Useful commands in Linux and other tools for quality control

Ignacio Aguilar INIA Uruguay 05-2018

Unix Basic Commands

pwd	show working directory
ls	list files in working directory
11	as before but with more information
mkdir <i>d</i>	make a directory d
cd d	change to directory d

Copy and moving commands

To copy file cp /home/user/is .

To copy file directory cp -r /home/folder .

to move file aa into bb in folder test
mv aa ./test/bb

To delete

rmyydelete the file yy

rm -r xx delete the folder xx

Redirections & pipe

Redirection useful to read/write from file !!

aa < bb
program aa reads from file bb
blupf90 < in</pre>

aa > bb
program aa write in file bb
blupf90 < in > log

Open 🔻 🖪	in ~/	Save		-		×
renf90.par						
Plain Text 🔻 Tab	Width: 8	•	Ln 1, Col 1		•	INS

Redirections & pipe

"|" similar to redirection but instead to write to a file, passes content as input to other command

tee copy standard input to standard output and save in a file echo copy stream to standard output

Example: program blupf90 reads name of parameter file and writes output in terminal and in file log echo par.b90 | blupf90 | tee blup.log

Other popular commands

head file	print first 10 lines list <i>file</i> page-by-page
tail file	print last 10 lines
less file	list <i>file</i> line-by-line or page-by-page
wc -l file	count lines
grep text file	find lines that contains text
cat file1 fie12	concatenate files
sort	sort file
cut	cuts specific columns
join	join lines of two files on specific columns
paste	paste lines of two file
expand	replace TAB with spaces
uniq	retain unique lines on a sorted file

head / tail

- \$ head pedigree.txt
- 1 0 0
- 2 0 0
- 3 0 0
- 4 0 0
- 5 0 0
- 6 0 0
- 7 0 0
- 8 0 0
- 9 0 0
- 10 0 0

Huge volume of information with genomic

- Example 50kv2 (54609 SNP)
 - For 104 individuals
 - Illumina final report file:
 - 5,679,346 records
 - 302 MB

• Not efficient to read/edit with regular editors (vim, gedit...)

less command

- Allow to view content of file and move forward and backward
- For files with long lines use option -S

less -S genot.txt

• • • unixtools — less -S genotype.txt — 94×16 590 12121010212022122022102021110000111210212011022211001022212202222012021210220101020122210 600 211110212111222110112010202101120011211122211210100120112122222120112122210111100021020210 aenotvpe.txt

Count inside files

• Command wc count number of words/lines/characters/bytes

• Number of lines of a file(s)

```
$ wc -1 genotype.txt pedigree.txt
    3534 genotype.txt
    6473 pedigree.txt
```

Concatenate files

Put content of file1 and file2 in outpufile cat file1 file2 > output file

Add content of file3 to output_file using >> redirection Append content at the end of the file

Cat file3 >> output_file

paste / expand

paste Merge files line by line with TAB delimiter
expand replace TAB with spaces

head sol a sol b

==> sol a <==

	JT_a <-									
trait/	/effect	level			na	9 9 9 9	ol a sol b		kpand	head
1	1	1	10.23612694		pu				spana i	ncaa
1	1	2	12.09158350							
1	1	3	13.08139319	troit	/offoo	t level	solution trait/ef	ffoot lo	vel solution	
1	2	1	-0.00804515	LIAIL,	refrec	I TEVEL		THECT IE	ver solution	
1	2	2	0.00804485	1	1	1	10.23612694	1 :	1 1	14.09761235
1	2	3	-0.01608983	1	1	2	12.09158350	1	1 2	15.95388962
1	2	4	0.01609003	1	1	3	13.08139319	1	1 3	16.94297738
1	2	5	0.03218022	1	2	1	-0.00804515	1	2 1	-0.00806027
1	2	6	-0.03218023	- 1	2	2	0.00804485		2 2	0.00805982
				1	2	2				
==> so	ol_b <=	=		1	2	3	-0.01608983	1	2 3	-0.01608645
trait/	/effect	level	solution	1	2	4	0.01609003	1	2 4	0.01608642
1	1	1	14.09761235	1	2	5	0.03218022	1	2 5	0.03217834
1	1	2	15.95388962	1	2	6	-0.03218023	1	2 6	-0.03217873
1	1	3	16.94297738	-	2	0	_ 0.00210020	<u> </u>		0:0021/0/0
1	2	1	-0.00806027							
1	2	2	0.00805982							
1	2	3	-0.01608645							
1	2	4	0.01608642							
1	2	5	0.03217834							
1	2	6	0.03217873							
	-		· · · · ·							

sort / join

Sort file, usually we want to specify on a certain column
 sort -k 2,2 file1 > a

sort -k 1, 1 file2 > b

Merge both file by column 2 and column 1
join -1 2 -2 1 a b > new_file

grep

grep is useful to find pattern with a file and list all lines that match the pattern

```
grep sirel pedigree.txt
```

Option -v show all lines does not match pattern

Pattern with spaces use -e
grep -e "pattern with spaces" file1

sed

Sed is a stream editor.

Reads input file and apply command that match pattern

Sustitution of a pattern sed `s/pattern 1/new pattern/g' file > newfile

Delete lines that contains "pattern to match"
sed '/pattern to match/d' file

awk

- Interpreted program language, that process data stream of file line by line
- Very useful and fast command to work with text files
- Can be used as a database query program
 - Select specific columns or create new ones
 - Select specific rows matching some criteria
- Use of if/else and for structure
- Easy implementation of hash-table arrays

awk

Selection of columns: \$1,\$2,,\$n. are first, second and the last column

Also \$0 select the full line

Extract equations solutions for a particular effect (2) and print EBV and reliabilies (r^2) awk '{ if (\$2==2) print \$3,\$4,1-\$5*\$5/20}' solutions

Implicit variables

NF - number of fields NR - record number FS - input field separator OFS - output field separator

Process CSV files
awk 'BEGIN {FS=","} {print \$1,\$2,\$3}' pedigree.txt

awk hash tables

Arrays can be index by alphanumeric variables in a efficient way

Awk version to count progeny by sire
awk '{ sire[\$2]+=1} END { for (s in sire)
 {print "Sire " s, sire[s]}}' pedigree.txt

uniq

- Command uniq list all unique lines of a file
- Option –c count number of times occurs in a file

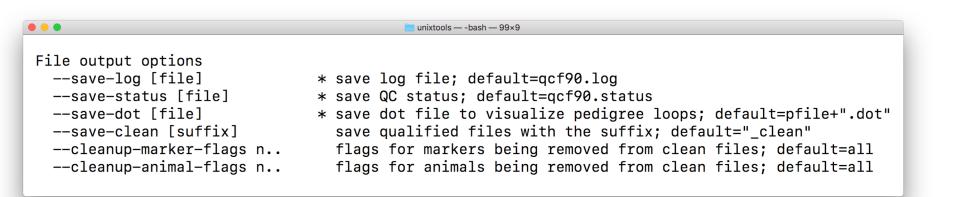
Example count progeny by sire in a pedigree file
awk '\$2>0{ print \$2}' ped | sort | uniq -c

qcf90

- Quality control program from the BLUPF90 family programs
- Check pedigree and genotype files either in raw formats (ie alphanumeric fields) or with renumf90 output file
- Run in command line with different arguments
- Generate new "clean" files
- qcf90 with no arguments prints current options

qcf90

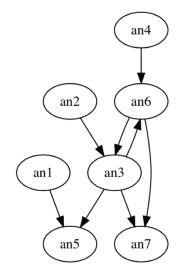
	unixtools — -bash — 85×14
This is qcf90, Version 0.9.5.	
Yutaka Masuda, Ignacio Aguilar, a	nd Innacy Misztal
	ina ignacy hisztai
University of Georgia	
usage: qcf90 [options]	
Ontional	
Options:	
Source file specification	
snpfile mfile	marker file
mapfile cfile	read map file
maffile ffile	read MAF file
pedfile pfile	pedigree file
xrefid xfile	XrefID file; assumed renumbered pedigree
statfile qfile	read QC status from a file instead of computing
	read we status from a fire instead of computing


qcf90 Quality Control options

unixtools — -bash — 100x14

qc {items}	otions * Quality control; seelong-help for details
crm n	call rate for markers; default=0.90
cra n	call rate for animals; default=0.90
maf n	minimum allele frequency; default=0.05
––hwe n	statistic for Hardy-Weinberg equilibrium
exclude-marker-list file	marker positions to be excluded in QC
exclude-animal-list file	animal ID (same as pedigree if supplied) to be excluded in Q
remove-markers	* remove unqualified markers in subsequent QC steps
remove-animals	* remove unqualified animals in subsequent QC steps
check-parentage	check Mendelian inconsistency; equivalent toqc par
1 0	
check-format	* check file format precisely

•	unixtools — -bash — 80×9
uality c	ontril options:qc {crm,maf,mono,hwe,cra,parm,para}
crm	call rate for markers
maf	minor allele frequency
mono	monomorphic markers
hwe	Hardy-Weinberg equilibrium
cra	call rate for animals
par	parentage (Mendelian inconsistency) for markers and animals


qcf90 output files

qcf90 pedigree check

- Basic check on sire and dam ids
- Detection of 'loops' in pedigree
 - i.e. animal is an ancestor of itself
 - an3 and an6

an1 0 0 an2 0 0 an3 an6 an2 an4 an1 an2 an5 an1 an3 an6 an4 an3 an7 an6 an3

seekparentf90

• Program to check and assign parents using genomic information

- Detect parent-offspring incompatibilities based on counts of conflicts (opposite homozygous)
 - Hayes 2010 JAS
 - Wiggans et al 2010 JDS

seekparentf90

Usage

seekparentf90 --pedfile <pedigree_file_name> --snpfile <snp_file> [...]

Optional arguments

--yob

Indicate that year of birth should be read in the 4th column.

If yob information is present, it will be used to validate a putative parent.

```
--seeksire <sire_file>
```

Indicate a list of sires that will be used to search for a parent

```
--seekdam <sire_file>
```

Indicate a list of dams that will be used to search for a parent

--seeksire_in_ped

Create a list of genotyped sires from the pedigree and use it as a list to search for a parent.

```
--seekdam_in_ped
```

Create a list of genotyped dams from the pedigree and use it as a list to search for a parent

```
--seektype n
```

Set the which animals will be used to search for a parent

Codes:

- 1: search only non-match parent (default)
- = 2: search all genotyped individuals

Check parentage using different chips

Chip and SNP information

Chips with different number of SNP can be used in the analyses. In such case the genotype file must have the second column indicating the chip number and a map file must be provided to map SNP to chips. Each sample in the genotype file should contain only the SNP present for that chip (see example below)

--chips <file>

Genotype file

1353	1	21101011002012011011010110111111121111121
8014	1	2111010151110112022111011151111210111221
516	2	2110510120
181	3	11101111122011205502

Map file

SNP_ID	Chr	pos	chip1	chip2	chip3	
SNP_1	1	135098	1	1	1	
SNP 2	1	267940	2	0	2	
SNP ³	1	305793	3	2	3	
SNP 4	1	353745	4	0	0	
SNP 5	1	393248	5	0	4	
SNP ⁶	1	434180	6	0	5	
SNP ⁷	1	471078	7	0	0	
	1	E16404	0	2	~	

illumina2pregs

A program to convert genomic information from Illumina files for the BLUPF90 family of programs

- Tool for converting FinalReport and SNP_Map.txt files from Genome Studio into files suitable for reading with blupf90
- Reads only AB codes and generates integer variable 0,1,2 or 5 for missing

Illumina Raw files

. 0				😰 mga	DBSNP -	- less — 1	.05×30			R _M
[Header]										
GSGT Version	1.9.4									
Processing Date	8/29/20	11 10:2	5 AM							
Content	BovineS	NP50_v2	_C.bpm							
Num SNPs	54609	_								
Total SNPs	54609									
Num Samples	104									
Total Samples	104									
[Data]										
SNP Name	Sample	ID	Allel	.e1 - Fo	rward	Alle	le2 – Fo	rward	Allele1 – Top	Allele2 -
Top Allele2	- AB	Allele1	- AB	GC Sc	ore	х	Y			
ARS-BFGL-BAC-10	172	8448	G	G	G	G	В	в	0.9506 0.026	1.013
ARS-BFGL-BAC-10	20	8448	Α	G	Α	G	В	Α	0.9673 0.318	0.374
ARS-BFGL-BAC-10	245	8448	C	C	G	G	В	в	0.7579 0.091	1.363
ARS-BFGL-BAC-10	345	8448	Α	С	Α	С	В	Α	0.9276 0.727	0.724
ARS-BFGL-BAC-10	365	8448	G	G	С	С	В	в	0.5335 0.000	0.958
ARS-BFGL-BAC-10	375	8448	G	G	G	G	В	В	0.9567 0.010	0.765
ARS-BFGL-BAC-10	591	8448	Α	Α	Α	Α	Α	Α	0.9003 0.479	0.029

mancport	Final	Report
----------	-------	--------

0	0		😰 mgaDBSNP -	– less –	112×19)	
Index	Name Chromoso	me Posit	ion GenTrai	n Score	SNP	ILMN :	Strand
1	ARS-BFGL-BAC-101	72 14	6371334 0.9176	[A/G]	TOP	TOP	2
2	ARS-BFGL-BAC-102	0 14	7928189 0.9413	[T/C]	BOT	TOP	2
3	ARS-BFGL-BAC-102	45 14	31819743	0.7646	[T/C]	BOT	BOT
4	ARS-BFGL-BAC-103	45 14	6133529 0.8906	[A/C]	TOP	TOP	2
5	ARS-BFGL-BAC-103	65 14	27005721	0.9206	[A/C]	TOP	BOT
6	ARS-BFGL-BAC-103	75 14	6616434 0.9258	[A/G]	TOP	TOP	2
7	ARS-BFGL-BAC-105	91 14	17544926	0.8639	[A/G]	TOP	TOP
8	ARS-BFGL-BAC-108	67 14	34639444	0.9085	[G/C]	BOT	BOT
9	ARS-BFGL-BAC-109	19 14	31267746	0.8255	[A/G]	TOP	TOP
10	ARS-BFGL-BAC-109	51 10	17911906	0.9056	[T/G]	BOT	BOT
11	ARS-BFGL-BAC-109	52 10	18882288	0.9184	[A/G]	TOP	TOP
12	ARS-BFGL-BAC-109	60 10	20609250	0.9205	[A/G]	TOP	TOP
13	ARS-BFGL-BAC-109	72 10	20792754	0.8432	[G/C]	BOT	BOT
14	ARS-BFGL-BAC-109	75 10	21225382	0.7991	[A/G]	TOP	TOP
15	ARS-BFGL-BAC-109	86 10	26527257	0.8941	[A/C]	TOP	BOT
16	ARS-BFGL-BAC-109	93 10	78512500	0.8649	[A/G]	TOP	BOT
17	ARS-BFGL-BAC-110	00 10	79252023	0.9433	[T/G]	BOT	BOT

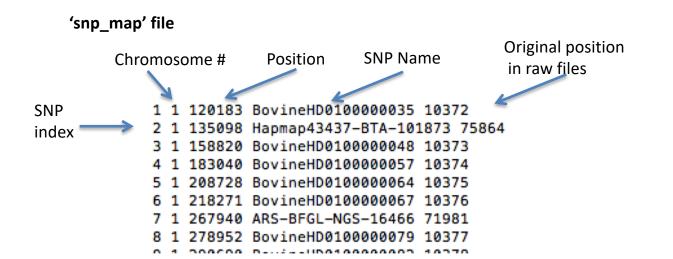
SNP_Map.txt

Usage Illumina2preGS program

<pre>illumina2pregssnpfile <yoursnpfinalreportfilename></yoursnpfinalreportfilename></pre>
Optional Arguments
mapfile
File name for the map file. Default "SNP_Map.txt"
genome
Indicate type of genome (1 – bovine, 2 – ovine)
nosortmap
Genotype file will be in the same order as given
codeab <n></n>
Indicate column number for the first allele with code AB (defalut 7)
gc <n thr=""></n>
Set column number (n) of GC and the cutoff (thr) for exclude call (default from GenomeStudio 0.15)
alphasize
Set the maximun length to store alphnumeric IDs (default 10)
snpfile_out Set a file name for output SNP file (default snps2pregs)

Illumina2preGS program

Output files


snps2pregs

1 ID (alphnumeric identification of lenght "alphasize", default 10)
2 one space
3 genotypes: 0, 1, 2, for AA, AB and BB respectively and 5 for missing.
snp_map
1 index
2 chromosome
3 position
4 name
5 index in original SNP Map.txt

Illumina2preGS program

'snps2pregs' marker file

80	21101011002012011011010110111111211111210100
8014	21110101511101120221110111511112101112210100
516	21100101202252021120210121102111202212111101
181	21110111112201120550200020101022212211111100

SNP Databases

🔓 OPEN ACCESS 🛛 🍺 PEER-REVIEWED

RESEARCH ARTICLE

TheSNPpit—A High Performance Database System for Managing Large Scale SNP Data

Eildert Groeneveld , Helmut Lichtenberg

Published: October 25, 2016 • https://doi.org/10.1371/journal.pone.0164043

SNP Database

- Example DB @ INIA Las Brujas
 - Actually SNP (bovine, ovine, trees) from 32 different chips with different sizes
 - Storing different samples by individual
 - Efficient pack storage
 - 50kV2: 13472 54609 bytes in 13472 bytes ~ 25%
 - Support for original or user-created query from different chips
- Loading and extract information by Python programs
- Extraction
 - SNP in common by chips
 - Imputation type of files
 - *main* chip and SNP in common from other chips

SNP Databases

🔓 OPEN ACCESS 🛛 🍺 PEER-REVIEWED

RESEARCH ARTICLE

TheSNPpit—A High Performance Database System for Managing Large Scale SNP Data

Eildert Groeneveld , Helmut Lichtenberg

Published: October 25, 2016 • https://doi.org/10.1371/journal.pone.0164043

Useful commands for Linux

- Several tutorials on the WEB !!
- <u>unixcombined.pdf</u> from Misztal web page
 - http://nce.ads.uga.edu/~ignacy/ads8200/unixcombined.pdf
- genomeek blog (F. Guillaume)
 - <u>http://genomeek.wordpress.com</u>