
1

1

Genomic selection

3- Normal, Lasso and BayesCPi
models for Genomic selection.

Computation.
Andrés Legarra - INRA

2

Acknowledgements

• ANR projects Amasgen, Rules&Tools; Apisgene
• Toulouse bioinformatics platform (bioinfo.genotoul.fr)
• GENOMIA funding:

www.poctefa.eu

2

3

Recall

• We want to estimate SNP effects a by a
model
– y = Xb + Za + e

• Z contains (somehow) genotypes

5

Allele coding

• we fit a regression of genetic value on gene content (as
in Falconer)

• ai is the effect of the SNP
• We code explanatory variables in Z (y=Xb+Za+e) as:

– « 11 » = 0 -ai (-2p)ai

– « 12 » = ai 0 (1-2p)ai

– « 22 » = 2ai ai (2-2p)ai

Strandén & Christensen (http://www.gsejournal.org/content/43/1/25) refer to these as

« 012 », « 101 » and « centered »

So we have different Z’s depending on how we code…

3

6

Allele coding
Quoting Strandén & Christensen http://www.gsejournal.org/content/43/1/25 :

The good news

« parameter estimates [h2] and estimated marker effects [and EBV’s] in marker-
based models are the same irrespective of the allele coding, provided that the
model has a fixed general mean [or any « fixed » effect] »

[n.b., EBV’s are shifted by a constant depending on the allele coding]

« allele coding affects the mixing of Markov chain Monte Carlo algorithms [and
iterative solvers], with the centered coding being the best »

The bad news

« Reliabilities of estimated genomic breeding values calculated using elements of
the inverse of the coefficient matrix depend on the allele coding because
different allele coding methods imply different models »

10

Example of centered coding

• 2 SNP, 4 individuals
11 12

22 11

12 11

11 11

• p i = 3/8, 1/8

the sum of each
column of Z is 0

0.75 0.75

1.25 0.25

0.25 0.25

0.75 0.25

− 
 − =
 −
 − − 

Z

4

11

• Let’s go back to (prior) distributions for
SNP effects

12

A priori Distributions for marker
effects

• Several distributions for SNP effects have
been proposed
– Normal (Meuwissen et al., Genetics 2001; Van Raden JDS

2008) -> BLUP_SNP or GBLUP or RR-BLUP
– BayesA, BayesB, (Meuwissen et al. 2001; Habier et al.,

2011)

– Mixture of normal , BayesC(Pi) (Van Raden JDS
2008, Habier et al., 2011)

– (Bayesian) Lasso (Usai et al., 2009; De los Campos, et al., 2009)

5

13

A common misconception

• « BLUP_SNP assumes the same variance for all
loci, whereas BayesA does not »
– This is basically a semantic issue, it’s hard to agree or

not
– The part of genetic variance explained by locus i is

• 2piqiai
2 (Falconer) where « ai » is the true effect

– we have estimates of « ai »
• after fitting the data with BLUP_SNP (or whatever) the

genetic variance explained by each locus will be different

14

A common misconception

– we have estimates of « ai »
• after fitting the data, the genetic variance explained by each

locus will be different, with BLUP_SNP or BayesA or
whatever

– something different is the a priori distribution of the
SNP effects

• Different variances by locus are a shortcut to model (= a way
to write) complex distributions

• e.g. the Bayesian Lasso or BayesA can be understood as
inferring a variance for each SNP effects after fitting the data

– but what is really different is the assumed shape of SNP effects

• This estimate is very bad (Gianola et al., 2009) because we
have very little data for each locus

6

15

Normal distribution

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

dn
or

m
(x

)

Few « big » effects

()20,i aa N σ∼

16

Normal equations for genomic
selection (BLUP_SNP)

• If we assume normality there are closed
expressions for â

• This is called « BLUP », and also « genomic
BLUP » , BLUP_SNP, or GBLUP, but also
« ridge regression » or Random Regression-
BLUP
– I will keep GBLUP for the use of the genomic

relationship matrix

– and BLUP_SNP for the direct estimation of SNP
effects

7

17

Mixed model equations for
BLUP_SNP

• Henderson’s MME
• Z’Z is not diagonal
• Var(a)=D is diagonal if we assume

uncorrelated SNP effects
1 1 1

1 1 1 1

ˆ

ˆ

− − −

− − − −

 ′ ′ ′   
=    ′ ′ ′+    

X R X X R Z X R yb

Z R X Z R Z D Z R ya

2 2

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

a aσ σ

 
 
 = =
 
 
 

D ICould (will) be
something
different !!

18

GS with Residual Update

• How to estimate SNP effects efficiently

A. Legarra and I. Misztal J. Dairy Sci. 2008. 91:360-366.

(but we were not the only ones: R Fernando, G De los Campos, P
vanRaden, developed the same trick)

8

19

GS with Residual Update

• Let assume a random SNP model (“BLUP_SNP”)

• Mixed model equations can be solved by direct inversion (1
iteration) or Gauss-Seidel, PCG or Jacobi (iterative methods, useful
for large matrices).

• MCMC (BayesB, etc) can be done starting from Gauss-Seidel

• The number of effects (SNP) n is much larger than the number of
records m, and the matrix Z’Z is dense. A typical example (2000
records, 20000 SNP):

20

The size of the MME

=Za y

Model

â = Z’y

Much bigger!
Is this memory
efficient?
Easy to solve?

m

n

Z’Z
(dense)

40,000,000
elements

400,000,000 elements

9

22

Reordering Gauss Seidel

• Gauss Seidel uses the conditional mean for the
i-th effect, corrected by the other effects:

• (zi’zi + λ) âi
l+1 = zi’(y-Zâ+ziâi

l)

• Note that we are correcting for âi, so we
put it back

23

Reordering Gauss Seidel

• Gauss Seidel uses the conditional mean for the
i-th effect, corrected by the other effects:

• (zi’zi + λ) âi
l+1 = zi’(y-Zâ+ziâi

l)

• Correcting for Zâ takes 20000 op.

• This is the residual ê, isn’t it?
• Use alternative formula
(zi’zi + λ) âi

l+1 = zi’ê+zi’ziâi
l+1

10

24

Reordering the error term

• Still we need to compute ê at each iteration
• Actually only âi changed
• It can be shown that ê can be « updated »

êl+1 = êl – zi(âi
l+1 - âi

l)

– Hence « GSRU » Gauss Seidel with Residual
Updating

– Some machine learning literature calls this
« backfitting »

25

GSRU in Figure

=Za y

(zi’zi + λ) âi
l+1 = zi’ê + zi’zi âi-1

l

= +

1- Gauss-Seidel

11

26

GSRU in Figure

=Za y

êl+1 = êl + zi âi
l

= +

1- Residual Updating

27

R pseudocode
#get diagonal of X’X
for (i in 1:neq) {

xpx[i]=crossprod(X[,i],X[,i])
}
for (iter in 1:1000) {

#Gauss Seidel
for (i in 1:neq){

lhs=xpx[i]+lambda
rhs=crossprod(X[,i],e) + xpx[i]*ahat[i]
val=rhs/lhs
e = e - X[,i]*(val - ahat[i])
ahat[i]=val

}
}

12

28

Fortran pseudocode
Double precision:: xpx(neq),y(ndata),e(ndata),X(nda ta,neq), &
sol(neq),lambda,lhs,rhs,val
do i=1,neq

xpx(i)=dot_product(X(:,i),X(:,i)) !form diagonal of X′X
enddo
e=y
do until convergence

do i=1,neq
!form lhs X’R-1X + G-1
lhs=xpx(i)/vare+1/vara
! form rhs with y corrected by other effects (formula 1) !X’R-1y
rhs=dot_product(X(:,i),e)/vare +xpx(i) *sol(i)/vare
! do Gauss Seidel
val=rhs/lhs
! MCMC sample solution from its conditional (commented o ut here)
! val=normal(rhs/lhs,1d0/lhs)
! update e with current estimate (formula 2)
e=e - X(:,i)*(val-sol(i))
!update sol
sol(i)=val

enddo
enddo

30

Good performance

• 3nm operations (GSRU) vs n2 (GS) or n3

(Cholesky)
• In our example, 60000 vs 400000000
• 100-fold faster
• Fastest than any other Gauss Seidel method
• GS with recreation of equations awful (97 h vs 1

min)

13

32

Preconditioned Conjugate
Gradients

• The other method of choice to solve large
systems of equations (e.g. Strandén and Lidauer,
1998; Tsuruta et al., 2001)

• Based on repeated computations of Ax above

• Can easily be done for genomic models as
W’(Wx) + ∑-1x at a cost of 3nm operations

• PCG is much faster (but less general)

()
1 1 1

1

1 1 1 1

ˆ

ˆ

− − −
−

− − − −

 ′ ′ ′   
′= ⇒ = + =    ′ ′ ′+    

X R X X R Z X R yb
Ax W W Σ x t

Z R X Z R Z D Z R ya

33

0 2000 4000 6000 8000 10000

-1
2

-1
0

-8
-6

-4

round

C
on

v

Preconditioned Conjugate
Gradients for BLUP_SNP

log10(Convergence) with real data (Holstein)

PCG

GSRU

PCG is much faster

GSRU convergence
slow for large data sets
(or you really need to
wait)

Still, EBV’s seem
identical, possibly
because errors in SNP
estimates cancel out
when summing.

14

34

BLUP_SNP parameters
• Still, we need σ2

a and σ2
e in

• Both can be deduced from previous pedigree-based estimates, σ2
g

(σ2
g in some other slides)

– Using a formula proposed by several authors (e.g. Gianola et al., 2009)

• How do we get the variance of SNP effects, σ2
a, from a genetic

variance σ2
g ?

• The formula comes from the sampling variance of covariates in Z
affecting SNP effects to data
– i.e., we try to explain all genetic variance as if « caused » by SNP

effects, and these SNP effects have a variance of σ2
a

• Assumes Hardy-Weinberg and Linkage equilibrium

1 1 1
2 2

1 1 1 1

ˆ
; ;

ˆ
e aσ σ

− − −

− − − −

 ′ ′ ′   
= = =    ′ ′ ′+    

X R X X R Z X R yb
R F D I

Z R X Z R Z D Z R ya

()
2

2

2 1
g

a
i i

all SNPs

p p

σ
σ ≈

−∑

35

BLUP_SNP parameters

• Note that the idea can be reversed

• How does the genetic variance σ2
g relate to the SNP

effect variance, σ2
a ?

– i.e., we try to explain all genetic variance as if « caused » by
SNP effects, and these effects have a variance of σ2

a

()2 2 22 1 sum2pqg a i i a
all SNPs

p pσ σ σ≈ − =∑

Some programs provide
estimates of these (e.g.

GS3, BIGS)
You can estimate genetic variance in
wild populations, for instance

15

36

BLUP_SNP parameters

• The other option is to estimate σ2
a and σ2

e

• They are usually similar but not always :-/

()2 2 22 1 sum2pqg a i i a
all SNPs

p pσ σ σ≈ − =∑

TRUE ?

37

Estimating variances = BayesC

• It simply consists in a BLUP_SNP where we estimate (and
simultaneously « integrate out ») σ2

a and σ2
e

– i.e., a regular Gibbs sampler applied to SNPs instead of EBV’s (G-
Gibss??)

– Legarra et al., 2008 (we didn’t call it BayesC), Habier et al., 2011

• Pretty straightforward from GSRU
• You can as well estimate σ2

a and σ2
e using « BayesC » and take

them as known in BLUP_SNP (e.g. as in REML+BLUP analysis)

()
()

2 2 2 2

2 2 2 2

,

| ~ , ;

| ~ , ;

a a a a

e e e

MVN S

MVN S

ν

ν

σ σ σ χ

σ σ σ χ

−

−

= + +y Xb Za e

a 0 I

e 0 Ι

∼

∼

16

38

Fortran pseudocode for BayesC
...

do j=1,niter
do i=1,neq

!form lhs
lhs=xpx(i)+1/vara
! form rhs with y corrected by other effects (formula 1)
rhs=dot_product(X(:,i),e)/vare +xpx(i) *sol(i)/vare
! MCMC sample solution from its conditional
val=normal(rhs/lhs,1d0/lhs)
! update e with current estimate (formula 2)
e=e - X(:,i)*(val-sol(i))
!update sol
sol(i)=val

enddo

! draw variance components
ss=sum(sol**2)+nua*Sa
vara=ss/chi(nua+nsnp)
ss=sum(e**2)+nue*Se
vara=ss/chi(nue+ndata)

enddo

39

Legarra et al.2008, Mice data

• There is no full agreement
for estimates of genetic
variance (σ2

u) across
models (pedigree vs.
genomic)

• This is because definition
of base population is
different, and data used
too.

• In dairy the agreement is
good but not complete

1.33

3.93E-04

0.034

3.02E-04

17

40

BayesA

• We « estimate » a different σ2
a for each SNP

– this estimate is horribly bad

– but SNP solutions correspond to a model with « t » distributions

• Pretty straightforward from GSRU

()
()

()

2 2 2 2

2

2 2 2
,

,

| ~ , ;

0, ,

0, ;

e e e

i a

i a i e e

MVN S

a t

a N S

ν

ν

σ σ σ χ

ν σ

σ σ χ

−

−

= + +

 
  ≡ 
 
  

y Xb Za e

e 0 Ι ∼

∼

∼ ∼

()

()

2

2 2 2
,

0, ,

0,

i a

i a i a

a t

a N ν

ν σ

σ χ σ− −

≡

∼

∼

representation
as « t »

Meuwissen et al.
representation

41

Fortran pseudocode for BayesA
...
do j=1,niter

do i=1,neq
!form lhs
lhs=xpx(i)+1/vara(i)
! form rhs with y corrected by other effects (formula 1)
rhs=dot_product(X(:,i),e)/vare +xpx(i) *sol(i)/vare
! MCMC sample solution from its conditional (commented o ut here)
val=normal(rhs/lhs,1d0/lhs)
! update e with current estimate (formula 2)
e=e - X(:,i)*(val-sol(i))
!update sol
sol(i)=val

! draw variance components
ss=sol(i)**2+nua*Sa
vara(i)=ss/chi(nua+1)

enddo
! draw variance components
ss=sum(e**2)+nue*Se
vare=ss/chi(nue+ndata)

enddo

18

43

BayesCPi

• e.g. Habier et al., 2011 (see also Rohan Fernando course notes)

• What if some SNP had no effect?
– This is the original idea of BayesB

– needs the probability that a given SNP is at the model or not
– can be computed by MCMC

()

()

2
2

2 2

2 2 2 2

,

, 1
| , ~

0 0

0

1 1

| ~ , ;

i a i
a

i i

a a

i

e e e

a N if

a if

S

with probability

with probability

MVN S

ν

ν

σ δ
σ

δ

σ χ
π

δ
π

σ σ σ χ

−

−

= + +

 =


= =


 −

y Xb Za e

0
a δ

e 0 Ι

∼

∼

∼

∼

44

BayesCPi

• Algorithm consists in a BLUP_SNP by GSRU where we
estimate (and simultaneously « integrate out ») σ2

a and σ2
e

– for each SNP we compute the probability of it being « in » the

model (indicator variable δ)
• This was a nightmare in original BayesB
• R Fernando found out a simple way of computing it (course notes:

http://www.ans.iastate.edu/stud/courses/short/2010short.html) that is
« like » GSRU

– we can equally compute the proportions π or fix them previously

19

45

Fortran pseudocode for BayesCPi
...

do j=1,niter
do i=1,neq

...
! compute loglikelihood for state 1 (i -> in model) a nd 0 (not in model)
! Notes by RLF (2010, Bayesian Methods in Genome Association Studies, p 47/67)
v1=xpx(i)*vare+(xpx(i)**2)*vara
v0=xpx(i)*vare
rj=rhs*vare ! because rhs=X’R-1(y corrected)
! prob state delta=0
like2=density_normal((/rj/),v0) !rj = N(0,v0)
! prob state delta=1
like1=density_normal((/rj/),v1) !rj = N(0,v1)
! add prior for delta
like2=like2+pi; like1=like1+(1-pi)
!standardize
like2=like2/(like2+like1); like1=like1/(like2+like1)
delta(i)=sample(states=(/0,1/),prob=(/like2,like1/)
if(delta(i)==1) then

val=normal(rhs/lhs,1d0/lhs)
else
val=0

endif
...
enddo

! here go the updates for vara and pi
enddo

46

Lasso

Hierarchical representation of Lasso
• y : data
• a : SNP effects

()

()

2

2 2

,

| , ~ exp
2

| ~ ,

i
i

e

a

MVN

λλ σ λ

σ σ

= + +

−∏
y Xb Za e

a

e 0 Ι Distribution of
SNP effects

-4 -2 0 2 4

0
1

2
3

4

x

de
xp

(a
bs

(x
),

4)

20

47

• In regular Lasso, λ is tipically computed by cross-validation
– which depends strongly on the constitution of the training & validation

data sets
– and is tricky to compute

• the Bayesian Lasso (Park & Casella 2008) uses an equivalent
hierarchical model

• This Bayesian Lasso is being used for genomic selection (De los
Campos et al., 2009)

• The following is largely from Legarra et al. (Genetical Res., 2011)

Bayesian Lasso

48

Bayesian Lasso

() ()

() ()
() ()

2
1

2
2 2 2

2

2
2 2 2

2 2

0 0 0

0 0 0
| , , ;

0 0 0

| exp / 2
2

| ,

e e

n

i
i

e e

p N

p

p N

τ
τσ σ

τ

λλ λ τ

σ σ

= + +

 
 
 = =
 
  
 

= −

=

∏

y Xb Za e

a τ 0 D D

τ

e 0 I

⋯

These are the σ2
ai

in BayesA,
BayesB

21

49

Bayesian Lasso
Regular linear model

() ()

() ()
() ()

2
1

2
2 2 2

2

2
2 2 2

2 2

0 0 0

0 0 0
| , , ;

0 0 0

| exp / 2
2

| ,

e e

n

i
i

e e

p N

p

p N

τ
τσ σ

τ

λλ λ τ

σ σ

= + +

 
 
 = =
 
  
 

= −

=

∏

y Xb Za e

a τ 0 D D

τ

e 0 I

⋯

Scaled variances
(different for each SNP)

SNPs are a priori
uncorrelated

Exponential prior
for the variancesResidual

variance

Park and Casella say “to
achieve unimodal

posteriors” (?)

Take-home message:
(Bayesian) Lasso is a just a linear
mixed model with an exponential prior
distribution for variances of SNP effects

50

• SNP effects are modelled on the residual variance

• Hence: Bayesian Lasso with 1 Variance (BL1Var)

• Does it make much sense to model SNP effects on residual effects?

• Original lasso « augmented » with different variances, τ2, for each
SNP effect; these variances follow an exponential law controlled by
λ

• this allows to compute individual τ2 variances -with 1 level per
random effect!- because they share a common structure
– this estimate will be terribly bad

Park & Casella BL (BL1Var)

22

51

Tibshirani’s BL (BL2Var)

• Assume SNP effects have a different « variance »

• This is more similar to BLUP_SNP, BayesA, BayesC,
etc etc.

• In fact σ2
a is confounded with 1/λ and can be set to 1

– equivalent to the Tibshirani’s original Lasso

53

HetVar GBLUP

• Suppose that we know the true, different variances of
SNP effects

• Then we could use BLUP_SNP (HetVar-GBLUP)

• BL can be used to compute « a posteriori » estimates
of variances of SNP effects: τ2 and then D

()2 2

,

| ~ 0,a aMVNσ σ
= + +y Xb Za e

a D

2
1

2
2

2

0 0 0

0 0 0

0 0 0 n

τ
τ

τ

 
 
 =
 
  
 

D
⋯

23

54

Fortran pseudocode for BL
...
do j=1,niter

do i=1,neq
!form lhs
lhs=xpx(i)+1/vara(i)
! form rhs with y corrected by other effects (formula 1)
rhs=dot_product(X(:,i),e)/vare +xpx(i) *sol(i)/vare
! MCMC sample solution from its conditional (commented o ut here)
val=normal(rhs/lhs,1d0/lhs)
! update e with current estimate (formula 2)
e=e - X(:,i)*(val-sol(i))
!update sol
sol(i)=val

! draw variance components
ss=sol(i)**2
vara(i)=1d0/rinvGauss(lambda2/ss,lambda2)

enddo
! draw variance components
ss=sum(e**2)+nue*Se
vare=ss/chi(nue+ndata)

! update lambda
enddo

62

Genetic variation
• We can estimate genetic variation in the

population (σ2
u)using SNP data

– Conceptual population in H-W, LE (Gianola et al.,
2009)

• For BL2Var:

• For BL1Var:

• For BLUP_SNP:

• For BayesA:

• For BayesCPi:

() () ()2
2

2
2 1 2 1u i i i i

i i

p p Var a p pσ
λ

= − = −∑ ∑

()
2

2
2

2
2 1u i i

i

p p
σσ
λ

= −∑

()2 22 1u i i a
i

p pσ σ= −∑

Residual variance enters in
genetic variation

Genetic variation is
proportional to 1/λ2

()2 2ˆ2 1u i i ai
i

p pσ σ= −∑

() ()2 21 2 1u i i a
i

p pσ π σ= − −∑

24

63

Legarra et al., 2011

• All methods give reasonable (but not the same) estimates
except BL1Var

BayesC

64

Non-MCMC methods

• So far we have seen mostly Gibbs
– Lasso (and its cousin the Elastic Net) have an algorithm similar

to the GSRU (BLUP_SNP)

– VanRaden’s (2008) nonlinearA has a GSRU with computations
of likelihoods (much like in Bayes CPi), mixed with an EM
algorithm for mixtures

– There is also FastBayesB

• In theory these algorithms might give modes instead of
« conditional expectations » but this does not seem to be
a problem

25

65

• Elastic Net : Combine LASSO and BLUP_SNP
with weight α compris entre 0 et 1

λ and α are chosen to give best results in a cross-validation
system

()2 2 1
    = − + +   

  
α − αλ

 
∑ ∑ ∑ ∑j j i i i

j i i i

()â arg min y X a a aa

66

Some results

26

67

Cross-validation analysis

Reference population
Phenotypes
Genotypes
pedigree

Target population
Phenotypes
Genotypes
pedigree

Estimate SNP effects

Calculate GEBVs

Compare with phenotypes
to check accuracy
(predictive ability)

Ignored, as if they
were candidates to

selection

Typically DYD
(daughter yield

deviation)

69

What priors?

• The advantage of assuming a normal distribution is that
estimators are linear (BLUP_SNP) and easy to compute
and extend (e.g., to SingleStep)

• The rest can be computed by MCMC (BayesX) and
sometimes other algorithms
– VanRaden’s nonlinear, Lasso, EN, etc

• Why bother about non-normal distributions?
– Simulations show higher accuracies using non-normal

distributions

– This is rarely the case in practice: some examples

27

70

Fat and
protein

contents

2009 JDS (USA)

71

Hayes et al. 2009 JDS (Australia)
Genomic BLUP

28

73

Su et al. 2010 JDS (Denmark)

77

C Colombani (accepted, JDS)

• Shape of effects

29

78

C Colombani (accepted, JDS)

• accuracy

Table 2.Correlations between observed DYD and predicted DYDon the validation data set
provided by pedigree-based BLUP (BLUP), Genomic BLUP (GBLUP), PLS, Sparse PLS
(sPLS), Bayesian Lasso and Bayes Cπ (Model 1) in Holstein

0.340.340.290.330.350.28Conception Rate

0.800.790.660.700.720.44Fat %

0.570.560.480.530.560.38Milk Yield

Bayes
Cπ

Bayesian
LassosPLSPLSGBLUPBLUP

• in spite of estimating different SNP effects, BL and BayesCPi agree…
•this is because we finally work with sums of SNP effects

