CREATION AND HANDLING OF GENOMIC RELATIONSHIP MATRICES WITH PREGSF90

I. Aguilar

Instituto Nacional de Investigación Agropecuaria
INIA Las Brujas, Uruguay

Genomic Relationship Matrix - G

- $G = ZZ'/k$
- Z = matrix for SNP marker
- Dimension $Z = n*p$
- n animals,
- p markers

Data file with SNP marker

80	211010110020120110110110110111111211111210100
8014	211101015111011202211110111511111210112210100
516	211001012022520211202101211021112022212111101
181	2111011111220112055020002010102221221111100
HOWTO: Creation of Genomic Matrix

- Read SNP marker information \(\Rightarrow M \)
 \[
 \begin{bmatrix}
 2 & 1 & 2 & \ldots \\
 0 & 1 & 0 & \ldots \\
 \ldots & \ldots & \ldots & \ldots
 \end{bmatrix}
 \]

- Get ‘means’ to center
 - Calculate allele frequency from observed genotypes \(p_i \)
 \[
 p_i = \frac{\text{sum}(\text{SNPcode}_i)}{2n}
 \]

- Matrix for center \(W(3,p) \)
 \[
 \begin{bmatrix}
 0 & 0 & 2p_1 & 0 & 0 & 2p_2 & \ldots \\
 1 & 1 & 2p_2 & 1 & 1 & 2p_1 & \ldots \\
 2 & 2 & 2p_1 & 2 & 2 & 2p_2 & \ldots
 \end{bmatrix}
 \]

- Center matrix \(Z = W(M) \)

Creation of Genomic

- Issues
 - Large number of genotyped individuals
 - Large number of SNP markers
 - Matrix multiplication \(\sim \) cost \(n^2 * p \)

- Large amount of data put in (cache) memory for doing ‘matmul’ for each pair of animals and indirect memory access (center)
 - Memory hierarchy
Matrix multiplication

- Matrix multiplication
 - Several methods
 - Intrisic matmul (good for small examples !!!)
 - “do-loops”
 - Packages (BLAS, LAPACK)
 - Non-optimized
 - Optimized (ATLAS, MKL, etc.)
 - Several Compilers
 - Perform automatic optimization
 - Vectorize loops
 - Detect permuted loops
 - Can use OpenMP directives for parallelization

Memory Hierarchy

CPU #1
- Fast
- Cache memory (256 kb - 16Mb)
- Slow

CPU #2
- Fast
- Cache memory (256 kb - 16Mb)
- Slow

Main Memory
- (1Gb - 128Gb)
Alternative codes to create G matrix

```
Do i=1,n
  S=0
  Do k=1,p
    S=S+Z(M(i,k),k)*Z(M(j,k),k)
  End do
  G(i,j)=S/sqrt(d(i)*d(j))
  G(j,i)=G(i,j)
End do
```

```
Do k=1,p
  X(:,k)=Z(M(:,k),k)
End do
Do i=1,n
  Do j=i,n
    S=0
    Do k=1,p
      S=S+X(i,k)*X(j,k)
    End do
    G(i,j)=S/sqrt(d(i)*d(j))
    G(j,i)=G(i,j)
  End do
End do
```

```
Do k=1,p
  X(:,k)=Z(M(:,k),k)
  End do
  Do i=1,n
    Do j=1,n
      S=0
      Do k=1,p
        G(i,j)=G(i,j)+X(i,k)*X(j,k)
      End do
      G(i,j)=G(i,j)/sqrt(d(i)*d(j))
    End do
  End do
```

```
Do k=1,p
  X(:,k)=Z(M(:,k),k)
End do
Do i=1,n
  Do j=1,n
    G(i,j)=G(i,j)/sqrt(d(i)*d(j))
  End do
End do
```

Optimize Indirect Memory Access - OPTM

```
Gmatrix.f90 (VanRaden, 2009)
```

CPU time for alternative codes for G matrix and machines

- **Testing**
 - 6500 genotyped animals
 - 40k SNPs

<table>
<thead>
<tr>
<th>Algorithms</th>
<th>Processor</th>
<th>Cache</th>
<th>Original</th>
<th>OPTM</th>
<th>OPTML</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Xeon 3.5 GHz</td>
<td>6 MB</td>
<td>24 m</td>
<td>26 m</td>
<td>7 m</td>
</tr>
<tr>
<td></td>
<td>Opteron 3.0 GHz</td>
<td>1 MB</td>
<td>265 m</td>
<td>59 m</td>
<td>17 m</td>
</tr>
</tbody>
</table>
CPU time (m) with alternative codes and compilers

- Testing
 - 6500 genotyped animals
 - 40k SNPs
 - Opteron 3.02 GHz 1 MB Cache memory

<table>
<thead>
<tr>
<th>Compiler</th>
<th>Original</th>
<th>OPTM</th>
<th>OPTML</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel</td>
<td>265</td>
<td>59</td>
<td>17</td>
</tr>
<tr>
<td>Absoft</td>
<td>241</td>
<td>60</td>
<td>34</td>
</tr>
<tr>
<td>gfortran</td>
<td>213</td>
<td>63</td>
<td>>1day</td>
</tr>
</tbody>
</table>

PreGSf90 program

- From BLUPF90 package
- Uses a genomic module

- Creation and handling of genomic relationship matrices and relationship based on pedigree

- Different methods to optimize calculations using parallel processing
Input files

- Same parameter file as for all BLUPf90 programs
 - But with “OPTION SNP_file xxxx”
 - indicate to run genomic subroutines

- Pedigree file

- Marker information (SNP file)

- Cross Reference file for renumber ID
 - Links genotypes files with codes in pedigree, etc.

OPTIONS – BLUPF90 parameter file

- PreGSF90
 - controled by adding OPTIONS commands to the parameter file

 - OPTION SNP_file marker.geno.clean

- Read 2 files:
 - marker.geno.clean
 - marker.geno.clean.XrefID
RENUMF90

- Add keyword to the “animal effect”

 SNP_FILE
 marker_geno_clean

- Renumber tool to prepares:
 - data
 - pedigree
 - genotypes
 - parameter files for BLUPF90 programs including PREGSF90

- Check wiki:

Parameters file

```plaintext
RENUMF90 renum.par

DATAFILE phenotypes.txt

TRAITS
3

FIELDS PASSED TO OUTPUT

WEIGHT(S)

RESIDUAL_VARIANCE 0.0038

EFFECT
1 cross alpha # mu
2 cross alpha # animal

RANDOM
animal
FILE
pedigree

SNP_FILE
marker_geno_clean

(BI)VARIANCES 0.99510E-01

BLUPF90 renf90.par

DATAFILE renf90.dat

NUMBER_OF_TRAITS 1

NUMBER_OF_EFFECTS 1

OBSERVATION(S)
1

WEIGHT(S)

EFFECTS: POSITIONS_IN_DATAFILE NUMBER
2 1 cross
3 15000 cross

RANDOM_RESIDUAL VALUES
0.99300

RANDOM_GROUP 2

RANDOM_TYPE add animal

FILE
renadd92.ped

(CO)VARIANCES 0.99510E-01

OPTION SNP_file marker_geno_clean
```
Pedigree file from RENUMF90

1 - animal number
2 - parent 1 number or UPG
3 - parent 2 number or UPG
4 - 3 minus number of known parents
5 - known or estimated year of birth
6 - number of known parents;
 if animal is genotyped 10 + number of known parents
7 - number of records
8 - number of progenies as parent 1
9 - number of progenies as parent 2
10 - original animal ID

SNP file & Cross Reference Id

<table>
<thead>
<tr>
<th>SNP File</th>
<th>Cross Reference ID</th>
<th>Pedigree File (from RENUMF90)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>1732 80</td>
<td>1732 11010 10584 1 3 12 1 0 0 80</td>
</tr>
<tr>
<td>8014</td>
<td>8474 8014</td>
<td>8474 8691 9908 1 3 12 1 0 0 8014</td>
</tr>
<tr>
<td>516</td>
<td>406 516</td>
<td>406 8691 9825 1 3 12 1 0 2 516</td>
</tr>
<tr>
<td>181</td>
<td>9441 181</td>
<td>9441 8691 8829 1 3 12 1 0 0 181</td>
</tr>
</tbody>
</table>

SNP File
First col: Identification, could be alphanumeric
Second col: SNP markers {codes: 0,1,2 and 5 for missing}
Genomic Matrix default options

- $G^* = ZZ'/k$ as in VanRaden, 2008
- With:
 - Z center using allele frequencies estimated from the genotyped individuals
 - $k = 2 \sum (p * (1-p))$
- $G = G^*0.95 + A^*0.05$ (to invert)
- Tuning of G (see Z. Vitezica talk)
 - Adjust G to have mean of diagonals and off-diagonals equal to A

Genomic Matrix Options

- **OPTION which G x**
 - 1: $G=ZZ'/k$ (default) (VanRaden, 2008)
 - 2: $G=ZDZ'/n$; $D=1/2p(1-p)$ (Amin et al., 2007; Leuttenger et al., 2003)
 - 3: As 2 with modification UAR (Yang et al., 2010)
- **OPTION weighted G file**
 - Read weights to create $G=ZDZ'$
 - Weighting $Z^s = Z \sqrt(D) \Rightarrow G = Z^sZ^s' = ZDZ'$
- **OPTION which $Scale$ x**
 - 1: $2 \Sigma (p(1-p))$ (default) (VanRaden, 2008)
 - 3: correction (Gianola et al., 2009)
Genomic Matrix Options

- **OPTION whichfreq x**
 - 0: read from file freqdata or other specified
 - 1: 0.5
 - 2: current calculated from genotypes (default)

- **OPTION FreqFile file**
 - Reads allele frequencies from a file

- **OPTION maxsnps x**
 - Set the maximum length of string for reading marker data from file ➞ BovineHD chip

Options for Blending G and A

- **OPTION AlphaBeta alpha beta**
 - \(G = \alpha*G' + \beta*A \)

- **OPTION tunedG**
 - 0: no adjustment
 - 1: mean(diag(G))=1, mean(offdiag(G))=0
 - 2: mean(diag(G))=mean(diag(A)),
 mean(offdiag(G))=mean(offdiag(A)) (default)
 - 3: mean(G)=mean(A)
Creation of ‘raw’ genomic matrix

- Tricks:
 - Use dummy pedigree

 \[
 \begin{bmatrix}
 1 & 0 & 0 \\
 2 & 0 & 0 \\
 \vdots
 \end{bmatrix}
 \]
 - Change blending parameters

 OPTION AlphaBeta 0.99 0.01
 - No adjustment for compatibility with A

 OPTION tunedG 0

\[
G = 0.99 * G + 0.01 * I
\]

Storing and Reading Matrices

- PreGSF90:
 - Facilitate the implementation of single-step, (tomorrow)
 - Matrix A is replaced by H with:

\[
H^{-1} = A^{-1} + \begin{bmatrix}
0 & 0 \\
0 & G^{-1} - A_{22}^{-1}
\end{bmatrix}
\]

- Default output is the matrix GimA22i, to be included in application programs (BLUPF90, REMLF90..)

- BUT: intermediate matrices could be stored for examination, use in application programs, etc.
Storing and Reading Matrices

- Matrices that can be stored:
 - A_{22}, $\text{inv}(A_{22})$, G, $\text{inv}(G)$, GmA_{22}, $\text{inv}(GmA_{22})$, $\text{inv}(H)$
- All matrices are stored in same format:
 - upper triangle
 - By default in binary format
 - But to store in text (Ascii) format:
 - Use: OPTION saveAscii

- Values
 - $i \ j \ \text{val}$
 - $i \ & \ j$ refers to the row number in the genotype file !!!!!!
 - Renumber ID could be obtained from the XrefID file

Storing and Reading Matrices

To save our ‘raw’ genomic matrix:

- OPTION saveG [all]
 - If the optional all is present all intermediate G matrices will be saved!!!
 - or it inverse

- OPTION saveGInverse
 - Only the final matrix G, after blending, scaling, etc. is inverted !!!

- Look in wiki for keywords for other matrices
Storing with Original IDs

- Some matrices could be stored in text files with the original IDs extracted from renaddxx.ped created by the RENUMF90 program (col #10)

- For example:
 - OPTION saveGOrig
 - OPTION saveDiagGOrig
 - OPTION saveHinvOrig

- Values
 - origID_i, origID_j, val

OUTPUT

- Only GimA22i, other requested matrices files, and some reports (tomorrow) are stored.

- Main log is printout to the screen !!!

- Use redirection ‘>’

- or better the command tee to save in a log file.

- This will allows to save and see the messages from the program

 - echo renf90.par | preGSf90 | tee pregs.log
Printout: Same heading as other programs

Options read from parameter file:
- SNP file: marker.geno.clean
- SNP Xref file: marker.geno.clean.xrefID
- Matrix in Ascii format(default=binary)

All options that were enter in the parameter file should be here !!.
IF not check that keywords are correct (upper and lower case)

--
* Genomic Library: Version 1.110 *
* * Modified relationship matrix (H) created for effect: 2 *
--

Read 18600 animals from pedigree file: "renadd02.ped"
Number of Genotyped Animals: 1500
Check number of animals and individuals with genotypes

Printout

Creating A22
Extracting subset of: 4634 pedigrees from: 18600 elapsed time: 0.0019
Calculating A22 Matrix by Colleau ...elapsed time 1.250454

Reading SNP file
Column position in file for the first marker: 7
Format to read SNP file: (6x,40000011)
Number of SNPs: 3000
Number of Genotyped animals: 1500
Reading SNP file elapsed time: .41

Statistics of alleles frequencies in the
N: 3000
Mean: 0.500
Min: 0.101
Max: 0.898
Var: 0.016

Information from genotype file.
The format is detected from the first line !!!
So all genotypes should start in the same column !!!
Number of SNP is also determined by the first line!!
Looking stored matrices

- Avoid open with text editors, huge files !!!
- For example:
- 1500 genotyped individuals => 1,125,750 rows
- Inspection could be done by Unix commands:
 - head G => first 10 lines
 - tail G => last 10 lines
 - less G => scroll document by line/page
 - wc -l G => count number of lines
 good for checks with the number of
 genotypes \(n = \frac{n(n+1)}{2} \)

head G

```
1 1 .999382118619
1 2 .355052761478
2 2 1.014521277458
1 3 -.048184197960
2 3 -.057513012886
3 3 .976558921904
1 4 -.101734083083
2 4 -.007644724611
3 4 .196757165096
4 4 1.018165021903
```
GBLUP, GREML, GGIBBS

- Using BLUPF90 programs to perform genomic selection using genomic relationship matrix

- Using only phenotypes or pseudo phenotypes (DYD, DP, EBV) for only genotyped individuals

Two ways: user_file

- By user defined files for covariances of random effects
- Special type of random effect in BLUPF90 parameter file

```plaintext
RANDOM_GROUP
# genomic
2
RANDOM_TYPE
user_file
FILE
# matrix file
Gi
```

- Gi created by PreGSF90 can be used here!
By ‘fake’ single-step GBLUP

- **Same trick as before:**
 - Dummy pedigree with number of individual equal to number of individuals with genotypes
 - Little blending with A (identity matrix) to create the inverse (OPTION AlphaBeta 0.99 0.01)
 - No adjustment for means of A (OPTION tunedG 0)
 - Parameter file include:
 - Random effect defined as `add_animal`
 - OPTION SNP_file xxxx

By ‘fake’ single-step GBLUP

- **Runs could be either by:**
 - Several steps
 - 1 run `preGSf90` and store G inverse
 - 2 modify parameter file for BLUP
 - adding OPTION readGimA22i
 - 3 run `BLUPF90`
 - ‘One-Step’
 - 1 run `BLUPF90` or `REMLF90`
Almost all programs from package support creation of genomic relationship matrices, H_{inv}, etc.

- **OPTION SNP_file xxxx**

Why **preGSF90**?
- Same genomic relationship matrix for several models, traits, etc. Just do it once and store.
- Uses of optimized subroutines for efficient matrix multiplications, inversion and with support for parallel processing.
Matrix multiplication subroutines

- Optimized memory and loops (compiler optimization)
- \textit{dgemm} subroutine from BLAS
- Optimized \textit{dgemm} (ATLAS or MKL libraries*)
 - Serial
 - Parallel (Automatic use of OpenMP)
 * Intel Fortran Compiler

Matrix multiplication using 40k SNPs

![Graph showing CPU time vs. number of animals](image-url)
Speedup for matrix multiplications

![Graph showing speedup for matrix multiplications with different numbers of threads and varying number of animals.]

Speedup = time using one thread/time using \(n \) threads

Computing time with 4 processors

<table>
<thead>
<tr>
<th>Number of genotypes</th>
<th>Creation of G</th>
<th>Inversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>10k</td>
<td>2 m</td>
<td>2 m</td>
</tr>
<tr>
<td>30k</td>
<td>1 h</td>
<td>1 h</td>
</tr>
<tr>
<td>50k</td>
<td>2.5 h</td>
<td>4.5 h</td>
</tr>
</tbody>
</table>
Creation a subset of relationship matrix (A22)

- Create a relationship matrix for only genotyped animals (~ thousands)
- Full pedigree (~millions)
- Trace only ancestors of genotyped (reduce but still large number for A matrix)

Relationship Matrix of Genotyped Animals

- Colleau’s algorithm to creates A_{22}
- No need to have explicit A matrix
- Method uses “matrix-vector” multiplication with a decomposition of A matrix

$$v = Ar = (I - P)^{-1}D(I - P)^{-1}r$$
Example A times a vector

\[
\begin{align*}
\text{Pedigree} & \\
\begin{bmatrix}
1 & 2 & 3 \\
1 & 0 & 0 \\
2 & 0 & 0 \\
3 & 1 & 2 \\
\end{bmatrix} & \\
\text{Matrix P} & \\
\begin{bmatrix}
1 & 2 & 3 \\
0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 \\
0.5 & 0.5 & 0.0 \\
\end{bmatrix} & \\
\text{Matrix (I-P)} & \\
\begin{bmatrix}
1 & 2 & 3 \\
1.0 & 0.0 & 0.0 \\
0.0 & 1.0 & 0.0 \\
0.5 & 0.5 & 1.0 \\
\end{bmatrix} & \\
\text{Matrix (I-P)}^{-1} & \\
\begin{bmatrix}
1 & 2 & 3 \\
1.0 & 1.0 & 0.5 \\
0.0 & 0.5 & 1.0 \\
0.5 & 0.5 & 1.0 \\
\end{bmatrix} & \\
\text{Matrix D} & \\
\begin{bmatrix}
1 & 2 & 3 \\
1 & 1 & 0.5 \\
1 & 0.5 & 1.0 \\
1 & 0.5 & 0.5 \\
\end{bmatrix} & \\
\text{Vector r} & \\
\begin{bmatrix}
1 & 2 & 3 \\
10 & 20 & 30 \\
\end{bmatrix} & \\
\text{Vector q} & \\
\begin{bmatrix}
1 & 2 & 3 \\
25 & 35 & 30 \\
\end{bmatrix} \\
\end{align*}
\]

\[
\begin{align*}
v &= Ar = (I - P)^{-1}D(I - P)^{-1}'r \\
\end{align*}
\]

Relationship Matrix of Genotyped Animals

- For each genotyped animal in A_{22}

\[
v = Ar_2 = (I - P)^{-1}D(I - P)^{-1}'r_2
\]
Tabular method vs. Colleau algorithm

- **Testing**
 - 6,500 genotyped Holsteins
 - 57,000 pedigrees

<table>
<thead>
<tr>
<th></th>
<th>Tabular*</th>
<th>Colleau method</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Time</td>
<td>311 s</td>
<td>45 s</td>
</tr>
<tr>
<td>Memory</td>
<td>12.1 GB</td>
<td>322 MB</td>
</tr>
</tbody>
</table>

* Gmatrix.f90 (VanRaden, 2009)