2
Rump angle 20 -1
Rump width 19 =2
Fore udder 7 1
Rear udder height 20 1
Udder depth 18 —1
Udder cleft 18 0
Front teat placement 22 1
Teat length 12 -1
All 19 1

"Nonlinear minus linear genomic prediction.
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Hayes et al. 2009 JDS (Australia)

Genomic BLUP

Table 1. Reliability of genomie breeding values caleulated at time of birth for
progeny test team with 2 genomic selection methods, BLUP and a Bayesian method

netic Australia’s 2003
ayvesA)

Records in Number of Sire pathway
Trait! reference population SNP used EBV BLUP BayesA
ASI 637 3.889 0.38 0.44
APR 635 3.414 0.35 0.53
Protein vield 637 4,055 0.28 0.45
Protein % 637 4,369 0.20 0.29
Fertility 332 3.000 0.16 0.18

'ASI = Australian Selection Index; APR = Australian Profit Ranking.

71
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Su et al. 2010 JDS (Denmark)

Table 3. Reliability of EBV (RELy
for bulls in each test dataset of a cr

;) and squared correlation between genomic EBV and EBV (fqeny. pnyv)
ralidation'

T°GEBV.EBY

Mixture? Mixture Mixture Mixture .
Trait Dataset RELggy m = 5% m = 10% m = 20% % Common®
Fertility Test1 70.0 0.275 0.304 0.314 0.362
Test2 68.2 0.348 0.378 0.389 0.399
Test3 68.9 0.300 0.340 0.359 0.376
Test4 67.4 0.416 0.405 0.434
Test5 63.0 0.419 0.444 0.438
Pooled 67.6 0.347 0.384
Protein Test1 93.8 0.284 0.357
] 93.2 0.304 0.405
93.6 0.354
93.1 .352 0.392 0.438
92.0 0.309 0.368 0.420
93.1 0.337 0.378 0.412
Udder health 76.1 0.301 0.330 0.351
0.317 0.369 0.410
0.448 0.481 0.505
0.395 0.395 0.431
Tests 0.322 0.381 0.433
Pooled 0.338 0.373 4
Fat percentage 0.681 0.709
0.662 0.678
0.709
0.695
Test5 d 0.591 0.611
Pooled 93.1 0.670 0.688 0.702 0.700 € 3

C Colombani (accepted, JDS)

» Shape of effects

Conception Rate

Bayes Cx

H
8
B
8

Milk Yield

000 002 004 005 008

0 0 o w©

Bayesian Lasso

000 002 004 005 008

SparsePLS

0 5 1015 D 25

Feston

Postion

Postion

7
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C Colombani (accepted, JDS)

* accuracy

Table 2. Correlations between observed DYD and predicted @¥ibhe validation data set
provided by pedigree-based BLUP (BLUP), Genomic BUGBLUP), PLS, Sparse PLS
(sPLS), Bayesian Lasso and Bayes(®odel 1) in Holstein

Bayesian| Bayes
BLUP GBLUP PLS sPLS Lasso Cn
Milk Yield 0.38 0.56 0.53 0.48 0.56 0.57
Fat % 0.44 0.72 0.70 0.66 0.79 0.80
Conception Rate 0.28 0.35 0.33 0.29 0.34 0.34

« in spite of estimating different SNP effects, BL and BayesCPi agree...
«this is because we finally work with sums of SNP effects




