
Unix commands
for data editing

Daniela Lourenco
Ignacio Aguilar

BLUPF90 TEAM – 05/2024

Huge volume of data

• Example: genomic info - 50k v2 (54609 SNP)
• For 104 individuals
• Illumina final report file:
• 5,679,346 records
• 302 MB

• Not efficient way to read/edit with regular editors (vi, vim, gedit…)

Popular commands

head file prints first 10 lines
head -20 file prints first 20 lines
tail file prints last 10 lines
less file lists file line-by-line or page-by-page
wc –l file counts the number of lines
grep text file finds lines that contains text
cat file1 file2 concatenates files

sort sorts a file
cut cuts specific columns
join joins lines of two files on specific columns
paste pastes lines of two files
expand replaces TAB with spaces
uniq retains unique lines on a sorted file

head / tail

$ head pedigree.txt

UGA42011 UGA41101 UGA34199
UGA42012 UGA41101 UGA38407
UGA42013 UGA41101 UGA39798
UGA42014 UGA41101 UGA37367
UGA42015 UGA41101 UGA40507
UGA42016 UGA41101 UGA34449
UGA42017 UGA41101 UGA37465
UGA42018 UGA41101 UGA40205
UGA42019 UGA41101 UGA37513
UGA42020 UGA41101 UGA34836

$ head -20 pedigree.txt

$ tail pedigree.txt

less
• Allows to view the content of a file and move forward and backward
• For files with long lines use option –S (disable line wrapping)
$ less -S genotypes.txt

Counting lines/characters inside files

• Command wc counts the number of lines/words/bytes
$ wc genotypes.txt
 2024 4048 91108336 genotypes.txt

• Number of lines of a file(s)
$ wc -l genotypes.txt pedigree.txt
 2024 genotypes.txt
 10000 pedigree.txt
 12024 total

Concatenating files

Put content of file1 and file2 in output_file
$ cat file1 file2 > output_file

Add content of file3 to output_file using >> redirection
Append content at the end of the file

$ cat file3 >> output_file

expand / paste
expand replaces TAB with spaces
paste merges files line by line with a TAB delimiter
paste –d “ “ merges files line by line with a space delimiter

$ paste file1 file 2 | head
$ head file1 file2

==> file1 <==
1
2
3

==> file2 <==
a
b
c

1 a
2 b
3 c

$ paste -d “ ” file1 file 2 | head

1 a
2 b
3 c

sort
• Sorts a file in alphanumeric order

• specifying which column should be sorted
$ sort –k 2,2 file4 > a or sort +1 -2 file4 > a
$ sort –k 1,1 file4 > b or sort +0 -1 file4 > b

• Sorts a file in numeric order
$ sort –nk 2,2 file4 > a or sort -n +1 -2 file4 > a
$ sort –nk 1,1 file4 > b or sort -n +0 -1 file4 > b

• Sorts a file in reverse numeric order
$ sort –nrk 2,2 file4 > a or sort -nr +1 -2 file4 > a

• Sorts based on column 1 then column 2
$ sort -k1,1 -k2,2 file4 > ab

join

• Merges two files by column 1 in both (they should be sorted)

$ join -1 1 -2 1 phenotypes.txt pedigree.txt > new_file

• Merges two files by column 1 in both (sorting at the same time)

$ join -1 1 -2 1 <(sort -k1,1 phenotypes.txt) <(sort –k1,1 pedigree.txt) > new_file

• Merges two files by column 1 but suppresses the joined output lines

$ join –v1 phenotypes.txt pedigree.txt > new_file

grep
• grep finds patterns within a file and lists all lines that match the pattern
$ grep UGA42014 pedigree.txt

• grep -v shows all lines that do not match the pattern
$ grep -v UGA pedigree.txt

• Pattern with spaces use -e
$ grep -e “UGA42014 UGA41101 UGA37367” pedigree.txt

sed
• Sed is a stream editor -> it reads input file and applies commands that match the pattern

• Substitution (s) of a pattern globally (g)
$ sed ‘s/pattern1/new pattern/g’ file > newfile
$ sed ‘s:pattern1:new pattern:g’ file > newfile
$ sed ‘s:UGA:DL:g’ pedigree.txt > dl.temp

• Substitution of a pattern in the same file
$ sed -i ‘s/pattern1/new pattern/g’ file

• Substitution of a pattern in a specific line (e.g., line 24)
$ sed ‘24s/pattern1/new pattern/’ file > newfile

• Deletes lines that contain “pattern to match”
$ sed '/pattern to match/d' file

awk
AWK is a language for text processing and typically used as a data extraction and reporting tool

Alfred Aho
Peter Weinberger
Brian Kernighan

awk

• Interpreted program language, that process data stream of a file line by line

• Very useful and fast command to work with text files

• Can be used as a database query program

• Selects specific columns or creates new ones

• Selects specific rows matching some criteria

• Can be used with if/else and for structures

awk
• Print column 1, and last of pedigree file

 $ awk '{print $1,$NF}' pedigree.txt > anim_dam.temp

• Print all columns:
 $ awk '{print $0}' phenotypes.txt > all_phen.temp

• Print column 1 based on occurrence in column 2:
 $ awk '{if ($2==2) print $1}' phenotypes.txt > fem.temp

• Print columns 3 and 4 skipping the first 1000 lines:
 $ awk '{if (NR>1000) print $3,$4}' phenotypes.txt > part.temp

• Print length of column 2 from line 1:

 $ awk '{if (NR==1) print length($2)}' genotypes.txt
• Concatenate effects 2 and 5 and add the new effect to the phenotype file:

 $ awk '{print $0,$2$5}’ phenotypes.txt > new_phen.txt

• Process CSV files
• $ awk 'BEGIN {FS=","} {print $2,$3}' pedigree.txt > ped_out.temp

Implicit variables
NF - number of fields
NR - record number
FS - input field separator
OFS - output field separator

awk hash tables

• Arrays can be indexed by alphanumeric variables in an efficient way

• awk version to count progeny by sire
• sire id is column 2

$ awk '{ sire[$2]+=1} END { for (i in sire)

 {print "Sire " i, sire[i]}}' pedigree.txt

awk
• awk can be used for pretty much anything related to data processing in Unix

• Sum of elements in column 1
$ awk '{ sumf += $1 } END { print sumf}' file1

6
• Sum of squares of element in column 1
$ awk '{ sumf += $1*$1 } END { print sumf}' file1

14
• Average of elements in column 1
$ awk '{ sumf += $1 } END { print sumf/NR}' file1

2

uniq

• Command uniq lists all unique lines of a file
• Option –c counts the number of times each level occurs in a file

Example: counting progeny by sire in a pedigree file
$ awk '$2>0{ print $2}' ped | sort | uniq –c > s.temp

$ awk ‘{ if ($2>0) print $2}' ped | sort | uniq –c > s.temp

cut

• Cut the first 3 characters of a line
 $ cut –c1-3 pedigree.txt > code.txt

• cuts out sections from each line of a file and writes the result to standard output

• Cut the second column of a line
 $ cut –d “ “ –f 2 pedigree.txt > code.txt

Run in background + Save output
$vi blup.sh
#type the following commands inside ai.sh
 #!/bin/bash
 blupf90+ <<AA > blup.log
 renf90.par
 AA
#save and exit
$bash blup.sh &
#can replace bash by sh

$vi gibbs.sh
#type the following commands inside ai.sh
 #!/bin/bash
 gibbsf90+ <<AA > gibbs.log
 renf90.par
 1000 0
 10
 AA
#save and exit
$bash gibbs.sh & #can replace bash by sh

